
REVIEW ARTICLE

Systems biology tools for toxicology

Suzanne Geenen • Peter Neal Taylor •

Jacky L. Snoep • Ian D. Wilson • J. Gerry Kenna •

Hans V. Westerhoff

Received: 20 March 2012 / Accepted: 12 April 2012 / Published online: 9 May 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract An important goal of toxicology is to under-

stand and predict the adverse effects of drugs and other

xenobiotics. For pharmaceuticals, such effects often emerge

unexpectedly in man even when absent from trials in vitro

and in animals. Although drugs and xenobiotics act on

molecules, it is their perturbation of intracellular networks

that matters. The tremendous complexity of these networks

makes it difficult to understand the effects of xenobiotics on

their ability to function. Because systems biology integrates

data concerning molecules and their interactions into an

understanding of network behaviour, it should be able to

assist toxicology in this respect. This review identifies how

in silico systems biology tools, such as kinetic modelling,

and metabolic control, robustness and flux analyse, may

indeed help understanding network-mediated toxicity. It

also shows how these approaches function by implementing

them vis-à-vis the glutathione network, which is important

for the detoxification of reactive drug metabolites. The tools

enable the appreciation of the steady state concept for the

detoxification network and make it possible to simulate and

then understand effects of perturbations of the macromol-

ecules in the pathway that are counterintuitive. We review

how a glutathione model has been used to explain the

impact of perturbation of the pathway at various molecular

sites, as would be the effect of single-nucleotide polymor-

phisms. We focus on how the mutations impact the levels of

glutathione and of two candidate biomarkers of hepatic

glutathione status. We conclude this review by sketching

how the various systems biology tools may help in the

various phases of drug development in the pharmaceutical

industry.
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Introduction

In recent years, system-level understanding has been a

recurrent theme in biological science and has greatly

improved our understanding of the function and regulation

of many different processes. In particular, the new disci-

pline systems biology has provided a framework for

investigating the interactions between the separate parts of

biological systems in order to understand its functioning.

One field where this approach has the potential to add
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significant value is toxicology. In particular, it is now

recognised that many commonly prescribed drugs cause

rare and unexpected adverse effects in man. These drug-

induced adverse reactions are a leading cause of human ill

health, restricted drug usage, failed licensing and with-

drawal of licensed drugs from clinical use. Therefore, they

are of major clinical and socioeconomic importance.

The mechanisms that underlie adverse drug reactions are

complex and involve multiple biological processes. The

latter may include cellular uptake and efflux mediated by

specific membrane transport proteins, metabolic biotrans-

formation (often to chemically reactive metabolites), off-

target interactions of the drug and/or its metabolites with

tissue macromolecules, downstream interactions between

cells and activation of innate and/or adaptive immune

responses. Our understanding of the inter-relationships

between these events is incomplete. In particular, it is

unclear which of the different processes can explain why

relatively few patients are susceptible to adverse drug

reactions whereas the vast majority of drug-treated patients

are not. As an essential first step, a rigorous understanding

is required of the intracellular networks affected by drugs,

their metabolites and their molecular targets, and of how

these can act in concert with either causing toxicity or

preventing toxicity from arising.

It is a frequent mistake to assume that systems biology

is focussed on system-level or holistic understanding

(Alberghina and Westerhoff 2005). It is not: physiology is

the science of the whole; molecular biology is the science of

the parts; systems biology is the scientific discipline that

encompasses and describes relationships between the two.

Systems biology therefore involves assessment of biologi-

cal function at the level of network interactions. The rele-

vant networks start at the molecular level, are genome-wide

and ultimately relate to the functioning of the organism

as a whole. An important feature of systems biology is that

it focuses upon the emergent properties of the system.

Emergent properties are functional properties not present

within the individual components of the system, which only

arise when system components interact. An example is the

interaction between hydrogen and oxygen to make water.

The resulting change in properties is unpredictable if only

the individual properties of hydrogen and oxygen are

known (Aderem 2005). Systems biology is confined to

cases where the emergent properties are important for bio-

logical function, that is, for the maintenance of the living

state, for dysfunction such as in disease and for malfunc-

tions such as in the case of toxicity. In the context of this

review, systems biology addresses much of the toxicity of

adverse drug reactions (ADRs).

Once the system can be understood to the point that

emergent properties can be explained, then biology can

start to move from being a descriptive science to being a

more predictive science (Materi and Wishart 2007). Once

biology is a more predictive science, it should become

possible to predict off-target effects of drugs as well as

network effects of affected targets. Even a minor advance

in predictive capabilities may help both the research into

new drugs and their toxicity, and decisions concerning

whether or not to advance new drug candidates towards the

market (Westerhoff et al. 2008).

Glutathione metabolism is important for toxicology as it

is vital in binding and neutralising reactive species pro-

duced in, for example, the liver via the metabolism of

xenobiotics by the formation of glutathione conjugates

(Ketterer et al. 1983). When the dose of reactive metabo-

lites exceeds the capacity of this defence system to

replenish glutathione through new synthesis, glutathione

depletion occurs. For a variety of toxic compounds, it has

been found that the depletion of glutathione precedes the

covalent binding of chemically reactive metabolites to

cellular macromolecules, oxidative stress and, ultimately,

organelle injury with the potential for liver failure and

death (Park et al. 2011). A more complete understanding of

the events that lead to hepatic glutathione depletion might

therefore highlight new and sensitive biomarkers and pro-

vide insights into key steps in glutathione production,

thereby leading to improvements in risk assessment for

new, and existing, drugs and xenobiotics.

In this review, we shall provide an outline of the

available in silico systems biology tools that might be of

use to toxicology. We will discuss to what extent these

tools have been applied already and how they can be

beneficial in toxicology. In addition, these tools are

exemplified by being applied to a model of glutathione

metabolism, where possible, to illustrate their utility.

Creating a model

Biological systems are highly complex due to both the

number of components present and the nonlinear interac-

tions between them (Kitano 2002). In order to understand

emergent properties of the system, the interactions between

the components must be studied. Components such as

enzymes only ‘talk’ to the rest of the system through the

rates at which they consume or produce small molecules.

The reaction rates are governed by kinetics such as

Michaelis–Menten and Hill equations, which express the

dependence of the reaction rates on the concentrations of

the small molecules in the systems; this is how the enzymes

‘listen’ to each other through the altering concentrations of

the small molecules. Only rarely, the integration of the

concentration of the small molecules over a period of time

can be understood without computer help. An important

part of systems biology is therefore collecting the
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experimental data of components of a system into a math-

ematical model (Alberghina and Westerhoff 2005) and

integrating that model over time. Such models of biological

systems have many uses (Hornberg et al. 2007), some of

which are mentioned here. Firstly, comparisons between

experimental observation and the mathematical model

behaviour can link knowledge of system components to

explanations of system behaviour. These new explanations

might have been elusive in the past due to the focus on

single molecules. Secondly, in silico experiments can be

carried out on the model to test the effects of perturbations

on the system and to identify the processes that control the

system. These experiments may either be only feasible

using a computer, or are faster and cheaper than laboratory

experiments (Bakker et al. 2000). Such ‘dry’ experiments

may generate new hypotheses about the system, which can

then be tested experimentally. Simulation can also be used

as a tool for experimental design. In an iterative process, the

results of further experiments can then be used to improve

the model until such a time as the model is sufficiently good

as to be considered equivalent to its biological test systems

in terms of ability to predict outcomes of experiments. At

this point, the biological experiments become redundant.

There are several examples of modelling applied in

toxicology (Krishnan and Andersen 2010). One popular

type is physiologically based pharmacokinetic (PBPK)

models. These models investigate variables such as the rates

of absorption, distribution, excretion, and biotransformation

of chemicals and their metabolites. In toxicology research

and chemical risk assessment, they are used to make more

accurate predictions of target tissue dose for different

exposure situations (Andersen 1995). Other models simu-

late electrophysiological activity to assess the potential

cardiotoxicity of cardiac drugs (Rodriguez et al. 2010),

identify the important parameters in hepatocyte regenera-

tion following toxicity using single cell–based spatial–

temporal models (Höhme et al. 2007) or show the feasibility

of examining toxicology pathways in kinetic detail (Reed

et al. 2008).

For toxicology, using models in terms of rate equations

and balance equations, together culminating in ordinary

differential equations (ODEs), would be beneficial as it is a

well-understood formalism, fast and mathematically robust.

It also lends itself to thorough interpretation via metabolic

control analysis (MCA), elementary mode analysis (EMA)

and flux balance analysis (FBA), which are tools that can

help understand how a system functions (vide infra).

In the ODE methodology, the biochemistry of the reac-

tions is essentially translated into mathematics. The bio-

logical system and the corresponding network of chemical

reactions are described in terms of a set of balance equations

with reaction stoichiometries indicating which metabolite is

produced or consumed in which reaction, plus a set of

reaction rate equations. The ODEs resulting from the

combination of these two sets are then solved using

numerical methods. Most processes in biological systems

are catalysed by enzymes or transporters. Examples of well-

known and popular equations used to describe enzyme

catalysed reactions are mass action and Michaelis–Menten

kinetics (Cornish-Bowden 1995). For more information on

enzyme kinetics and the equations used for this kind of

modelling, please refer to ‘Appendix’.

In the past, modelling has been unattractive to experi-

mental biologists due to the necessity to acquire extensive

programming and mathematic knowledge. This should no

longer be the case. A number of software packages have

been put together to perform several mathematical tasks and

to make modelling more user-friendly. Different software

packages have been designed for users of different back-

grounds as reviewed in some detail by Alves et al. (2006).

Modelling simulators such as COPASI provide access to

powerful systems biology tools while remaining accessible

to non-expert modellers (Hoops et al. 2006). Examples of

kinetic models are available in model repositories such as

JWS online [http://www.jjj.bio.vu.nl/; (Olivier and Snoep

2004; Materi and Wishart 2007)] that enable in silico

experimentation with the existing models without exposing

the user to the detailed mathematics [cf. Biomodels (http://

www.ebi.ac.uk/biomodels-main/)]. Models include those of

glycolysis in human erythrocytes (Mulquiney and Kuchel

1999), glycolysis in Trypanosoma brucei (Helfert et al.

2001) and the methionine/threonine metabolism in Arabid-

opsis (Curien et al. 2009).

Below, a model of glutathione metabolism by Geenen

et al. (in press; cf Fig. 1) will be investigated as an example.

The model can be found under (http://jjj.mib.ac.uk/

webMathematica/Examples/run.jsp?modelName=geenen).

It was based on kinetic equations taken from a previously

published model (Reed et al. 2008) and expanded by adding

equations for the gamma-glutamyl cycle, ophthalmic acid

synthesis and detoxification of paracetamol (acetamino-

phen). Some of the parameter values used for the creation of

the model are uncertain, and the lack of data required for

validation means that we are not confident at the ability of

the model to make quantitatively correct predictions. Here,

we use this model to illustrate systems biology tools and to

create testable hypotheses for further analyses. The more

specific conclusions of the model are of limited certainty.

The network of biochemical reactions modelled is pre-

sented in Fig. 1. Starting from methionine at the top, a long

pathway leads to reduced glutathione, which can then be

conjugated to a xenobiotic such as paracetamol. This then

leads to the removal of the xenobiotic as the glutathione

conjugate. Glutathione can also be made from 5-oxopro-

line, which can in turn be synthesised from glutathione

through a partly extracellular route. The precursor of

Arch Toxicol (2012) 86:1251–1271 1253

123

http://www.jjj.bio.vu.nl/
http://www.ebi.ac.uk/biomodels-main/
http://www.ebi.ac.uk/biomodels-main/
http://jjj.mib.ac.uk/webMathematica/Examples/run.jsp?modelName=geenen
http://jjj.mib.ac.uk/webMathematica/Examples/run.jsp?modelName=geenen


glutathione can release a cysteine to return to 5-oxoproline.

The overall scheme is complex, and the presence of at least

three reaction cycles makes it difficult to predict how

changes in the activity in any of the enzymes (or the gene

that encode them) will affect the level of glutathione, the

rate of detoxification, or the concentrations of metabolites

and potential biomarkers such as 5-oxoproline.

Systems biology computational methods

A mathematical representation of biology is not the aim of

systems biology. Rather, computational models are viewed

as tools to help the human mind in understanding the

behaviour of the networks of biology. The insight gained

by modelling is more extensive than what is possible by

experimentation alone. This is because the networks of

biology are too complex for their behaviour to be predicted

by the unaided human brain. In biology simplicity is rare,

because living systems are essentially complex (Westerhoff

et al. 2009). These models therefore can also get complex,

and thus we need modelling tools to be able to understand

these networks and particularly the role that specific mol-

ecules such as drugs, drug targets and drug metabolisers

play in them.

Because detailed experimental analysis of the networks

in humans is virtually impossible, and tissue culture cells

and animal models are rarely reliably representative of the

in vivo situation in humans, it might hereby seem that

mathematical models are the methods of choice. This is not

yet so, however. The catch is that for the models to be

made, much experimental information is required; none of

the models of the type required here can be made ab initio.

It is a property of the highly nonlinear networks of life such

Fig. 1 The reaction network in

the mathematical model of

glutathione metabolism made

by Geenen et al. (in press) for

liver. The network embraces

methionine catabolism,

glutathione metabolism,

5-oxoproline and ophthalmic

acid synthesis and glutathione-

mediated detoxification

pathways. Metabolites are

indicated by ovals; enzymes and

rates are shown in italics
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that their behaviour depends strongly on the values of

many parameters that are products of the evolution of the

macromolecules. These parameter values can almost only

be determined experimentally. To date there is no single

network in biology for which a completely validated

dynamic model has been made, although some pathways

are perhaps getting close. A slightly but not yet very suc-

cessful (Westerhoff et al. 2010) alternative method is found

in flux balance analysis with objective functions: If one

knows which functions the network has been optimised for

in evolution, then one may arrive at complete descriptions

of systems fluxes.

Steady state analysis

Once the concentrations of the chemical substances in the

system have integrated so as to give zero further change in

concentrations over time, a steady state is reached. The

concentrations and fluxes of the model at this steady state

often represent the functions of the biological system that is

being modelled. Steady states therefore can contain a lot of

information. The steady state of a model can be readily

calculated in software such as COPASI, or even more

directly, that is at the click of a button in JWSonline (http://

jjj.mib.ac.uk/) (Olivier and Snoep 2004).

For the diagram of Fig. 1, Geenen et al. (in press) have

collected the best present estimates of the parameter values,

as well as the best known rate equations, and have assembled

these into a rate plus balance equations model, which can

now be integrated by JWSonline. The column entitled

‘Normal’ in Table 1 gives the steady state concentrations

and flux values for the reactions, as predicted by the model.

It is clear that without the model, it would have been difficult

to predict these flux values, which correspond to what is

implied by the best of our understanding of the glutathione

pathway. On the other hand, this understanding is incom-

plete, and we should not put too much trust in the precise

values of the fluxes and metabolites at this stage. If not for the

precise values, what else can one use the model for?

We will first use the model to verify our understanding

of the fundamentals of the modelling strategies and of

certain principles of networks functioning at steady state.

The flux values in Table 1 enable us to appreciate that at

each ‘node’ (a node is any metabolite in the network for

which the concentration may vary with time until the

steady state is achieved), the total carbon flux into the node

equals the total carbon flux out of it. For instance, at the

node cglc (c-glutamyl-cysteine) in Fig. 2, the flux syn-

thesising glutamyl-cysteine is 940 lM/h (v10) and the flux

degrading glutamyl-cysteine is 830 lM/h through reac-

tion 24 and 110 lM/h through reaction 11. This results in a

net rate of change of zero and thus no change in the con-

centration of glutamyl-cysteine with time.

Table 1 Changes in the steady state of the Geenen et al. (in press)

standard model under normal conditions, when VGSf1 is reduced from

948 to 200 or when VOP is reduced from 846,930 to 10,000

Variable Normal Reduced VGS Reduced VOP

ASG 0.0043 0.0053 0.0046

bcys 180 181 180

bgluAA 1.1 0.75 1.1

bGSH 8.1 5.7 8.6

bGSSG 0.49 0.27 0.52

cCH2THF 0.33 0.31 0.34

ccys 210 304 190

cglc 190 640 220

cgluAA 4.7 4.8 5.2

cglut 540 1,200 470

cgly 1,800 2,200 1,700

cGSH 1,500 1,000 1,600

cGSSG 69 38 74

cTHF 5.3 5.7 5.2

cysASG 5 5 5

cysgly 3.6 3.1 3.7

cyt 33 34 33

gluAB 2.7 32 1.4

glyASG 92 110 88

hcy 1.1 1.1 1.1

met 48 47 48

OPA 1 1 1

oxo 2.5 5.8 3.1

SAH 19 20 19

SAM 38 37 38

v[1] 120 120 120

v[2] 66 66 66

v[3] 130 130 130

v[4] 57 59 57

v[5] 190 190 190

v[6] 61 62 61

v[7] 38 37 38

v[8] 90 90 89

v[9] 90 90 89

v[10] 940 1,000 27

v[11] 110 79 120

v[12] 55 36 58

v[13] 50 33 52

v[14] 3.9 2.1 4.1

v[15] 1.1 0.63 1.2

v[16] 42 13 47

v[17] 62 60 63

v[18] 12 11 12

v[19] 25 -12 31

v[20] 150 120 150

v[21] 24 23 25

v[22] 38 37 38
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Another semi-quantitative issue that the modelling can

address is what the major fluxes are in the pathway. Is the

flux from methionine to glutathione indeed the dominant

flux? The answer is perhaps surprising: no. According to

Table 1, the production of c-glutamyl-cysteine (cglc) from

cysteine and glutamate in reaction 10 at a rate of 940 lM/

h, the production of glutamate from 5-oxoproline at a rate

of 930 lM/h (reaction v25) and the production of 5-oxo-

proline from c-glutamyl-cysteine (v24) at a rate of 830 lM/

h are ten times higher than the flux through reaction 8. This

makes for a large cyclic flux around reactions v24, v25 and

v10 of 830 lM/h to be dominant. This may be unexpected

considering that this is a so-called ‘futile cycle’, which

hydrolyses ATP. This suggests that either a strong ability to

regulate, which could be an effect of the futile cycle, is to

be discovered here, or our molecular understanding of the

pathway is still incomplete. Perhaps not all enzymes of the

cycle are expressed simultaneously.

Interindividual variation in glutathione metabolism

The same model can help understand the disease 5-oxo-

prolinuria. 5-Oxoprolinuria is an inherited disorder of glu-

tathione metabolism, which causes a decrease in glutathione

concentration and an increase in 5-oxoproline concentration

(a glutathione metabolism by-product) in the urine. The

literature is unclear as to the mechanism of 5-oxoprolinuria.

Some researchers have suggested that this occurs via a

deficiency in glutathione synthetase (GS). They presumed

that this deficiency causes a low glutathione concentration,

which they expected to overstimulate c–glutamyl-cysteine

synthesis, and thus 5-oxoproline formation (Shi et al. 1996).

Another possible cause of 5-oxoprolinuria is a disruption in

the 5-oxoprolinase enzyme (which catalyses reaction 25 in

Fig. 1), which is hypothesised to directly increase the

5-oxoproline concentration in the cell (Croal et al. 1998).

We would hypothesise that in practice there is a plethora of

causes of 5-oxoprolinuria, that is, any single-nucleotide

polymorphism affecting an enzyme activity with control

over the level of 5-oxoproline without causing embryonic

lethality. But that is not the issue here.

Here, we examine the realism of the former two expli-

cations. If one decreases the Vmax of GS in our model by a

factor of 4.7, the concentration of reduced glutathione

decreases, but by a mere third, while the concentration and

the export rate of 5-oxoproline (v38) increase by factors of

2 and 3, respectively. Using the scan function of JWSon-

line, it is possible to analyse more precisely how the model

predicts the export rate v38 to vary with the Vmax of GS

(VGSf1). Fig. 3 shows that a reduction in the glutathione

synthetase (GS) activity is predicted to increase the efflux

for 5-oxoproline from the cells, confirming deficiencies in

GS as possible basis for the disease.

The other proposed explanation for 5-oxoprolinuria may

also be examined by an in silico experiment, decreasing the

5-oxoprolinase activity (VOP; reaction 25 in Fig. 1). In this

case, no significant increase in 5-oxoproline export (v38) was

observed (Fig. 4). From this, we hypothesise that the more

effective cause of 5-oxoprolinuria is a decrease in the gluta-

thione synthetase, not a decrease in the 5-oxoprolinase activity.

Fig. 2 The conservation of the glutamyl-cysteine concentration at

steady state. Reactions v10, v11 and v24 were taken from Fig. 1. The

steady state reaction rates in the model are given in italics (from

Table 1)

Table 1 continued

Variable Normal Reduced VGS Reduced VOP

v[23] 14 14 14

v[24] 830 930 -94

v[25] 930 1,000 15

v[26] 1.5 3.9 0.67

v[27] 1.5 3.9 0.67

v[28] 100 73 110

v[29] 100 73 110

v[30] 100 73 110

v[31] 100 73 110

v[32] 1.5 3.9 0.67

v[33] 0 0 0

v[34] 0 0 0

v[35] 0 0 0

v[36] 0 0 0

v[37] 0 0 0

v[38] 0.57 1.8 0.79

v[39] 90 90 89

v[40] 5 2.8 5.3

v[41] 90 90 89

Simulations used JWSonline (results reported in terms of the two

most significant digits). Metabolite concentrations are in lM, and

fluxes are in lM/h. Paracetamol was considered to be absent. Fluxes

can be related to reactions using Fig. 1. bX refers to the concentration

of X in the serum. cX refers to the concentration of X in the cytosol.

‘Normal’: standard parameter values including VGS = 948 and

VOP = 846,930. ‘Reduced VGS’: standard parameter values except for

VGS = 200. ‘Reduced VOP’: standard parameter values except for

VOP = 10,000
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These findings are partly counterintuitive. A decrease in

the activity of GS (reaction 11) might be expected to

decrease the level of extracellular glutathione and thereby

the synthesis of 5-oxoproline through reactions 28, 30 and

31, with a concomitant decrease in the intracellular level

and efflux of 5-oxoproline, contrary to the modelling

results. Again, inspecting Fig. 1, one might expect a

decrease in the Vmax of reaction 25 to lead to an increase in

the 5-oxoproline concentration and an increase in 5-oxo-

proline efflux (reaction 38), again deviating from the

results of the modelling. By looking at the steady state

values in Table 1, one can examine why these intuitive

predictions would be incorrect (illustrated in Fig. 5). When

GS activity is reduced, this should first reduce the rate of

reaction 11, thereby causing the concentration of c–glut-

amyl-cysteine (cglc in Table 1) to increase and the con-

centration of glutathione (cGSH) to decrease as confirmed

by the model calculations (v11 changes from 110 lM/h to

79 lM/h, cglc changes from 0.19 to 0.64 mM and GSH

changes from 1.5 to 1.0 mM; cf. the third column in

Table 1). The rather substantial increase in c–glutamyl-

cysteine might be expected to decrease the flux through

v10. Paradoxically, this flux is increased, however, by some

7 % from 940 to 1,000 lM/h. Consequently, the cause of

the increase in 5-oxoproline cannot involve product inhi-

bition of reactions 10 and 25. Rather, it must be due to the

increase in the concentration of c–glutamyl pushing more

flux through reaction 24 (from 830 to 930 lM/h) increas-

ing the rate of production of 5-oxoproline. Apparently, this

increase is enough to compensate for the decrease in v31

due to the decrease in v11 and the increase in 5-oxoproline,

and consequent increase in glutamate (cf. Table 1) now

leads to the paradoxical increase in reaction 10, as men-

tioned above. This pushes the intracellular 5-oxoproline up,

with a consequent increase in 5-oxoproline export. The

above finding shows that indeed the proper cause–effect

relationship in a network as complex as glutathione

metabolism cannot be reliably identified by mere inspec-

tion of network topology. Modelling is required for fol-

lowing the logics of biology.

This is illustrated further when VOP (reaction 25) is

reduced by a factor of 8.5 (final column in Table 1): this

brings about an increase in the 5-oxoproline concentration

by only 25 % (from 2.5 to 3.1 lM) so that reaction v24

changes direction and degrades 5-oxoproline back into the

glutathione cycle instead of much more of the substance

being exported from the cell: the export reaction increases

by a mere 20 % (from 0.57 to 0.79). We emphasise that we

are here discussing the performance of what may be the

best possible mathematical model of the pathway and that

these conclusions are subject to experimental validation.

The calculations show, however, how the model can serve

as a vehicle for explanation and a method for the sugges-

tion of key experimental measurements.

Fig. 3 The variation of 5-oxoproline export (V38) with the Vmax of

glutathione synthetase (VGSf1), as predicted by the model. Calculated

using the scan function of JWSonline (scanning VGSf1 from 1 to

1,000)

Fig. 4 5-Oxoproline export (V38) predicted for the variation of the

Vmax of 5-oxoprolinase (VOP). The scan function of JWSonline

(scanning VOP from 1 to 10,000) was used

Fig. 5 Changes in fluxes around glutathione induced by reactions

v10, v11, v24, v31, v38 and v25 taken from Fig. 1 in order to show the

hypothesised mechanism of 5-oxoprolinuria. The changes in steady

state flux for the shift in condition between normal (VGSf1 = 948) and

reduced GS (VGSf1 = 200) are shown in the figure. Flux is in lM/h
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Metabolic control analysis

In order to understand emergent properties of the system,

the interactions between the components must be studied.

But studying the emergent properties does not always

require the full dynamics of the network. If one is inter-

ested exclusively in the control of fluxes and concentra-

tions in the network, then there is a simpler way to

determine and quantify the control of emergent properties

and to calculate how control emerges from the interactive

properties of the components of the network: metabolic

control analysis (MCA). In principle, this approach could

help to determine the processes in the network that deter-

mine the toxicity of a given drug.

Although it is still the prevailing view that the flux

through a pathway is necessarily set by one rate-limiting

enzyme; this view has been shown to be false (Groen et al.

1982a). MCA enables one to deal with the possibility that

the control of flux through the pathway is shared. The flux

control coefficient (CJ
i
) for example is defined as the per-

centage change in a specified steady state metabolic flux (J)

that is caused by a one per cent change in activity (v) of any

enzyme alone, or more precisely:

CJ
vi
¼

o ln J
op

� �
system steady state

o ln vi

op

� �
all metabolite concentrations constant

In words, one here adds an inhibitor p specific for an

enzyme i. One measures the relative (‘fold-change’) effect

on the flux of the pathway in the intact system (i.e. dlnJ).

One then compares this (by division) to the effect the

inhibitor would have on the flux through the enzyme if

the enzyme were studied in isolation dlnvi. After all, in the

pathway, homeostatic responses will reduce the effect on

the flux. If the inhibitor were to reduce the pathway flux by

only 20 % at a concentration where it would inhibit the

enzyme in isolation for 50 %, the control coefficient would

be only 20/50 = 0.4.

Here, the activities of all other enzymes are kept con-

stant (Kholodenko et al. 1995), and p is a parameter that

only affects enzyme i. When the control coefficient is 1,

then the change in flux is proportional to the change in the

activity of the reaction. When its flux control coefficient is

0, the enzyme is not limiting the flux at all. These two

options already existed in the classical view of the control

of metabolism, that is, an enzyme was either the rate-

limiting step (C = 1) or not rate-limiting at all (C = 0).

The above definition enables one to deal with the inter-

mediate case where an enzyme carries partial flux control,

that is, somewhat but not completely rate-limiting. In such

cases, the flux control might be 0.3 or 0.7. This has allowed

the establishment of the pattern of flux control for a number

of cases both directly and experimentally (Bakker et al.

1999; Groen et al. 1982a) and by an integration of exper-

imental data into a model (Bakker et al. 1999; Groen et al.

1982a).

As an increase in all enzyme activities by 1 % leads to a

1 % increase in flux through a pathway, it can be shown

that the sum of the flux control coefficients is 1 (Hornberg

et al. 2007). This is called the summation law (Kacser and

Burns 1973; Heinrich and Rapoport 1974):

Xn

i¼1

CJ
i ¼ CJ

1 þ CJ
2 . . .þ CJ

n ¼ 1

The same principle can be applied to concentration control

analysis, where the effect of a change in metabolite con-

centration on the flux is measured. Then, the analogy of the

above sum amounts to zero.

A related parameter is the elasticity coefficient. This is a

local parameter of an enzyme that shows how perturbations

of a reaction parameter affect the local reaction rate.

‘Local’ means that the effect is to be measured without

taking into account the changes in the environment of the

enzyme that may be caused by its reduced activity. The

elasticity coefficient does not take network effects into

account, whereas the control coefficients do. Indeed, the

perspective of elasticity differs from that around the control

coefficients, as the elasticity is not directly a systemic

property, although its magnitude does depend on properties

of the system.

The elasticity coefficients are defined as the ratio of

relative change in local rate to the relative change in one

parameter (normally the concentration of an effector).

ei
p ¼

ovi

op
� p

vi
¼ o ln vi

o ln p

� �

all other metabolite concentrations constant

where vi is the rate of the enzyme and p is the parameter we

are perturbing. This means one could measure the relative

(‘fold-change’) effect on the rate of a reaction in response

to/compared with (by division) a relative (‘fold-change’) in

the parameter of interest. Each enzyme has as many elas-

ticity coefficients as the number of parameters that affect it

directly, for example, reaction substrates, products and

effectors.

A particularly useful and important feature of MCA is

that it can relate the kinetic properties of the individual

reactions (local properties) to (global) properties of the

whole intact pathway. MCA therefore shows how local

properties within the system give rise to system-level

properties, that is, MCA shows the emergence. This is done

through the connectivity theorems that relate the control

coefficients to the elasticity coefficients.

The connectivity theorem for flux control coefficients

(Kacser and Burns 1973) states that, for a common
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metabolite S, the sum of the products of the flux control

coefficient of all (i) steps affected by S and its elasticity

coefficients towards S is zero:
X

i

CJ
i e

i
½S� ¼ 0

For the concentration control coefficients, two equations

can apply, depending on whether or not the metabolite, the

concentration of which is being controlled, is the same as

the metabolite for which the elasticity coefficients are

considered (Westerhoff and Kell 1984):

P
i

C
½S�
i ei
½S� ¼ �1

P
i

C
½A�
i ei
½S� ¼ 0 for S 6¼ A

Control coefficients can also be applied in drug efficacy

measurements by measuring the effect of an inhibitor of an

enzyme on the flux through the system. A corresponding

response coefficient is defined as the percentage change in

a specified steady state metabolic flux that is caused by a

one per cent change in concentration of a drug or by an

amount of drug that causes 1 % inactivation of the enzyme

when in isolation (Groen et al. 1982b; Chen and

Westerhoff 1986; Bakker et al. 2002).

An example of how modelling of a system can lead to

the discovery of new drug targets can be found in the

metabolic control analysis in the glycolytic pathway of

the parasite T. brucei. This parasite is responsible for the

African sleeping sickness and lives part of its population

life cycle in the mammalian blood stream. The strongest

flux control resided in the glucose transport step. This led

to the prediction that the glucose transporter is the best

predicted drug target, rather than glyceraldehyde-3-phos-

phate dehydrogenase, which is the drug target that is

mostly worked on (Bakker et al. 1999). The next step is

here to perform differential control analysis, which com-

pares the flux through a single metabolic pathway in a

pathogen and host, finding the control coefficients in both.

The steps with the largest difference in control coefficient

(higher control in pathogen than in host) can be identified

as having the greatest potential for specifically inhibiting

flux through the pathogen metabolic pathway. Bakker et al.

(2002) integrated this new approach with molecule-based

drug design. T. brucei is also a model system for tumour

cells in the mammalian host, where the tumour cells need

to be killed by drugs that should not be toxic for the host

cells. Again, one should develop drugs that impinge on

steps with high flux control in the tumour cell and small

flux control on, hence low toxicity for, normal host cells.

Differential control analysis has also been performed for

oncogenic signalling to gain information on potential drug

sites (Hornberg et al. 2007).

By analysing which reactions have control or high fra-

gility in a detoxification pathway, it is possible to predict

which steps in a pathway are sensitive to drug-induced

changes. Additionally, by analysing how control might

change in situations such as malnutrition and genetic

defects, it may be possible to predict an individual’s sen-

sitivity to toxicity from a certain drug.

MCA has been applied to the glutathione model to

demonstrate the control of methionine influx on the ability

of the cell to protect itself from paracetamol toxicity

(Geenen et al. in press). We can also use MCA to explain

the findings we have made in this paper regarding 5-oxo-

prolinuria. The control coefficients of the model were

analysed by using the metabolic control analysis task in

COPASI. This model is available in SBML format from the

authors and from JWSonline, which can be loaded into

COPASI for analysis. Table 2 shows the flux control

coefficients of GCS, GS and OP on 5-oxoproline export

(i.e. the effect that a change in the individual Vmax’s of

GCS, GS or OP would have on the export rate of 5-oxo-

proline) under three conditions. Under normal and gluta-

thione synthetase–limiting conditions the control is

strongest in the glutathione synthetase (control of -0.71

and -0.79) showing this is the more limiting step. The

negative value of these control coefficients reflects that an

increase in the activity of the enzyme leads to a decrease in

the flux, as expected. When VOP is decreased, the control in

5-oxoprolinase is also decreased, again supporting the

expectation that decreased 5-oxoprolinase does not lead to

much of an increase in 5-oxoproline.

Hierarchical regulation analysis (RA)

Control analysis examines which steps control or limit a

flux or a concentration. This gives an answer to the ‘what-if

question’: ‘what is the percentage effect on the flux if an

enzyme is activated by 1 %?’. If a certain enzyme has a

flux control coefficient of, say, 0.7, then this does not

guarantee that the system itself actually activates this

enzyme by 1 % when it needs to increase the flux through

Table 2 The control exercised by GCS, GS and OP on 5-oxoproline

export flux under three conditions: normal steady state, reduced

glutathione synthetase activity (VGsf1 = 200 rather than 948) and

reduced 5-oxoprolinase activity (VOP = 10,000 rather than 846,930).

Flux control is quantified in terms of the flux control coefficient

(Groen et al. 1982a)

Control by ; Parameter values

Normal VGS = 200 VOP = 10,000

Glutamylcysteine synthetase 0.25 0.16 0.008

Glutathione synthetase -0.71 -0.79 -0.55

5-Oxoprolinase -0.27 -0.16 -0.0052
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the system by 0.7 %. The organism that is host to the

pathway may or may not activate the enzyme when it

responds to an external challenge, such as a drug. It has

been the development of regulation analysis that has

brought this crucial distinction between control (=limita-

tion) and actual regulation to the fore. Hierarchical regu-

lation analysis (ter Kuile and Westerhoff 2001) is a

quantitative method for investigating whether the regula-

tion of flux through a system is metabolic or depends on

alterations in gene expression.

When an organism needs to increase the steady state flux

through a pathway, it needs to increase the fluxes through

all the enzymes in that pathway. For each enzyme, the

organism is able to increase the flux by regulating it

through gene expression, through signal transduction

(leading to covalent modification and activation of the

enzyme), or metabolically (i.e. by increasing the concen-

tration of its substrate or allosteric modifiers or by

decreasing the concentration of its product). The former

two types of regulation have been quantified together by

the so-called hierarchical regulation coefficient (qh), con-

sisting of a gene expression regulation coefficient and a

signal-transduction regulation coefficient. The metabolic

regulation has been quantified by the metabolic regulation

coefficient (qm). At steady state, the sum of qh and qm

equals one. This means that 100 % of regulation is dis-

tributed between gene expression, signal transduction and

metabolic regulation (ter Kuile and Westerhoff 2001;

Westerhoff et al. 2009).

Historically, the flow of information from DNA to RNA

to protein to function has suggested to some that regulation

is exclusively hierarchical (i.e. that qh = 1) and in fact

dominated by regulation of gene expression. Others

thought that only regulation at the metabolic (qm) level,

thus through the concentrations of substrate, products and

modifiers, was of importance. Experimental regulation

analysis has examined this for Trypanosoma brucei (ter

Kuile and Westerhoff 2001) and Saccharomyces cerevisiae

(Rossell et al. 2006; Daran-Lapujade et al. 2007) and found

the regulation to be distributed between gene expression

and metabolic regulation and to vary over time (Eunen

et al. 2009). Both earlier groups of scientists were right and

wrong.

qh is measured as the ratio between the percentage

change in enzyme concentration and percentage change

in flux accompanying (and being partly caused by) this

change.

qh ¼
log Vmax c1 � log Vmax c2

log Jc1 � log Jc2

In words, the difference of the logarithm of the Vmax

between condition 1 and 2 (c1 and c2) is divided by the

difference of the logarithm of the flux flowing through the

enzyme in c1 and c2. If a precisely proportional change in

enzyme level (or Vmax) accompanies the change in flux

through that enzyme, then qh will be one and there will be

no regulation of flux through metabolite level changes. If

this is not the case, then some of the flux is metabolically

regulated (qm). qm is given by the percentage change in the

metabolites’ concentration dependence of the enzyme rate

divided by the change in flux. Because the two coefficients

add up to 1, and qh can be measured relatively readily, qm

is usually calculated from the former.

qm ¼ 1� qh

In the presence of drugs, fluxes such as the synthesis rate

of glutathione may change either because of the direct effect

of the drug or its metabolites or because of subsequent

regulation of the fluxes by the cell, in response to the addition

of the drug. The regulation can consist of a combination of

three components, that is, alteration in the levels of

intermediary metabolites such as ATP or glutamate,

alterations in the expression levels of the participating

enzymes or alterations in covalent modification of the

enzymes. Regulation analysis enables one to dissect the three

effects and to suggest ways to optimise the response.

Metabolic network analysis: elementary mode analysis

(EMA), metabolic flux analysis (MFA) and flux balance

analysis (FBA)

MCA and RA flourish by looking at specific aspects of

dynamic networks only, that is, control and regulation,

respectively. One may also focus on flux itself, in the sense

of what fluxes are admitted by a given network model

(EMA), what fluxes are actually occurring (MFA) and what

fluxes correspond to the network fulfilling certain aims

(FBA). The map of a metabolic network (or a mathematical

model thereof) is completely defined by all the reaction

stoichiometries: every reaction in a biological system has a

stoichiometry, which defines the number of substrate and

product molecules that are consumed and produced,

respectively, per turnover of the enzyme (Westerhoff and

van Dam 1987). The stoichiometric matrix is one where the

rows represent the compounds of the reactions and the

columns correspond to the reactions. For the network given

in Fig. 6, the stoichiometric matrix is (1 -1 -1), indicating

that the change in time of the concentration of metabolite

X is v1–v2–v3.

Elementary mode analysis (EMA) studies the possible

routes through a biochemical network. This requires only

stoichiometric data. A flux mode is a set of fluxes through

reaction steps in the network for which each metabolite is

balanced in the sense that its production rate equals its net

consumption rate. The sum of two flux modes is also a flux

mode, and thereby, some flux modes can be described as
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linear combination of two other flux modes. An elementary

flux mode is a minimum set of reactions that can operate at

steady state (Fig. 6). The mode is termed non-decompos-

able or minimal in the sense that removal of any of the

reactions in the mode (knock out of any of the corre-

sponding genes) destroys the flux (Schuster et al. 1999). It

can also be described as a minimal set of reactions needed

to convert one reactant into one metabolic product or a

small set of the latter (Schilling et al. 2000).

Another term often used in this kind of analysis is

‘extreme pathways’. Extreme pathways are a subset of

elementary modes and are distinguishable in that they can-

not be expressed as the combination of more than one ele-

mentary mode. Elementary mode analysis enumerates all

distinct metabolic routes through a network, that is, all

possible flux pathways in a generalised sense. Extreme

pathways analysis on the other hand focuses on enumerating

the unique and minimal set of convex basis vectors needed

to describe all allowable steady state flux distributions

through the metabolic network as sums (not differences) of

the extreme pathways (Papin et al. 2003). In large biological

networks, many, more than one, elementary modes can be

present. These elementary modes may overlap, using the

same reactions or metabolites, depending on the connec-

tivity of the metabolites. The number of, and reaction stoi-

chiometries within, elementary modes can be calculated

using software such as COPASI (Hoops et al. 2006). For

genome-wide networks, the number can be so large that it

defeats the purpose of calculating all of them. In the

example of Fig. 6, the three elementary modes are (1 1 0),

that is, v1 = v2, = v3 = 0, and (1 0 1), that is, v1 = v3,

and (0 1 -1), that is, v2 = reverse v3. Because the first

pathway can be seen as the sum of the latter two, there are

only two extreme pathways, that is, the latter two elemen-

tary modes.

Elementary modes may be associated with biological

functions: the catabolic network of an organism may need

to produce glutamate for protein synthesis and glutathione

for detoxification. Starting from glucose and ammonia,

there may be only a few elementary modes (fundamental

pathways) doing this. In order to understand life, we need

to improve our knowledge and understanding of the role of

the elementary modes and which, how and why certain

ones or certain combinations are used more than others.

EMA was performed on the glutathione model using the

JaPathways software package for the calculation of elemen-

tary mode flux values (Taylor and Schwartz, manuscript in

preparation), which is based on the quadratic programming

approach suggested by Schwartz and Kanehisa (Schwartz and

Kanehisa 2005). Steady state flux values calculated for 3

paracetamol concentrations from Geenen et al. (in press)

were used as input to the JaPathways software along with the

stoichiometric coefficients of the model. This resulted in a

complete set of 86 elementary modes and the corresponding

elementary utilisation (flux going through each elementary

mode). The elementary mode with the highest utilisation was

EM1 (shown in Fig. 7), consistent with our identification of a

dominant flux mode shown above.

Elementary modes are related to function. By comparing

the flux flowing through the elementary mode associated

with methionine being used for glutathione recycling

(EM29) to the flux through the elementary mode associated

with methionine being used for detoxification (EM28), we

could analyse and quantify how the cell deals with different

concentrations of paracetamol (Fig. 8). As paracetamol is

increased, the flux going through glutathione recycling

(EM29) reduces as the cell is using more of its glutathione

to detoxify paracetamol (EM28). By analysing the flux

through an elementary mode rather than the flux through a

single reaction, we are able to compare ‘functions’ of the

model rather than merely reactions.

The ‘what is possible question’ is addressed by EMA.

Although software is in place to calculate the flux through

elementary modes, this software is at early stages of

development and is considered rather specialised (Poolman

Fig. 6 Demonstration of how a network can be decomposed into a

set of elementary modes and extreme pathways Fig. 7 The schematic of EM1 and its usage (flux going through this

elementary mode at steady states of three paracetamol concentrations)
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et al. 2004; Schwartz and Kanehisa 2005; Schwartz and

Kanehisa 2006). The ‘how’ question is related to kinetic

properties of and expression levels of enzymes catalysing

the steps in the elementary modes. This question is not

addressed by EMA, but by kinetics, MCA and HRA. The

‘why’ question may have to do with the performance of the

elementary modes in terms of efficiency. This question is

addressed by FBA.

The ‘which’ questions are addressed by metabolic flux

analysis (MFA). The aim of metabolic flux analysis (MFA)

is to quantify the amount of flux going through the

metabolism of an organism. The end result would be a flux

map that shows the distribution of anabolic and catabolic

fluxes over the metabolic network (Wiechert 2001). This is

the combination of flux data gained from, for example,
13C-labelled substrate with the stoichiometric matrix of the

network. This can use either of the two approaches.

Method 1 integrates the 13C data with computer models of

the network being measured. Calculated fluxes through the

model are iteratively fitted to measured data, thereby

minimising the difference between the observed and

simulated isotope spectra, similar to a parameter-fitting

procedure. Method 2 studies flux ratios and is derived by

probabilistic equations that quantify the relative contribu-

tion of converging pathways to the formation of a metab-

olite from the NMR or mass spectra. However, this method

is only appropriate for smaller data sets (10–15 fluxes)

(Wiechert 2001).

An example of MFA is a study on the carbon cycle of

hepatoma cells to investigate potential drug targets. Using

a combination of metabolite concentration information and

transient 13C-labelling experimental data obtained in hep-

atoma cell lines, a network model of glycolysis, the pen-

tose-phosphate pathway (PPP) and the citric acid cycle

(TCA) was set up. The fluxes from the model were then

estimated and found to be in accordance with in vivo 13C-

labelling data (Hofmann et al. 2008; Maier et al. 2008).

The comprehensive network model of Maier et al. (2008)

was extended and applied to modelling cholesterol and

central carbon metabolism. This found 3-hydroxy-3-

methylglutaryl-coenzyme A reductase (HMG-CoA reduc-

tase) to be a potent target for lowering cholesterol synthesis

Fig. 8 Scheme of EM29 (elementary mode associated with methionine being used for glutathione recycling) and EM28 (elementary mode

associated with methionine being used for detoxification) and the flux going through each elementary mode at three paracetamol concentrations
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with hypolipidemic drugs. By applying MCA to this model,

they found a high (0.5) control coefficient of HMG–CoA

reductase over cholesterol efflux (Maier et al. 2009).

Another example of successful flux analysis is the

investigation of hepatic metabolic pathways in order to

provide nutritional support and non-surgical medical ther-

apies for fulminant hepatic failure (FHF) (Arai et al. 2001).

Here, a mass balance model was created to characterise

changes in liver metabolism during the hypermetabolic

response to injury. By combining experimental data about

amino acid perturbation during FHF with the mass balance

model, it was possible to estimate intrahepatic metabolic

fluxes under treatment conditions. D-galactosamine treat-

ment, for example, significantly decreased hepatic gluco-

neogenesis, which correlated with a reduction in amino

acid entry into various points of the tricarboxylic acid

(TCA) cycle.

By contrast, flux balance analysis (FBA) does not rely on

the input of experimental data or any expression of kinetic

information. Instead, it simulates the metabolic network by

using the stoichiometric matrix to find the pattern of fluxes

while optimising for certain criteria such as the maximal

production of certain products or the minimisation of ATP

hydrolysis (Stelling et al. 2002; Kauffman et al. 2003). This

linear optimisation will ideally result in a single steady state

reaction flux distribution in a metabolic network (Raman

and Chandra 2009), but in practice it does not do so, as there

are many parallel pathways in most networks with, for

example, equal ATP stoichiometries.

The investigation of the fluxes is very important for a

network understanding of a system. The ability to manip-

ulate the fluxes through the system would give scientists

more control over toxicology pathways. The prediction of

the effects of complete inhibition of certain reactions can

be carried out by FBA, but only when the optimisation

criteria ‘used’ in the evolutionary selection for fitness is

known, which is rarely the case (Simeonidis et al. 2010).

The manipulation of fluxes by partial impediment or by

stimulation of steps in the network will require MCA or

full-out kinetic modelling.

Robustness

Robustness is a system’s ability to respond to changes in

the external conditions or internal organisation while

maintaining a constant behaviour and a similar steady state

(Barabasi and Oltvai 2004). Metabolites in biological

systems are clustered into nodes. Some of these nodes are

hubs that are connected with many other nodes. The

topology of a system has a high importance in robustness.

While deletions of individual nodes of a system affect the

system to a small degree, elimination of hubs causes major

disruption as this leaves small isolated node clusters

uninteracting (Albert et al. 2000). Not only topology but

also gene duplication can play an important part in

robustness (Daniels et al. 2008). To understand network

robustness requires investigation into the functional and

dynamic changes that a perturbation causes (Barabasi and

Oltvai 2004), thereby viewing robustness as the systems

property that it is seen to be (Barkai and Leibler 1997).

Many different mathematical approaches have been

used to compare robustness of systems (Daniels et al. 2008;

Grimbs et al. 2007). Westerhoff showed that the higher the

robustness of a variable towards changes in enzyme

activities, the lower the fragility and the lower the corre-

sponding concentration control coefficient (Westerhoff

2007). He also showed (in preparation) that total fragility

of a concentration is always conserved and equal to 0, but

that total robustness is not conserved and is high when

some fragilities are close to zero and high when all fra-

gilities differ strongly from zero. Robustness can be cal-

culated as being the inverse of the control coefficients

(Koefoed et al. 2002; Swat et al. 2011).

In Geenen et al. (in press), it was shown that the con-

centrations of proposed extracellular biomarkers of intra-

cellular glutathione levels were sensitive to methionine

concentrations in the cell. To investigate this, the robust-

ness coefficients were calculated for the biomarkers’

secretion flux (v32 and v38) when perturbing methionine

import (v39) and methionine entry into the methionine

cycle (v1 and v2). The fragility coefficient was evaluated as

the inverse of the flux control coefficient. The results in

Table 3 show that at zero paracetamol, the robustness is

fairly low, with a slightly higher robustness in 5-oxoproline

secretion. This means that the 5-oxoproline secretion is less

likely to change than the ophthalmic acid efflux when the

flux of v39, v1 and v2 changes, making 5-oxoproline the

more robust biomarker of glutathione levels. The negative

robustness merely means that an increase in the flux

through the perturbed process results in a decrease in the

5-oxoproline or ophthalmic acid flux. Interestingly, at low

paracetamol (20 lM), where Geenen et al. (in press)

showed 5-oxoproline could behave as a biomarker for

glutathione depletion, oxoproline secretion flux is more

robust to changes in v39, v1 and v2 than in the absence of

paracetamol. In contrast, at high methionine concentra-

tions, 5-oxoproline secretion flux again has a lower

robustness again, and ophthalmic acid secretion flux has a

high robustness with regard to v39, v1 and v2. This suggests

that 5-oxoproline might be a better biomarker at low par-

acetamol exposure and ophthalmic acid a better biomarker

at high paracetamol concentrations.

Another way to make quantitative predictions on the

relative importance of various reactions in a network uses

flux balance analysis. Several publications have shown that

the flux distribution in organisms like Escherichia coli is
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not homogeneous (Almaas et al. 2004). Most reactions

have quite small fluxes while a few have high flux. It is

likely that perturbations affecting these high flux reactions

will alter the performance of the system most.

Conclusion: how could systems biology help systems

toxicology?

As mentioned above, we have applied a range of systems

biology tools to the glutathione detoxification pathway to

illustrate how these tools can be used to understand how

toxicologically relevant pathways function. We have shown

how steady state analysis of a system can allow us to

investigate system behaviour. In silico experiments in

which the Vmax of the enzyme glutathione synthetase (GS)

in the glutathione pathway was perturbed have allowed us

to simulate a 5-oxoprolinuria patient and to predict the

subsequent increase in 5-oxoproline production. Metabolic

control analysis (MCA) has enabled us to explore the

impact of individual reactions on control of flux through the

glutathione pathways. In the case of 5-oxoprolinuria, this

analysis showed that a decrease in the Vmax of GS resulted

in an increased impact of this enzyme on glutathione syn-

thesis flux, thereby making GS a more rate-determining

enzyme: this mechanism of 5-oxoprolinuria should become

progressively more severe as the molecular defect is

stronger. By contrast, the mechanism of a defect in 5-ox-

oprolinase should have a limited oxoprolinuria effect,

which should not increase further as the molecular defect

increases in severity. Tools like metabolic control analysis

may well be of more general utility in toxicology, for

example, for determining which enzymes in multistep

detoxification pathways are rate determining and can be

expected to exert the greatest effect when perturbed by

dietary effects or single-nucleotide polymorphisms. This

has been exemplified in the demonstration that the supply

reactions of methionine have high control on paracetamol

detoxification, thereby predicting that reduced amounts of

this amino acid (e.g. following malnutrition) could lead to

problems in detoxification (Geenen et al. in press). We have

also applied tools such as metabolic flux analysis (MFA),

flux balance analysis (FBA) and elementary mode analysis

(EMA) to the glutathione pathway, in order to explore the

mechanisms by which changes in discrete analytes arising

from the pathway correlate with glutathione levels and

therefore provide useful biomarkers. It was shown that

EMA can give us information about the flux through a

function, such as detoxification, rather than just the rate of

the reaction. Robustness is an important systems property to

analyse for toxicology, as it can predict the expected level

of change as the system responds to external conditions

such as a toxic effect. By analysing robustness of the glu-

tathione depletion biomarkers, we could investigate under

what condition these biomarkers were robust and therefore

more likely to exhibit a reliable correlation with glutathione

status. We would recommend that when biomarkers are

proposed, not only their sensitivity towards changes in the

phenomenon they are marking should be discussed, but also

their robustness with respect to various SNPs and nutri-

tional variations. This comes on top of our earlier recom-

mendation that the variation of the biomarker concentration

with the property that the biomarker is supposed to monitor

should be monitonic (Geenen et al. in press).

When applying systems biology tools to toxicology

problems, it pays to define the specific issue that needs to

be addressed. To do this, it is important to take full account

of the context. Within the pharmaceutical industry, toxicity

caused by candidate drugs remains a leading cause of

failure of progressing candidate drugs to the market.

Pharmaceutical R&D comprises of distinct Discovery and

Development activities (Fig. 9). Drug Discovery aims to

predict the efficacy and toxicity in man during compound

design and selection, and then to assess potential toxicity in

man by undertaking preclinical safety studies in experi-

mental animals. The approaches used at this early stage are

focussed on reproducible and dose-dependent adverse

effects, not on infrequent events that may occur only in

relatively few highly susceptible individuals. During drug

Development, studies are undertaken that provide accurate

assessment of efficacy and toxicity exhibited by patients in

clinical trials, which as molecules progress through the

development pipeline typically involve progressively lar-

ger numbers of patients and longer durations of compound

administration. This results in a shift in emphasis from

‘average efficacy and toxicity across the human popula-

tion’ in Discovery and in early clinical trials to ‘individual

response and toxicity in each patient’ in Development, that

is, in later trials and after licensing. Where marked

Table 3 The robustness of ophthalmic acid and 5-oxoproline secre-

tion vis-à-vis perturbation of methionine import (v39) and methionine

entry into the methionine cycle (v1 and v2)

V39 V1 V2

0 lM paracetamol

Ophthalmic acid efflux -0.43 -0.76 -1.4

5-Oxoproline efflux -1.8 -3.1 -5.7

20 lM paracetamol

Ophthalmic acid efflux -0.69 -1.2 -2.4

5-Oxoproline efflux -13 -24 -46

500 lM paracetamol

Ophthalmic acid efflux -39 -73 -140

5-Oxoproline efflux 0.84 1.6 3

Control coefficients were calculated in COPASI and then inversed to

get fragility coefficients
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variability in efficacy or in toxicity is observed in man, the

opportunity arises for personalised health care in which the

relevant drug may be given only to certain patients who are

considered likely to benefit (e.g. the anticancer drug Iressa

is specific to patients with EGF-stimulated tumour cell

growth (Wakeling et al. 2002; Ciardiello et al. 2000)), or

may not be given to patients who are at high risk of

exhibiting a serious adverse event (e.g. the association

in Han Chinese between a genetic marker, HLA–B*1502,

and carbamazepine-induced Stevens–Johnson syndrome

(Chung et al. 2004)).

In principle, systems modelling has the potential to aid

this process significantly. Modelling of data from non-

clinical sources may improve the accuracy of predictions of

effects that occur in the clinic before the first time in man

(FTIM) clinical trial. Such effects may arise from processes

with significant control that exhibit inter-species variation

between animals and man or inter-individual variation

between humans. Figure 10 provides examples of how

such considerations can impact upon the risk of drug-

induced liver injury (DILI) caused by paracetamol, where

the toxicity is caused by a reactive intermediate, which at

normal therapeutic doses is detoxified by conjugation to

glutathione.

We can investigate the toxic effect of paracetamol in the

liver in several different ways. Using pharmacokinetic

modelling, it is possible to predict the concentration of

paracetamol in the liver following administration of dif-

ferent doses and in different individuals (who vary in age,

size, etc.). By modelling the metabolism of the drug, it is

possible to predict how the steady state flux and concen-

tration changes with different doses. This can increase the

understanding of paracetamol toxicity and also identify

doses at which its administration is safe and does not cause

a depletion in glutathione and consequently protein bind-

ing. Tools like metabolic control analysis allow us to

predict which steps have the highest control on important

concentrations and fluxes in the intracellular network. They

can therefore be applied to toxicology to find the steps in

pathways that are more sensitive to toxic effects.

By using systems biology tools such as control and

robustness analysis vis-à-vis toxicology pathways, one

should be able to provide better understanding and pre-

diction of toxicological risk. The available tools can assess

which parts of a toxicology pathway are most fragile and to

which variations the fragilities are high. This includes the

variability caused by single-nucleotide polymorphisms in

individuals putting them at risk of a, then predictable, toxic

effect. Once such an analysis has been undertaken, part of

the subsequent biomonitoring activities could focus on the

genetic basis of the most controlling steps rather than

requiring the analysis of all possible components of the

Fig. 9 The drug development process
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pathway. This could help assess the potential range of

toxicity for the human population, but also open up ave-

nues for personalised medicine. Here, individual genome

sequences and the frequencies of the polymorphisms in the

human population might have impact, at last. A different

set of biomonitoring activities would read the patients at

more physiological levels, ranging from the expressed

proteome, to metabolomics and personal drug tolerance

history. Here, the results would be compared with results of

systems biology models such as the one discussed here for

glutathione.

In the case of paracetamol, it has already been shown

experimentally that the methionine supply to the cell is a

controlling factor for glutathione detoxification ability.

This has been put into mechanistic perspective by model-

ling. Reduced methionine levels are linked to lower glu-

tathione detoxification ability. Since hepatic glutathione

protects against liver toxicity caused by the reactive

metabolites of paracetamol, an understanding of the range

and variability of the hepatic methionine status in the

human population would be expected to improve our

understanding of the range of doses at which paracetamol

is safe in man. For a candidate drug that causes DILI via

mechanisms similar to those described for paracetamol,

this approach could greatly assist with point 2 in the drug

Development phase goals (Fig. 9) and allow us to more

accurately translate from clinical trial data to human pop-

ulation safety predictions. If it is known how an individual

may be different from the average of the population in a

controlling step, we can more accurately calculate indi-

vidual risk and potentially avoid adverse toxic effects. This

would then be addressing point 3 in the drug Development

phase goals and act as a step towards personalised health

care. In principle, a similar systems modelling approach

could be used to explore and understand risk of toxicity

arising via other mechanisms, provided that the key path-

ways responsible for toxicity and for detoxification can be

defined and flux controlling steps can be identified.

One of the main impacts of the glutathione model was

that the increase in our understanding of the robustness of

the biomarkers 5-oxoproline and ophthalmic acid. Bio-

markers like these could play an important role in tracking

toxicity both during clinical trials and in patients. Model-

ling approaches would allow us to predict and understand

the kinetics, magnitude and dynamic range of these bio-

markers. Therefore, these techniques could allow us to

optimise biomarker usage and help make decisions with

regards to prioritisation between candidates. This would

greatly assist with point 1 in the drug Development phase

goals of Fig. 9 and possibly enable improved monitoring of

drug safety in man in clinical trials.

We have shown that systems biology tools give more

rigorous descriptions of complex biological processes and

effects of perturbations. This has led and will lead to a

better understanding of controlling events and regulatory

processes in the system. Toxicology is a consequence of

the loss of homeostatic regulatory processes, that is, of a

loss of robustness (for example, in the case of toxicity due

to paracetamol, cell protection is overwhelmed by high

doses of reactive metabolites). Therefore, as illustrated

here, the application of systems biology tools to toxicology

has the unique opportunity to provide network insights into

underlying mechanisms and basis of susceptibility to drug

compounds. We also infer that by integrating data for

individuals, such as enzyme activities or diet into a model,

it may in the future be possible to help understand why

Fig. 10 How can systems

biology tools be applied to the

risk of drug-induced liver injury

(DILI) from paracetamol?
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certain individuals are more susceptible to adverse effect of

drugs than others. It may become possible to adjust drug

dosing accordingly, making drugs more effective for

individuals not subject to their toxicity and safer for those

who are.

In the above sections, we asserted that in principle,

systems biology could be far superior over current toxi-

cology methods: clinical trials in human, in vivo work in

animal models and in vitro drug testing in cell lines. We

here wish to repeat that this superiority is far from being in

place. For models to attain the required level of quality and

detail, much more experimental work is needed. At present,

the model quality is insufficient to claim that the precise

calculations in this review lead to reliable results. In sys-

tems biology, unlike in the genomics revolution 10 years

ago, the necessary work flow towards understanding drug

targeting and toxicity is clear. It is not known with cer-

tainty that this work flow will become successful across the

lines, but it is likely to become so in some cases, such as

glutathione-mediated detoxification of paracetamol. Per-

haps it is time to try.

List of abbreviations

The complete names of the enzymes and metabolites

indicated by acronyms in Fig. 1 are as follows.

Enzyme names and acronyms and EC numbers

Names of metabolites of which the concentrations were

variable (lM)

THF—Tetrahydrofolate

5,10-MTHF—5-10-Methenyltetrahydrofolate

5-MTHF—5-Methyltetrahydrofolate

met—Methionine

SAM—S-adenosylmethionine

SAH—S-adenosylhomocysteine

hcy—Homocysteine

cyt—Cystathionine

ccys—Cytosolic cysteine

bcys—Blood cysteine

glc—c-Glutamyl-cysteine

cGSH—Cytosolic glutathione

bGSH—Blood glutathione

cGSSG—Cytosolic glutathione disulphide

bGSSG—Blood glutathione disulphide

cgly—Cytosolic glycine

cglut—Cytosolic glutamate

Names of metabolites of which the concentrations were

held constant

AB—2-Aminobutyrate (Soga et al. 2006)

bgly—Blood glycine

bglut—Blood glutamate

bmet—Blood methionine (varies in some experiments)

cser—Cytosolic serine

H2O2—Cellular hydrogen peroxide

HCHO—Formaldehyde

OPA—Ophthalmic acid, N-[N-(c-glutamyl)-a-

aminobutyryl]glycine

Oxo—5-Oxoproline, pyroglutamic acid

para—N-acetyl-p-aminophenol/paracetamol/

acetaminophen

Reaction Abbreviations Enzyme name E.C.

number

v[1] mati Methionine adenosyl

transferase I

2.5.1.6

v[2] matiii Methionine adenosyl

transferase III

2.5.1.6

v[3] meth Glycine N-methyltransferase 2.1.1.20

v[4] gnmt DNA methyltransferase 2.1.1.72

v[5] ah S-adenosylhomocysteine

hydrolase

3.3.1.1

v[6] bhmt Betaine-homocysteine

methyltransferase

2.1.1.5

v[7] ms Methionine synthase 2.1.1.13

v[8] cbs Cystathionine gamma-

synthase

4.2.1.22

v[9] ctgl Cystathionase 4.4.1.1

v[10] gcl Glutamylcysteine synthetase 6.3.2.2

v[11] gs Glutathione synthetase 6.3.2.3

v[12] gpx Glutathione peroxidase 1.11.1.9

v[13] gr Glutathione reductase 1.8.1.7

v[24] ggct Gamma-

glutamylcyclotransferase

2.3.2.4

v[25] oxoase 5-oxoprolinase 3.5.2.9

Reaction Abbreviations Enzyme name E.C.

number

v[26] gcs Glutamylcysteine synthetase 6.3.2.2

v[27] gs Glutathione synthetase 6.3.2.3

v[28] ggtp Gamma-

glutamyltranspeptidase

2.3.2.2

v[29] ap Aminopeptidase 3.4.11.2

v[31] ggct Gamma-

glutamylcyclotransferase

2.3.2.4

v[33] gpx Glutathione S-transferase 2.5.1.18

v[34] gpx Glutathione S-transferase 2.5.1.18

v[35] ggtp Gamma-

glutamyltranspeptidase

2.3.2.2

v[36] ccat Cysteine-S-conjugate

N-acetyltransferase

2.3.1.80
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Appendix: Further details on kinetic modelling

Kinetic equations

This appendix contains additional information on the

equations that are typically used in kinetic modelling.

For a reaction where nA ? mB gives pC ? qD, the mass

action kinetics rate equation is:

v ¼ vþ � v� ¼ kþ � ½A�n � ½B�m � k� � ½C�p � ½D�q ð1Þ

The properties between the square brackets refer to the

chemical activity or concentration of the compounds in

question. Mass action kinetics describes the time depen-

dence of chemical reaction systems where the molecule

numbers are much higher than 100 (Onsager 1931; West-

erhoff and van Dam 1987) and all participating molecules

are explicit in the reaction equation.

Whether a reaction in a network needs to be modelled as

reversible or not depends on the thermodynamics, that is,

on the free energies. Eq. 1 can be rewritten as (Westerhoff

and van Dam 1987):

v ¼ vþ � v� ¼ kþ � ½A�n � ½B�m � ð1�
Keq

C
Þ ð2Þ

where the mass action ratio is defined by:

C ¼ ½A�
n � ½B�m

½C�p � ½D�q ð3Þ

and the equilibrium constant equals the mass action ratio at

equilibrium. The thermodynamics is given by:

�DG ¼ R � T � ln C
Keq

� �
¼ �DG00 þ RT ln C ð4Þ

DG0
0 is the standard Gibbs free energy difference of the

reaction. This represents the influence of the chemistry on

the direction into which the reactions wants to run.

Whenever this Gibbs free energy difference of reaction is

very negative, the reaction is effectively irreversible, and

Eq. 2 reduces to its irreversible version:

v ¼ vþ ¼ kþ � ½A�n � ½B�m ð5Þ

In the mass action kinetics of the simplest possible

reaction, that is, the ‘irreversible’ unimolecular degradation

of S, the rate (v) of a reaction is therefore dependent on the

reaction rate constant (k) and the substrate concentration

[S] (Hofmeyr 1995).

v ¼ k S½ � ð6Þ

Several additional assumptions have to hold for Eq. 6 to

represent the rate of the corresponding enzyme catalysed

irreversible reaction. These assumptions include either that

the reaction is diffusion limited or that the substrate

concentration is low enough for the enzyme not to be

saturated by its substrate (Westerhoff and van Dam 1987;

Cornish-Bowden 1995). In cases where the reaction, which

is being modelled, is reversible, the same assumption

continues to apply, but the backward reaction has to be

included in the rate equation, e.g.:

v ¼ ks S½ � � kp P½ � ð7Þ

When the reaction is not limited by diffusion, that is, by the

collision of the substrate with the enzyme molecule, a more

representative form of the rate equation for the enzyme

catalysed breakdown of S in the absence of any product

takes into account the maximum rate of the enzyme (Vmax).

This rate of reaction tails off as the substrate concentration

exceeds the KM of the enzyme.

v ¼ Vmax � ½S�
KM þ ½S�

ð8Þ

This rate equation was derived by Michaelis and Menten

(1913) assuming the opposite of diffusion limitation, that

is, that the binding of substrate S to the enzymes is fast

enough almost to reach equilibrium. Haldane (1930)

relaxed this to the assumption that the enzyme-substrate

concentration reaches steady state. Whenever [S] refers to

the free concentration of the substrate, this equation is valid

at steady state, even if the total enzyme concentration is

high compared with the total substrate concentration. When

the total enzyme concentration is small as compared with

the total substrate concentrations, [S] in the above can be

replaced by the total concentration of the substrate in the

system, which much simplifies the further integration of the

system. In cases where this does not apply, a more accurate

zero derivative potential method may be applied (Härdin

et al. 2009).
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The reversible form of the Michaelis–Menten equation

is (Westerhoff and van Dam 1987; Cornish-Bowden 1995;

Haldane 1931):

v ¼
Vmaxþ � ½S�KMS

� Vmaxþ � ½P�KMP

1þ ½S�
KMS
þ ½P�

KMP

¼
Vmaxþ � ½S�KMS

� 1� Keq

C

� �

1þ ½S�
KMS
þ ½P�

KMP

ð9Þ

When reactions are far enough from equilibrium, that is,

‘irreversible’, this reduces to:

v ¼
Vmaxþ � ½S�KMS

1þ ½S�
KMS
þ ½P�

KMP

ð10Þ

This equation is almost equal to the commonly used

equation Eq. 8, but carries the product inhibition effect

with it. This shows that independent of whether a reaction

is irreversible or not, a modeller should always reckon with

the likelihood that the product inhibits the forward reaction

rate, simply because it necessarily binds to the same site

of the enzyme as the substrate does and competes with

the latter. It is good practice to have product-inhibited

reactions in a model by default. Absence of the product

inhibition terms imposes strong limitations to what controls

the system. The distinction between reversibility and

product inhibition is important.

There are several random order and ordered order

binding equations commonly used in biology, which take

the form of Michaelis–Menten equations but contain more

substrates and products or can model reversible reactions

(Cornish-Bowden 1995).

For many reactions, the rate of reaction is not only

influenced by substrates, products, enzyme concentration

and turnover, but also be allosteric effectors that can

change the rate of turnover of the enzyme. It is often seen

that the function of these allosteric interactions is not only

to couple demand and supply but also to maintain a high

independence between fluxes in competing pathways

(Curien et al. 2009). When the activator binds to a site that

does not affect binding of substrate, the rate equation

changes by adding a prefactor (Cornish-Bowden 1995;

Liebermeister and Klipp 2006). For an activator, this term

depends on the concentration of the activator (A) and the

activation constant (KA) and takes the form:

Activation prefactor ¼ ½A�
KA þ ½A�

ð11Þ

For an inhibitor, this term is dependent on the

concentration of the inhibitor (I) and the inhibition

constant (KI) and would take the form:

Inhibition prefactor ¼ KI

KI þ ½I�
ð12Þ

Modelling a dynamic system requires rate equations and

balance equations. There is a balance equation for each

metabolite. For a metabolite S, this reads:

dS

dt
¼ vproduction of S � vconsumption of S; ð13Þ

that is, the increase in the concentration of metabolite S is

equal to the rate of its production minus the rate of its

destruction. In this equation, the reaction stoichiometries

play a role, that is, if a certain reaction produces two

molecules of S rather than 1 per turnover, then its term in

the balance equation has to be multiplied by 2.

Kinetic parameters necessary for this modelling (KI, KA,

Vmax, KMs, KMp, etc.) have been measured in quite a few

enzyme studies. They can be obtained from the literature or

by searching in databases such as BRENDA (http://www.

brenda-enzymes.org/) and by implementing other text

mining tools. Alternatively, they can be measured by well-

known biochemical techniques. Rates of reactions can also

be fitted directly from experimental data. However, this will

not be discussed in detail here.
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