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1 Introduction

The discovery of a new boson [1, 2] with a mass around 126 GeV, based on excess events in
several Higgs search channels at the LHC, has reshaped the field of particle physics. The
leading candidate, by far, for the observed boson is the standard model (SM) Higgs boson.
It is important to study the production and decay rates of this new particle with high
precision to verify that they agree with the predictions of the SM: computing the Higgs
production and decay rates with higher precision within the SM, and performing precise
computations in continuous deformations away from the SM are necessary. At stake in
these studies are naturalness arguments that have been widely used to predict that there
should be new physics (NP) associated with electroweak (EW) symmetry breaking at scales
not far above the EW scale.

One aspect of the properties of the observed resonance that has attracted some at-
tention is the apparent excess in the I'(h — ~7) decay rate. This excess may be just a
statistical fluctuation, or it may be due to the effects of NP modifying the properties of
a SM Higgs. Although this deviation from the SM expectation has received the most at-
tention to date, the properties of the observed resonance are not known experimentally to
be in detailed agreement with SM expectations in many search channels. If deviations of



the properties of the observed state from SM expectations become statistically significant
in the signal strengths for the decays h — vy, WW, ZZ, Z~, a program of precision Higgs
phenomenology will be key to unraveling the physics beyond the SM.

In this paper, we will assume that the new boson corresponds to the Higgs boson and
that the NP scale is at least a few hundred GeV, so that the effect of new physics can be
captured by adding higher-dimension operators to the SM Lagrangian. If NP influences the
properties of the observed boson, one must consistently calculate the relationship between
the Wilson coefficients of the higher dimensional operators, at the low-energy EW scale
~ v and the high-energy scale A — which corresponds to the mass scales of the NP
states that are integrated out of the effective theory. Systematically relating the Wilson
coeflicients at these different scales requires determining the anomalous dimensions of the
operator basis, including the effects of operator mixing. In this paper, we determine the
anomalous dimension matrix for a set of operators that affect the decay of the SM Higgs to
99, WW,ZZ Z~ and 7, and its production via gluon fusion gg — h. The operator basis
we focus on leads to tree-level modifications of the vy and Z~ Higgs decays, which first arise
at one loop in the SM, and it also is constrained by electroweak precision data (EWPD).
We show that earlier investigations [3-7] relating the S parameter to higher dimensional
operators correctly capture some of the scale dependence of the operators. However, these
results need to be modified to take into account the full scale dependence of the operators
determined by the renormalization group equations (RGE). We study the constraints on
operator mixing from the S parameter in detail, deriving a new relation between the Higgs
decay rates and the S parameter.

The operator mixing matrix computed here allows for the identification of a new mech-
anism by which NP contributes to h — vy and h — Z~ decays. These new contributions of
NP to one-loop Higgs decays can be much larger than naively expected when considering a
RGE effect — as we show in an explicit example. The key point is that an operator that is
matched onto at tree level when integrating out a NP sector, that subsequently mixes with
the operator corresponding to the one-loop Higgs production or decay process can lead to
a NP contribution that is of the same order as a direct matching contribution. Our results
demonstrate this general point: systematically accounting for the scale dependence of the
NP induced operators is essential for correctly calculating a one-loop Higgs process in an
effective action that reproduces the infrared of a NP theory extension of the SM.

The outline of this paper is as follows. Section 2 sets up our notation and defines the
operator basis that we renormalize. In section 3, we give the anomalous dimension matrix
of the dimension-six Higgs-gauge boson operators. The implications of our results for LHC
phenomenology, and for electroweak precision constraints are given in section 4. Finally,
we give our conclusions in section 5.

2 The operator basis

We assume that at the scale of the Higgs mass, yu ~ My ~ 126 GeV, the theory is repre-
sented by the SU(3) x SU(2) x U(1) standard model (SM) with the minimal Higgs sector.
The new physics effects are given by gauge invariant local operators in terms of the SM



fields. The lowest dimension operators are dimension-five lepton-number violating oper-
ators which give rise to neutrino masses. The operators which first affect the properties
of the Higgs boson occur at dimension six. A complete classification of the dimension-six
operators in the standard model is given in refs. [8, 9], the latter of which finds that there
are 59 independent operators (assuming baryon number conservation) after eliminating
redundant operators using the equations of motion. The choice of independent operators
is not unique, since certain linear combinations vanish by the equations of motion, and are
thus effectively of higher dimension.

In this paper, we will consider the impact of the following dimension-six operators
modifying the standard model Hamiltonian,

H(6) = —£(6) =cqaOqg+cgOp+ cw Ow + ecws Owi
+E(;6@+EB(53 +EW6W+EWB(5WB- (2.1)

The Hamiltonian H(®) is generated by new physics at some scale A. The operator basis for
H) is (using the notation of refs. [10, 11])

O = 29A32 Y HG,GA, Oc = 29[?\’2 Y HG,G,
Op = 2‘(’&2 H'HB,,B"", Op = 2A2 H'HB,,B"", 09)
Ow = ;’KQ HHW?, Wb, Ow = 291’4;2 HYHWS, W,
Owp =55 H " HWj, B, Owp =20 H' 0" HW,, B
Here, g1, g2 and g3 are the standard model gauge couplings, B, W, and G;‘V are the

corresponding field-strength tensors, and o® are the Pauli matrices for weak isospin. The
operators O, are C P-even, and O, are CP-odd. The dual field-strength tensors are defined
by F., = (1/2) €uvap ™ ¥ for F = B,W? GA. Note that the ~ can be on either field-
strength, since F} M,,Fg w = F1 P2 uy. This observation will be useful later. Only the
product ¢;/A? enters H6), but it is useful to write the operators in the form of eq. (2.2) so
that the coefficients ¢; in #(®) are dimensionless. A naive dimensional estimate [12] gives
¢; of order unity. Nevertheless the relative importance of the various operators will depend
on the power counting of the NP model considered — we will discuss this point in more
detail in section 4.1.1.
The Higgs doublet field H has hypercharge Y = +1/2, and the Higgs potential is

V:A(HTH—U;>2. (2.3)

With this normalization convention, v ~ 246 GeV and M,% = 2 % Yukawa couplings
are normalized in the usual way, so that the fermion masses my are given in terms of the
Yukawa couplings ys by my = yfv/ﬂ.

In section 3, we compute the anomalous dimension matrix for the subset of dimension-
six operators in eq. (2.2). The operator basis eq. (2.2) is closed under renormalization at
one loop for the diagrams in figure 1. The reason we focus upon the operators in H(® is



that they contribute at tree level to vy and Z~ Higgs decays, which are one-loop processes
in the standard model. Thus, these operators are particularly important for the present
analysis and current phenomenology.

We note that other dimension-six operators, such as

Opp = (D*H)' (DVH) g1 By, Opw = (D"H)' ¢ (DY H) g W2,
2
O¢ = ’HT D“H‘ s OWWW = gg EabCW;}y Wll/)p Wg‘uv (24)

are also of interest for precision EW phenomenology. These neglected dimension-six op-
erators also can mix with the operators eq. (2.2) under renormalization group scaling, so
a renormalization group analysis of the complete dimension-six operator basis is needed
to obtain all effects. The calculation of the 59 x 59 anomalous dimension mixing ma-
trix of dimension-six operators is beyond the scope of the present work, but merits future
investigation.

The basis we use, given by eq. (2.2), is sufficient to demonstrate the point we wish
to make on RGE effects due to operators that can come about due to NP at tree level.
It is well known that tree level NP effects can lead to contributions to the S parameter,
which corresponds to Oy g. Note that while the operators Opg and Opy do appear in
the operator basis of refs. [4-6] and in the strongly interacting light Higgs (SILH) basis of
ref. [13], they do not appear in the basis of ref. [9] where they have been replaced in favour

of the two operators with fermionic currents:

i (HTaaﬁH) (@A"o’qn + [y ollL) P> (uf ﬁH) (Yudy™e),  (2.5)
7

where ¢ = qr,dg,uR,lr,er and Yy, are their hypercharges. We use little y for Yukawa
couplings. See ref. [14] for further discussion. These two fermionic current operators
correspond to oblique corrections. It is therefore preferable to choose an operator basis
which replaces them by purely bosonic operators as in refs. [4-6] and in ref. [13]. In the
basis of ref. [9], the three operators Op, Oy and Owp will be generated at the loop-
level only. Conversely, in the basis we use, the operator Oy p can receive a tree-level
matching due to NP. Thus, we consider the calculation we have performed to be sufficient
to demonstrate the importance of the RGE improvement of Higgs production and decay
operators when NP can lead to tree-level matching. Although the tree-level operator we
demonstrate this point with, Oy g, is directly bounded by EWPD to be smaller than its
naive dimensional estimate, we emphasize that in integrating out a realistic new physics
sector one expects a number of tree level effects, unless the new sector is protected by an
exact discrete symmetry — such as in an exact R parity conserving SUSY model.

The classification of tree-level NP effects in the dimension-six operator basis was first
performed in refs. [15], which finds 45 operators can be induced at tree level in their chosen
basis. In the classification of ref. [9], 14 (4 25 four fermion) operators can be induced by
tree-level NP effects (when baryon number is assumed conserved).!

LOur chosen basis is particularly useful to make the RGE effect we are demonstrating clear. A basis-
independent argument requires computing the full 59 x 59 anomalous dimension matrix of a complete
operator basis.



3 Anomalous dimensions

In this section, we compute the one-loop anomalous dimension of the new physics Hamil-
tonian H). The computations are performed in the unbroken gauge theory with six
dynamical quark flavours. We use background field gauge and the MS subtraction scheme
in d = 4 — 2 e dimensions. In background field gauge, the product gA,, is not renormalized
due to background field gauge invariance, so that ZgZil/ 2212

In a gauge theory, the operators

O, = B9) pa paw O_ = g?FA pAw (3.1)
29 nv ’ uv )

are not multiplicatively renormalized to all orders in perturbation theory. The CP-even
operator O is not renormalized, because it is the trace of the conserved energy momentum
tensor. (A review can be found in ref. [18].) The C'P-odd operator O_ is not multiplica-
tively renormalized, because it is multiplied by the #-angle in the Lagrangian, and @ is
periodic with periodicity 2.3

In the standard model, we have multiple gauge fields, so the theorem on O, only
applies to the sum of the three gauge contributions,

B1(g1) B2(g2) B3(93) A 04
O = B, B" Wwe Waerv HY 2
+ 591 D + %0 v + 20 GWG (3.2)

The coupling between the different gauge operators in eq. (3.2) only occurs through fermion
or scalar loops, so at the one-loop level, the separate terms are not renormalized. Thus, at
one-loop, we can use the result that both ¢>F Iﬁ,F A and gQFIf‘Vﬁ A1 are not renormalized,
which provides a useful check of our computation.

The one-loop graphs contributing to the anomalous dimension matrix are shown in
figure 1. (We have not shown the ghost graph that vanishes when using dimensional
regularization.) The graphs can be divided into three groups: the graphs of the first row
(a,b) couple only to the Higgs field part of the d = 6 operator insertion; the graphs of the
second row (c,d, e, ) couple only to the gauge part of the d = 6 operator; and the graphs
of the third row (g, h,1,j) couple to both the Higgs and gauge fields of the d = 6 operator
insertion. The RGE for the C'P-even operators at one-loop split into two groups

d
IM@CG = ca, (3.3a)
g | cr CB
W | v | =ows | ew | (3.3b)
CWB CWB

2A review of the background field method can be found in ref. [16]. Z, and Z4 are the renormalization
factors of the gauge coupling and field, gm) = Zg9, A;(P) = Zi‘/2A#, respectively, where the superscript (¥
denotes bare quantities. For a recent review of NLO effective Lagrangians see ref. [17].

31t can mix with the divergence of the axial current. See appendix C of ref. [19].



Figure 1. One-loop diagrams for the renormalization of the operators in eq. (2.2). Graph (e) has
a partner graph where the loop is on the other gauge boson line. Graphs (gh,i,j) have partner
graphs where the gauge bosons couple to the incoming scalar line. Wavefunction graphs have not
been shown. Here, the complex scalar field is shown as a dashed line, while the gauge fields are
shown as wavy lines; in each diagram, the gauge fields are the B, W® or G fields depending on
the operator considered.

where the anomalous dimensions are

1 3 9
YG = W —ig% — 59% + 12\ +2Y , (3.4&)
[ 197 — 595 + 120+ 2Y 0 393
1 ‘
WB = 163 0 —591 — 303 +123 + 2V gt ’
291 293 —50% + 503 +4A+2Y

(3.4b)



and
Y =Tr 3Y]Y, + 3Y] Yy + VY. | ~ 3y2. (3.5)

Here, we expand Y in terms of the quark and lepton Yukawa coupling matrices. Numeri-
cally, the top quark Yukawa coupling is the most important contribution to the running.
The Yukawa coupling correction is a universal correction of the higher dimensional opera-
tors due to Higgs wave function renormalization. The one-loop § functions for the coupling
constants are given in appendix A.

The one-loop QCD running of O¢ vanishes because a factor of g3 is included in the defi-
nition of Og. The sum of graphs (¢, d, e, f) vanish for Og, Oy and Op because gQF;ﬁ,FA mr
is not renormalized. This is trivially true for the Abelian case, Op, since the graphs don’t
exist. The sum does not vanish for Oy g, however, since the gauge field part g; g2Wp, BH
of Owp is not constrained by a non-renormalization theorem. The gauge field part of
Owp also is not a gauge invariant operator, so the subset of graphs (c, d, e, f) is not gauge
invariant for Oy g.

The renormalization group equations for the C'P-odd operators are

d .
dfCG =a Ca, (3.6a)
q B B
M@ ;CVW =YWB ;CVW , (3.6b)
cwn cwB

with the same anomalous dimensions g, ywp as in the C'P-even case. The equality of the
one-loop C'P-even and C'P-odd anomalous dimensions can be understood by the following
argument. The C'P-odd operators involve the product of a field-strength tensor and a dual
tensor, F Wﬁ’Q v where the dual can be applied to either [} or Fy. Thus, in computing
the graphs, we can choose to apply the dual to the external gauge field that does not
participate in the loop, and the graph becomes the same as the C'P-even case. Because
of the freedom of applying the dual to either field-strength tensor, the only graphs where
the argument fails are graphs (c,d, e, f) where the loop involves gauge fields from both
field-strength tensors. Now, consider the renormalization of (’)G, Ow and Op. The non-
renormalization of g2FF means that the sum of graphs (¢, d, e, f) vanishes for 5g, 5W
and O 5. For (53, these diagrams again trivially do not exist. For the remaining graphs, at
most one gauge field takes part in the loop, so the field-strength tensor not including this
field can be chosen to be the dual one, and the graph has the same value as the C'P-even
case. For (7)WB, the argument still holds for graphs (a,b) and (g, h,%,7), but there is no
non-renormalization theorem for g gQWgyéuV to argue that graphs (¢, d, e, f) sum to zero.
However, since W* and B gauge fields do not interact with each other, and B,,, is linear in
By, graphs (c, d, f) do not exist for Owp. Graph (e) must have the two gauge bosons in the

loop be W fields from the field strength W¢

> and the dual can be applied to B,,. Thus,
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Figure 2. Plot of the top-Yukawa renormalization factor r(p) vs p in GeV.

graph (e) has the same value as the C'P-even case. This concludes the proof.* Clearly,
the argument depends crucially on the one-loop structure of the graphs, and will not hold
at higher loops. Even the operators ¢>F? and g2Fﬁ in a non-abelian gauge theory have
different anomalous dimensions at two-loop order.

The renormalization group equations eq. (3.3) need to be integrated between the high-
energy scale A of new physics and the low-energy scale i of order the Higgs mass. The
largest contribution to the anomalous dimension is the top quark Yukawa coupling term
in eq. (3.4), which is proportional to the unit matrix. This largest contribution to the
anomalous dimension is universal and can be integrated exactly by defining a function
r(p) which satisfies

2
() = 2. (3.7)

872

Only ratios of (p1) enter, so the overall scale of r is irrelevant. A plot of (x) normalized so
that 7(u = 125 GeV) = 1 is shown in figure 2. The correction is about 8% to the amplitude
for the NP scale yn = 1TeV.

Writing ¢; () = r(p)d; (), one finds that d;(u) satisfy the renormalization group equa-
tions eq. (3.3) with anomalous dimension given by eq. (3.4) with Y — 0. Solving these
equations to first order in log p gives

o(Mp) = T:?Xf;) 1 — ywp(Y = 0) log ]\/}h c(A). (3.8)

This equation is accurate to about 3% for A less than 10 TeV. The anomalous dimension
matrix vy (Y — 0) can be evaluated at either y = M}, or A to this order. We will evaluate
it at M} for the numerical results. More accurate results can be obtained by integrating
the RGE numerically, but we will use eq. (3.8) because it makes the subsequent analysis
clearer.

“The equality of the CP-even and C'P-odd one loop anomalous dimensions also has been checked by
explicit computation.



4 Impact on phenomenological studies

The RGE improvement of these NP effects can be of significant phenomenological impor-
tance, as we will show. In some cases, these previously neglected RGE effects can be the
dominant contribution of NP to various processes such as h — ~~. In this paper, we
restrict our attention to two applications of current interest: the RGE improvement of
NP contributions to the partial decay widths I'(h — ~7v) and I'(h — Zv), and the RGE
improvement of global EWPD fit constraints on the dimension-six operator basis.

4.1 LHC phenomenology
The Higgs decay rate I'(h — ~7) including H(® is

_ Tth=y) . 40 cy 2 4., 2 (41)
P = psM Sy = A7 A | '
following the conventions of ref. [10], where I'M is the SM rate, and
Cyy = CW + CB — CWB, éw =cCw +C¢g — cwp - (4.2)

The SM amplitude is given by I7, which is defined in appendix B. For I'(h — Z~) decay,
the ratio to the standard model rate is

_ D(h—n2) |, 4ntPez || |4n*%Ez [0 (43
Pz =TpsMy S h7) = A2[Z A2TZ | '
where
Cyz = Cwy €Ot Ow — cp tan Oy — cyp cot 260y,
Cyz = Cw cot Oy — ¢ptan by — g cot 20y, (4.4)

and the SM amplitude I is defined in the appendix B. I and I? are negative, so we see
from eqgs. (4.1), (4.3) that h — vy and h — Z are enhanced if ¢,, and ¢,z are positive,
and suppressed if they are negative, when ¢, and ¢z, are neglected.

The renormalization group improved Higgs decay rates can be computed by using the
Wilson coefficients ¢y, ¢y, cyz,Cyz in eqgs. (4.1), (4.3) at the scale y ~ Mj,. Using the
leading log approximation to the running, given in eq. (3.8), one finds

r(A)eyy (M) [ 3 2, 0.2 A 1 ) A
) _ +353 (974395 —8)) log A, ery(A)+ g (393 —4\) log thWB( ),
(4.5a)
r(Meyz(Mp) T 1 9 5 A
— v = ! —24)) log — A
r(Mp) I t o (91 + 792 A) log M;, ¢yz(A)
A
-+ 8? (9192 + 495 cot 20y — 4 cot 29w) log MCWB (A)
b(l) 2 _ b(2) 2 A
_ 2 917% 92 (cyy(A) sin 20y + ¢ z(A) cos 20y ) log —. (4.5b)

1672 M,



The mixing angle 6y in eq. (4.5b) is evaluated at p = Mj,. The last term in eq. (4.5b)
comes from the running of the mixing angle Oy between A and Mj. Coefficients bo1 =
—1/6 — 20n4/9 = —41/6, 662) = 43/6 — 4ny/3 = 19/6 are the leading coefficients of the
g1 and go B-functions, and ngy = 3 is the number of generations. The running of the
C P-violating operator basis is identical at one loop.

4.1.1 A new contribution to I'(h — ~v)

As shown in eq. (4.5), the Wilson coefficient ¢, at p = M}, depends not only on ¢y (A),
but also on cyp(A) due to operator mixing. There is no exact symmetry that forbids such
mixing in the anomalous dimension matrix. This mixing provides a demonstration of a
new mechanism for a modification of I'(h — ~7) due to NP that has not been considered
previously, despite the fact that such effects can be as large as effects of NP which have
been examined traditionally.

When the new physics can be characterized by a single scale M, and a coupling g,,
simple physical arguments lead to an interesting power counting for the Wilson coefficients
of our operator basis [13]. For coefficients ¢; = ¢;v?/A?, we find the power counting

2

v
¢B,Cw,CwB,CpB, cpw ~ O <MQ> , (4.6)
p

_ _ 2 2

GGy Gy = O + CB — CwB, Cyg = tafligw — eptanfy — tai% ~O0 <1g;2l\ifp2>’ (4.7)
where the last row follows from the fact that the Higgs boson cannot decay to vy, Z~v and
gg at tree-level in any theory that satisfies the minimal coupling assumption. Note that,
when a discrete symmetry is present, there can be further suppression of the operators
in the first row, as is the case in R parity conserving SUSY scenarios where there is no
tree-level contribution to the S parameter. Also, if the Higgs boson emerges as a pseudo
Nambu-Goldstone boson of the new physics sector, the Higgs decays to vy and gg can only
be obtained from a loop that involves couplings which break the global shift symmetry
of the pseudo Nambu-Goldstone boson. In that case, we obtain a further suppression of

94/, [13], so

Gim 95 v
CG,Cyy ~ O | =255 — . (4.8)
i g3 1672 M2
Here, gsar denotes a combination of the SM couplings g1 .2, y;. The simple power counting
above demonstrates the importance of the RGE mixing between the operators we are

considering:

1672

and parametrically the ratio of the RGE contribution over the new physics contribution to

2
Cyy (1) ~ cyy(A) + Ism log (2) ci(A), (4.9)

Cyy scales like (g%,,/ gg) log(A/p) in the general case and is further enhanced to log(A/u)
in models where the Higgs boson is a pseudo Nambu-Goldstone boson. Hence, the RGE
effect we want to compute can dominate over the new physics contribution at the matching
scale. Similar RGE enhancement is present in the mixing between the operators Owp and

,10,



Ou|H|?0"|H|? in ref. [20] and has been used to derive some bounds on the deviations of the
Higgs couplings to massive gauge bosons from electroweak precision data, see for instance
ref. [21]. Note that in the case of ¢z, the RGE effect is sizeable only in the case of weak
coupling g, < gsm-

As a concrete example, consider the possibility that the Higgs is a pseudo Nambu-
Goldstone boson of a NP sector. Using the SILH formalism of ref. [13], a direct matching
giving c~(A) is suppressed by a common scale M 3, corresponding to the mass scale of a
new strong sector. Here, M, ~ g, f, where f is the analog of the pion decay constant fr,
and g, is a coupling in the NP sector with ggys < g, < 4m. One finds the matching

02 2 2

SHENESES %‘g v (4.10)

Now consider the matching onto the operator Oy g due to integrating out the strongly-

interacting NP sector. It is well known that the Oy p operator receives a tree-level con-

tribution from integrating out new heavy vector bosons. When this occurs, the interesting

possibility arises that the mixing of ¢, with cyp due to renormalization group evolution

leads to the dominant effect of NP on h — ~+ decay. This possibility is supported by the

fact that the latter mixing effect also is enhanced by a large logarithm. Integrating out such

new spin-one resonances that induce this operator at tree level, one expects S ~ 47v? /Mg,
which gives

v? v?

CWB(A) _— X~ —

—. 4.11
A2 oM (4.11)

Typically, S is positive, and cpyp is negative. From these matchings, one sees that at the
scale M}, (neglecting the correction to ¢, in eq. (4.5a)),

v? (M) M v?

M) — ~ 9 2 2 AN) log /2| ——
Cyy (Mp) A5 ) gsm — (395 —4A) log My | 1672 M2

(4.12)

Couplings gsa and g are of comparable size, so (3/2)log (M,/My) > 1 is the degree
to which the new contribution to I'(h — ~7) dominates over the previously known con-
tribution in pseudo Nambu-Goldstone boson Higgs models. Numerically, one finds that
(3/2)log (M,/My) ~ 3 for M, ~ 1TeV, so this term is expected to be the dominant
contribution. Even when the extra suppression ~ g% A 1s not present, as is the case for
non-Goldstone Higgs scenarios, it is reasonable to expect that the RGE driven contribution
we have identified will be significant. Thus, including this effect is of some importance in
constructing models of NP that attempt to explain any I'(h — 7) deviation. Obviously, a
similar point holds for future studies of I'(h — Z=) as well, as can be seen from eq. (4.5b).
Note that negative values of cyyp lead to a suppression of fi,, and fiyz.

The matching condition S ~ 4mv? /Mg is a rough estimate based on dimensional
grounds. More precise matching conditions based on specific assumptions about the
unknown spectral function of the vector resonances can be utilized if desired, and the
conclusions are not significantly changed. For recent calculations along these lines, see
refs. [22, 23], where, in the framework of minimal composite Higgs models (MCHM [24]),

— 11 —



more precise matchings are determined. The finite terms determined in refs. [22, 23] for
the particular examples considered in these papers affect this argument with roughly a
further loop factor suppression, so they do not significantly modify the conclusions. Nev-
ertheless, due to the general requirement of assuming a form of the unknown spectral
function that dictates the matching onto cyp(A), strong conclusions are not possible in a
model-independent fashion.®

One should note that there are also other modifications to I'(h — 77v) in pseudo-
Goldstone Higgs models. These effects are discussed in ref. [13], and we briefly review
them here for completeness. In this class of models, one also expects modifications of stan-
dard model Higgs phenomenology due to NP in a strong sector that induces the following
operators added to the effective Lagrangian

Oy ="(H H)0,(H' H), Oy = H' Hyp Hip + h.c., (4.13)
with coefficients cr/(2f2) and ¢y yy/ f2, respectively. These effects are suppressed by the
scale f, not M, = g, f, and lead to a suppression of I'(h — v+) given by [13]

I'(h — ~7) 2 2¢; + e cy

v
W)y Y Re + :
L(h = yy)sm f? 1+ Iy /(NQ7L) 1+ (NeQiLy)/Iw

neglecting terms suppressed by g2 2 Tt is known that one can obtain an enhancement
g g pp Y 9/ 9

(4.14)

of h — ~~ if these corrections dominate over the SM contribution, or if ¢; is negative,
removing the need for any new states giving a large direct matching contribution (or
RGE contribution) to obtain a deviation in j.~. However, at the same time, negative
¢ diminishes gg — h unless it is very large. See ref. [25] for a related discussion on the
consistency of this possibility with global data. Of course the parameters that lead to these
effects are modified by the inclusion of the RGE effects identified in this paper.

4.1.2 Inferring the NP scale from RGE modified I'(h — ~7)

The measured signal strength for v+ decay in terms of the ratio to the standard model rate
is given by ATLAS as [26]

[ = 1.80 £ 0.30(stat) 7521 (syst) 752 (theory), (4.15)
for My, = 126.6 4 0.3(stat) 4= 0.7(syst) GeV, while CMS reports [27]
firyy = 1.56 £ 0.43, (4.16)

for M, = 125GeV. Neglecting the subtle issues of combining the results of different
experiments, and the different central values for the masses of the signal strengths reported,
one finds that a naive combination of these results gives p,, ~ 1.7 £ 0.3. If this excess
is attributed to the modifications of the I'(h — ~7) amplitude due to ¢y, one finds two
solutions for the central value of c,,,

U2

12 & (My) = ~0.1, 0.01. (4.17)

5In particular the results of ref. [22] use u < M, which is associated with a flat spectral density used in

the calculation, as opposed to our matching at p = M,.
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The second solution is preferred. The first solution is when c,, switches the sign of the
standard model h — vy amplitude, which might lead to stability issues of the EW vacuum
as discussed in refs. [28, 29].
Further adopting the assumption that the new RGE contribution leads to the observed
enhancement in p.~, we can identify the NP scale as a function of cyp, in this case
r(My) v? A

using the second solution in eq. (4.17). The quoted error in the above equation corresponds
to the 1o range in the naive combined signal strength. It is clear from this equation that
the NP contribution, while enhanced by log A, still has the 1/A? suppression characteristic
of higher dimension operators. Thus, one cannot make the vy rate arbitrarily large by
taking A to infinity. The value j,, ~ 1.7 implies either a very low value for the NP scale
A, or a large value of cyyp. If A ~ 1TeV, eq. (4.18) gives cywp(A) ~ 11 + 4, compared to
the naive dimensional estimate that cyyp ~ 1. Alternatively, if cjyp = +1 then the h — vy
rate increases (decreases) by only 5% for A ~ 1 TeV.

It is possible that the current value of (1, is biased due to an upward statistical
fluctuation (considering the discovery of a Higgs-like scalar as a prior). Eventually, a more
accurate measurement of the Higgs decay rate will determine how close i, is to unity.
The key question is how large an enhancement of the h — ~v rate is allowed by the
RGE contribution, given the current constraints on the S parameter from precision EW
measurements. The magnitude of this enhancement sets a benchmark for how accurately
fir~ needs to be measured to rule out NP models at the TeV scale. We examine this
question in the next section, using our determined anomalous dimension to improve the
constraints on this operator due to EW precision data.

4.2 Effect on EWPD and global constraints

The global constraints on the NP operators in eq. (2.2) are of increased interest if deviations
in any of the Higgs decays h — vy, WW, ZZ, Z~ becomes statistically significant. Carefully
accounting for the scale dependence of the operators, including the effects of mixing and
running, allows a more accurate treatment of global constraints. A more precise treatment
is particularly important when deviations, such as the current deviations in p.-, are being
considered as possible hints of new physics. The RGE analysis of section 3 improves these
constraints.

In recent global studies [30, 31|, the tree-level dependence on cyp is eliminated be-
cause it is strongly constrained by EWPD. The tree-level equations of motion are used to
eliminate Oy p from the operator basis in ref. [30], while in ref. [31], the Wilson coefficient
of Ow p is set to zero due to its strong constraint from EWPD. Running the operator basis
to other scales, the Oy p operator is regenerated due to mixing if set to zero by hand or
eliminated using the equations of motion. The resulting Wilson coefficient will be loop
suppressed, but, because of the sensitivity of EWPD to Oy p, this effect can still be phe-
nomenologically relevant. Part of the scale dependence of the operators is captured in the
standard equations based on refs. [4-6] used in these studies. Incorporating the running
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corrections using 7y g includes the full effect of operator mixing for our basis, and allows
more accurate constraints to be drawn in future studies of precision Higgs phenomenology.
The RGE analysis includes contributions which were previously omitted, despite being of
the same order.

4.2.1 S parameter

The direct contribution of the H6) operator basis to the EWPD parameters is known, see
refs. [4-6]. The S parameter is given by

1

(cwn(®) = oz o @)+ gfent)] log 37} . (@19)

8 1 v2
A2

S=-—

where the log A/M}, terms come about due to the finite part of the one-loop contribution
of the Oy, Op operators to S. In contrast to eq. (4.19), note that eq. (3.8) gives

cwp(Mp) = r(Ms) cwp(A) |1+

r(A) 32272 PN,
_rMy) 1, 2 A
T(A) ] 7_‘_2 [92 CW(A) + g1 CB(A)} lOg Mh7 (420)

which makes clear that the log A/Mj, terms in eq. (4.19) arise from using the formula

8 w2
A2

S=- cwn(Mp) . (4.21)

However, the result eq. (4.19) only includes the second row of eq. (4.20). The correction
in the first row, as well as the top-Yukawa coupling contribution, are not included despite
being comparable in magnitude. The value of S consistent with operator renormaliza-
tion for our basis is given by using eq. (4.21) and RGE evolution, rather than eq. (4.19).
The answer using the approximate RGE integration of eq. (3.8) is to use eq. (4.21) and
eq. (4.20).9

A simple estimate of the impact of these improvements for phenomenological studies
is given by the ratio of S with and without the full one-loop mixing for our operator basis,

Swith r(Mp) g2 —9g3 — 8\ A
~ 1+ =22 = Joog— |. 4.22
Swithout T(A) + 32 72 8 M;, ( )

Numerically, this ratio ranges from 0.93 at A = 500 GeV to 0.86 at A = 2.5 TeV, which is
a significant change in the precision electroweak constraint.

The limit on S gives a constraint on the space of coefficients cyp, cp, cy at the scale
A, which in turn constrains the value of j,. By incorporating the RGE effects we have

5Note that the effect of the higher dimensional operators in eq. (2.4) on STU are also included in the
analysis of refs. [4-6]. Until a complete one-loop renormalization of the entire operator basis is completed,
it is appropriate to use eq. (4.21) and eq. (4.20), and to add in the remaining contributions due to the other
operators on STU determined in refs. [4-6]. In particular corrections due to ¢y can be significant. The
coefficients of these other operators are however unknown until an underlying model is specified. In many
models, these additional operators are not as important as those in eq. (2.2), and our relations are sufficient
to study EWPD in these classes of models without the additional terms.
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Figure 3. Plots of cg(A) + cw (A) = ¢y, (A) and cg(A) vs. iy assuming cwp(A) = 0, as discussed
in the text. The first plot shows the allowed values of cp + cy as a function of ji,, on varying S
in its PDG 1o range. The steeper curve is for A = 1TeV, and the flatter curve is for A = 0.75 TeV.
The width of the allowed region is less than the thickness of the line. The second plot shows the
allowed region for cg on varying S is between the outer or inner pairs of lines, for A = 1 TeV and
A = 0.75TeV, respectively.

calculated in this paper, limits on S also are directly related to limits on u,, due to
EWPD. The more complete relationship between EWPD and 4 is given in appendix C.
The numerical version of eq. (C.2) is

A 1TeV 2 A
uwzl—O.OQSlogM—FQ.7< 0 ) {1+0.003510g]\4h}cw(/\)

1TeV

A 2
~1-0.025 log A +0.02 < ) (167%cy4(A)) (4.23)

where the second line emphasizes that 167r20,w (A) is expected to be order unity, because
¢y~ (A) contains a one-loop suppression factor. Since log A/Mj, is positive, enhancements of
[~ are associated with negative values of S. A significant enhancement of p.,, is associated
with a large negative S parameter. A value of p,, = 1.73 implies a large negative value
of S ~ —10 (when 1672c,+(A) is set to unity), which is strongly excluded experimentally.
The Particle Data Group [32] quotes a value of S = 0.00fgiié as a result of a fit to S,
T, and U. Taking into account correlations, this value leads to S < 0.17 at 95% C.L for
positive values of S — as expected in many models.

We can study the constraint on jiy, in a different way. Assume that to avoid the §
parameter constraint, one constructs a theory where cyyp(A) = 0. Then egs. (4.20), (4.21)
for S determine one linear combination of ¢y (A) and cp(A), and eq. (4.23) for g, de-
termines another linear combination, ¢y, (A) in eq. (4.2). We can thus determine both cp
and cy in terms of S and p.,. Plots of cp + cw and cp versus p,, are shown in figure 3.
S is varied in the the PDG 1o range —0.1 < § < 0.11. The signal strength (., strongly
constrains the linear combination cg(A) + cw (A) = ¢y, (A), as can be seen from eq. (4.23).
In the plot, we have used the full quadratic expression in eq. (C.1). Coefficients cp(A) and
cw (A) are individually not very constrained from the S parameter, and the allowed region
for cp is the wide band shown in the second plot of figure 3.
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A similar analysis for .,z gives the numerical version of eq. (C.4)

A

1TeV) > A A
1. 1 . log — A .0121log — A
+ 56( A > {[ + 0.0076 log Mh:| cyz(A) +0.0121og thw( )}

1TeV

? A
) [(167r2cwz(A))+0.01210ng (167r20W(A))} :
(4.24)

A
~1-0.014 S log —+0.01
og M, + (

5 Conclusions

We have renormalized a subset of the dimension-six operators that encode the impact of
NP on the Higgs sector of the SM. Using these results, we have obtained the RGE results
for the effect of NP on the Higgs decay widths I'(h — ) and I'(h — Z+) and on the S
parameter. We have demonstrated that the leading effect of NP on these decays has not
always been properly accounted for in previous studies. In addition, we have shown that
the relation between EWPD and the running coefficients of the dimension-six operators
contributing to these Higgs decays has not been consistently formulated previously.

The operator mixing mechanism we have identified makes clear that large excesses
in juy, are difficult to reconcile with EWPD constraints, at least for the operators which
we have considered. Nevertheless, the possibility remains that there are additional RGE
effects which we have not computed due to other dimension-six operators (that we have
neglected) which arise from tree-level matching of the new physics and which also mix with
¢y~ at one loop. Such a scenario could possibly lead to a y - enhancement due to the RGE
while not being directly constrained by EWPD. This mechanism remains a possibility, and
it is worthy of future study.

It also is worth emphasizing the generality of the observations of this paper, which
indicates the necessity of a reassessment of the standard expectations for the effects of NP
on many aspects of one-loop SM Higgs phenomenology. Our results show that a systematic
study of renormalization group running of the dimension-six operator basis is of crucial
importance for the future precision (SM+NP) Higgs physics program.

Finally, our results also illustrate an important point regarding the global analysis of
Higgs signal strengths. An analysis of signal strengths that is framed in terms of a sin-
gle effective Wilson coefficient for each effective Higgs decay is insufficient to characterize
underlying NP models in general. We have shown that the dominant effects can be misun-
derstood if the scale dependence of the operators is neglected. Conversely, the formalism
of a systematic EFT treatment allows one to incorporate the RGE effects that have been
shown to have some importance in Higgs phenomenology.
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A B-functions

The one-loop S-functions for the standard model couplings are
d /1 20 g3
P9 = <6 * 9“9> 672"
d 43 4 g5
gy = — [ 222 ) 22
Fa 6 39)16n2

d 4\ g3
S ga= (112 I3
Hau? < 3”9> 1672’

d 2 2 2 2 3 4 3 2 2 9 4 4
ufdﬂk = 162 [2% — A (397 + 995 — 12y7) + Q9L+ 19192 + 592 — 6y |
d 1 [9, 1745 9,
= — S-S s Al
MY = Toa2 [2 e — 1591~ 492 — 893 | Y (A1)

in the approximation where only the top quark Yukawa coupling is retained. Here ny = 3
is the number of generations. The full one-loop and two-loop results can be found in
refs. [33-36]. The couplings ¢g; and A of ref. [36] (denoted by a prime) are related to the
ones used in this paper by

gi=\/§gl, N =2\, (A.2)

The conventions for g9, g3, vy, v are the same as used here. From eq. (A.1), one finds that
the running of the weak mixing angle tan Oy = g1/g2 is

2 1
L fan gy = o oM

m = tan Oy , (A.3)

where b(()l) = —1/6 — 20n4/9 and b(()Q) = 43/6 — 4ny/3 are the coeflicients of the one-loop
B-functions for g; and go, respectively.
We have used the known result for the wavefunction renormalization of the scalar field:

B-& (g1 +3g3) Y (A.4)

Zg=1
" + 6472 € 1672 €’

where ¢ is the gauge parameter of R¢ gauge. The gauge dependence of eq. (A.4) cancels
the gauge dependence of the diagrams in figure 1.

B Feynman parameter integrals

The standard model amplitudes depend on the integration over the Feynman parameter
integrals defined in ref. [37]

=1, <4M2 , > +ZNZQI (1 - 7) <i\: o> (B.1)
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where

1 —4xy
b) d B.2
(a, / a?/ (a —b)zy — 4by(1 — y) — 0+’ (B-2)
—4 + 6xy + 4daxy
I, (a,b) d . B.
(a, / a:/ (a —b)xy — 4by(1 —y) —i0F (B-3)

In eq. (B.1), the sum on i is over all fermions, and N; is the number of colors, with N; = 3
for quarks and N; = 1 for leptons. @; is the fermion charge. NLO QCD corrections have
been included. Similarly, the decay h — Z v depends on the integral

M? M2 « M2 M2
17 = Iff 2 2 N; “.(1——5>I —% B.4
W<4M§V’4MV2V +Z¢: Qg )\ am2 am2 ) (B-4)
where
IZ (0 b) — ! q I’Zi [5 — tan? Oy + 2a (1 — tan? HW)] Ty — (3 — tan? GW)
wia.b) = tan Oy / a:/ Y 1—4(a —b)zy — 4by(1 —y) — i0F ’

(B.5)

and g; = (ng — 2sin2 HwQZ)/ sin QQW

The top quark is the dominant fermion contribution for both amplitudes and has
the opposite sign from the gauge boson contribution. One finds I7 ~ —1.64 and I? =~
—2.84 for Mj, = 125GeV. The numerical values were computed using the PDG 2012 [32]
central values for the standard model parameters, as(My) = 0.1184, ag,L(My) = 127.944,
sin? Oy = 0.23116, My = 91.1876 GeV, My, = 80.385 GeV.

C Relation between h — vy, h - yZ and S

Combining eq. (4.20) and eq. (4.21) for the S parameters with eq. (4.1) and eq. (4.5a), and
keeping terms only to first order in log A/M, gives

(393 —4)) A r(Mp) 4r?0? 3, ) A
o Closg 1 392 — 8)) log — be. (A
6 280 T ) A T g 0130 BN log e pesn (A)

2

1+

Hoyy =

2
r(My) 4m2v?

r(A) A2IY

A
(395 — 4) log 2, e (A)

1
82

3 AL
{1 3272 (9% + 39% - 8’\) log ]\/[h] Cyy(A) +
(C.1)

When the ¢; terms are small compared with the standard model contribution, one can
expand this expression retaining only terms linear in ¢; to obtain

4\ 1 A
uwzl—l—%)f{e( )Slog
My,

r(My,) 87202 1 3 9 9 A
() AZ Re Iz 1 39,2 (gl + 395 8)\) log A cyy(A), (C.2)

where terms proportional to the ¢; have been neglected. A similar calculation for 11,7 gives
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(9192 + 495 cot 20y — 4\ cot 20y) A

‘LL,Yzﬁ 1+ 167TIZ Slogm
r(Mp) 4mv? 1 A
- ﬁ(A};) A2[Z { [H— 3970 [(1—2b(()1) cos 29W) g+ (7+2b82) cos 29W) g%—24)\} log ]\/‘[J cyz(A)
2
sin 29W 1 2 A
" 1672 (b( gt~ b3 )log M, CW(A)}
T‘(Mh) 4722 1 (1) 9 (2) 9 A
TA) ATIZ 1 39,2 [(1 2b; ’ cos 20W) g1+ (7+2b0 cos 29W) 95 24)\} log A, cyz(A)
1 A
—&-@ (9192 + 4g§ cot 20y — 4\ cot 29W) log MCWB(A)

2

ban@W (1) 2 2) 2 A
1672 (b — b )1°g g oW

To linear order in ¢;, neglecting ¢;, gives

oz ~ 1+ (9192 + 493 cot 28971:/ — 4 cot 29W)Re (I ) S log](}h
2,2
_rﬁé\f;)szf Re<jlz> y
{{ gz [ (1= 20 cos20w) g1+ (7427 cos2ur) 8~ 200] o z\ﬂ ¢,2(A)
S (108 — D3 g cw(A)}. ©4)
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