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Abstract: We present some R-parity conserving supersymmetric models which can ac-

commodate the 3.5 keV X-ray line reported in recent spectral studies of the Perseus galaxy

cluster and the Andromeda galaxy. Within the Minimal Supersymmetric Standard Model

(MSSM) framework, the dark matter (DM) gravitino (or the axino) with mass of around

7 keV decays into a massless neutralino (bino) and a photon with lifetime ∼ 1028 sec. The

massless bino contributes to the effective number of neutrino species Neff and future data

will test this prediction. In the context of NMSSM, we first consider scenarios where the

bino is massless and the singlino mass is around 7 keV. We also consider quasi-degenerate

bino-singlino scenarios where the mass scale of DM particles are O(GeV) or larger. In

such a scenario we require the mass gap to generate the 3.5 keV line. We comment on

the possibility of a 7 keV singlino decaying via R parity violating couplings while all other

neutralinos are heavy.
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1 Introduction

Two recent independent studies [1, 2] based on X-ray observation data show a photon emis-

sion line at 3.5 keV energy in the spectra from Perseus galaxy cluster and the Andromeda

galaxy. This observation can be interpreted as a possible signal of dark matter (DM) decay

with the emission of a 3.5keV photon, with the DM mass (mDM) and lifetime (τDM) given

by,

mDM ' 7 keV

τDM ' 2× 1027 − 1028 sec. (1.1)

A variety of explanations of this line have already been proposed [3–32]. However, there

exist just a few supersymmetric scenarios which contain such a light neutral particle. For

instance, it could be an axino [27–29], gravitino [30, 31] or neutralino (bino) [32]. These

particles are able to produce the observed X-ray line [1, 2] by decaying through R-parity

violating processes [32] to a photon and neutrino, for example.

In this paper we present some simple scenarios which can accommodate the 3.5 keV

X-ray line in the context of R-parity conserving supersymmetry (SUSY). They include

the minimal supersymmetric standard model (MSSM) and Next-to-MSSM (NMSSM). It is

interesting to note that in the MSSM, the lightest neutralino can be massless [33–35] while

satisfying the current experimental constraints. In order to realize this scenario [33], we

assume that the soft supersymmetry breaking (SSB) MSSM gaugino masses are arbitrary,

and we impose the requirement that the neutralino mass matrix at the weak scale has zero

determinant. This can be achieved by suitable choice of parameters, while having very small

(. 1 eV) or even zero mass bino, with the charginos (and the next to lightest neutralino χ̃0
1)

heavier then 420 GeV to satisfy the mass bounds on the chargino from LHC [36, 37]. In

our scenarios where the ‘near massless’ bino is accompanied by a 7 keV gravitino, axino, or
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singlino which behave as warm DM. arising in different models around keV scale giving rise

to warm DM. The 7 keV DM particle decays to a bino and a photon with an appropriate

long lifetime to explain the observed X-ray line. The warm dark matter scenario which is

under investigation for a long time [38], proposes solution to the missing satelite problem

of the local group of galaxies [39]. The massless bino contributes to the effective number

of neutrino species, Neff , which is expected to be strongly constrained in the near future.

We also consider an almost degenerate bino-singlino scenario in the NMSSM framework,

such that the mass scale of cold DM particles are O(GeV) or larger.

We can retain gauge coupling unification in the presence of non-universal gaugino

masses atMGUT, which are realized via non-singlet F -terms compatible with the underlying

grand unified theory (GUT) [40–44]. Nonuniversal gauginos can also be generated from an

F -term which is a linear combination of two distinct fields of different dimensions [45]. It

is also possible to have non-universal gaugino masses [46] in the SO(10) GUT with unified

Higgs sector [47, 48], or utilize two distinct sources for supersymmetry breaking [49]. In

general, in the gauge mediated supersymmetry breaking (GMSB) scenario, all gaugino

masses can be independent of each other [50, 51]. With so many distinct possibilities

available for realizing non-universal gaugino masses while keeping universal sfermion mass

(m0) at MGUT, we employ non-universal masses for the MSSM gauginos in our study

without further justification.

One of the motivations for non-universal gauginos can be related to the interplay

between the 125 GeV Higgs boson and the explanation of the apparent muon g-2 anomaly.

A universal SSB mass term for sfermions (m0) is needed to suppress flavor-changing neutral

current processes.1 On the other hand, in order to accommodate the 125 GeV [53, 54]

light CP even Higgs boson mass and to resolve the discrepancy between the SM and the

measurement of the anomalous magnetic moment of the muon [55, 56] in the framework of

universal sfermion SSB masses, we need to have non-universal gaugino masses atMGUT [57].

The outline of our paper is as follows. In section 2, we discuss the 3.5 keV line in the

context of MSSM scenarios. In section 3, we discuss possible NMSSM scenarios, followed

with our conclusion in section 4. In the appendix we present technical details regarding two

massless neutralinos in the NMSSM and provide a few representative solutions of interest.

2 MSSM

In this section, we outline several scenarios that can accommodate a 3.5 keV X-ray line in

the MSSM. Let us start by examining how it might be possible to obtain a massless neu-

tralino in the framework of the MSSM. The neutralino mass matrix in the gauge eigenbasis

Ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u)T has the form [52]

Mχ̃0 =


M1 0 −MZswcβ MZcwsβ

0 M2 MZcwcβ −MZcwsβ

−MZswcβ MZcwcβ 0 −µ
MZswsβ −MZcwsβ −µ 0

 . (2.1)

1See for instance [52] and references therein.
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Here M1,M2 are the supersymmetric gaugino mass parameters for the U(1) and SU(2)

sector respectively, while µ is the bilinear Higgs mixing parameter. MZ denotes the Z

gauge-boson mass and sw ≡ sin θw, cw ≡ cos θw, where θw is the weak mixing angle.

sβ ≡ sinβ, cβ ≡ cosβ, while tanβ is the ratio of the vacuum expectation values (VEVs)

of the MSSM Higgs doublets.

To realize a massless netralino [33, 35], the following relation must be satisfied:

M1 =
M2M

2
Z sin(2β)s2

w

µM2 −M2
Z sin(2β)c2

w

≈
2M2

Zs
2
w

µ tanβ
. (2.2)

Implementing the chargino mass bound (|µ|, M2) > 420 GeV in eq. (2.2) leads to M1 �
(M2, |µ|). In the appendix we give one example of an MSSM scenario with very small LSP

neutralino (mostly bino) mass. Such a bino is consistent with current experimental data

from LEP, structure formation etc [35]. The LHC provides constraints on the next to light-

est neutralino, chargino, and slepton masses when the lightest neutralino is almost massless.

The relation in eq. (2.2) has been obtained at tree level, but radiative corrections do

not significantly modify it. Notwithstanding radiative corrections, since M1, M2 and µ are

free parameters, there is no problem to ensure that the determinant in eq. (2.1) is zero.

Thus, it is possible to have an essentially massless neutralino by fine-tuning the parameters

in the framework of the MSSM, and an example is presented in the appendix.

The existence of a near massless bino, however, would contribute to ∆Neff ≡
Neff − Neff ,SM = 1. The reason for this is that the essentially massless bino decouples

from the thermal background around the same time as the neutrinos. The decoupling

temperature also depends on the slepton mass which we take around the weak scale. How-

ever, if the slepton mass increases, the decoupling temperature also increases, e.g., if the

slepton mass is 10 TeV, then the decoupling temperature will be O(GeV). The present

observational bound on ∆Neff from Planck + WMAP9 + ACT + SPT + BAO + HST at

2σ is ∆Neff = 0.48+0.48
−0.45 [58]. The value of Neff depends on Hubble constant where there

is a discrepancy between Planck and HST [59]. A reconciliation can occur using larger

∆Neff [60]. The new BICEP2 data [61] also requires a larger ∆Neff(=0.81 ±0.25) in order

to reconcile with the Planck data [62, 63]. Future data hopefully will settle this issue.

2.1 Gravitino dark matter and massless bino

One way to accommodate a 3.5 keV X-ray line via a massless neutralino comes from the

gauge mediated SUSY breaking (GMSB) scenario. As a consequence of the flavor blind

gauge interactions responsible for generating the SSB terms,2 this senario provides a com-

pelling resolution of the SUSY flavor problem. In both the minimal [64] and general [50, 51]

GMSB versions, the gravitino, which is the spin 3/2 superpartner of the graviton, acquires

mass through spontaneous breaking of local supersymmetry. The gravitino mass can be

∼ 1 eV − 100 TeV. Additionally, in the general GMSB scenario, the SSB mass terms for

the MSSM gauginos are arbitrary. In particular, it is possible to have a massless neutralino

2See [64] and original references therein.
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Figure 1. G̃→ χ̃0
1 + γ decay.

(essentially a bino) in this framework. With all other sparticles being much heavier, the

gravitino dominantly decays to the neutralino (bino) and photon (G̃→ χ̃0
1 + γ).

The relevant diagram for this decay is shown in figure 1, and the decay rate is given

by [65]

Γ(G̃→ χ̃0
1 γ) =

cos θ2
Wm

3
G̃

8πM2
P

. (2.3)

Using eq. (2.3) and assuming the gravitino mass to be 7 keV, the gravitino lifetime is esti-

mated to be 3 × 1029 sec, which is approximately a factor of 10 more than what we need

which can be difficult to obtain. However, physics around the Planck scale MP is largely

unknown. It has been noted in refs. [66–69] that the fundamental mass scale (MΛ) can be re-

duced to MP /
√
N in the presence of a nonzero number of degrees of freedom (N). In fact, it

is shown that the scale for quantum gravity in 4D becomes the new scale M∗ where the clas-

sical gravity becomes very strong and below this scale no quasi-classical black hole can exist.

This becomes the scale of the non-renormalizable operators as well since this mass scale

marks the new cutoff. In this way the cutoff scale can be reduced as required in eq. (2.3).

It is possible to envision a larger effective coupling G̃χ̃0
1γ coupling by assuming new

particles providing additional contributions to the effective G̃χ̃0
1γ coupling. For example,

there could be a new operator G̃χ̃0
1γfscalar/MΛ, which can arise from the fundamental in-

teractions, G̃γffermion and fscalarχ̃
0
1ffermion. By integrating the fermion ffermion at the scale

MΛ we can get the above operator. The scalar fscalar can have a VEV < fscalar >∼ MΛ

to give us a new tree-level O(1) contribution to the G̃χ̃0
1γ coupling. It is possible to have

large contributions from many such diagrams to induce a large effective coupling to yield

the desired lifetime for the gravitino as needed in eq. (2.3). However, SUSY needs to be

broken in order to preserve equivalence principle.

One important issue for gravitino dark matter is the reproduction of the correct dark

matter relic density. The initial thermal abundance is diluted because of a late reheat

temperature (TR) arising from heavy field/moduli decay. The relic density (ΩG̃h
2) of

gravitinos which arise from the scattering of gluinos, squarks etc. is given by [70–73],

ΩG̃h
2 ≈ 0.27

(
100 GeV

m
G̃

)(
TR

1010 GeV

)( mg̃

1 TeV

)2
(

2.4× 1018 GeV

MΛ

)2

. (2.4)

To realize ΩG̃h
2 ≈ 0.1 with mg̃ & 1.4 TeV and MΛ ≈ 1017 GeV, we require TR .

104 GeV.
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Figure 2. ã→ χ̃0
1 + γ decay.

2.2 Axino dark matter and massless bino

A very compelling way of solving the strong CP problem is via the Peccei-Quinn (PQ)

mechanism [74], which yields a light pseudo-scalar field (axion a) associated with the spon-

taneously broken global U(1) symmetry. An inevitable prediction from a combination of PQ

mechanism and low scale supersymmetry is the existence of the supersymmetric partners

of the axion, the axino (a) and saxion s [76]. The axion superfield A can be expressed as,

A =
1√
2

(s+ ia) +
√

2 ã θ + FA θ θ, (2.5)

where FA denotes the auxiliary field and θ is a Grassmann coordinate. In general, the axino

mass is very model dependent3 and can lie anywhere from eV to multi-TeV. It was shown

that a stable axino with keV mass is a viable warm dark matter candidate [77, 78]. The

3.5 keV X-ray line can be explained by a decaying axino dark matter. For this purpose,

the authors in [27–29] introduce R-parity violating couplings, with strength ∼ 10−1− 10−3

in order to accommodate desired axino life time.

In this paper, we propose an alternative way to explain the X-ray line using 7 keV axino

dark matter. As mentioned above, within the MSSM framework, it is possible to have a

massless neutralino in the spectrum which is consistent with all experimental constraints.

We know that the axino couples to the gauginos and gauge bosons via the anomaly induced

term. In particular, we are interested in the interaction of the axino to the bino (B̃) and

the hypercharge vector boson (B). This interaction takes the form,4

i
αY CY
16πfa

γ5[γµ, γν ]B̃ Bµν . (2.6)

Here αY = Y 2/4π is the hypercharge gauge coupling constant and CY is a model dependent

coupling associated with the U(1)Y gauge anomaly interaction. The axion decay constant

is denote by fa. The axino decays to a neutralino (bino) and photon without requiring

R-parity violating interaction. The relevant diagram for this decay is shown in figure 2,

3See [75] and references therein.
4See [79] and references therein.
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and the decay rate is given by [78],

Γ(ã→ χ0
1 γ) =

α2
emC

2
aχγ

128π3

m3
ã

f2
a

, (2.7)

where mã is axino mass, C2
aχγ = (Cy/ cos θW )Z11, and Z11 denotes the bino part of the

lightest neutralino.

The axino lifetime can be expressed as:

τ(ã→ χ0
1 γ) = 1.3× 1023sec

(
fa

1012 GeV

)2(7.1 keV

mã

)3

(2.8)

From eq. (2.8) we see that we need to have fa ≈ 1014 GeV is required. On the other hand,

in order not to overproduce axion dark matter, we need to have fa . 1012 GeV is preferred.

One resolution of this is to invoke a small initial axion mis-alignment angle θ ≈ 0.1−0.01,5

which yields the required axion dark matter abundance while allowing fa ≈ 1014 GeV. An

alternative solution [81–84] is to add additional massive fields whose late decay can inject

substantial entropy into the universe at times after axion oscillations begin, but before

BBN starts.

It is, furthermore, possible to have an axion-like particle (and associated axino) [85–87]

in the low scale spectrum, which may be obtained from string theory. Axino-like particles

can decay into a bino and photon. In this case the bound on fa can be more flexible and

also the coefficient Cy can be suitably adjusted to be O(10−2) or so, since it is not tied to

the solution of the strong CP problem.

3 NMSSM

As shown in the previous section, in the MSSM it is possible to have a massless bino, while

keeping all other neutralinos heavier than 400 GeV. In the NMSSM, the neutralinos have a

singlino component from the gauge singlet chiral superfield S (with even Z2 matter parity)

added to the MSSM with new terms in the superpotential:

W ⊃ µHuHd + λHuHdS −
1

3
κS3, (3.1)

Hu and Hd are the standard MSSM Higgs doublets and κ and λ are dimensionless couplings.

Once the S field acquires a VEV 〈S〉, we obtain an effective µ-term for MSSM Higgs

fields, µeff = µ + λ〈S〉. The neutralino mass matrix in the gauge eigenstate basis Ψ0 =

(B̃, W̃ 0, H̃0
d , H̃

0
u, s)

T has the following form:

MN =



M1 0 −mZcβsW mZsβsW 0

0 M2 mZcβcW −mZsβcW 0

−mZcβsW mZcβcW 0 −µeff −λvsβ
mZsβsW −mZsβcW −µeff 0 −λvcβ

0 0 −λvsβ −λvcβ 2κ〈S〉


. (3.2)

5See for instance [80] and references therein.
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It was shown in [34] that a massless neutralino requires that

κ = λ
1

2

(
λv

µ

)2 0.6m2
zM2 − 0.5µM2

2 sin 2β

−µM1M2
.

This solution is obtained for the case when (µeff , M1, M2) > MZ and the singlino is the

lightest neutralino. We can, however, easily make the lightest neutralino to be mostly

bino and the next to lightest neutralino essentially the singlino. The technical details for

obtaining two massless neutralinos in the framework of NMSSM are given in appendix A.

In order to explain the 3.5 keV X-ray line, we propose that one of the neutralinos, which

is mostly bino, is almost a massless (. 1 eV) particle and does not, therefore, contribute

to the warm or cold dark matter relic abundance. The second neutralino, in this scenario,

is mostly singlino with a mass of 7 keV and gives rise to the correct dark matter relic

abundance [88]. The annihilation of thermal NMSSM Higgs produce singlinos, and it was

shown that the correct relic abundance requires the singlino mass to be a few keV. Thus,

Ωχ̃h
2 ≈ 4(1.2)2

π5

(
(κλ/3 + λ2)v2 sin 2β

MsMχ̃

)2
g(Tγ)

g(TR)

(
TRT

3
γ

kT v4 sin2 2β

)2
M3
χ̃Mpl

ρc
. (3.3)

Here Ms is the mass of the scalar singlet, g(TR) = 228.75, g(Tγ) = 2, TR ∼ 102 − 105 GeV,

kT = (4π3g(T )/45)1/2 and Tγ is the present CMB temperature. Choosing κ = 3 × 10−2,

λ = 10−10, M1 = 0.23 GeV and M2 = −µ = −550 GeV (shown in point 1 of table 1 in the

appendix), we can have the masses for the lightest neutralino (mostly bino) and the next

to lightest neutralino (mostly singilino) to be essentially massless and 7 keV respectively.

This scenario satisfies the dark matter relic abundance constraint.

The singlino can radiatively decay to a bino and photon with a long lifetime, which

allows us to obtain the 3.5 keV X-ray line. The relevant diagram [89] for this decay is

shown in figure 3 and the decay rate is given by

Γ(χ̃0
2 → χ̃0

1 γ) ∼ λ2α2
em

8π3

m3
χ̃2

M2
H

. (3.4)

Here we assume that the charginos (mχ̃+
i

) and charged Higgs (mH+) have approximately

the same mass.

The χ̃0
2 lifetime can be written as:

τ(χ̃0
2 → χ̃0

1 γ) ≈ 2× 1027sec

(
MH

105 GeV

)2(10−10

λ

)2

. (3.5)

In the NMSSM, an alternative explanation for the 3.5 keV emission line requires one to

have two quasi-degenerate neutralinos (bino and singlino), with mass difference arranged

to be ∼ 3.5 keV. We present one such example in the appendix. We require the next to

lightest supersymmetric particle (NLSP), which is a mixture of singlino and bino, to be

long-lived on cosmological time scales. The decay of this NLSP to the LSP, which again

may be a bino-singlino mixture, can explain the 3.5 keV emission line.

– 7 –
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Figure 3. Decay of NLSP neutralino to the LSP neutralino with the associated emission of a

photon.

The relevant Feynman diagrams for the NLSP neutralino decay are given in figure 3.

The decay width is given by [90–92],

Γ ∼ α2
emλ

2

64π4

(∆mχ)3

m4
H±

m2
χ, (3.6)

where αem is the electromagnetic coupling constant, mχ is the quasi-degenerate mass of the

two lightest neutralinos, ∆mχ is their mass splitting, and mH± is the mass of the charged

Higgs.

Assuming mχ0
2
≈ mχ0

1
≈ 1 GeV and ∆mχ ≈ 3.5 keV, and as an example we consider

λ ≈ 10−8 and mH± = 500 GeV in order to have τ(χ0
2 → χ0

1 γ) ≈ (1027 − 1028) sec. The

dark matter in this case is cold compared to the previous scenarios.

The singlino/bino dark matter can be produced non-thermally from the decay of some

heavy field/moduli (φ) with a reheat temperature & 2 MeV in order to avoid problems with

big bang nucleosynthesis. As shown in [93, 94], if the abundance of DM production (combi-

nation of dilution factor due to decay and branching ratio into DM particles) is small enough

to satisfy the DM content, the annihilation cross-section of dark matter becomes irrelevant.

The DM abundance is given as nDM/s = min[(nDM/s)obs(3 × 1026/ < σv >f
)(Tf/TR), YφBrDM], where (nDM/s)obs ' 5 × 10−10(1 GeV/mDM), TR is the reheat tem-

perature, Yφ = 3TR/4mφ ' 1/π
√
cmφ/MP , and BRDM denotes the branching ratio for φ

decay into singlino/bino. The singlino DM does not reach thermal equilibrium after pro-

duction from the decay of the heavy field since the decoupling temperature is much larger

than the reheat temperature TR.

It is also interesting to note that the singlino can be the lightest sparticle, and it can

then decay via some R-parity violating couplings. We present an example in the appendix.

A slight change in the parameter values corresponding to the existence of massless neu-

tralinos will make the neutralino mass around keV. A keV scale singlino LSP can decay at

loop level in the presence of R-parity violating couplings. Here we consider only the lepton

number violation operators:

L6R = λiLiHuS + λijkLiLjE
c
k + λ′ijkQiLjd

c
k + µiHuLi. (3.7)

– 8 –
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Figure 4. Decay of LSP neutralino through R-parity violation term.

The neutralino-neutrino mass matrix in the gauge eigenstate basis Ψ0T ≡
(B̃0, W̃ 0

3 , h̃
0
d, h̃

0
u, s̃, νi) is given by

Mχ̃0 =

(
MN ξT6R

ξ 6R Mν
3×3

)
, (3.8)

where

ξ 6R =


−g′v1√

2

gv1√
2

0 µ1 + λ1〈s〉 λ1vu

−g′v2√
2

gv2√
2

0 µ2 + λ2〈s〉 λ2vu

−g′v3√
2

gv3√
2

0 µ3 + λ3〈s〉 λ3vu

 , (3.9)

and Mν
3×3 is the 3× 3 light neutrino majorana mass matrix.

One of the dominant diagrams for the decay χ̃0
1 → ν + γ is given in figure 4, and the

corresponding decay rate is given by

Γ(χ̃0
1 → ν γ) ∼ αem

(λλ1)2

32π3

χ̃3
1

M2
H

. (3.10)

Here we assume, for simplicity, that the charged Higgs and charginos have similar masses

MH ≡ (mχ̃+
i
≈ mH+). The singlino lifetime can be expressed as

τ(χ̃0
1 → ν γ) ≈ 2× 1027sec

(
MH

105GeV

)2(10−11

λ1λ

)2

, (3.11)

and if we assume λ1 ≈ λ ≈ 3 × 10−6, the desired singlino life time is obtained. The LSP

singlino, as mentioned above, can provide the correct DM abundance.

4 Conclusion

In summary, we have presented several scenarios that can accommodate the 3.5 keV X-ray

line in the context of R-parity conserving SUSY. In the MSSM, the LSP neutralino can be

massless and the gravitino or axino dark matter of mass around 7 keV can decay into the

LSP neutralino and a photon with lifetime ∼ 1028 sec. To realize this scenario, we assume

that the soft SUSY breaking MSSM gaugino masses are non-universal and they satisfy

– 9 –
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the requirement that the determinant of the neutralino mass matrix vanishes at the weak

scale. This can always be achieved with a suitable choice of parameters, while keeping

the charginos (and second lightest neutralino χ̃0
2) heavier than 420 GeV to avoid the LHC

constraint. A keV mass dark matter is of considerable interest since it can provide potential

solutions to the missing satellites problems of the Local Group of Galaxies. The massless

bino, however, contributes to Neff and future data should seriously test this scenario. In the

context of NMSSM, we consider scenarios where the bino is massless and the dark matter

singlino mass is around 7 keV. Within the NMSSM, we also consider quasi-degenerate

bino-singlino scenarios where the DM mass scale is O(GeV) or larger. We require, in

this scenario, a small mass gap to generate the 3.5 keV X-ray line. In passing, we also

consider scenarios where the singlino is the lightest SUSY particle, and it decays via R

parity violating couplings which give rise to the 3.5 keV X-ray line.
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A Two massless neutralinos in the NMSSM

The neutralino mass matrix is given in eq. (3.2) and we seek a solution with two massless

neutralinos. Assuming that γ is an eigenvalue of MN , we can write the characteristic

equation in the form

|MN − γI5| = γ5 +Aγ4 +Bγ3 + Cγ2 +Dγ + E = 0, (A.1)

where I5 is the 5×5 identity matrix, and A,B,C,D,E, of course, depend on the entries in

MN . It is known that A,B,C,D and E are invariants (under similarity transformations) of

the matrix and, in particular, E is the determinant ofMN . We can express the coefficients

in eq. (A.1) in terms of the mass eigenstates:

E = m2
1m

2
2m

2
3m

2
4m

2
5; D =

n∑
i 6=j 6=k 6=l

m2
i m

2
j m

2
km

2
l ; C =

n∑
i 6=j 6=k

m2
i m

2
j m

2
k;

B =

n∑
i 6=j 6=k

m2
i m

2
j A =

5∑
i=1

m2
i . (A.2)

A necessary and sufficient condition for any one eigenvalue to be zero is for the determinant

of the matrix to be zero (i.e. E = 0). The quintic characteristic equation then reduces to

a quadratic one. Proceeding in this fashion, if we now also set D = 0, we will ensure that

two eigenvalues of the mass matrix are zero. It is then possible to adjust the parameters

to get the desired small mass eigenvalues.
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Point 1 Point 2 Point 3

M2 (GeV) 550 500 550

µ (GeV) 550 500 550

x (GeV) 0.0001 1 7× 10−6

tanβ 30 30 50

M1 0.234 1.267 550

κ 3.5× 10−2 0.5 0.5

λ 10−10 10−9 10−5

mχ̃0
1

(GeV) 6.69× 10−13 1 7× 10−6

χ̃0
1 composition ' 100%B̃ 99%B̃ ' 100% S̃

mχ̃0
2

(GeV) 7× 10−6 1 1.08

χ̃0
2 composition ' 100%S̃ 99%S̃ mixture

mχ̃0
3

(GeV) 498 445 550

mχ̃0
4

(GeV) 554 505 554

mχ̃0
5

(GeV) 605 560 617

Table 1. Three representative solutions.

While the general expression for the the determinant and the coefficient of γ in the

characteristic equation (variously known as the fourth invariant) is rather complicated, the

conditions to obtain two massless neutralinos simplifies in the limit of large tanβ. Setting

sβ → 1 and cβ → 0 in the neutralino mass matrix, we obtain the following conditions for

two massless neutralinos,

D = −M1M2(λ2v2 + µ2)− 2κxµ2(M1 +M2)+

−2κxm2
Z(M1c

2
W +M2s

2
W ) +m2

Zv
2λ2 = 0

E = 2M1M2κxµ
2 −m2

Zλ
2(M1c

2
W +M2s

2
W ) = 0 (A.3)

There can, however, be issues while using this approximation because of the large differences

in orders of magnitudes of the various terms. In practice it is much simpler to numerically

fine-tune the parameters in the exact expressions to obtain two zero eigenvalues. We

are essentially interested in a quasi-degenerate (. 1 GeV) bino-singlino mixture. With λ

small, there is very little mixing between the singlino and the higgsinos, particularly for µ &
100 GeV (which is needed as previously explained). Furthermore, if we choose M1, 2κx ∼
1 GeV and M2 & 400 GeV, we should naively expect to get the required neutralino masses.

In table 1 we display three representative solutions that correspond to the three scenar-

ios for obtaining the 3.5 keV X-ray line within the NMSSM framework. Point 1 corresponds

to a massless bino with a 7 keV singlino. Point 2 shows the quasi-degenerate scenario in-

volving the bino and singlino, with a mass of 1GeV and a mass splitting of 3.5keV. Point 3

describes the scenario in which the singlino is ∼ 7 keV and all other neutralinos are heavy.

As far as the MSSM case is concerned, things are even simpler. For example, one could

take, tanβ = 30, M2 = µ = 550 GeV, M1 = 0.23 GeV where, M1 is chosen to obtain a mass-

less bino. The masses of the three heavier neutralinos are 499 GeV, 555 GeV and 606 GeV.
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