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1 Introduction

The defining data of a conformal field theory (CFT) consist of a set of distinguished op-

erators (primaries) and a set of structure constants. On top of these are the requirements

of crossing symmetry, that the operator product expansion is associative. Once these

constraints are satisfied, these data together with conformal symmetry generate all the

correlation functions in the theory, as sums or integrals of conformal blocks weighted by

the structure constants. The conformal bootstrap program, initiated in [1–3], aims to solve

and classify conformal field theories by analyzing these constraints.

While the conformal bootstrap program achieved huge success in solving and classify-

ing rational conformal field theories in two dimensions [4–11], outside this “tamed zoo”, the

crossing equations are an infinite set of equations depending on infinitely many variables,

and a systematic solution is not known. Recent developments based on numerical methods

allow the extraction of certain information, such as bounds on the gap in operator prod-

uct expansions and bounds on the central charge [12, 13]. A more analytic approach to

bootstrap is to consider limits in which the crossing equations simplify [14–17]. This paper
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takes the second approach, and study the crossing equations in the semiclassical limit of

two-dimensional conformal field theories.

The semiclassical limit is motivated by holography [18–20]. Two-dimensional conformal

field theories are holographically dual to three-dimensional quantum gravity in asymptoti-

cally anti de-Sitter (AdS) space, whose curvature radius (inverse bulk coupling) is equal to

the boundary central charge [21]. Perturbatively, the bulk spectrum consists of two distin-

guished classes of states: a light spectrum containing boundary gravitons and perturbative

string states, whose energies do not scale with the central charge, and a heavy spectrum

of non-perturbative states with energies of the order of the AdS curvature, responsible for

the microstates of BTZ black holes [22]. In order to examine the collective dynamics of

the heavy states, the semiclassical limit takes both the central charge and the operator

dimensions large while keeping their ratios fixed. In this limit, the correlation functions

of primary operators admit a perturbative expansion in the inverse central charge. To

leading order, the Virasoro block decomposition of the correlation functions are dominated

by intermediate primaries of particular weights (a saddle). As the cross ratio x varies,

correlation functions can exhibit “phase transitions” due to discontinuous jumps of the

weight of the dominant saddle.

This paper studies the four-point function of identical primary operators in the semi-

classical limit. Here we list a summary of our main results.

1. At the crossing symmetric point, if there is a single dominant saddle, then its weight

is fixed by conformal symmetry. Away from the crossing symmetric point, the weight

of the dominant saddle must be smaller than this fixed value for x < 1/2 and larger

for x > 1/2. See proposition 1.

2. If the four-point function receives sufficiently small contributions from light primaries,

then the structure constants involving heaving primaries follow a universal formula,

à la proposition 3.

3. We study the Z2 twist field four-point function in the symmetric product orbifold.

Proposition 4 presents a logarithmically corrected Cardy formula that is valid for

h ≥ c/12.

The sections are organized as follows. In appendix A, we give a definition of the

semiclassical limit. In section 2, we study the crossing equation in the semiclassical limit

and derive universal constraints. In section 3, we examine specific examples, including

Liouville theory, product orbifold theories, and meromorphic CFTs. In section 4, we discuss

the gravity dual of classical Virasoro blocks, and implications of our bootstrap results in

the gravity context.

2 Bootstrap in the semiclassical limit

The semiclassical limit of a family of two-dimensional conformal field theories is the limit

of large central charge c while simultaneously scaling the operator weights with c. See

appendix A for a more careful definition. In this limit, the crossing equation simplifies
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drastically, because except for a measure zero set of cross ratios, the sum over intermediate

states in either the s-channel or the t-channel is dominated by just one saddle. In theories

with a gap of order c, we will see that the structure constants exhibit certain universal

behaviors in the semiclassical limit.

To simplify the discussion, we omit anti-holomorphic variables, but the generalization

is straightforward.

2.1 Review of the conformal bootstrap

Conformal symmetry constrains the four-point function of primary operators to take

the form

〈σa(x1)σb(x2)σc(x3)σd(x4)〉 = x−2ha14 xha−hb+hc−hd24 xha+hb−hc−hd34 xhd−ha−hb−hc23 Fabcd(x),

(2.1)

where ha is the conformal weight of σa, etc, and Fabcd(x) is a function of the cross ratio

x = x12x34/x14x32. The four-point function can factorize in different channels. The s-

channel corresponds to the fusion of the primary operators σa(x1) and σb(x2), and gives

an expansion at x = 0. The operators appearing in the operator product expansion (OPE)

of σa(x1) and σb(x2) are organized into representations of the Virasoro algebra. Each

representation contains a primary operator and its descendants.

An inner product on the vector space of primary operators is provided by the two-

point function 〈σa(0)σb(1)〉. We pick an orthonormal basis P with respect to this inner

product. Each primary operator and its descendants contribute to the four-point function

by a Virasoro block F(ha, hb, hc, hd, h, c|x). The four-point function can be expanded as

Fabcd(x) =
∑
h

Cσaσb(h)Cσcσd(h)F(ha, hb, hc, hd, h, c|x). (2.2)

A similar expansion exists in the t-channel by fusing σa with σd, and in the u-channel by

fusing σa with σc.

In the rest of this paper, we specialize to the four-point function of identical scalar

primaries 〈σextσextσextσext〉. The expansion coefficients C2
σextσext(h) are equal to the sum

of structure constants squared over all weight-h primaries appearing in the σext × σext
OPE, i.e.,

C2
σextσext(h) ≡

∑
φ∈Pσext×σexth

C2
σextσextφ, Pσext×σexth = {φ ∈ Pσext×σext |hφ = h}.

(2.3)

They are real and non-negative if we assume unitarity. Crossing symmetry, or equivalently

the associativity of the OPE algebra equates the four-point function expanded in different

channels. We will analyze the crossing equation between the s- and t-channels

F (x) ≡ Fσextσextσextσext(x) = F (1− x). (2.4)

2.2 Crossing symmetry in the semiclassical limit

Given a sequence of CFTs, the semiclassical limit of a four-point function 〈σextσextσextσext〉
is the limit of large central charge c while taking the operator weights hext to scale with c

– 3 –
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(fixed mext = hext/c). When speaking of correlation functions, in general it is impossible to

keep track of a particular primary operator in a sequence of CFTs, so the best we can do is

to consider “correlation function densities” in the semiclassical limit. See appendix A for

a definition. We omit these details in this section, and simply refer to them as correlation

functions.

It is observed that the Virasoro block admits a semiclassical expansion [4, 23]

F(hext, h, c|x) = exp
[
− c

6
f (mext,m|x)

]
g (mext,m, c|x) ,

g(mext,m, c|x) =
∞∑
k=0

c−kgk(mext,m|x).
(2.5)

The functions f and gk can be computed order by order in an x-expansion. The expansions

for f and g0 to the first few orders are presented in appendix B. Our analysis will assume

the following numerically observed properties of the semiclassical Virasoro blocks. For fixed

mext ≤ 1/2,

1. f ′(mext,m|1/2) is monotonically decreasing in m, and crosses zero only once.

2. f(mext,m2|x)−f(mext,m1|x) is monotonically decreasing in 0 < x < 1, for arbitrary

fixed internal weights m2 > m1 ≥ 0.

3. g0(mext,m|x) > 0 for all internal weights m ≥ 0 and cross ratios 0 ≤ x < 1.

To use these properties, we will restrict to mext ≤ 1/2, which is a relatively loose bound

compared to either the operators accounting for the microstates of the zero mass BTZ black

hole, mBTZ = 1/24, or the Hellerman bound [24] on the gap in the spectrum of primaries

mgap ≤ 1/12. The study of mext > 1/2 is left for future investigation.

In order to satisfy crossing symmetry, the summed structure constants squared which

are the coefficients in the Virasoro block decomposition (2.2) must also admit a semiclassical

expansion

C2
σextσext(m) = exp

[
c pσext(m)

](
qσext(m) +O

(
1/
√
c
) )
. (2.6)

In theories with a discrete spectrum, the summed structure constants squared is a sum

of delta functions. In the semiclassical limit, this distribution can be approximated by a

continuous distribution plus isolated delta functions,

qσext(m) =
∑
i

qiσextδ(m−mi) +
√
c qcontσext (m). (2.7)

Here we adopt a normalization such that if the CFT has an order c gap above the vacuum

state, then qvacσext = 1. As we will see, the
√
c factor in front of the continuous distribution

qcontσext (m) is required for it to be comparable with the delta functions in the large central

charge expansion.

For notational simplicity, we define the classical branching ratio as

Sσext(m|x) ≡ pσext(m)− 1

6
f (mext,m|x) . (2.8)
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The crossing equation at large c is

O(1/c) =

{ ∑
m∈Sx

exp [c Sσext (m|x)] qσext(m)g̃0 (mext,m|x)

}
− (x→ 1− x), (2.9)

where Sx denotes the set of weights that maximize Sσext(m|x) globally, and g̃0 (mext,m|x)

is defined to also include the one-loop contribution near the saddle point,

g̃0 (mext,m|x)

=

g0 (mext,m|x) if m is at a delta function,

g0 (mext,m|x)×
√
− 2π
c ∂2mSσext (m|x)

if m is inside the continuum.

(2.10)

We presently analyze this crossing equation and discuss its consequences, restricting to real

cross ratios lying within 0 < x < 1.

Near the crossing symmetric point. Let us Taylor expand the right hand side of (2.9)

at the crossing symmetric point x = 1/2. Since the right hand side is an odd function with

respect to x→ 1−x, all even power terms vanish. The coefficients of the odd power terms

to leading order at large c give

0 =
∑

m∈S1/2

f ′(mext,m|1/2)2j−1qσext(m)g̃0 (mext,m|1/2) ∀j ∈ N.
(2.11)

Suppose the crossing equation is dominated by finitely many points, S1/2 = {m̂1, m̂2,

· · · , m̂n}, which we order by m̂1 < m̂2 < · · · < m̂n. The fact that S1/2 is the set of global

maxima means

Sσext(m̂1|1/2) = Sσext(m̂2|1/2) = · · · = Sσext(m̂n|1/2), (2.12)

and this was used to factor out the exponential when going from (2.9) to (2.11). By

property 1 of the classical Virasoro block, f ′(mext,m|1/2) is monotonically decreasing in

m and crosses zero exactly once, hence the equations (2.11) imply that the saddles must

form pairs satisfying1

f ′(mext, m̂k|1/2) = −f ′(mext, m̂n+1−k|1/2),

qσext(m̂k)g̃0 (mext, m̂k|1/2) = qσext(m̂n+1−k)g̃0 (mext, m̂n+1−k|1/2) ,
(2.13)

for k = 1, . . . , [n/2]. Note that the last equation relates the one-loop (in 1/c) part of the

structure constants for pairs of saddles. If n is odd, then there is a lone saddle m̂n+1
2

sitting

at the solution to f ′(mext, m̂n+1
2
|1/2) = 0.

The multiplicity of the saddles is lifted in a small neighborhood 1/2− ε < x < 1/2 + ε

of the crossing symmetric point. The saddle with the largest f ′ value dominates the region

1First, q(m)g̃0(m) does not vanish, otherwise m would not appear in (2.11). Suppose n > 1. In the large

j limit, by the monotonicity property of f ′(m), only m1 and mn dominate the equation, and we conclude

in (2.13) for k = 1. m1 and mn drop out of (2.11). Reiterate for other k.
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1/2 − ε < x < 1/2, and its partner which has the smallest f ′ value dominates the region

1/2 < x < 1/2 + ε.2

Focusing on a small neighborhood 1/2 − ε < x < 1/2 + ε but ignoring the possible

multiplicity at the point x = 1/2, we conclude that there can be two scenarios (depending

on whether n = 1 or n ≥ 2 at x = 1/2).

1. The four-point function is dominated by a single saddle at m = m̂(mext), solving the

equation

f ′(mext, m̂(mext)|1/2) = 0. (2.17)

In this case, the four-point function is smooth around x = 1/2. The solution m̂(mext)

as a function of mext is plotted in figure 1.

2. The four-point function is dominated by a saddle at m = m̂1 for 1/2 − ε < x < 1/2

and another saddle at m = m̂2 for 1/2 < x < 1/2 + ε, where m̂1 and m̂2 satisfy the

relation

f ′(mext, m̂1|1/2) = −f ′(mext, m̂2|1/2). (2.18)

A phase transition occurs at x = 1/2.

Next we prove the following proposition.

Proposition 1. The four-point function is dominated by saddles with weights m ≤
m̂(mext) for x < 1/2, and saddles with weights m ≥ m̂(mext) for x > 1/2, where m̂(mext)

is the unique solution to (2.17). If there is a single saddle at x = 1/2, then its weight is

m = m̂(mext).

Proof. Let us assume the contrary, that the four-point function at some cross ratio x∗ <

1/2 is dominated by a saddle point with weight m∗ > m̂(mext). We recall the observed

properties of the classical Virasoro blocks from earlier in this section. Property 1 implies

that m̂1 ≤ m̂(mext) ≤ m̂2. Property 2 implies that the four-point function in the entire

range of cross ratios x∗ ≤ x < 1/2 should be dominated by saddle points with weights

m ≥ m∗; in particular, this means that m̂1 ≥ m∗ in the neighborhood 1/2− ε < x < 1/2.

Hence we arrive at contradicting inequalities.

2Suppose Sσext(m|x) is a smooth function near x = 1/2 and m = m̂k (the generalization to non-smooth

Sσext(m|x) is simple). It has an expansion at x = 1/2,

Sσext(m|x) = Sσext(m̂k|1/2) + (x− 1/2)∂xSσext(m̂k|1/2) +
1

2
(m− m̂k)2∂2

mSσext(m̂k|1/2)

+ (x− 1/2)(m− m̂k)∂m∂xSσext(m̂k|1/2) + · · · .
(2.14)

When we move away from the crossing symmetric point, x = 1/2 + ε, the new saddle point is at

mε = m̂k −
∂m∂xSσext(m̂k|1/2)

∂2
mSσext(m̂k|1/2)

ε+O(ε2), (2.15)

and therefore

Sσext(mε|1/2 + ε) = Sσext(m̂k|1/2)− ε

6
f ′(mext, m̂k|1/2) +O(ε2). (2.16)
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0.1 0.2 0.3 0.4 0.5
mext

1.1

1.2

1.3

1.4

m (mext)
mext

m vac_ (mext|1/2)

2mext

Figure 1. The ratios m̂(mext)
mext

and m̂vac(mext|1/2)
2mext

as functions of the external weight mext. See (2.17)

and (2.21) for definitions.

The following lemma will be useful later.

Lemma 1. If the inequality

pσext(m)− 1

6
f(mext,m|1/2) ≤ pσext(0)− 1

6
f(mext, 0|1/2) (2.19)

is obeyed for m ≤ m̂(mext), then it is obeyed for all m ≥ 0.

Proof. The contrary implies the existence of a classical branching ratio Sσext(m∗|x) at some

weight m∗ > m̂(mext) that is larger than Sσext(m|x) for all m ≤ m̂(mext). Then there is

no saddle with weight m ≤ m̂(mext), contradicting m̂1 ≤ m̂(mext).

Away from the crossing symmetric point. At a generic cross ratio x 6= 1/2, the

four-point function is dominated by a single saddle m = m̂(x). Here we ignore the measure

zero set of cross ratios with multiple saddles. Again Taylor expanding in x, we find that

m̂(x) and m̂(1− x) must satisfy the relations3

f ′(mext, m̂(x)|x) = −f ′(mext, m̂(1− x)|1− x),

Sσext(m̂(x)|x) = Sσext(m̂(1− x)|1− x),

qσext(m̂(x))g̃0 (mext, m̂(x)|x) = qσext(m̂(1− x))g̃0 (mext, m̂(1− x)|1− x) .

(2.20)

We point out a curious observation. The s-channel block appearing in the crossing

equation can be written via the fusion transformation (C.7) as an integral over t-channel

blocks with different weights [25–27]. We show in appendix C.2 that for an s-channel block

of weight m ≤ 1/24 at a fixed cross ratio x, the fusion transformation is in fact dominated

in semiclassical limit by the t-channel block whose weight is determined by equation (C.14).

We find numerically that the solution to this equation coincides with the solution m̂(1−x)

to the first equation in (2.20).

3The x in m̂(x) and m̂(1 − x) are merely labels and should not be expanded. More precisely, we first

Taylor expand the crossing equation and then take the large c limit. The saddle condition is the same for

all Taylor coefficients.
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2.3 Universality of structure constants

A main result of the bootstrap is that both the classical pσext(m) and one-loop qσext(m)

parts (in 1/c) of the structure constants C2
σextσext(m) are related for the pair of dominant

saddles (m̂(x), m̂(1−x)) at any cross ratio 0 < x < 1, as is seen from the second and third

equations in (2.20).

Let us consider a CFT whose spectrum of primaries has an order c gap above the

vacuum state,4 so that pσext(0) = 0 and qσext(0) = 1. The four-point function is dominated

by the vacuum block near x = 0. As the cross ratio is increased to some x = xPT, this

four-point function undergoes a phase transition and becomes dominated by a different

saddle. Let us denote by m̂vac(mext, x), for 0 < x ≤ 1/2, the solution to

f ′(mext, 0|x) = −f ′(mext, m̂vac(mext, x)|1− x), (2.21)

which is the t-channel saddle partner of the s-channel vacuum block. Since C2
σextσext(0) = 1

for the isolated vacuum block, pσext(m) and qσext(m) are unambiguously fixed for all m >

m̂vac(mext, xPT),

pσext(m̂vac(mext, x)) =
1

6
f(mext, m̂vac(mext, x)|1− x)− 1

6
f(mext, 0|x),

qσext(m̂vac(mext, x)) =
g̃0(mext, 0|x)

g̃0(mext, m̂vac(mext, x)|1− x)
.

(2.22)

After the phase transition, even though the equations (2.20) continue to relate pairs of

saddles, we do not have an invariant reference point like the vacuum was before the phase

transition, and therefore universality is lost. If the only phase transition occurs at x =

xPT = 1/2, then this universality holds in the widest range m ≥ m̂vac(mext, 1/2). The above

analysis did not assume the positivity of the structure constants squared, but positivity

is not violated by the universal formula (2.22) according to property 3 of the one-loop

Virasoro block.

Figure 2 shows the function m̂vac(mext, x) for mext between 1/2400 and 1/2, and sug-

gests that m̂vac(mext, x)/mext is not very sensitive to mext. Figure 3 plots the universal

classical and one-loop structure constants, pσext(m) and qσext(m). High orders in the x-

expansion are needed for the precision of results at large m, but the point here is univer-

sality. Note that the structure constants C2
σextσext(m) ∼ exp(c pσext(m)) decay faster than

16−mc, as is required by the convergence property of the four-point function [29].

If the external operators have a gapless OPE (the gap is of order c0), then generically

the s-channel saddle moves continuously away from the vacuum as x is increased, until

it reaches m̂(mext), which is the solution to Equation (2.17). No sharp phase transition

occurs (xPT = 0).

Intuitively, the phase transition cross ratio xPT should be larger for theories with larger

gaps. However, even if the gap is large, as long as it is smaller than m̂(mext), we can tune

4More precisely, let us consider a sequence of CFTs labeled by i = 1, 2, . . . , with monotonically increasing

central charges ci, that admits a semiclassical limit. For any given weight h, there exists an Ih such that

the only primary appearing in the OPE with weight below h is the vacuum, for all i ≥ Ih. This is analogous

to the condition in [28] on the density of states.
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m vac_ (mext,x)

mext

Figure 2. The weight m̂vac(mext, x) as a function of the cross ratio x for external weights mext =

α/24. See (2.21) for a definition. The curves from top to bottom are for α = 1/100, 1/10, 1/2, 1, 2, 12.

the structure constants large to make xPT as small as we want. For this reason, there does

not seem to be a bound on xPT by the size of the gap.

Combining the above considerations with lemma 1, we are led to the following

propositions.

Proposition 2. The gap (in the OPE of identical external operators) is bounded above by

mgap ≤ m̂vac(mext, 1/2).

Proposition 3. If the following condition is satisfied

pσext(m) ≤ 1

6
f(mext,m|1/2)− 1

6
f(mext, 0|1/2) ∀m ≤ m̂(mext), (2.23)

then the only phase transition occurs at x = 1/2, and pσext(m) and qσext(m) follow the

universal formula (2.22) for m ≥ m̂vac(mext, 1/2).

The quantities m̂(mext) and m̂vac(mext, 1/2) and are the unique solutions to the equa-

tions (2.17) and (2.21), and their numerical values are plotted in figure 1. The entire

discussion in this section can be easily generalized to include the anti-holomorphic sector.

3 Applications

We examine a few theories in the semiclassical limit: Liouville theory, product orbifold

theories, and meromorphic CFTs. Liouville theory and the untwisted sector four-point

function in the product Ising model provide basic sanity checks of our results. They both

exhibit no phase transition, and at the crossing symmetric point, there is a single saddle

whose weight is determined by proposition 1. We will explicitly see the movement of the

dominant saddle as the cross ratio varies.
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(a) Classical pσext(m).
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m/mext

-15
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-5

0
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15

log(qσext(m))

(b) One-loop qσext(m).

Figure 3. The universal classical pσext(m) and one-loop qcontσext
(m) parts of the structure constants

as functions of the internal weight m, for external weights mext = α/24. See (2.22) for definitions.

The curves from top to bottom in both (a) and (b) are for α = 1/100, 1/10, 1/2, 1, 2, 12.

Twisted sector correlators in product orbifold CFTs are of various physical interests.

The semiclassical limit of product orbifold CFTs can be achieved in two ways, either by

taking the number of copies to be large, or by taking the central charge of a single copy to

be large. The first limit is of interest in the symmetric product orbifold of T4 or K3, where

the twisted sector states correspond to long strings in AdS3× S3× (T4 or K3) [30]; a large

number of copies gives a weakly coupled bulk description. The second limit appears in the

computation of higher genus partition functions and Renyi entropies in holographic theo-

ries [28, 31, 32]. By considering the Z2 twist field four-point function, we will recover the

semiclassical version of the Hellerman bound on the gap in the spectrum of primaries [24],

and the logarithmically corrected Cardy formula that is valid for h ≥ c/12 [33–35]. Fur-

thermore, we give a condition for there to be a single phase transition in the second Renyi

entropy, which was argued to be true in holographic theories by [28, 32].
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3.1 Liouville theory

Liouville theory is the simplest example of a CFT with a semiclassical limit.5 It does not

contain a vacuum state, and the spectrum of primaries is continuous above the ground

state of weight hground = (c − 1)/24. A closed form formula for the structure constants

was proposed in [37–40], and was mathematically proven to satisfy crossing symmetry

in [25, 26, 41]. In fact, many properties of the Virasoro blocks were discovered in the study

of Liouville theory [25, 26, 41]. Here we use Liouville theory to check the results of our

semiclassical bootstrap analysis.

Consider the four-point function of identical operators of weight hext = mextc in the

semiclassical limit. Since a vacuum is absent, we expect that the dominant saddle should

move continuously from mground = 1/24 to m̂(mext) (the unique solution to (2.17)) as we

vary the cross ratio from x = 0 to 1/2.

In the semiclassical limit, the continuous spectrum of primaries in Liouville theory is

parameterized by

η =
1

2
−
√

1

4
− 6m ∈ 1

2
+ iR≥0, m ≥ 1

24
. (3.1)

The structure constants reduce to the on-shell classical Liouville action on a three-punctured

sphere [39]

C2
ηext,ηext(η) = exp

[
2

b2
ReS(cl)(ηext, ηext, η)

]
, (3.2)

where

ReS(cl)(ηext, ηext, η) = −H(2ηext + η − 1)−H(2ηext − η)− 2H(η) +H(0)

+H(2ηext) +H(2ηext − 1) +
H(2η) +H(2η − 1)

2
,

(3.3)

and H(η) = G(η)+G(1−η) =
∫ η

1
2

log γ(x)dx is the semiclassical limit of the special function

b2Υb (see appendix C.1).

At a fixed cross ratio x, the four-point function is dominated by a single saddle

that solves6
∂

∂m

[
ReS(cl)(ηext, ηext, η)− f(mext,m|x)

]
= 0. (3.4)

figure 4 shows the distribution of the classical branching ratio (defined in (2.8)) as the cross

ratio varies. The solution at x = 1/2 is numerically verified to be equal to m = m̂(mext),

as is required by conformal symmetry.

3.2 Product Ising model

Consider the product of n copies of the Ising model, which has central charge c = n/2. The

four-point function of the product spin field σext = σn, which has weightmext = m̄ext = 1/8,

5See [36] for a review of Liouville theory.
6Note that this equation is exactly the same equation that determines the dominant t-channel sad-

dle (C.16) in the fusion transformation. The saddle point analysis of classical Liouville theory was previously

considered in [42].
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Sσext(m|x)-Sσext(1|x)

Figure 4. The ground state mext = 1/24 four-point function in Liouville theory. The dashed

lines plot the classical branching ratio Sσext(m|x) (defined in (2.8)) as a function of the internal

weight m, for cross ratios x = 10(α−5)/10/2 with α = 0, 1, . . . , 5 from bottom to top. The solid line

traces the dominant saddle as the cross ratio is varied. The dominant saddle is at m = 1.32mext

(semiclassical: m̂(mext) = 1.32mext) at the crossing symmetric point.

is the n-th power of the single copy four-point function

F (x, x̄) = |x(1− x)|−1/4
(∣∣∣∣1 +

√
1− x

2

∣∣∣∣+

∣∣∣∣1−√1− x
2x

∣∣∣∣) . (3.5)

The structure constants can be obtained by decomposing F (x, x̄)n into Virasoro blocks (of

finite central charge). At large n, we expect the behavior of the structure constants to

obey our results from the semiclassical bootstrap. Figure 5 shows the distribution of the

classical branching ratio for scalars, defined as in (2.8) but with a smoothly interpolated7

Sσext(m|x) = pσext(m)− f(mext,m|x)

6
= c−1 logC2

σextσext(m)− f(mext,m|x)

6
, (3.6)

as the cross ratio is varied. The dominant saddle moves continuously from the ground state

m = 0 to m = m̂(mext) as the cross ratio x varies from 0 to 1/2.

3.3 Z2 orbifold, character expansion, and Renyi entropy

The four-point function of Z2 twist fields in the symmetric product orbifold can be lifted

to a torus partition function, the modular invariance of which can be written in the form

of a crossing equation. Denote by q(x) = exp(iπτ(x)) the elliptic nome of x, and by P the

function8

P(hext, h, c|x) = (16q)h−(c−1)/24(x(1− x))(c−1)/24−2hextK(x)(c−1)/4−8hext , (3.8)

7Here the classical Virasoro block f includes both the holomorphic and anti-holomorphic factor.
8The elliptic nome is defined by

log q(x) ≡ −πK(1− x)

K(x)
. (3.7)
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Sσext(m|x)-Sσext(0|x)

Figure 5. The σ64 (mext = 1/8) four-point function in the product Ising model. The dashed

lines plot the classical branching ratio Sσext
(m|x) (defined in (3.6)) for scalars as a function of

the internal weight m, for cross ratios x = 10(α−5)/10/2 with α = 0, 1, . . . , 5 from bottom to top.

The solid line traces the dominant saddle as the cross ratio is varied. At the crossing symmetric

point, the dominant weight is at m = 1.12mext. It further approaches the semiclassical value

m̂(mext) = 1.24mext as the number of copies is increased.

where K(x) ≡ 2F1(1/2, 1/2, 1|x) is a hypergeometric function. The function P is the

prefactor in the elliptic representation of the Virasoro block9

F(hext, h, c|x) = P(hext, h, c|x)H(hext, h, c|q), (3.9)

where H(hext, h, c|q) = 1 + O(q). The non-vacuum character χ is related to P by the

identity

χ(q) =
q2(h−(c−1)/24)

η(τ)
= 16−2(h−c/24)(x(1− x))c/24 P(c/16, 2h, 2c− 1|x), (3.10)

η(τ) being the Dedekind eta function. The vacuum character is χvac(q) = (1−q2)χ(q). The

modular transform τ → −1/τ then translates to crossing x→ 1− x under this identity.

A physical meaning of this equivalence was explained in [32]. Given any CFT C
with central charge c, we can take the symmetric product orbifold Sym2C and consider

the four-point function of the twist field E which has weight h = c/16 [44]. This four-

point function has a lift to the torus partition function Z(q) of C, and also computes the

second Renyi entropy of two intervals [32, 44]. Expanding the torus partition function

in characters is equivalent to expanding the twist field four-point function in “Sym2(Vir)

blocks” of primary operators of the form σC ⊗ σC , where σC are primaries in C. Note that

the Sym2(Vir) descendants of such an operator include infinitely many Virasoro primaries.

It was checked in [32] to the first few orders in the x-expansion that the Sym2(Vir) blocks

are indeed equal to the characters up to a conformal factor.

We presently explain how to apply our results from the semiclassical bootstrap. Ob-

serving that in the semiclassical limit, the function H multiplying the prefactor P in the

9This form appears in the Zamolodchikov recurrence relation [23, 43].
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Virasoro block (3.9) does not contribute to the classical Virasoro block10

lim
c→∞

logH(c/16, 2mc, 2c− 1|q)
c

→ 0, (3.11)

we obtain the following identity (m = h/c)(
m− 1

24

)
log q2 =

[
log 16

12
+

log(x(1− x))

24

]
+

[
−f(mext = 1/32,m|x)

3
− 2m log 16

]
.

(3.12)

On the left is the classical character, and on the right, the first bracket is a conformal factor,

and the second bracket is the classical Sym2(Vir) block. We see that in this normalization

of the Sym2(Vir) block, each σC⊗σC appears in the twist field four-point function with unit

coefficient. Therefore, when decomposing the twist field four-point function with respect to

the Sym2(Vir) blocks, the expansion coefficients C2
EE(m) are precisely the classical density

of primaries in the single copy CFT C,

c ρP (h) = C2
EE(m) = exp[c pE(m)]qE(m). (3.13)

The factor of c on the left comes from the difference between the measures dh and dm.

We can pretend that we are bootstrapping with the classical Virasoro block f(mext =

1/32,m|x) by defining an effective classical structure constant

p′E(m) ≡ pE(m)

2
−m log 16. (3.14)

Then by proposition 2, a bound on the gap in the spectrum of primaries in C is given by11

mgap ≤ m̂vac(mext = 1/32, 1/2) =
1

12
, or hgap ≤

c

12
+O(c0), (3.17)

which is the holomorphic version of the Hellerman bound [24].12 Furthermore, if the

condition

p′E(m) ≤ m(π − log 16) ∀m ≤ m̂(mext = 1/32) =
1

24
(3.18)

10This would not be true if the external weight did not scale as c/16.
11Using the identities

q′(x)

q(x)
= − π2

4x(x− 1)K2(x)
, log q(x) log q(1− x) = π2, (3.15)

we can show that the t-channel saddle parter of the s-channel vacuum is at

m̂vac(1/32, x) =
1

24

(
1 +

K2(1− x)

K2(x)

)
=

1

24

[
1 +

(
log(q(x))

π

)2
]
. (3.16)

The other formulae in this section are easily derived with the use of these identities.
12After taking into account the anti-holomorphic sector, we obtain the conventional Hellerman bound [24]

for the total weight, ∆gap ≤ c/6.
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is satisfied, then there is only one phase transition at the crossing symmetric point, and

p′E(m) obeys (by proposition 3 and lemma 1)

p′E(m) =
π√
6

√
m− 1

24
−m log 16 ∀m ≥ 1

12
,

p′E(m) ≤ m(π − log 16) ∀m ≥ 0.

(3.19)

Next, the O(c0) part of the non-vacuum character identity (3.10) reads

q1/12

η(τ)
=

(16q)1/12

(x(1− x))1/12K(x)1/2
. (3.20)

We can pretend that this is the generic (non-vacuum) one-loop block g(mext = 1/32,m >

0|x). Assuming that spectrum of primaries has an order c gap above a the vacuum state,

the vacuum one-loop block is g(mext = 1/32,m = 0|x) = (1− q2)g(mext = 1/32,m > 0|x).

Then if (3.18) holds, the one-loop structure constants obey the universal formula

qE(m) =

√
12c

24m− 1

(
1− e−2π(24m−1)

)
exp

[
−π

6

12m− 1√
24m− 1

]
∀m ≥ 1

24
. (3.21)

Translating the above into a statement about the density of primaries, we obtain the

next proposition.

Proposition 4. If the spectrum of primaries has an order c gap above a the vacuum state,

and the light spectrum is sparse in the sense of

ρP (h) ≤ exp(2πh) ∀h ≤ c

24
, (3.22)

then this inequality holds for all h ≥ 0. Furthermore, the density of primaries for the heavy

spectrum h ≥ c/12 is given by13

ρP (h) =

√
12

24h− c

(
1− e−2π

√
24h/c−1

)
× exp

[
2π

√
c

6

(
h− c

24

)
− π

6

(
12h− c√
c (24h− c)

)
+O(1/c)

] (3.25)

in the semiclassical 1/c expansion with h/c fixed.

13A Cardy formula analogous to (3.25) but for the density of all states ρ(h) can be obtained by the

convolution
ρ(h) =

∑
n

ρP (h− n)p(n)−
∑
n

p(n)δ(1 + n− h). (3.23)

The result is

ρ(h) =
1√
c

exp

[
2π

√
c

6

(
h− c

24

)]( c3

96(h− c/24)3

) 1
4
∞∏
k=2

1(
1− e−2πk

√
24h/c−1

) +O(1/c)

 (3.24)

for h ≥ c/12, in the semiclassical 1/c expansion with h/c fixed.
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This takes the form of a logarithmically corrected Cardy formula for the density of

primaries. The Cardy formula for primaries is related to the original formula for the

full spectrum by a shift of c → c − 1. Logarithmic corrections are obtained by a slight

modification of [35] to be

ρPCardy(h) =

√
12

24h− (c− 1)
exp

[
2π

√
c− 1

6

(
h− c− 1

24

)]
, h� c. (3.26)

The semiclassical expansion of this formula almost agrees with (3.25) in proposition 4,

except for the factor of 1 − e−2π
√

24h/c−1 that is exponentially suppressed in the Cardy

regime h � c. That the Cardy formula is also valid for h ≥ c/12 at large central charges

was first discovered in [34].

Comments on Renyi entropies. The four-point function of the Z2 twist field computes

the second Renyi entropy of two intervals, whereas the four-point functions for the maxi-

mal twist fields in the Zn product orbifolds compute higher Renyi entropies. The results

of [28, 32] suggest that in CFTs with a weakly coupled holographic dual, all Renyi entropies

should have a single phase transition at the crossing symmetric point. They argued that

this is true in the Z2 case assuming a sparse light spectrum, but for higher Renyi entropies

it was left as still an open question. Proposition 4 makes precise the condition of a sparse

spectrum, while proposition 3 gives a condition for there to be a single phase transition.

3.4 Meromorphic CFTs

Consider the four-point function of holomorphic conserved currents σext of integer weight

hext. Meromorphy fixes the functional form to be [45]

F (x) =

∑4hext
i=0 aix

i

x2hext(1− x)2hext
, (3.27)

which depends on 4hext + 1 coefficients ai. After imposing crossing symmetry, we are left

with
[
4hext+4

6

]
+ (δhext mod 6) many coefficients. The division by 6 in the first term can be

understood as the order of the crossing group S3, while the second term is due to accidental

symmetries when hext ∈ 6Z.

In a CFT C with charge c, we can decompose F (x) into Virasoro blocks. Because the

four-point function F (x) only receives contributions from primaries of even integer weights,

just from counting the freedom of tuning the coefficients, the gap in the primary spectrum

of σ × σ is bounded above by [46, 47]

hgap ≤ 2

([
4hext + 4

6

]
+ (δhext mod 6) + 1

)
, (3.28)

which asymptotes to 4hext/3 at large hext.

Z2 twist field four-point function. Suppose C is the Z2 symmetric product orbifold

of a meromorphic CFT B of central charge c, and let σext = E be the twist field of weight

hext = (2c)/32. The naive upper bound (3.28) on the gap in E × E , coming from counting
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Figure 6. The hext = 2 four-point function in the monster theory. The dashed lines plot the

smoothly interpolated classical branching ratio Sσext(m|x) (defined in (3.6)) as a function of the

internal weight m, for cross ratios x = 10(α−5)/10/2 with α = 0, 1, . . . , 5 from bottom to top.

The solid line traces the dominant saddle as the cross ratio is varied. The dominant saddle is at

m = 1.58mext (semiclassical: m̂(mext = 1/24) = 1.32mext or m̂(mext = 1/12) = 1.27mext) at the

crossing symmetric point.

the number of tunable coefficients in (3.27), is gapE×E ≤ (2c)/24. By lifting to the torus,

this translates in the semiclassical limit to an upper bound on the gap in the spectrum of

primaries in B, that is the extremal bound for meromorphic CFTs: hBgap ≤ c/24+O(c0) [48].

Extremal CFTs. Extremal meromorphic CFTs have central charge c = 24k and a gap of

size h
(k)
gap = k+ 1, for k ∈ N. We take a sequence of operators O(k) with weight h

(k)
ext = h

(k)
gap,

and consider the four-point function 〈O(k)O(k)O(k)O(k)〉. Assuming that this four-point

function has a semiclassical limit, as the cross ratio x varies, the dominant saddle cannot

move continuously away from the vacuum due to the large gap, and there should be a phase

transition at a finite x = xPT. Then for sufficiently large weight m > m̂vac(mext, xPT), the

structure constants should follow the universal formula (2.22). Figure 6 shows the smoothly

interpolated classical branching ratio (defined in (3.6)) for the k = 1 monster theory, whose

four-point function is known explicitly [49]. Since the gap is at mgap = mext, the phase

transition occurs between the bottom two curves at xPT ≈ 0.16. We do not know whether

this c = 24 picture is actually representative of the semiclassical limit.

4 Comments on gravity

This section discusses aspects of classical Virasoro blocks in the context of holography.

We first review the worldline prescription that reproduces classical Virasoro blocks in the

“heavy-light” limit. We then propose a similar prescription in the “light” limit, and discuss

the implications of the results of semiclassical bootstrap.

Bulk dual of classical Virasoro blocks in the “heavy-light” limit. In [50–52], it

was shown that Virasoro blocks in the semiclassical “heavy-light” limit are dual to certain

worldline actions in a conical defect or BTZ black hole background. More precisely, in the
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regime where the weights (hi = mic) all scale with the central charge c, and m3 = m4 = mh

are of order one, but m1, m2 and m are parametrically small, we can treat the “light”

operators σ1 and σ2 as probes of the background created by the “heavy” operators σ3 and

σ4. The heavy operators create a bulk geometry that is either a conical defect (mh < 1/24)

or a BTZ black hole (mh ≥ 1/24), and the leading order expansion in m1,m2 of the classical

Virasoro block f(m1,m2,mh,mh,m|x) can be computed by minimizing a worldline action.

The worldline action consists of the geodesic distance from σ1 on the boundary to a bulk

point x, weighted by m1, and the same for σ2, plus the geodesic distance from the bulk

point x to the conical singularity or the BTZ black hole horizon, weighted by m. The

position of the bulk point x is chosen to minimize this worldline action.

Bulk dual of classical Virasoro blocks in the “light” limit. Still in the semiclassical

limit, consider a different parameter regime, where all weights mi and m are parametrically

much smaller than one. We expect a similar correspondence between the leading order

expansion of the classical Virasoro block f(m1,m2,m3,m4,m|x) in mi,m, and a worldline

action in the AdS3 background. It is simplest to work in a Poincare patch of AdS3 with

metric ds2 = (dy2 + dxdx̄)/y2. The geodesic distance L(x,x′) between two bulk points x

and x′ is given by

L(x,x′) = cosh−1(1 + u(x,x′)), u(x,x′) =
(y − y′)2 + |x− x′|2

2yy′
, (4.1)

which diverges as one take the bulk point x′ to the boundary. After regularizing this

divergence,14 the geodesic distance from a bulk point x to a boundary point x′ is

L(x, x′) = log

[
y2 + |x− x′|2

y

]
. (4.3)

For simplicity, we choose identical masses mi = mext, and consider the worldline

action (see figure 7)

S(x1, x2, x3, x4)

= min
xa,xb

{mext [L(xa, x1) + L(xa, x2) + L(xb, x3) + L(xb, x4)] +mL(xa,xb)} .
(4.4)

We propose the following relation between the worldline action S(x1, x2, x3, x4) and the

classical Virasoro block f(mext,m|x)

Re f(mext,m|x)

6
+ (x-independent term)

= −mext

[
log |x1 − x4|2 + log |x2 − x3|2

]
+ S(x1, x2, x3, x4) +O(mext,m)2.

(4.5)

By conformal symmetry, we can fix the four points on the boundary at x1 = −z/2, x2 =

z/2, x3 = −1, x4 = 1. Then by the symmetry of the system, the two bulk points xa,

14The geodesic distance expanded in 1/y′ is given by

L(x,x′) = log

[
y2 + |x− x′|2

y

]
− log(y′) +O(y′). (4.2)

We simply drop the divergent logarithm.
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x2 x3

x4

Figure 7. The worldline action corresponding to the classical Virasoro block. The bulk points xa

and xb are chosen to minimize the total geodesic distance.

xb that minimize the worldline action S(x1, x2, x3, x4) must be located at xa = xb = 0.

Further minimizing with respect to the two remaining variables ya and yb, we find that the

following solution exists as long as the triangular inequality 2mext > m is obeyed,

S(−z/2, z/2,−1, 1) =m cosh−1
[

4(2mext −m)2 + (2mext +m)2z2

4(4m2
ext −m2)z

]
+mext log[64z2]− 2mext log[4m2

ext −m2].

(4.6)

Expanding in the cross ratio x = 8z/(2 + z)2, we find that (4.5) is indeed satisfied.

Relation to Ryu-Takayanagi formula. Them = 0 version of the classical block/world-

line action correspondence was used in [28] to match the entanglement entropy of two inter-

vals in the boundary CFT with the Ryu-Takayanagi formula [53]. There the entanglement

entropy is obtained via an analytic continuation of the Renyi entropies. By the replica

trick, the Renyi entropies in a 2D CFT are related to correlation functions of the maximal

twist operators in a symmetric product orbifold of the original CFT. It was argued in [28]

that the second Renyi entropy of two intervals, computed by the four-point function of

twist operators, is dominated by the classical vacuum block, and it was assumed that the

higher Renyi entropies behave the same. Then by analytic continuation, the entanglement

entropy is given by a classical vacuum block with parametrically small external mext, that

is further mapped to a worldline action with two disconnected pieces.

Semiclassical four-point funcions in the “light” limit. Four-point functions are

given by sums of Virasoro blocks weighted by the structure constants squared. Consider

a semiclassical four-point function with identical external operators having parametrically

small weight mext. In general, this four-point function receives contributions from Virasoro

blocks with m ranging in the entire positive real line. However, by proposition 1, a four-

point function can always be approximated by a single block with m ≤ m̂(mext � 1) ≈
1.41mext < 2mext in the appropriate channel, and therefore always admits a worldline

description in the bulk. It would be interesting to investigate the role of the one-loop

Virasoro block in this correspondence.
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Bound states of “light” particles. Consider a CFT that is holographically dual to

gravity coupled to a “light” particle with mass Mparticle that is of order the AdS curvature,

but parametrically small. In the CFT language, there exists a primary operator σparticle
with weight hparticle = mparticlec � 1. Proposition 3 implies that if no bound state exists

with weight mbound ≤ m̂(mparticle), then the classical and one-loop structure constants

in the σparticle × σparticle OPE is bounded above by (2.23), and universal (2.22) for m ≥
m̂vac(mparticle, 1/2).

Bulk dual of generic classical Virasoro blocks. One outstanding question is whether

there is a similar correspondence between bulk geometry and the classical Virasoro block

f(m1,m2,m3,m4,m|x) with order one mi and m. In this parameter regime, none of the

external and internal operators should approximated as probes, and the classical Virasoro

block may correspond to a classical action of a bulk geometry. A hint of the correct bulk

geometry is provided by considering the four-point function of Z2 twist fields. We showed

in (3.12) that the classical Virasoro block is related to the classical part of the Virasoro

character. According to [54, 55], the classical part the vacuum character is equal to the

Einstein-Hilbert action plus the Gibbons-Hawking term evaluated on Euclidean AdS3 with

compactified time circle.
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A CFTs with a semiclassical limit

Consider a sequence of CFTs labeled by i = 1, 2, . . . , with central charges ci that are

monotonically increasing and unbounded. We would like to study the behavior of this

sequence of CFTs as i goes to infinity. In general, it is impossible to keep track of a

particular primary operator in this sequence of CFTs, as there is no canonical map from

the spectrum of the i-th CFT to the spectrum of the (i+ 1)-th CFT. The best we can do

is to consider the integrated correlation functions

F (i)(m1, · · · ,mn|x1, · · · , xn)

≡
∑

h
(i)
a1
∈[0,m1ci]

∑
h
(i)
a2
∈[0,m2ci]

· · ·
∑

h
(i)
an∈[0,mnci]

〈
O(i)
a1 (x1)O(i)

a2 (x2) · · · O(i)
an(xn)

〉
, (A.1)

where O(i)
a are primary operators in the i-th CFT with weight h

(i)
a that have normalized

two-point functions. This sequence is said to have a semiclassical limit, if the integrated
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correlation functions admit a perturbative expansion in 1/c, in the following sense. First

we iteratively define a sequence of functions

Fk(m1, · · · ,mn|x1, · · · , xn)

≡ lim
i→∞

ck−1i

[
logF (i)(m1, · · · ,mn|x1, · · · , xn)−

k−1∑
m=0

c1−mi Fm(m1, · · · ,mn|x1, · · · , xn)
]
,

(A.2)

where the right hand side may contain logarithmic divergences independent of x andm, that

need to be properly subtracted while taking the limit. We demand that the limit exists

and Fk(m1, · · · ,mn|x1, · · · , xn) are continuous functions in both m and x; furthermore

their derivatives with respect to m are distributions.15 Then we define the semiclassical

integrated correlation functions by a formal power series

F(m1, · · · ,mn; c|x1, · · · , xn) ≡ c# exp
(
cF0 + F1 + c−1F2 + · · ·

)
, (A.3)

and the semiclassical correlation function density by taking derivatives

F (m1, · · · ,mn; c|x1, · · · , xn) =
∂

∂m1
· · · ∂

∂mn
F (m1, · · · ,mn; c|x1, · · · , xn), (A.4)

which can be put into the form

F (m1, · · · ,mn; c|x1, · · · , xn) = c#ec p
(
q0 + c−1q1 + · · ·

)
, (A.5)

where the #’s in (A.3) and (A.5) are xi and mi independent constants.

As an example, let us compute the two-point function density for m ≥ 1/24. The

integrated two-point function in the i-th CFT is

F (i)(m1,m2|x1, x2) =

∫ min(m1,m2)ci

ci/24

ρi(h)

x2h
dh, (A.6)

where ρi(h) is the density of states. By the Cardy formula [33, 34] and assuming x ≤ 1,

the integral is dominated in the i→∞ limit by the contribution from m = min(m1,m2),

F0(m1,m2) = 2π

√
1

6

(
min(m1,m2)−

1

24

)
− 2 min(m1,m2) log x. (A.7)

The semiclassical integrated two-point function is

F(m1,m2|x) =
1√
c

exp
[
2πc

√
1

6

(
min(m1,m2)−

1

24

)
− 2cmin(m1,m2) log x+O(c0)

]
,

(A.8)

15The definition (A.1) of the integrated correlation functions is not invariant under orthogonal transfor-

mations on primary operators of the same weight. This ambiguity may correspond to different limits (A.2),

and some of these limits may not exist. We thank Xi Yin for pointing this out.
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where a logarithmic correction is also included. The two-point function density is then

given by

F (m1,m2|x) =

√
c δ(m1 −m2)

x2m1c
exp

[
2πc

√
1

6

(
m1 −

1

24

)
+O(c0)

]
, for m1,m2 ≥

1

24
.

(A.9)

In some special situations, we can keep track of a particular sequence of a set of

operators {O(i)
1 ,O(i)

2 , · · · }, such as {σn} in product Ising models. Some of their n-point

functions may be analytically continued to the entire real line of the central charge ci. The

analytically continued n-point function also admits a semiclassical expansion.

B Semiclassical Virasoro blocks

In the limit of large central charge c while taking the operator weights hi to scale with c

(fixed mi = hi/c), the Virasoro block admits a semiclassical expansion

F (hext, hext, hext, hext, h, c|x) = exp
[
− c

6
f(mext,m|x)

]
g(mext,m, c|x),

g(mext,m, c|x) =

∞∑
k=0

c−kgk(mext,m|x).
(B.1)

To the second order in the x-expansion,

f(mext,m|x) = 6(2mext −m) log x− 3mx

− 3(3m+ 26m2 + 16mext(m+ 2mext))x
2

8(1 + 8m)
+O(x3),

g0(mext,m|x) = 1 +
13mx

2
+

(1 + 82m+ 1980m2 + 16224m3 + 43264m4)x2

32(1 + 8m)2

+
16mext(−3 + 208m2 + 88mext + 4m(5 + 104mext))x

2

32(1 + 8m)2
+O(x3).

(B.2)

By computing to the sixth order in the x-expansion, the following properties are numerically

observed to hold for fixed external weight mext ≤ 1/2.

1. f ′(mext,m|1/2) is monotonically decreasing in m, and crosses zero only once.

2. f(mext,m2|x) − f(mext,m1|x) is monotonically decreasing in x ∈ [0, 1] for arbitrary

internal weights m2 > m1 ≥ 0.

3. g0(mext,m|x) > 0 for all internal weights m ≥ 0 and cross ratios 0 ≤ x < 1.

C The semiclassical limit of the fusion transformation

The fusion transformation relates the s-channel Virasoro blocks to the t-channel via a

fusion matrix, which is defined in terms of special functions Γb, Sb, and Υb [25–27]. This

appendix works out the semiclassical b→ 0 limit of these special functions, and computes

the fusion transformation by saddle point approximation.
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C.1 The semiclassical limit of special functions

The Barnes double gamma function Γ2(x|ω1, ω2) is defined by

log Γ2(x|ω1, ω2) =
∂

∂t

∞∑
n1,n2=0

(x+ n1ω1 + n2ω2)
−t
∣∣∣
t=0

. (C.1)

The special functions Γb(x), Sb(x), and Υb(x) are defined by

Γb(x) =
Γ2(x|b, b−1)

Γ2(Q/2|b, b−1)
, Sb(x) =

Γb(x)

Γb(Q− x)
, Υb(x) =

1

Γb(x)Γb(Q− x)
, (C.2)

and Γb(x) function satisfies the periodic condition

Γb(x+ b) =

√
2πbbx−1/2

Γ(bx)
Γb(x). (C.3)

In the limit b → 0, the periodic condition becomes a first order differential equation for

b2 log(Γb(y/b)). The solution gives the semiclassical limit of the special functions

b2 log Γb(y/b) = (y − 1/2) log
√

2π +
(y − 1/2)2

2
log b−

∫ y

1/2
dz log Γ(z) +O(b),

b2 logSb(y/b) = (2y − 1) log
√

2π −
∫ y

1−y
dz log Γ(z) +O(b),

b2 log Υb(y/b) = −(y − 1/2)2 log b+

∫ y

1/2
dz log γ(z) +O(b).

(C.4)

The expression for Sb can be written in terms of polygamma functions

b2 logSb(y/b) = (2y − 1) log
√

2π − ψ(−2)(y) + ψ(−2)(1− y) +O(b), (C.5)

where ψ(−2)(y) is the polygamma function of order −2. It has the asymptotic behavior

−ψ(−2)(is) + ψ(−2)(1− is) =

{
iπs2

2 −
(
π
2 + i log(2π)

)
s+O(s0) s→∞,

− iπs2

2 +
(
π
2 − i log(2π)

)
s+O(s0) s→ −∞.

(C.6)

C.2 Correspondence between s- and t-channel blocks

Consider the Virasoro algebra with central charge c = 1+6Q2, with weights parameterized

by hα = α(Q − α). The s- and t- channel Virasoro blocks are related by the fusion

formula [25–27]

F(hαext , hαs , c|x) =

∫
Q/2+iR≥0

dαt Fαsαt

[
αext αext

αext αext

]
F(hαext , hαt , c|1− x). (C.7)

where for simplicity we specialize to the case α1 = α2 = α3 = α4 = αext. The fusion matrix

Fαsαt is given by

Fαsαt

[
αext αext

αext αext

]
= Pb(αs, αt, αext)×

1

i

∫ i∞

−i∞
ds Tb(αs, αt, αext, s), (C.8)

– 23 –



J
H
E
P
0
8
(
2
0
1
6
)
0
5
6

where

Pb(αs, αt, αext) =
Γb(2Q− 2αext − αt)Γb(αt)2Γb(Q− αt)2Γb(Q− 2αext + αt)

Γb(2Q− 2αext − αs)Γb(αs)2Γb(Q− αs)2Γb(Q− 2αext + αs)

× Γb(−Q+ 2αext + αt)Γb(2α− αt)
Γb(−Q+ 2αext + αs)Γb(2αext − αs)

× Γb(2Q− 2αs)Γb(2αs)

Γb(Q− 2αt)Γb(2αt −Q)
,

Tb(αs, αt, α, s) =
Sb(U1 + s)Sb(U2 + s)Sb(U3 + s)Sb(U4 + s)

Sb(V1 + s)Sb(V2 + s)Sb(V3 + s)Sb(Q+ s)
,

U1 = αs, U2 = Q+αs−2αext, U3 = αs+2αext−Q, U4 = αs,

V1 =Q+αs−αt, V2 = αs+αt, V3 = 2αs.

(C.9)

The semiclassical limit is achieved by taking b → 0 while keeping ηi = bαi finite. In this

limit, the Virasoro block exponentiates as

F(hαext , hα, c|1− x) = exp

(
− 1

b2
f(hαext/b, hα/b, c|1− x) +O(1/b)

)
, (C.10)

and the integrals (C.7) and (C.8) can be computed by a saddle point approximation. The

terms proportional to log b all cancel in the exponent of the fusion matrix, and therefore

the semiclassical limit is given by the simple replacement rule

Γb(y/b)→ exp

(
−G(y)

b2

)
,

Sb(y/b)→ exp

(
−G(y)−G(1− y)

b2

)
= exp

(
−ψ

(−2)(y)− ψ(−2)(1− y)

b2

)
,

(C.11)

where G(y) ≡
∫ y
1/2 dz log Γ(z), and ψ(−2)(y) is the polygamma function of order −2. Note

that G(y) is not a meromorphic function.

Let us define s = iσ/b. The σ integral in (C.8) is dominated by points maximizing the

real part of log Tb along the integration contour. In the following, we will assume ηs+2η > 1;

otherwise infinitely many poles will cross the σ integral contour as we take b→ 0.

Real ηs (hs ≤ c/24). When ηs is real, the σ integral is dominated by the contribution

at σ = 0

ψ(−2)(ηs + ηt)− ψ(−2)(1− ηs − ηt)− ψ(−2)(−ηs + ηt) + ψ(−2)(1 + ηs − ηt) + · · ·
= G(ηs + ηt)−G(1− ηs − ηt)−G(−ηs + ηt) +G(1 + ηs − ηt) + · · · ,

(C.12)

where the omitted terms · · · do not involve ηt. Note that the ηt-dependent factors cancel

for when the s-channel is the vacuum ηs = 0. The other ηt-dependent factors in the fusion

matrix can be written as

lim
b→0

b2 logPb(ηs/b, ηt/b, ηext/b)

= −2H(ηt)−H(2ηext + ηt − 1)−H(2ηext − ηt) +G(1− 2ηt) +G(2ηt − 1),
(C.13)
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where H(y) ≡ G(y) + G(1− y) =
∫ y
1/2 dz log γ(z). Thus for real ηs, the s-channel block is

equal to the fusion matrix times the t-channel block evaluated at the solution to

0 = − 2 log γ(ηt)− log γ(2ηext+ηt−1) + log γ(2ηext−ηt)− 2 log Γ(1−2ηt) + 2 log Γ(2ηt−1)

+ log Γ(ηs + ηt) + log Γ(1− ηs − ηt)− log Γ(−ηs + ηt)− log Γ(1 + ηs − ηt)

− d

dηt
f(ηext, ηt|1− x).

(C.14)

Complex ηs (hs ≥ c/24). When ηs ∈ 1/2 + iR, the σ integral has maximal real part

of the exponent on the whole segment −2 Im ηs ≤ σ ≤ 0, where the ηt-dependent piece is(
1

2
− ηt

)
[(log(1− 2ηt)− log(2ηt − 1)] . (C.15)

Note that the ηs dependence is gone. In the fusion transformation, the s-channel block is

dominated by the t-channel at the solution to

0 = − 2 log γ(ηt)− log γ(2ηext + ηt − 1) + log γ(2ηext − ηt) + log γ(2ηt − 1) + log γ(2ηt)

− d

dηt
f(ηext, ηt|1− x).

(C.16)

Open Access. This article is distributed under the terms of the Creative Commons
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