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1 Introduction

In this paper we describe the reformulation of eleven-dimensional supergravity in terms of
generalised geometry. The analysis is restricted to spacetimes that are warped products
of Minkowski space with a d-dimensional manifold M with d < 7, with all fields taken to
be independent of the (11 — d)-dimensional flat space. We work to leading order in the
fermions. The generalised geometry has a Ey(g) xRT structure group and the theory has
a local Hy symmetry, where Hy is the double cover of the maximally compact subgroup of
Eg(4)- Although we will not give the detailed decompositions, this reformulation is equally
applicable to type ITA or IIB supergravity restricted to a (d — 1)-dimensional manifold.

This completes a programme started in [1], where we studied the formulation of type
IT supergravity in terms of a generalised geometry with an O(d,d) x RT structure group
first proposed by Hitchin and Gualtieri [2, 3]. Such reformulations were first given in the
related “doubled” formalism in a series of papers by Hohm, Hull, Kwak and Zweibach [4-6],
building in part on work by Siegel [7, 8]. This was extended to the RR sector in [9, 10]
(along with [1]). In such Double Field Theory, rather than extending only the tangent
space as in generalised geometry, one conjectures that the spacetime is doubled and, to
relate to supergravity, then imposes a constraint that there is dependence on only half the
coordinates. Interestingly, even when applied to conventional supergravity backgrounds,
the doubled space cannot be assumed to have a conventional manifold structure [11].

In [1], we focussed in particular on the notion of generalised connections. We showed
that there exists a class of torsion-free, metric-compatible generalised connections, ana-
logues of the Levi-Civita connection. (These objects, the corresponding curvature tensors
and the relation to the NSNS sector of supergravity, were first discussed in the “doubled”
formalism by Siegel [7, 8]. Related “semi-covariant” derivatives, and the corresponding
curvature tensors were defined independently by Jeon, Lee and Park in [13, 14].) We
then used these results to write down a gravitational theory for generalised geometry and



showed that this was precisely type II supergravity with its local “double Lorentz sym-
metry” O(9,1) x O(1,9) manifest. In the following paper [12], we defined the analogous
concepts in Eyq) xR generalised geometry, also known as exceptional or extended gen-
eralised geometry [15, 16]. We showed that this construction can be used to describe
eleven-dimensional supergravity restricted to d dimensions, that is, to the warped product
of Minkowski space and a d-dimensional manifold. The action and field equations for the
bosonic sector are simply the Ejy(q) xRT generalised version of Einstein’s gravity

1
SB = 21%2\/|VO1G R7 RAB = O, (11)

where |volg| is the volume density associated to the generalised metric G, and Rap and R
are respectively the generalised Ricci tensor and scalar associated to a torsion-free, metric
compatible generalised connection D.

The present paper serves as a direct continuation of the Fy(q) xRT construction, by
including the fermion fields in the description of the supergravity. We show how the same
generalised connection describes the supersymmetry algebra, and can be used to obtain
the fermion dynamics. The equations of motion for the two fermionic fields present in the

theory, ¥ and p, are simply
11—d
+—D Ap=0,
Dy+5—DAp (1.2)

DY Y+ Dp=0,

where ), D A and D Y are particular Hy-covariant operators built from the generalised
connection that project, in the first line, onto the 1 representation, and in the second
line, onto the p representation. The geometry therefore naturally produces a supergravity
theory with the larger symmetries manifest, including the fermions to first order.

While the formalism is powerful enough to describe the theory in different dimensions
in all generality, the fact that the structures appearing in each case are so diverse forces
us to introduce fairly abstract notation. It can therefore be helpful to look at explicit
constructions. We work out two examples with the full local symmetry manifest, the
relatively simple d = 4 case and the more interesting d = 7 case. For instance, in the latter
case, when the local group is SU(8) the projections in (1.2) become

1 , -
_ 60&5755’919293D66 ¢919293 4 2D[aﬁpfy] — 0’

12 . (1.3)
_ipmwaﬁv + Daﬁﬁg =0,

which is a remarkably compact form compared with the usual supergravity expressions.
There are many precursors and related approaches to the geometrical reformulation
discussed here [17-32], as well as several, more recent, papers that have developed or
applied ideas of exceptional generalised geometry [33-43]. Let us comment briefly on a
couple of related approaches of particular relevance here. In 1986 de Wit and Nicolai [18]
already showed that a local SU(8) symmetry (and a global Ey7) symmetry on an extension
of the usual vielbein) could be realised directly in d = 11 supergravity, including the



linearised fermions, assuming only the existence of a product structure on the tangent
bundle SO(3,1) x SO(7) € SO(10,1). The current paper can be viewed as a geometrical
framework from which to interpret these results. In the bosonic sector, a more recent
approach is the work of Berman and Perry and collaborators [30-32], using the M-theory
extension of double field theory [44-46]. These authors were able to find a non-manifestly
covariant form of the action simply in terms of derivatives of the generalised metric G.
Again the work of [12] and this paper puts this result on a covariant geometrical footing,
demonstrating that the action is none other than the generalised Ricci tensor. One might
also expect a connection to special cases of the much broader non-linear Ej; proposal of
West [20-22], along the lines of the relation between Riemannian geometry and the non-
linear realisation of gravity due to Borisov and Ogievetsky [47]. In a remarkably detailed
construction [28, 29], including the fermions and using West’s approach, Hillmann indeed
considered a “generalised E7 7y coset dynamics”, on a sixty-dimensional spacetime [25]. By
demanding that, upon truncating to 4+7 dimensions, the theory possess Diff (7) invariance,
the author managed to show that the construction reproduces the results of de Wit and
Nicolai [18]. In generalised geometry one does not increase the dimension of the underlying
manifold, so clearly the two formalisms are technically distinct, and the precise relation
between them is yet to be investigated.

The paper is thus structured as follows. In section 2 we give a quick review eleven-
dimensional supergravity and its restrictions to d dimensions. In section 3 we provide a very
brief summary of the key points in [12]. In section 4 we introduce the fermion fields and
provide a complete rewrite of supergravity in terms of the generalised geometry formalism.
In section 5 we work out the explicit d = 4,7 cases. We conclude with a short discussion
in section 6. We also include a number of appendices to fix our conventions and also give
the details of the various spinor decompositions and group actions that we use.

2 Eleven-dimensional supergravity and its restriction

2.1 N =1, D =11 supergravity

Let us start by reviewing the action, equations of motion and supersymmetry variations of
eleven-dimensional supergravity, to leading order in the fermions, following the conventions
of [48] (see also appendices A and C).
The fields are simply
{gmN, Avnp, Yt (2.1)

where gp/n is the metric, Ay;np the three-form potential and ;s is the gravitino. The
bosonic action is given by
1
T 2k2

where R is the Ricci scalar and F = dA. This leads to the equations of motion

1 1
Sp Qﬁ@R—QfA&F—éAAFAF} (2.2)

1 1
Run — 15 (J:MP1P2P3]:NP1P2P3 - 129MN~7'-2> =0,

1
d« F + 5 FAF =0,

where Ry is the Ricci tensor.



Taking IT'™ to be the Cliff (10, 1; R) gamma matrices, the fermionic action, to quadratic
order in s, is given by

1 - 1 _
Sr=— / \/TQ(lDMTMNPVNIZJP + %FPL..P4¢MFMP1'"P4N¢N

1 (2.4)
+ SFPl...P4¢P1FP2P3wP4>7
the gravitino equation of motion is
1
FMNPVN’QZ)P + % (FMNP1...P4J—_'P1MP4 + 12~FMNP1P2FP1P2) @Z}N =0. (25)
The supersymmetry variations of the bosons are
0 =2el )
IMN fM?ﬁN) (2.6)
SAMNP = =3ET NPy,
while the supersymmetry variation of the gravitino is
1
51/)M — Ve 4+ — (FMNl'”N4 o 86MN11—\N2N3N4) FN1...N457 (27)

288

where ¢ is the supersymmetry parameter.

2.2 Restricted action, equations of motion and supersymmetry

We will be interested in “restrictions” of eleven-dimensional supergravity where the space-
time is assumed to be a warped product R19=%! x M of Minkowski space with a d-
dimensional spin manifold M, with d < 7. The metric is taken to have the form

ds%l = e2Ad32(R10*d’1) + ds?l(M), (2.8)

where ds?(R197%1) is the flat metric on R19~4! and ds?(M) is a general metric on M. The
warp factor A and all the other fields are assumed to be independent of the flat R'0—d1
space. In this sense we restrict the full eleven-dimensional theory to M. We will split
the eleven-dimensional indices as external indices © = 0,1,...,¢ — 1 and internal indices
m=1,...,d where ¢+ d = 11.

In the restricted theory, the surviving fields include the obvious internal components
of the eleven-dimensional fields (namely the metric g and three-form A) as well as the
warp factor A. If d = 7, the eleven-dimensional Hodge dual of the 4-form F can have a
purely internal 7-form component. This leads one to introduce, in addition, a dual six-form
potential A on M which is related to the seven-form field strength F by

F:dﬁ—%AAF (2.9)

The Bianchi identities satisfied by F = dA and F are then

dF =0,

-1 (2.10)
dF + iF/\F =0.



With these definitions one can see that F' and F are related to the components of the
eleven-dimensional 4-form field strength F by

le...TI’L4 - ]:m1...m47 le...m7 - (*]:) (211)

mi..m7 "’

where *F is the eleven-dimensional Hodge dual. The field strengths F and F' are invariant
under the gauge transformations of the potentials given by

A = A+dA,
1 (2.12)
A’:A+dA—§dAAA,

for some two-form A and five-form A. There is an intricate hierarchy of further coupled
gauge transformations of A and A, discussed in more detail in [16] and [12] and which
formally defines a form of “gerbe” [49].

In order to diagonalise the kinetic terms in the fermionic Lagrangian, one introduces
the standard field redefinition of the external components of the gravitino

1
U=t 5Tl . (2.13)

We then denote its trace as 5
c —

p= Ty, (2.14)

and allow this to be non-zero and dependant on the internal coordinates (this is the partner
of the warp factor A). Although the restriction to d-dimensions breaks the Lorentz sym-
metry to Spin(10—d, 1) x Spin(d) C Spin(10, 1), we do not make an explicit decomposition
of the spinor indices under Spin(10 —d, 1) x Spin(d). Instead we keep expressions in terms
of eleven-dimensional gamma matrices. This is helpful in what follows since it allows us to
treat all dimensions in a uniform way.

In summary, the surviving degrees of freedom after the restriction to d dimensions are

{gmn7Amnp7Am1...m67A;wm7p}- (215)

One can then define the internal space bosonic action

o 1 cA _ 2_}1 2_11~2
SB_M/\@G (R+C<C DOA) =55F 27!F>’ (2.16)

where the associated equations of motion

11 1
Rmn - CvmVnA - C(amA)(anA) - 51 <4Fmp1p2p3FnP1p2p3 - 3gmnF2>

11 - - 2 -
_§ﬁ <7Fmp1~-~p6an1mp6 - 3gmnF2> =0,
2.17)
11 11 -~ (
Y 2A 2 1t Llmo
R —2(c—1)V*A —c(c—1)(0A) 24!F 5 7!F 0,
dx (eAF) —e“AF AN F =0,
dx (e“2F) =0,



are those obtained by substituting the field ansatz into (2.3). Similarly, to quadratic order
in fermions, the action for the fermion fields is

1 c 7 mn,
SF = _M/ﬁe A|:(C_4)1/}mr pvn¢p

—c(c = 3" T"Vtby — ¢ (VT Vinth" + "' T, V")

- i%(%z = 5¢ 4+ 4) i P g TPy, + %C(C — 3 Py
b 3 E TP (e A Fyyp T
- ié(z& — 5C+ ) F™ ps TPV P50,
+ iéc(c — V)P F™, g TP P64, (2.18)

+ c(c = 1) (" Vimp — BV ) + c(YmI ™ Vip — oI Vithy, )
—c(c—1)(c—2)Y"(OmA)p — c(c — 2), ™™ (0, A) p

11 11

+ 550(6 — ].) ol pqu—\pm’wm 9 4'Cmep1 p4Fp p41/}
11 -

— 5ac(c _ )memplmpGprl...pgp

N 1_ 1_
+ (e = 1) (pI"Vip + Zpr - 4/)1%)} :
This action leads to the equation of motion for ,,,
— (¢ — np € —ele — 3™ €
0=(c—4)T (vn n 26nA) by — c(c— 3)T (vn n Q&A) .
c n __ E n
— ey (Vi + famA) U = o (Vi + 5008 ) ¥

1

— 2 = et 45 anpqrpw +ele = 3)Fim,

L1 pP1p2p3 n 11 P1...p4 n
+ 23! cFm L ypipops " + 15(6 —4)ln For ps® (2.19)

11 11 ‘
- 19(2C — He + 4) mnpi.. de‘pl p5'l/1n Z@C(C — 1)F( pl"'pGFn)plmp().wn
+cln" (Vi +00A)p+clc—1) (Vi + 0mA) p

11 11
+ ch( 1)Fmp1p2psrp1p2p3p + zﬁcrmpl-..mel'"mP

11 ~
_ Z@C(C _ 1)an1...n6Fn1mn6P,

and the equation of motion for p,
c 1 1
pr— —_— A —_— —_—
0 W+2($ )+4F 415‘p

— [V + (¢ = 1)0nA]p™ — C_%Fm” (Vi + (¢ — )0 A] ¢y,

2.20
11 m P1p2p3 11 1 m P1...P4 ( )
e T Um = g a1k peen T
11

5 I



Turning to the supersymmetry transformations, we find that the variations of the
fermion fields are given by

5p=[vifiﬁ+052<aA> 5

1 11 (2.21)
0 m — m 7Fn ..n anL..mL - 5mn1rn2n3n4 - 7*an N | 5
4 [v T ggg I ( s )= g Fmmne :
and the variations of the bosons by
OGmn = 2§F(m¢n)>
c—2)0A+46 1o = &p,
(c—2) 8Vg=¢p (2.22)

O Amnp = —3ET (mnty),
5Am1--.ma - 6‘§F[m1m5¢m6]

This completes our summary of the reduced theory.

In what follows the fermionic fields will be reinterpreted as representations of larger
symmetry groups Hy > Spin(d). To mark that distinction, the fermions that have appeared
in this section will be denoted by 58, pSU8™ and ¢)S"8™  Absent this label, the fields are to
be viewed as “generalised” objects transforming under H,, as will be clarified in section 4.1.

3 Review of E44) XRT generalised geometry

We now give a brief summary of the key points in the construction of the E44) xRT gener-
alised geometry and connections, relevant to reductions of eleven-dimensional supergravity,
as discussed in [12].

3.1 Generalised bundles and frames

Let M be a d-dimensional spin manifold with d < 7.! The generalised tangent space E is
isomorphic to the sum [15, 16]

E~TM®ANT*M o NT*Ma& (T*M o AT M), (3.1)

where for d < 7 some of these terms will of course be absent. Physically the terms in the
sum can be thought of as corresponding to different brane charges, namely, momentum,
M2-brane, Mb5-brane and Kaluza-Klein monopole charge. The bundle is actually given
by a series of extensions which are defined via the patching data of the three-form and
six-form connections. (Specifying particular three- and six-form connections defines an
isomorphism (3.1).) The patching structure matches the supergravity symmetries (2.12)
(see [15, 16]). In this way the bundle E encodes all the topological information of the
supergravity background: the twisting of the tangent space T'M as well as that of the
form-field potentials.

The fibre E, of the generalised vector bundle at x € M forms a representation space
of Eya) xR*. These are listed in table 1. The definition of the Eya) xR* group and

"'We actually only consider 4 < d < 7, as for lower dimensions the relevant structures simplify to a point
that generalised geometry has little to add to the usual Riemannian description.



E4(q) group E rep. adF rep.
Eq7) 561 1330 + 19
E¢(6) 27 780 + 1o
Es(5) =~ Spin(5,5) 161 450 + 19
By ~SL(5,R) 10} 240 + 1o

Table 1. Generalised tangent space and frame bundle representations where the subscript denotes
the R* weight, where 1; ~ (det T* M)/ (9=,

its explicit action on FE, is given in appendix D. Crucially, the patching used to define F
is compatible with the Eg(q) xRT action. This means that one can define a generalised
structure bundle as a sub-bundle of the general frame bundle F for E. Let {E4} be a basis
for E,, where the label A runs over the dimension of the generalised tangent space as listed
in table 1. As usual, a choice of coordinates on a patch U defines a particular such basis
where

{Es} = {0/0z™} U{dz™ Adz"} U{dz™ A---Adz™ }U{dz" @dz™ A---Adz™}. (3.2)

We will denote the components of a generalised vector V' in such a coordinate frame by an
index M, namely VM = (v™ Wy, Oy ms > Trnma omir ) -

The generalised structure bundle is then the unique Egy(g) xRT principle sub-bundle
F C F compatible with the patching. Concretely, it can be written as

F= {(z, {Es}):z e M,and {E,} is a Eyqy xR™ basis of E,}, (3.3)

where an Ey(g) xR basis is any choice of frame that is related to the coordinate frame by
an Ed(d) xR* transformation as defined in appendix D. By construction, this is a principle
bundle with fibre Eq(g) xRT.

A special class of Eg(q) xRT frames are those defined by a splitting of the generalised
tangent space E, that is, an isomorphism of the form (3.1). As we mentioned, this is
equivalent to introducing the three- and six-form gauge potentials, A and A. Then, given
a generic basis {é,} for TM, {e*} as the dual basis on T*M and a scalar function A, one
has that a conformal split frame {EA} for E has the general form (see appendix D for
notation)

- ~ 1
E, = A (éa + iéaA + iéaA + §A A iéaA

o1
+jAAi%A—%6jA/u4Ai%A),

; . 1 (3.4)
Eab — A (eab+A/\eab—jA/\e“b+2jA/\A/\e“b> ,
Ea1-~~&5 — eA (eal...a5 +]A A eal‘..ag))’
Ea,al...(w — eAea,al..Acw'
In this frame, the components of the generalised vector
. 1 - 1 A 1 ~
V:W&+§%ﬂ“+g%hwﬁh%+ﬁm%wEW“m (3.5)



can be used to construct

1

A 1 1
AAA N
V (AA8) = vy + 2Wab€ab - 5'Ua1...a5ea1 a5 7'Ta,a1...a7€a’a1 o

€T(TM & A*T*M & AST*M & (T*M @ ATT*M)),

thus realising the isomorphism (3.1).

Given the generalised structure bundle one can then define vector bundles associated to
any given representation of Fy(q) xRT. We refer to sections of such bundles as generalised
tensors.

3.2 The Dorfman derivative

The generalised tangent space admits a generalisation of the Lie derivative which ultimately
will encode the local bosonic symmetries of the supergravity. Given V =v+w+o+ 7 €
['(E), one can define an operator Ly, the Dorfman derivative, which combines the action of
an infinitesimal diffeomorphism generated by v and A- and A-field gauge transformations
generated by w and o. In components, acting on V' € I'(E), it is given by

LyV' =L + (Low — iydw) + (Lyo' — iydo — ' A dw) 37
+ (EUT/ —jo' ANdw — jw' A da) , '

where L, is the conventional Lie derivative. It can also be written in an Ej;g) xRT form,
using coordinate indices M, as

Ly V™M = VNN V™M (9 x0q V)M NV, (3.8)

where the action of the partial derivative operator has been embedded into the dual gen-
eralised tangent space via the map T*M — E* so that

Om for M =m
om=1< " (3.9)
0  otherwise
and X,q is the projection to the adjoint representation of Ey4) xRt
Xod: B*®@F — ad F, (3.10)

as defined in (D.9). By taking the appropriate adjoint action on the given Ey4) xRT rep-
resentation, the Dorfman derivative can be naturally extended to an arbitrary generalised
tensor.

3.3 Generalised E;y) xRT connections and torsion

Generalised connections are first-order linear differential operators D, analogues of conven-
tional connections on T'M, which can be written in the form, given W = W4E, € I'(E)
in frame indices

DMWA = 8MWA + QMABWB, (3.11)



E4(q) group torsion rep.

E7(7) 912 1 +56_1

Eﬁ(@) 351/_1 +27_4

E5(5) ~ Spin(5,5) 144¢; +16°,

By ~SL(5,R) 40 41 +15" ; +10_4

Table 2. Generalised torsion representations.

where  is a section of E* (denoted by the M index) taking values in ad F' (denoted by
the A and B frame indices), and as such, the action of D then extends naturally to any
generalised Ey(q) xRT tensor. Note that unlike a conventional connection, the index M
runs over the whole of E* and so one can take the derivative not only in a vector direction
but also along two-forms, five-forms and so on.

Let a be a generalised tensor and Lea be its Dorfman derivative (3.8) with J replaced
by D. The generalised torsion of the generalised connection D can be defined as a linear
map T : T'(E) — I'(ad(F)) given by

T(V)-a=Lba— Lya, (3.12)

for any V € I'(F) and where T'(V') acts via the adjoint representation on «. Remarkably
one finds that the torsion is an element of only particular irreducible representations of
E* @ ad F as listed in table 2. As discussed in [12], these are exactly the representations
that appear in the embedding tensor formulation of gauged supergravities [50, 51], including
gaugings [52] of the so-called “trombone” symmetry [53].

We can construct a simple example of a generalised connection with torsion as follows.
Let V be a conventional torsion-free connection. Given a conformal split frame, it can be
lifted to a generalised connection acting on E by taking

~ 1 .
for M =m

DY,V = (3.13)

1 . 1 K
+ g(vaal...%)EdL..% + ﬁ(vaa,al...M)Ea’alma?

0 otherwise

By construction DV depends on a choice of A, A and A used to define the frame as well
of V. The generalised torsion of DV is then given by

T(V)=e?(—ipdA +v®@dA —i,F + dA Aw — i, F +w A F +dA A o), (3.14)
using the notation of (D.2). For other examples of generalised connections, with and
without torsion, see also [33, 35].

3.4 Generalised G structures

In what follows we will be interested in further refinements of the generalised frame bundle
F. We define a generalised G structure P as a G C Eia) xR™ principle sub-bundle of the
generalised structure bundle F, that is

P C F with fibre G. (3.15)
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E4(q) group Hy group E~FE* adPt=ad F/ ad P
Eq(7y SU(R) 28 +28 35+35+1

E6(6) USp(S) 27 42 +1

FEs(5y ~ Spin(5,5)  Spin(5) x Spin(5) (4,4) (5,5)+(1,1)

E4(4) ~ SL(5, R) Spm(5) 10 14 +1

Table 3. Double covers of the maximal compact subgroups of E4(4) and Hy representations of the
generalised tangent spaces and coset bundles.

It picks out a special subset of frames that are related by G transformations. Typically
one can also define P by giving a set of nowhere vanishing generalised tensors {K (a)},
invariant under the action of G. By definition, the invariant tensors parametrise, at each
point © € M, an element of the coset

Ed d XR+
(K}, € % (3.16)

A generalised connection D is said to be compatible with the G structure P if it preserves
all the invariant tensors

DKy =0 (3.17)

or, equivalently, if the derivative acts only in the G sub-bundle P.

A special class of generalised G structures are those characterised by the maximal
compact subgroup Hy of Ey(4). In the next section we shall see how the extra data present
in an Hy structure allows one to naturally describe eleven-dimensional supergravity.

4 Supergravity as H; generalised gravity

We now turn to the main result of this paper. We give a complete rewriting in the lan-
guage of generalised geometry of the restricted eleven-dimensional supergravity, to lead-
ing order in fermions. This will result in a unified formulation which has the larger
bosonic symmetries of the theory manifest. Specifically, the local symmetry of the the-
ory is Spin(10 —d, 1) x H, where H, is the double-cover of the maximal compact subgroup
of Ey(q)-

4.1 Supergravity degrees of freedom and H; structures
4.1.1 Bosons

As discussed in [12], the bosonic supergravity fields define a generalised H, structure P,
where Hgy is the maximally compact subgroup of Ej4y. These, or rather their double
covers? Hy, are listed in table 3.

An Hy structure on F is the direct analogy of a metric structure, where one considers
the set of orthonormal frames related by O(d) transformations. The choice of such a

2Since the underlying manifold M is assumed to possess a spin structure, we are free to promote to the
double cover.

— 11 —



structure is parametrised, at each point on the manifold, by a Riemannian metric g, a
three-form A and a six-form A gauge fields, and a scalar A, that is

Ed(d) XRJF

{9,A, A, A} € 1,

(4.1)
These are precisely the set of bosonic fields in the restricted theory. The corresponding
coset representations are listed in table 3.

One can construct elements of the structure bundle P C F concretely, that is, identify
the analogues of “orthonormal” frames, as follows. It is always possible to choose an Hy
frame in a conformal split form (3.4), where now one takes é, to be an orthonormal basis
of TM for the metric g. Any other frame is then related by an Hy transformation. (The
action of H; on the generalised tangent space is given explicitly in (D.4) and (E.3).)

As in the Riemannian case, one can also also construct a generalised metric, which is
invariant under a change of H; frame. Given V = VAE, € ['(E), expanded in an Hy basis,

one defines 1 1 1
GV, V)=v*+ —w? + —0o? + =72, (4.2)
2! 5! 7!
2 _ a 2 ab 2 _ ai...as 2 _ a,aq...ay : :
where v° = v,0%, W = wWupwW®, 0° = 04,..450 y TX = Taai..arT , and indices

are contracted using the flat frame metric d,5. (Note that G allows us to identify E ~
E*.) Tt is easy to show, given the transformation (D.4), that this is an Hy invariant,
independent of the choice of H; frame. Thus it can be evaluated in the conformal split
representative (3.4) and one sees explicitly that the metric is defined by the fields g, A, A
and A that determine the coset element. Explicit expressions for the generalised metric in
terms of the supergravity fields in the coordinate frame have been worked out, for example,
in [30-32]. The fact that there is always a singlet present in the coset representations, as
can be seen from table 3, implies that there is always a density that is Hy (and Eyg))
invariant, corresponding to the choice of Rt factor and which we denote as |volg|. In a
coordinate frame it is given by?

volg| = /ge®=DA, (4.3)

As described in [12, 54], the infinitesimal bosonic symmetry transformation is naturally
encoded as the Dorfman derivative by V € I'(E)

5y G = Ly G, (4.4)

and the algebra of these transformations is given by [Ly, Ly]| = Lr,v = —Lryu = Ly
where the Courant bracket [U, V] is the antisymmetrisation of the Dorfman derivative.

4.1.2 Fermions

The fermionic degrees of freedom form spinor representations of Hy, the double cover?

of Hy [18, 19, 55]. Let S and J denote the bundles associated to the representations of

3In general, |volg| can be related to the determinant of the metric by det G = |volg|™ 4™ £/~

4Note that, as discussed in appendix B.1, H, can be defined abstractly for all d < 8 as the subgroup of
Cliff (d; R) preserving a particular involution of the algebra.
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ﬁfd S J
SU(8) 818 56 + 56
USp(8) 8 48
Spin(5) x Spin(5) (4,1)+(1,4) (4,5) + (5,4)
Spin(5) 4 16

Table 4. Spinor and gravitino representations in each dimension.

d S S+ J- J+

7 (2,8) +(2,8) (2,8) +(2,8) (2,56) + (2,56) (2,56) + (2,56)
6 (4,8) (4,8) (4,48) (4,48)

5 (4,4,1)+(4,1,4) (4,1,4)+ (4,4,1) (4,4,5)+ (4,5,4) (4,5,4)+ (4,4,5)
4 (8,4) (8,4) (8,16) (8,16)

Table 5. Spinor and gravitino as Spin(10 — d, 1) x H, representations. Note that when d is even
the positive and negative representations are actually equivalent.

H, listed in table 4. The fermion fields ¢, p and the supersymmetry parameter e of the
restricted theory are sections

Y e(J), p e (9), e € I'(9). (4.5)

However, the restricted fermions also transform as spinors of the flat R10~%!

space.
As discussed in section 2, the simplest formulation is to view them as eleven-dimensional
spinors and use the embedding Spin(10 — d,1) x H, C Cliff (10, 1; R) described in ap-
pendix E.3°. This will allow us to write expressions directly comparable to the ones in
section 2. There is a complication, in that there are actually two distinct ways of realising
the action of Hy on the Cliff(10,1;R) spinor bundle S, related by a change of sign of the

gamma matrices. Given xy* € I'(S) and N € I'(ad P) we have the two actions

1 /1
N . )A(:t o 5 <2‘nab1—\ab 4 *ba crabc o balm%rm---aﬁ) Xi_ (4.6)

If one denotes as ST the bundle of spinors transforming under the two actions, one finds,
for even d, that the two representations are equivalent, and S ~ St ~ §~. However for
odd d they are distinct and the spinor bundle decomposes S ~ §t@S~. The same applies
to spin—% bundles J*. The Spin(10 — d, 1) x Hy representations of the corresponding four
bundles listed in table 5 (see also [56]).

5The alternative is to decompose the eleven-dimensional spinors which necessarily leads to dimension
dependent expressions, as can be seen from appendix C. That approach is therefore better suited for
the explicit constructions we will be examining in the next section. For now we maintain the discussion
completely general.
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Finally, we find that the supergravity fields of section 2 can be identified as follows,
& = e—A/Q gsugra o F(S_),

ﬁ+ _ eA/Q psugra e F(Sv+)’ (47)
J =My e (i),
Note that, due to the warping of the metric, the precise maps between the fermion fields as
viewed in the geometry and in the supergravity description involve a conformal rescaling.
This is of course purely conventional, since one could just as easily perform field redefini-
tions at the supergravity level. We chose, however, to maintain the conventions in section 2
as familiar as possible and make the identification at this point.

4.2 Supergravity operators

The differential operators and curvatures that appear in the supergravity equations will
be built out of generalised connections D which are simultaneously torsion-free and Hy
compatible, in analogy to the Levi-Civita connection. Recall that a generalised connection
is said to be compatible with the H,; structure if DG = 0 or, equivalently, if the derivative
acts only in the H; sub-bundle. We proved in [12] that there always exists such a torsion-
free, metric compatible connection but, unlike the Levi-Civita connection, it is not unique.

To see this, let V be the Levi-Civita connection for the metric ¢ and DV its lift to
an action on E as in (3.13). Since V is compatible with the O(d) C H, subgroup, it is
necessarily an Hy-compatible connection. However, DV is not torsion-free, as can be seen
from (3.14). To construct a torsion-free compatible connection one simply modifies DV. A

generic generalised connection D can always be written as
Dy W4 = DYWA + 5y AgWE. (4.8)
If D is compatible with the H; structure then
Y el(E*®adP), (4.9)

that is, it is a generalised covector taking values in the adjoint of Hy. In [12] we showed
that one can always find a suitable X such that the torsion of D vanishes, but the solution
is not unique. Contracting with V' € I'(E) so ¥(V') € I'(ad P) and using the basis for the
adjoint of H,; given in (E.2) and (E.3), one finds that in a conformal split frame

2(7—-4d 1 c 1 ~o e
E(V)ab = eA <(d_1)v[aab}A + Iwch dab + ﬂacl...C5F R Q(V)ab> s
S(V)ape = € ——JL——MAAM + L +Q(V) (4.10)
abc — (d — 1)(d — 2) abc 4 dabc abe | .

1 ~
E(V)al...ag = eA <7vaba1..4a6 + Q(V)a1...a6> 5

where ) € T'(E* ® ad P) is the undetermined part of the connection — it projects to zero
under the map to the torsion representations. Clearly, requiring metricity and vanishing
torsion is not enough to specify a single generalised connection.
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Although D is ambiguous, one can define projections of D which result in unique
operators. We identified four such maps in [12], and they turn out to be directly related
to the representations of the fermion fields. Since we are interested in comparing with
the supergravity expressions, we can take the embedding (E.12) and consider the natural
action of D on the Spin(10 — d, 1) x H, representations listed in table 5. Following the
notation of (E.17) we define the projected operators

ﬂ:gi—héq, lbiji%jﬁ (4.11)
N - R N A1
DA 58— JF, DY :Jt - §*.
We can check that they are indeed independent of @) by decomposing under Spin(d) C H,
and taking the torsion-free connection (4.10). Using the formulae for the projections given

n (E.18) and (E.19), and already applying the operators to the supersymmetry parameter
€7 in (4.7), we then find

Pé = b2 (W n 9;J($A) _ *F Iza) sugra,

(D A& )y =2 (v + @(Fabl“'b‘l — 85,01ty gy (4.12)

L1z by...b
o EaFabl---bGF 1 6)6sugra'
From derivatives of elements F(j +) we obtain the second set of unique operators which
using (E.20) and (E.21) as applied to ¢~ of (4.7), take the form

DY~ =e3A/? [va - IV, + (10 — d)9*A — T%9,A

10—-d
11 bibob 1 1 1 bi b
43|]‘Wblb2”3F BT TR
11 ~

- by...b sugra

. 11—-d 2 11—-d
( M—)@ = /2 {re (ve +— &A) 0’ + 5T (va + 28aA> (4.13)

1 11 1
<3+ >F5b 0—d By L

12 39—d 2

111 . oy 110-d 1 4 o
“3g_gaie et gyt e
11 1 11~

b b sugra
Fcl...C4F L C4+ FCL Ccq.. 651—‘01 CS:|’lzz)bg .

69 —d4l 45!

These four operators, all constructed from the same connection, will now enable us to
rewrite all the supergravity equations of section 2.2.
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4.3 Supergravity equations from generalised geometry
4.3.1 Supersymmetry algebra

Comparing with (2.21), we immediately see that the operators (4.11) give precisely the
supersymmetry variations of the two fermion fields

- =D AéE,
opt = Pé.

Since the bosons arrange themselves into the generalised metric, one expects that

(4.14)

their supersymmetry variations (2.22) are given by the variation of G. In fact, the most
convenient object to consider is G~'6G which is naturally a section of the bundle ad(P)*,
listed in table 3. One has the isomorphism (E.5)

ad(P)t ~R @ S*T*M @ A3T*M @ AST*M (4.15)

and we can identify the component variations of the generalised metric, as written in the

split frame, as
(G716G) = —20A,

(G716G) ap = Sgap
(G_l(SG)abc = _5Aabca
(G_l(SG)aL..aG — _5Aa1.‘.a6'

(4.16)

One finds that the supersymmetry variations of the bosons (2.22) can be written in the H,
covariant form
G106 = (0 X aqpré ) + (" X aapré), (4.17)

where x 4 p. denotes the projection to ad(P)* given in (E.15) and (E.16).

4.3.2 (Generalised curvatures and the equations of motion

To realise the fermionic equations of motion one uses the unique projections (4.11). We
can then formulate the two equations (2.19) and (2.20) as, respectively,

o 11—d
—Dy™ - D pt =0,
9—d (4.18)

—Ppt —D Y =0.

Note that p* is embedded with a different conformal factor to £~ and also is a section of
S+ rather than S~. This means we have

Dyt = —e38/2 <Y7 LU= d(@A) + lF - 112“> piue
2 47 4
1
(D A pt)g =322 [(va + 0,A) — @(Fablmb‘l — 85,01ty gy (4.19)

11~
o 126!Fab1...berb1mb6:| psugra
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From these we can find the generalised Ricci tensor R4p, following [12]. Recall that
the supersymmetric variation of the fermionic equations of motion vanishes up to the
bosonic equations of motion (4.18). Anticipating that the bosonic equations of motion will
correspond to Rap = 0, one way to define generalised Ricci tensor is via the variation
of (4.18) under (4.14). By construction this gives Rap as a section of ad P+ C E* @ E*,
the same space as variations of the generalised metric G, in complete analogy to the
conventional metric and Ricci tensor. Defining R4p as an ﬁd tensor we write

o 11-4d
~P(D AET) — 94
DY (DAET)+D(Pé™)=Ré,

DA (DPé)=RY- ¢,

(4.20)

for any é~ € F(S’*) and where R and R% p are the scalar and non-scalar parts of Rap
respectively. The action of R%B on £~ that appears of the right-hand side of (4.20) is
given explicitly in (E.11).

In components, using the notation of (E.5), we find

_ 28 o 2N o 11 .o 114
R=e [R 2(c—1)V*A —c(c —1)(04) 24!F 27!F

Ry = 2 [Rab — Vo VA — ¢(0,0)(9,A)

11 ) 1
- 51 <4Fa010203F6010205 - ggabF2>
! (4.21)
11 ~ ~ 2 ~
- 5% <7Fac1...06Fb61‘“66 - BgabF2> )

M
abc

1 -
Rope = §e2A * [e*CAd * (eCAF) —F A *F}

1 _
R, as = §e2A * [e_CAd * (eCAF)} ,

ai...ag
where ¢ = 11 — d. The generalised Ricci tensor is manifestly uniquely determined and
comparing with (2.17) we see that the bosonic equations of motion become simply

Rap = 0. (4.22)

The bosonic action (2.16) is given by the generalised curvature scalar, integrated with
the volume form (4.3)

1

Finally, the fermionic action can be written using the natural invariant pairings of the
terms in (4.18) with the fermionic fields. Using the expressions (E.14) and (E.13) for the
spinor bilinears, we find that (2.18) can be rewritten as

o= = [ Ivlal |~ (07907 - (67D 1 57)
N €2 (4.24)
LoD e by gy LD e phy
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5 Explicit H; constructions

In the previous section, we gave the generic construction of the supergravity in terms of
generalised geometry, valid in all d < 7. The theory has a local H, symmetry, however
this might not be not totally explicit since we used a Cliff(10,1;R) formulation for the
fermionic fields.

For completeness, we now demonstrate for two examples, in d = 4 and d = 7, how one
can write our expressions with indices which transform directly under the manifest local
Spin(5) and SU(8) symmetries of the previous section. Correspondingly, in this section we
treat the fermions slightly differently from the previous ones. Whereas before we kept all
spinors as Cliff (10, 1;R) objects, we now want to make their H,; nature more explicit. In
order to make this possible, one has to decompose the eleven-dimensional spinors follow-
ing the procedures outlined in appendix C and embed the Cliff(d;R) expressions into H,
representations, according to appendix E.1. We will then keep the external spinor indices
of the fermion fields hidden and treat them as sections of the genuine Hy bundles S and J.

5.1 d=4 and H, = Spin(5)
5.1.1 GL'(5,R) generalised geometry
In four dimensions, we have Ey4) x Rt ~ SL(5,R) x Rt ~ GL*(5,R
the generalised geometry explicitly in terms of indices ¢,j,k,--- = 1
under GL(5,R).

Generalised vectors V' transform in the antisymmetric 10 representation. We can in-

). We can then write
, .., D transforming

troduce a basis {E; } (locally a section of the generalised structure bundle F) transforming
under GL*(5,R) so that
1. .-
V=SV B (5.1)
In the conformal split frame (3.4), we can identify [15, 38|

Ea5 = eA (éa + 'iéaA) s

. 1 (5.2)
Eup = ieAeabchCda
where € is the numerical totally antisymmetric symbol. Equivalently
Va5 — @
1 (5.3)
Vab _ 56abcdwcd7
where v® and wgp, are as in (3.6). In this frame the partial derivative (3.9) 0; has the form
1
Oas = €204,
©o2n (5.4)
Oap = 0.

Note that there is also a generalised tensor bundle W which transforms in the fundamental
5 representation of GL1(5,R). One finds

W~ (det T*M)Y? @ (TM @ det TM), (5.5)
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and a choice of basis {E;;} defines a basis {F;} of W where K = K'E; € T'(W), such that
E;yy = E; N Ejyr, (5.6)

since E ~ A?W, and where we use the four-dimensional isomorphism det 7*M @ A>T M ~
A*T*M.

With this notation we can then use the GL*(5,R) adjoint action explicitly to write
the Dorfman derivative (3.8) of a generalised vector. It takes its simplest form in the
coordinate frame (3.2), where it reads

Iy W = V¥ oW+ 4 (a0 V) WY+ (VM)W (5)

This form of the d = 4 Dorfman derivative was given, without the R action, in [38].5 We
can then write a generic generalised connection as

Dy V31" = 9,5 V37" 4 VR 4 Q" VIE (5.8)
where the j and k indices of Q;;7), parametrise an element of the adjoint of GL™ (5, R).

5.1.2 Spin(5) structures and supergravity

In four dimensions Hy ~ SO(5) and we define the sub-bundle P C F of SO(5) frames as
the set of frames where the generalised metric (4.2) can be written as

1 il 7]
G(V, W) = 500y VW, (5.9)

where 0;; is the flat SO(5) metric with which we can raise and lower indices frame indices.
Equivalently we can think of the generalised metric as defining orthonormal frames on the
5-representation bundle W.

Upon decomposing the fermionic fields of the supergravity according to C.1, one finds
that they embed into the spinor and traceless vector-spinor representations of Spin(5). Our
conventions regarding Cliff (4; R) and Cliff (5; R) algebras are given in appendix B.2.2 and
we leave Spin(5) spinor indices implicit throughout. We define

£ = o B/2gsugra e I'(S),
p= eA/2,Y(4)psugra e F(S),
(5.10)
J— {eA/27(4) (5ba - %’YQVb) wzugra fori=a e F(J)
‘ —%eAﬂvawZugra fori=5

Crucially, note the appearance of conformal factors in the definitions, in similar fashion
to (4.7). Recall also that in four dimensions we have S ~ ST ~ S~ where the action by
7@ in the second line of (5.10) realises the second isomorphism.

For the antisymmetrisation of Ly W (which is simply the Courant bracket for two-forms [2]) in SL(5, R)
indices see also [57, 58].
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A generalised connection is compatible with the generalised metric (5.9) if DG = 0.
In terms of the connection (5.8) in frame indices this implies

where indices are lowered using the SO(5) metric d;;. For such SO(5)-connections, we can
define the generalised spinor derivative, given x € T'(S)

1 it

An example of such a generalised connection is the one (3.13) defined by the Levi-Civita
connection V, where, acting on x € I'(S), we have

(5.13)

1

DY {%eA (8a + %wabc@bc) x ifi=aandi =5
X =

"’ 0 fi=agandi' =b

where wg e is the usual spin-connection.
We can construct a torsion-free compatible connection D, by shifting DV by an addi-

tional connection piece Xj;;;;, such that its action on x € I'(S) is given by

33’
v 1 i
Djix = Dii’X + ZEii/jj/v X- (514)

The connection is torsion-free if

1

where Q55+ is the undetermined part — traceless and symmetric under exchange of pairs
of indices, so it transforms in the 35 of SO(5), see [12] — and

Ea5 = —25(1 = —26A(9aA,

L A
Eab = ﬁe Fdaba (516)
7
255 = —EGAF7

with F' = §e®F,;.;. The projections (4.11) can be written in Spin(5) indices as
De = =4 Dyje,
v 1.
(DAe)i=2 (7317@'5 - 5%7” Djj’5> ;

. (5.17)

Al 12 ; ~ 4 ;!
(DY)i = =3 Djjrabi + EDiﬂZ}J —F 7 Djjr?
5 A
DY ¢ = —g ZDij¢].

and are unique, independent of Qii/jj"
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The supersymmetry variations of the fermions (4.14) can then be written in a mani-

festly Spin(5) covariant form

v 1. .
Sy = (D Ae)y =2 <7ﬂ D;je — 5%7” Djj'€> ,

(5.18)
3p = De = =3 Djje,
whereas the variation of the bosons (4.17) is given by
1
with 1
5Hij = —25’3/(1‘1%-) — *51']'5_[). (5.20)

5
Turning to the equations of motion, from (4.18), we find that the fermionic equations
take the form

14 (., 1, . il 12 8, v
5 (’}/]Dijp — g’}/l"}/” Djj/p) — 477 Djj/lf)i + EDZ']'@Z)] 5 i]Djj/@ZJ] =0,
(5.21)

" 5 . .
¥ Dijp + 37 Digp? = 0.

The generalised Ricci tensor (4.20), after some rearrangement and gamma matrix algebra,
can be written as

v 4 . i 56 . .
RYAe = = [Diky Djki| e — 24 [Dyj, Dy e — %%‘]k {Djh Dkl} €
16A'k;l 8A
= =3 DDy + 247 Dy gy Dy e (5.22)
5 5 i 5 s
ﬁRE = gfy” 27 Dii’Djj’E — g’)/z‘] [Dzk;, D]k]E

Note that in this form one can clearly see that the curvatures cannot be obtained simply
from the commutator of two generalised covariant derivatives. Instead, one must con-
sider additional terms resulting from a specific symmetric projection of the connections, as
observed in section 3.3 of [12].

The bosonic action (4.23) is

1
S5= 53 / volg| R. (5.23)

While the fermionic action (4.24) can be written as

1 . » 12 .8
Sr = — / [volg| (- (G <—’ijDjk¢z‘ + =Dy’ — 5%JDjk1/)k>
14, 1
- E@bz('YJDijp - 5%’7” Djjip) (5.24)
14, 42
= 5 PV D) — 5 (P7 DijP))v
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where we use the Spin(5) covariant spinor conjugate (see appendix A). It is also important
to note that there are two sets of suppressed indices on the spinors in this expression. These
are the SU(2) indices for the five-dimensional symplectic Majorana spinors and the external
Spin(6, 1) indices, which must be summed over. For full details of the spinor conventions
used, see appendices B.2.2 and C.1.

We have now rewritten all of the supergravity equations with manifest Spin(5) sym-
metry following the prescription of section 4.3.

5.2 d=7and H; =SU(8)
5.2.1  Eyq xRT generalised geometry

We follow the standard approach [18] of describing FEr(7) in terms of its SL(8,R) sub-
group, following the notation of [16]7. We denote indices transforming under SL(8,R) by
i k,o=1,...,8

Generalised vectors transform in the 56 representation of Er(7), which under SL(8,R)
decomposes into the sum 28 + 28’ of bivectors and two-forms. We can introduce a basis
{Eii/, E”/} transforming under FEr(7y and write a generalised vector as

Vi B (5.25)

In the conformal split frame (3.4), we can identify

1
VaS _ va’ Vab _ geabcl...C5O_Clmc57
, ‘ (5.26)
X 7 by...b 7
Vas = o€ Ta by brs Vab = Wap,

7!

where v, wgy, etc. are as in (3.6), with the obvious corresponding identification of E,s etc.
The partial derivative 0, is lifted into E*, with a conformal factor due to the form of the
conformal split frame, as

L

2eAaa, D =0, " =0. (5.27)

8&8

In this notation, the Dorfman derivative (3.8), the antisymmetrisation of which is the
“exceptional Courant bracket” of [16], can then be written in the coordinate frame (3.2) as

(Ly W)™ = V379, Wi awilig, vl
» 0 e -
+ Wn 8]‘]‘/‘/” . Zeu 77 kKl Wjj’akk’vzlﬁ (528)
(LyW)isr = V7 035 Wiy — AW1,0),0 VI — 6W9 )35 Vi,

where €18 is the totally antisymmetric symbol preserved by SL(8,R).

"Note however that when it comes to spinors, here we take instead 'ym = —i, the opposite choice to
that in [16], and we also use a different normalisation of our SU(8) indices.
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A generic Er7) xR generalised connection D = (Djy, D) acting on V € T'(E) takes
the form » ., , , L gt~
Dy V37 = 0, V7 + Qiifjkvk] + QWJ kVJk + *Qii’” kk Vi,

y y kO kT k!
DiirVijr = 03irVijr = Qiar™ i Vijr = Qg™ o Vik + Qi jrerr Vs

5.29
DUV = G VIS T YR QT Ik g s QU TTRR o

Aiil'tr &'t ik - ik T ~ii! kk'
D ‘/]J, =0 V’]], —Q jvkj’ —-Q 3 ik +Q jj’kk/v )
i3l k! RN ’ .. RS R N
where *Qii,” kh — ieﬂ kEWmm Q) me and similarly for Q% 37°FF

5.2.2 SU(8) structures and supergravity

In seven dimensions H; = SU(8)/Zy and the common subgroup of H; and the SL(8,R)
subgroup that we used to define Ey(7) is SO(8). We define the sub-bundle P C F of
SU(8)/Zy frames as the set of frames where the generalised metric (4.2) can be written as

1 oy e~
GV, W)= 5((51']‘51'/]'/‘/“ W2+ 64647 Vu‘/Wjj/), (5.30)

where 0;; is the flat SO(8) metric. To write sections of E with manifest SU(8) indices
a,B,7,...=1,...,8 one uses the SO(8) gamma matrices

Vo = i3 (V1 4179),

. o , (5.31)
Vg = =1(77)ap (Vij — Vi)

where, 4% are defined in (B.21) and, when restricted to the Spin(8) subgroup «,f, ...
indices are raised and lowered using the intertwiner C' (see appendix B.2).

The eleven-dimensional supergravity fermion fields can be decomposed into complex
seven-dimensional spinors following the discussion in C.4. Using the embedding Spin(7) C
Spin(8) C SU(8), discussed in detail in appendix B.2.3, they can be identified as SU(8)
representations as follows. For the spinors we simply have

e — e—A/2(Esugra)o¢ e F(S_),

) (5.32)
I ieA/QCaIB(,Y(?)psugra),B c F(SJr)

Note the need to include the conformal factors in the definitions and also that, though we
write p since it is embedded into the 8 representation of SU(8), p,, is defined in terms of the

sugta - The 8 and 8 representations are simply the fundamental and anti-

un-conjugated p
fundamental so are related by conjugation so that &, = (¢°)*A ja» Using the SU(8)-invariant
intertwiner A (see appendix B.2).

For the 56-dimensional vector-spinor we proceed in two steps, first embedding into

Spin(8) by writing

Spin 1 1 sugra
¢a§) ® = ZGA/2 <(5ba + 27(17[)) ¢b & )
(5.33)

Spin 1 c 1 c sugra
5P (8) _ _ieA/Q,YW) <V[a6b] = g abY ) oo
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and then into SU(8) as

1 i in —
a5 8 (PPl e (). (5.34)

afy _
v 3

A generalised connection is compatible with the generalised metric (5.30) if DG = 0.
For such connections, we can define the generalised spinor derivative via the adjoint action
of SU(8) given in [16]. Acting on x € I'(S™) we have
L <id’ Frka
Diirx = Oiirx + ZQii’jj”Y X — *Isz'kl kYN
1 (5.35)
Dyirx = Ogrx + ZQz’z’/jj@” X — IQu’kl ARy
where we have used the SO(8) metric d;; to lower indices. An example of such a generalised
connection is the one (3.13) defined by the Levi-Civita connection V

%eA 4wab07 ) x ifi=aandi =8
0 ifi=aandi =b (5.36)
0.

'L'L’X

where wgpe is the usual spin-connection.
We can construct a torsion-free compatible connection D, by shifting DV by an addi-
tional connection piece X, such that its action on x € I'(S™) is given by

1 ~
Djix = D“/X + 42” J]"Y X — @12“%1 k4,7k1...k4x’
1~ (5.37)
Dm/X D Xt 42” j]/’y X — 781211%1 k4ﬁ’k1 k’4X
where, in the conformal split frame,
1
E“/]]/ = 7§GA6 K / + ZeAF(SZ](sz ] eA(sZ]aZ/]/A + Qii,jj,’
3 1 A 1 A ~
Zii/jj/ = ge KZZ’]]’ — 6e Kj]’u’ + Qii’jj’; (538)

11 .16 Qzl 169

11 .16 Qll Ji6

In this expression primed and unprimed indices are antisymmetrised implicitly, (@, Q) are
the undetermined components®, F' = 71 ar-arfr . and

Kiirjjr = ;

{(*F)abc for (i, 4,5') = (a,b,c,8)

0 otherwise
(5.39)

ij — .
0  otherwise

)

P {F for (i, ) = (8,8)

8These are sections of the 1280 + 1280 representations of SU(8), see [12].
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give the embedding of the supergravity fluxes. The connection can be rewritten in SU(8)
indices through
D =i(3")*%(Dij +1Dy;),
Dog = —i(%i)ap (D" —1iD").
With these definitions, we can now give the explicit form of the unique operators (4.11)
in SU(8) indices

(5.40)

(D & £)*P7 = plef,

(DE)Q — _Daﬁgﬁv

1

(5.41)
(D) apy = ~ g €aB85'010205

86" 1,01020
D09 010205

« 1~ @
(DY $)* = 5 D™,

where €4, a4 15 the totally antisymmetric symbol preserved by SU(8).

From the first two we can immediately read off the supersymmetry variations of the
fermions (4.14)

5epoB7 = plaB . 0pa = —Dage®, (5.42)

while the variations of the bosons (4.17) can be packaged as

(6Gass 8Gag®\ 1 (6Hass O
"= <5G°‘B~,5 5650 | = Tvolgl \ 0 gpese | ~ Gapdloglvolel - (5.43)

with

3 1 1l ST -

(5.44)
dlog [volg| = pac® + p*Eq
The fermion equations of motion (4.18) are
1 8§67 019293 B -
— g 810501050, D7 ¥ +2Djapp,) =0, 555
5.45
1=
Daﬁpﬁ n §D57¢a57 =U.

As before, the curvatures can be obtained by taking the supersymmetry variations of the
fermion equations of motion and after some algebra one obtains the expressions

— — 1 / / — —
Rgéﬁwﬁd =2 <D[a5D75] + E 60657566/99/D66 D90 > 66 - [D[QB7D7]5] 86,
1 a ay 15a Y6 T 8
gl =5 (D™, Dy} = 00%{D", Dys} | (5.46)

W= wWiN

1 i 1 ]
<[DCW, Dg,] = 58%5[D™, D75]> e — < [D7. Dy, | e

— 25 —



The vanishing of these then corresponds to the bosonic equations of motion (4.22). As
for d = 4, we again observe that the curvatures contain terms symmetric in the two
connections, in the representations identified in [12].

The bosonic action (4.23) takes the form

1

while the fermion action (4.24) is

3 1 /
S = 2K2 / [volg| <@6a1a2a355”71’v273walwagDﬁ’B P ( )
' 5.48

+ ﬁabﬁvwaﬁfy - ¢a57DaﬂﬁV - 2/304Daﬁpﬁ + CC)‘

This completes the rewriting of the seven-dimensional theory with explicit local SU(8)

symmetry following from the natural generalised geometry construction of section 4.3.

6 Conclusions and discussion

As promised at the end of [12] we have provided a reformulation of eleven-dimensional su-
pergravity, including the fermions to leading order, such that its larger bosonic symmetries
are manifest. This was accomplished by writing down an analogue of Einstein gravity for
Eya) xRT generalised geometry, the fermion fields embedding directly into representations
of the local symmetry group H;. To summarise, the supergravity is described by a simple
set of equations which are manifestly diffeomorphism, gauge and H,-covariant

Equations of Motion Supersymmetry
11—-4d
D +—-DAp= O, 0 =D A g,
g P v (6.1)
DY+ Dp=0, o0 = De.
Rap =0, 0G = (¥ Xaapt &) + (p Xaapr €).

This reinforces the conclusion of [1] that generalised geometry is a natural framework with
which to formulate supergravity.

It is important to note that these equations are equally applicable to the reformulation
of ten-dimensional type IIA or IIB supergravity restricted to warped products of Minkowski
space and a d — 1-dimensional manifold, where all the bosonic degrees (NSNS and RR)
are unified into the generalised metric G. Matching to the familiar forms of the type II
supergravity requires identifying the appropriate GL(d — 1,R) and Spin(d — 1) subgroups
of Eyg) and H, respectively.? Alternatively by identifying the appropriate O(d—-1,d-1)
subgroup one can decompose to match to the O(d —1,d — 1) x RT generalised geometrical
description of [1].

?Some of the details are given in appendix B of [12].
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A surprising outcome of our work is the observation that, despite the fact that the
geometric construction is entirely bosonic, supersymmetry is deeply integrated in the for-
malism — torsion-free, metric-compatible connections describe the variation of the fermions
and the equations of motion of the fermions close under supersymmetry on the bosonic
generalised curvatures. This relation between generalised geometry and supersymmetry is
clearly something that warrants further exploration. One might try to formulate other su-
pergravities, such as six-dimensional N = (1,0), which should provide further evidence of
this connection. It is of course also interesting to see how one might extend the generalised
geometry to make supersymmetry manifest.

One problem that generalised geometry is particularly well suited to tackle is that of
describing generic supersymmetric vacua with flux [33, 35, 40]. It turns out that the Killing
spinor equations can be shown to be equivalent to integrability conditions on the generalised
connection D. One then expects that its special holonomy G C Hy can be used to classify
flux backgrounds. The language we developed in section 5.2 will be especially useful for
studying compactifications of eleven-dimensional supergravity down to four-dimensional
spacetime, something we will elaborate on in upcoming work.
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A Conventions in d dimensions

A.1 Tensor notation

We use the indices m,n, p, ... as the coordinate indices and a, b, c. .. for the tangent space
indices. We take symmetrisation of indices with weight one. Given a polyvector w € APT M
and a form \ € AYT* M, we write in components

L oim, O 0
-] p@xml D

p:

X (A.1)
A= =X medx™ Ao Ada™e,

q! !
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so that wedge products and contractions are given by

/
(w A w’)ml"'mp-‘w/ — Mw[ml"'mpump+l"'mp+pl}
I/ 3
pp:
q+4q)!
(AAX) _ (g+d)! "
mi..m, ., s 11 [m1..mgPmpq..m ]
a+q 1q.q ! q+q (AQ)
(U) - A)al...aq,p = qum%)‘q...cpal...aq_p if p S q,
1
(w . A)al...ap—q = awou..‘ap,qcl...cq)\Clmcq lfp > q.

Given the tensors t € TM @ ATTM, 7 € T*M ® A"T*M and o € TM ® T*M with
components

T = %Tm,mlmm7dl‘m ®@dx™ A--- Ada™e, (A.3)
a= amnam—m ® dz",
we also use the “j-notation” from [12, 16], defining
. T
(w A )17 = 1)?(!8 - p)!wa[al...ap,lw/ap.,.aﬂ’ (A4)
(GA N )\I)a,a1...a7 = (q_l)?ég_q)!/\a[al...aql ;q...aﬂ’
(w5 Ny = (p_l S N1
(Gt 5376 1= ot Ty .

7!

A.2 Metrics, connections and curvatures

The d-dimensional metric g is always positive definite. We define the orientation, € 4 =

el~4 = 41, and use the conventions

1
/ ni..n
*)\ml---md—q q' ‘g‘eml...md_knl...nq)‘ 4

A= >\m1...mq)\mlmmq .

(A.5)
Let Vv = 0,,v" + wp,"pv? be a general connection on T'M. The torsion T' € NTM ®

A?T*M) of V is defined by
T(v,w) = Vyw — Vv — [v,w]. (A.6)
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or concretely, in coordinate indices,
Ty =wnp —wp' s, (A7)
while, in a general basis where v = v%¢, and V,,v% = 0,,v* + wm®v?, one has
T% = wpc — wep + [éba éc]a . (AS)

The curvature of a connection V is given by the Riemann tensor R € I'(A’T*M @ TM ®
T*M), defined by R(u,v)w = [Vy, Vy]Jw — V|, ,jw, or in components

Ronnl 0t = [V, Vn]Jw? — T,V w?. (A.9)
The Ricci tensor is the trace of the Riemann curvature

Rinn = Rypm - (A.10)
Given a metric g the Ricci scalar for a metric-compatible connection is defined by

R =9""Rmn. (A.11)
The Levi-Civita connection is the unique connection that is both torsion free (7' = 0) and
metric-compatible (Vg = 0).

B Clifford algebras and spinors

B.1 Clifford algebras, involutions and H,
The real Clifford algebras Cliff(p, ¢; R) are generated by gamma matrices satisfying

{y" A" =29, YT = At ], (B.1)

where ¢ is a d-dimensional metric of signature (p, q). Here we will be primarily interested
in Cliff(d; R) = Cliff(d, 0; R) and Cliff(d — 1,1;R). The top gamma matrix is defined as

1 ey Oyt 4t for Cliff(d — 1, 1;R)

V(d) = aﬁml...md'Y Lotitd — 1 d . 5 <B2)
: vy for Cliff (d; R)

and one has [’y(d),’ym] =0 if d is odd, while {7 4™} = 0 if d is even, and

(42 = 1 ifp—g=0,1 (mod4) (B.3)
-1 ifp—qg=2,3 (mod4)
We also use Dirac slash notation with weight one so that for w € T'(AT* M)
1 mi...mp

The real Clifford algebras are isomorphic to matrix algebras over R, C or the quater-
nions H. These are listed in table 6. Note that in odd dimensions the pair {1, ’y(d)} generate
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—¢q (mod 8) Cliff(p, ¢; R)
, 2 GL(2%2 R)
GL(2l%2 R) @ GL(2[%2 R)
GL(2W2 C)
(
(

GL(2%/%1 ]HI)
GL(2l/2-1 H) @ GL(2%/2~1 )

T o ORS
SN

Table 6. Real Clifford algebras.

the centre of the algebra, which is isomorphic to R&R if p—g =1 (mod 4) and C if p—q = 3

(mod 4). In the first case Cliff(p, ¢;R) splits into two pieces with (9 eigenvalues of +1.

In the second case 'y(d) plays the role of i under the isomorphism with GL(2[d/ 2 C).
There are three involutions of the algebra given by

,yml...mk N (_)k,yml...mk7
~ Mk ,ymk...m17 <B5)

,}/ml...mk — (_)k,)/mkml,

mi..

usually called “reflection”, “reversal” and “Clifford conjugation”. The first is an automor-
phism of the algebra, the other two are anti-automorphisms. The reflection involution gives
a grading of Cliff(p, ¢; R) = Cliff ¥ (p, ¢; R) @ Cliff ~ (p, ¢; R) into odd and even powers of ™.
The group Spin(p, ) lies in Cliff " (p, ¢; R).

The involutions can be used to define other subgroups of the Clifford algebra. In
particular one has

Hyy = {g € Cliff(p,¢; R) : g'g = 1} (B.6)

g' is the image of g under the reversal involution. For the corresponding Lie algebra we
require a’ + a = 0, and so the algebra is generated by elements in the negative eigenspace
of the involution. For d < 8, this is the set {"", y™"P M6 ~m1.-M71  We gee that the
maximally compact subgroups Hy C E4(q) are given by

Hy = Hyp (B.7)
for the Cliff(d;R) algebras!®

B.2 Representations of Cliff(p,¢;R) and intertwiners

It is usual to consider irreducible complex representations of the gamma matrices acting
on spinors. When d is even there is only one such representation. There are then three
intertwiners realising the involutions discussed above, namely,

Y)Y Vg = 7™
et = (Y, (B.3)

C«,ymévfl _ _(,}/m)T7

ONote that Hr g is strictly U(8). Dropping the v generator one gets H; = SU(8).
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where C' = C~y(@. There are four further intertwiners, not all independent, giving

Aym AT = (v Dy"D™ = (™),

(B.9)
AymAT = —(y"T Dy"DT = ()"
By construction we see that H, is the group preserving C'.

When d is odd there are two inequivalent irreducible representations with either ’y(d) =
+1 when p — ¢ =1 (mod 4) or ¥ = 4i when p — ¢ = 3 (mod 4). Since here 4% is odd
under the reflection, this involution exchanges the two representations. Thus only half of
the possible intertwiners exist on each. One has

Cymet = (™7, ifd=1 (mod 4), (B.10)
CAmC—t = —(y™7T, ifd=3 (mod 4). ‘
while
AymATL = ()T, if p is odd,
Aym AT = — (™)1, if p is even,
") (B.11)
Dy™D™ = (4™)*, if p—qg=1 (mod 4),
Dy D = — (4™, ifp—g¢g=3 (mod 4).

Note that under reversal (y(®)t = (=)4@=1/2~(d) 5o when d = 3 (mod 4) the involu-
tion exchanges representations and we have no C' intertwiner. In particular for Cliff(d;R)
it maps ’y(d) =1ito 'y(d) = —i. However, this map can also be realised on each representa-
tion separately by the adjoint Ay A~ = (y™)!. Hence for d = 3 (mod 4) we can instead
define Hy as the group preserving A.

The conjugate intertwiners allow us to define Majorana and symplectic Majorana rep-
resentations when there is an isomorphism to real and quaternionic matrix algebras re-
spectively. Thus when p — ¢ = 0,1,2 (mod 8) one has DD* = 1 and can define a reality
condition on the spinors

Y= (DY) (B.12)
When p — ¢ = 4,5,6 (mod 8) one has DD* = —1 one can define a symplectic reality
condition. Introducing a pair of SU(2) indices A, B,... = 1,2 on the spinors with the

convention for raising and lowering these indices

XA :eABXB, XA :eABXB, (B.13)

the symplectic Majorana condition is
nt = AP (DnP)*. (B.14)

Note that for p — ¢ = 0,6,7 (mod 8) and p — ¢ = 2,3,4 (mod 8) one can also define
analogous Majorana and symplectic Majorana conditions respectively using D.
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B.2.1 Cliff(10, 1; R)

For Cliff(10, 1;R) ~ GL(32,R) & GL(32,R), following the conventions of [48] we take the
representation with

r) —ropt o= 1, (B.15)
The D intertwiner defines Majorana spinors, while C = —C7 defines the conjugate
e = (De)", g=¢TC. (B.16)
such that
M1 Mgz — (_1)[(k+1)/2]ng1-~-Mk. (B.17)

B.2.2 Cliff(4;R) and Spin(5)

For Cliff (4;R) ~ GL(2,H), D*D = —1 and we can use this to introduce symplectic Majo-
rana spinors, while we use C' to define the conjugate spinor

x* = B (DxP)r, x4 =eas(X?)TC (B.18)

The other intertwiner C' = C~® provides a symplectic inner product on spinors, which
is preserved by {7y, 4™} ie. the Hy = Spin(5) algebra. The Spin(5) gamma matrix
algebra can be realised explicitly by setting

. ¢ i=a
3 = {7(4) Y (B.19)
ol 1=25
and identifying 4" = —m4~, ~(*4)  The same gamma matrices give a representation of
ymg 7y Vg

Cliff (5; R) (with v®) = +1).

B.2.3 CIliff(7;R) and Spin(8)
For Cliff(7;R) we take the representation with v(*) = —i and define conjugate spinors

E=clA. (B.20)

This provides a hermitian inner product on spinors, which is preserved by H; = SU(8),
generated by {y™", ™ ~4mi-m61  The intertwiner C' = C7 is preserved by a Spin(8) C
SU(8) subgroup. The corresponding generators can be written as

~ t=a,)]=0b
79 =047y " i=a,j=8, (B.21)
AN i =8,5=0b

This representation has negative chirality in the sense that

;yil...is — _Eil---iS' (B22)
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We have the useful completeness relations, reflecting SO(8) triality,
N TN 5 T .
A9 0541570 = 160,35, A9 05 = 165},

where we have used C' to raise and lower spinor indices, and Fierz identity, which also
serves as our definition of €4, . ag,

%eaa’ﬁﬂ'ww’?ij TR = 241 0 A 591 = A jaar M ). (B.23)

Note that as a representation of the Spin(8) algebra we can impose a reality condition
on the spinors x = (Dx)* using the intertwiner D with D*D = +1. For such a real spinor
the two possible definitions of spinor conjugate coincide ¥ = x7C = xTA. In fact there
exists a GL(8, R) family of purely imaginary bases of gamma matrices such that D =1 and
A = C. In such a basis we have & = ¢fC = e A for a general spinor e = y; + iy2. Many
of our SU(8) equations are written under a Spin(8) = SU(8) N SL(8,R) decomposition in
such an imaginary basis, and thus it is natural to raise and lower spinor indices with the
Spin(8) invariant C.

C Spinor decompositions
C.1 (10,1) — (6,1) + (4,0)
We can decompose the Cliff(10, 1;R) gamma matrices as
T = A1 @™, I =1%4", (C.1)
and the eleven-dimensional intertwiners as
C = Cs1) ® Cay, D = Ds1) ® D). (C.2)

Introducing a basis of seven-dimensional symplectic Majorana spinors {nIA}, we can
then decompose a general eleven-dimensional Majorana spinor as

e=eap (nf @xP), (C.3)

where {x?!} are some collection of four-dimensional symplectic Majorana spinors. All of
the data of the eleven-dimensional spinor is now contained in x*/, the extra index I serving
as the external Spin(6,1) index.
The eleven-dimensional spinor conjugate can be realised in terms of the four-dimensional
spinors x4 by setting
Xar = earps (X" Ca, (C4)

where €757 = (UAI)Té(ﬁ,l)nBJ-

Clearly from the decomposition (C.1) the action of the internal eleven-dimensional
gamma matrices is simply

e ¢ 4™y, (C.5)

and any eleven-dimensional equation with only internal gamma matrices takes the same
form in terms of x7. Thus, supressing the extra indices on y, the supergravity equations
with fermions in section 2.2 take exactly the same form when written in terms of the
four-dimensional spinors.
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C.2 (10,1) — (5,1) + (5,0)
We can use a complex decomposition of the Cliff(10,1; R) gamma matrices as
I =1'®1l, ™ =46 g4m, (C.6)
and the eleven-dimensional intertwiners as
C =Cp1)®C), D = D51y ® D). (C.7)

We introduce bases of positive and negative chirality symplectic Majorana-Weyl spinors
{17;“4} and {n;A} and decompose a general eleven-dimensional Majorana spinor as ¢ =
et +e~ with

et =eup (77}“4 ® x{B> € =€AB <77fA ® XéB) ; (C.8)

where { x4/} and {x4'/} are two collections of five-dimensional symplectic Majorana spinors,
the extra I indices serving as external Spin(5, 1) indices.
The action of the internal eleven-dimensional gamma matrices is then

et = eap (4 @970 ") e =eap (74 @ (—"E7). (C9)
so that this induces a different representation of Cliff(5;R) on each of y; and y2. To see
how to express eleven-dimensional spinor bilinears in this case, we expand
gr\ml...mkgl — §+ le"'mkgl_ + & le...mk5/+
= (@)™ Coyzy ) (AT Cy (- 1)F i) (C.10)

+ ((UZI)TG(M)??EJ) ((X?I)TC(5)’Ym1"'m’“XllBJ>,

so that we see that this pairs x; with x5 and x2 with x}. We therefore define slightly
different conjugates for y; and xs as

X141 = earss(xt)) C), Xe,a1 = epyar(xs”) Cs), (C.11)
where earps = (1, I)Té'(g),l)ng ;- We can then suppress the extra indices and write

ELMMhg! = g™y - (—1) Ry yy, (C.12)

Under this decomposition, an equation linear in fermions from section 2.2 becomes two

i

copies of the same equation, one identical copy with “y1” and one copy with “xs” and the

sign of the gamma matrices reversed. The fermion bilinears split into two terms as (C.12).

C.3 (10,1) — (4,1) + (6,0)

We make a complex decomposition of the Cliff(10, 1; R) gamma matrices as

TH = iyt @ (), I =1®4", (C.13)
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and the eleven-dimensional intertwiners as

C = 0(4,1) ® 0(6)7 D= D(471) & D(G)‘ (C.14)

Introducing a basis of five-dimensional symplectic Majorana spinors {77}4} we can then
decompose a general eleven-dimensional Majorana spinor as

e=ecap (nf ®x""), (C.15)

where {x4!} are some collection of six-dimensional symplectic Majorana spinors. All of the
data of the eleven-dimensional spinor is now contained in x4/, the extra index I serving
as the external Spin(4,1) index.

The eleven-dimensional spinor conjugate can be realised in terms of the six-dimensional
spinors x4 by setting

XAI = GAIBJ(XBJ)TG(G)a (C.16)

where €EAIBJ = *(TIAI)TC(471)77BJ-

Clearly from the decomposition (C.1) the action of the internal eleven-dimensional

gamma matrices is simply
I™e ¢ 4y AL (C.17)

and any eleven-dimensional equation with only internal gamma matrices takes the same
form in terms of x!. Thus, supressing the extra indices on y, the supergravity equations
with fermions in section 2.2 take exactly the same form when written in terms of the
six-dimensional spinors.

C.4 (10,1) — (3,1) + (7,0)

We can use a complex decomposition of the Cliff(10, 1; R) gamma matrices as
MH=~t®l, " =iy® @™, (C.18)

and the eleven-dimensional intertwiners as

C = 6(3,1) ® 0(7), D= D(371) & Jj(7). (C.19)

We take a chiral decomposition of an eleven-dimensional Majorana spinor

e=(nf ox") + Dayn)* @ (Dmx')*, (C.20)

where 7(4)7]I+ = —inl+ so that {77?} are a basis of complex Weyl spinors in the external
space. The Majorana condition on ¢ is automatic with no additional constraint on x/,
which is complex. Again the extra index I on y provides an external Spin(3, 1) index.

The Clifford action of the internal eleven-dimensional gamma matrices then reduces
to the action of the seven-dimensional gamma matrices on x

I'e =nf @ (v"x') + (D yni)* @ (Depy™x')*. (C.21)
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To see how to write eleven-dimensional spinor bilinears in this language, we expand
gL Mg’ = ((U;F)Té'(za,l)?ﬁ) ((XI)Téwwml'”m’“X/J)
+ <(n}r)TD@,1)0(3,1)D(3,1)77j> ’ ((XI)T[?(TU 0(7)D(7)7m1"'mkxu> ) (C.22)
= () + (e,
where we have made the definition

X1 =ers(x”) Ceay, (C.23)

with €77 = —(n;_)Té(&l)n}_.

With these definitions, the equations linear in spinors in section 2.2 take the same form
when written in terms of y!, while the spinor bilinear expressions take the same form with
a complex conjugate piece added to them.

D Eu g XRT and GL(d, R)

In this appendix we review from [12] the construction of Eq(4) xR™ in terms of GL(d, R),
the basic representations and tensor products.

We will describe the action directly in terms of the bundles that appear in the gener-
alised geometry. We have

E~TM&ANT*M & AN°T*M & (T*M @ ATT*M),
E* ~T*M @® A*TM & A°TM & (TM @ ATTM), (D.1)
ad F~R@® (TM @ T*M) ® A3T*M @& AST*M @ A>T M @ ASTM.

The corresponding Ej(q) xR representations are listed in table 1. We write sections as

V=v+w+o+r7 SO
Z=C+u+s+t € E*, (D.2)
R=c+r+a+ai+a+a cadF,
so that v € TM, w € A°T*M, ( € T*M, c € R etc. If {é,} be a basis for TM with a dual
basis {€*} on T*M then there is a natural gl(d,R) action on each tensor component. For

instance

(r-v)® = r%?, (r-w)ap = —1aWep — TpWac, etc. (D.3)

Writing V' = R -V for the adjoint E4) xRt action of R € adF on V € E, the
components of V', using the notation of appendix A.1, are given by
V=co+r-vtaiw—a.lo,
W =cw+r-wtviataso+aor,
) ) (D.4)
o =co+r-oco+viat+talNw+oaT,

'=cr+r-T—jaAw+jaNo.
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a

Note that, the Ey4) sub-algebra is generated by setting ¢ = (gfld)r o Similarly, given

Z € E* we have
(=—-cC+r-(—usa+s.a,

v =—-cu+r-u—ai(—sia+taia,
s =—cs+r-s—ais(—aANu—tia,
t'=—ct+r-t—jaNs—jaAu.

Finally the adjoint commutator

R”:[R,R,]
has components
2
c”:f(a_na'—o/_na)+§(6/_|d—64_|d'),
1
7“”:[r,r’]+ja4ja'—j0/_|ja—g(a_na’—o/_na)]l
S~ s oy 2,
+jo _nja—jouja—g(oz Ja—aaa)l,
d'=r-d -7 -a+d a-—a.d,

~ I/ ~/ !/~ /
a =r-a—r-a—ala,

/ / ~/ ~ !/
o =r-o —r-ata sa—aaa,
/! ~/

" =r-& —r-a—-and

Here we have ¢’ = #151"%;, as R” lies in the Eq(qy sub-algebra.
We also need the projection

Xad i E*@ E — ad F.

Writing R = Z X,q V we have

1 2
C=—=U_1wWw—=8510—1.T,

3 3
. 1 . 2 L
T’:U@C—j’U,J]w—i-g(’U,Jw)]l—jSJ]U-i-g(S_IJ)]l—jt_le,
a=vAu+siw+tio,
a=-vAs—1aw,
a=CANw+uioc+saT,

a=C(No+uarT.

Note in particular that
0XqV =0®v+dw+do.

E Hd and ﬁd

(D.6)

(D.8)

(D.9)

(D.10)

We now turn to the analogous description of Hy in SO(d) representations. We then give

a detailed description of the spinor representations of H; and provide several important

projections of tensor products in this language.
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E.1 H,; and SO(d)

Given a positive definite metric g on 7'M, which for convenience we take to be in standard
form 0,4 in frame indices, we can define a metric on I by

1 1 1
2, Lo L 9 1l 9
GV,V)=w t 5w +5!0' ~|—7!7' , (E.1)
where v2 = v,0%, w? = wupw®, etc as in (A.5). Note that this metric allows us to identify
E ~ E*.

The subgroup of Eyg) xRT that leaves the metric is invariant is Hy, the maximal com-
pact subgroup of Ey4) (see table 3). Geometrically it defines a generalised Hy structure,
that is an Hy sub-bundle P of the generalised structure bundle F'. The corresponding Lie
algebra bundle is parametrised by

ad P ~ A*T*M @ A3T*M @ AST* M,

~ (E.2)
N=n+b+b,
and embeds in ad F' as
c=0,
Tab = Nab,
oo (E.3)
Aabe = —Cgbe = babm

Agy...a6 — Xay...ag — bal...aev

where indices are lowered with the metric g. Note that ng, generates the O(d) C GL(d,R)
subgroup that preserves g. Concretely a general group element can be written as

H.-V =e¥foeotip .y (E.4)

where h € O(d) and a and a and a and & are related as in (E.3).
The generalised tangent space E ~ E* forms an irreducible H; bundle, where the action
of Hy just follows from (D.4). The corresponding representations are listed in table 3.
Another important representation of Hy is the compliment of the adjoint of Hy in
Eq(qy xR*, which we denote as ad P+ (see table 3). An element of ad P+ be represented as

ad P* ~R @ S2F* @ A°F* @ ACF*,

(E.5)
Q=c+h+q+q
and it embeds in ad F
c=c,
Tab = h(zba
(E.6)

Gabe = CUabe = Gabes

Agq...a6 — —Qaq...ag = Yaq...a6-
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The action of Hy on this representation is given by the Egyg) xRT Lie algebra. Writing
Q' = N - Q we have

2 4-
C/:—gb_lq—gb_lq,

- - 2 45
B =n-h—jbijq—jqajb—jbijq—jqojb+ <3qu—|—3b_|(j> 1 (E.7)

q':n-q—h-b+b_|q~+q4l~),
7 =n-G—h-b

q

b—0bAq,

where we are using the GL(d,R) adjoint action of h on A3T*M and AST*M. The H,
invariant scalar part of @) is given by c— gfldhaa, while the remaining irreducible component
has ¢ = gfldhaa.

E.2 H, and Cliff(d; R)

The double cover Hy of Hy has a realisation in terms of the Clifford algebra Cliff(d;R).
Let S be the bundle of Cliff(d; R) spinors. We can identify sections of S as H; bundles in
two different ways, which we denote S*. Specifically y* € S* if

1/1 1 1-
N . X:t e 5 (2!7’Lab’yab :t gbabc’)’abc - 6!ba1.,,a67a1ma6> Xia (E8)

for N € ad P. As expected, in both cases n generates the Spin(d) subgroup of H,;. The two
representations are mapped into each other by 7 — —~%. As such, they are inequivalent
in odd dimensions. However, in even dimensions, since —y% = 'y(d)ya(v(d))_l, they are
equivalent and one can identify y~ = ~(@y*. Thus one finds

S~8t@S™ ifdisodd,

(E.9)
S~ St~ 8" ifdis even.
The different H, representations are listed explicitly in table 4.
The Spin(d) vector-spinor bundle .J also forms representations of Hy. Again we can
identify two different actions. If ¢F € J* we have!!

1/1 1 1-
N.-pf= 3 (mnbc'ch + gbbcdvb':d - 6!bb1...b67blmb6> of — nbopf
2 11
+ gbabc’}/c@l:,t + ggbbcdeaCdSOl:;t (El())
11- 21-
+ gzbaqu%,}/cl...mwlz)t + gabbcl...ckr,'}’aclmcs(,@zt.

Again in even dimension J* ~ J~. The H, representations are listed explicitly in table 4.

“The formula given here matches those found in [59, 60] for levels 0, 1 and 2 of K(Eio). A similar
formula also appears in the context of E1; in [61].
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Finally will also need the projections ad P+ @ S* — JF, which, for Q € ad P+ and
xT € S*, is given by

1 11 11
(Q x = Xi>a = §hab7bxi + g?fhbc')/bcxi + ég%cd%deXi
‘ ' (E.11)
11 _ 11
4 quabl.“%,}/m...bsxi o ggqqmcﬁ,}/acl...%xi'

E.3 H; and Cliff(10,1;R)

To describe the reformulation of D = 11 supergravity restricted to d dimensions, it is very
useful to use the embedding of Hy in Cliff(10,1;R). This identifies the same action of
H, on spinors given in (E.8) but now using the internal spacelike gamma matrices I'* for
a=1,...,d. Combined with the external spin generators I'*”, this actually gives an action
of Spin(10 — d, 1) x H, on eleven-dimensional spinors. As before the action of Hy can be
embedded in two different ways. We write x* € S* with

Nyt = %(%nabrab - %babcrabc — éz}al,__a6ra1~--a6)>gi. (E.12)
Since the algebra of the {I'*} is the same as Cliff(d;R) all the equations of the previous
section translate directly to this presentation of Hy. The advantage of the direct action on
eleven-dimensional spinors is that it allows us to write H; covariant spinor equations in a
dimension independent way.

As before we can also identify two realisations J* of Hy on the representations with one
eleven-dimensional spinor index and one internal vector index which transform as (E.10)
(with T in place of v*). The Spin(d — 1,1) x Hy represenations for S and J* are listed
explicitly in table 5.

In addition to the projection ad P+ @ §* — JF given by (E.11) (with I'* in place
of v%) we can identify various other tensor products. We have the singlet projections
() SF¥®S8% — 1 given by the conventional Cliff (10, 1; R) bilinear, defined using (B.16), so

(XX =xxT, (E.13)
where {* € S%. There is a similar singlet projection (-,-) : JF ® J* — 1 given by!?2
= 1
(@F,0%) = &7 (6“b + MF“F”) By (E.14)

where pF € JE
We also have projections from S* @ J* and ST @ ST to ad PL. Given xt e S~ and
$T € J* we have, using the decomposition (E.5),

. . 2 - .
(X Xaape §) = 5= X T80,

At At _ oat At
(X XadpL P )ab = 2X F(aSob) (E.15)
(f(i Xad P+ Sf’i)abc = ¢3Xir[ab¢i}[7

At ~t ~t ~t
(X Xad P+ ¥ )a1~~-a6 = 76X F[al...asgoae]’

2Setting d = 10 in this reproduces the corresponding inner product in [59].
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Note that the image of this projection does not include the Hy scalar part of ad PL, since,
from the first two components, ¢ — ﬁh“a = 0. We also have
/\+ A 2 ~— /\+
and all other components of ad P+ are set to zero. We see that the image of this map is
in the H,; scalar part of ad P~.
Finally, we also need the H, projections for F ~ E* acting on S* and J*. Given
V € F it is useful to introduce the notation

VS8t 5 8% va:St o gt

. . R . (E.17)
VY Jt o St V.Jt = JT.

Given x* € §* and ¢F € J* we find

1
'rbbal,,,%ral---%> Yt (E18)

6!

~ 1 1
(VX ) (IFUaFa + 2'wabrab F E0_041Masral...ag) +

and

11
C1...c4
=T Oacy...ca

34!

= L P C7> X (E.19)

11
(V A X )a = <Ua + FbWab F ool decd

3 32!

21 1
_’_551‘\ ClmC5o-cl..,C5 7

while

1 11 8—d
—wp LG E £ ———w TPpE
10—d 10—d21“ 10—qd° " %a

L1 b .+ 8—-d1 bi..b
“qo—an? Tt g en

(VY o) = vpF + valGE +

11
Fbl b780a F- Fb1...b5 ~t+

357 7% by b e (E.20)

7,T b1...by

and finally

R 2 R 1 4 R
(Y/goi)a = ivcfcnpa + mFC agoci gwchCdgoa + gwabgpf

2 N 4 1 . 2 1 1 R
~ geela’? o gmwabrbrc i 59761fujbcrabcrdwdjE
! 21 41
+ gacl“'CSFCl"'ngpa T - 3 3'O_ab0162031'\616203 4 b

2 1 1 41 1 .
F oo gulee-al " OTGT £ oo T erdgs

39— d57
1 1
+ o Tedr. g, DT d-d7 % +ﬁfmcl_,_qumwrd@;—ﬂ (E.21)

b + 550 C1...C4Pa01m04¢bi
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