
J
H
E
P
0
5
(
2
0
1
4
)
0
7
9

Published for SISSA by Springer

Received: March 7, 2014

Revised: April 16, 2014

Accepted: April 23, 2014

Published: May 19, 2014

Split sfermion families, Yukawa unification and muon

g − 2

M. Adeel Ajaib, Ilia Gogoladze,1 Qaisar Shafi and Cem Salih Ün
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1 Introduction

Even though supersymmetric particles have not yet been observed, low scale supersym-

metry (SUSY) remains at the forefront of beyond the Standard Model (SM) physics

scenarios. In addition to resolving the gauge hierarchy problem and accommodating

radiative electroweak symmetry breaking (REWSB), SUSY also provides a compelling

dark matter candidate (the lightest supersymmetric particle (LSP)). Contrary to the

non-supersymmetric case, the three gauge couplings naturally unify [1–5] around 1016 GeV

(MGUT), which therefore provides an additional reason to suspect that SUSY may be

found soon, hopefully at LHC 14.

It is well known that gauge coupling unification does not significantly constrain the

sparticle spectrum. On the other hand, imposing t-b-τ Yukawa coupling unification con-

dition at MGUT [6–8] can place significant constraints on the supersymmetric spectrum in

order to fit the top, bottom and tau masses. These constraints are quite severe [9–19], espe-

cially after the discovery of a SM like Higgs boson with mass, mh ' 125−126 GeV [20, 21].

The constraints from t-b-τ Yukawa coupling unification depend on the particular

boundary conditions at MGUT for the soft supersymmetry breaking (SSB) parameters [22].

To be more precise, t-b-τ Yukawa unification is successfully realized if the threshold correc-

tions to the bottom quark mass are suitably large and have the correct sign. The dominant

contributions arise from loop corrections involving the gluino (mg̃), the third generation

sfermions and the SSB trilinear interactions [22]. On the other hand, a 125 GeV light

CP-even Higgs boson mass also requires large radiative corrections, and the dominant con-

tributions in this case also arise from third generation sfermions and trilinear SSB scalar

interaction [23–28]. Thus, t-b-τ Yukawa unification and the 125 GeV light CP even Higgs

boson together strongly constrain the gluino and third generation sfermion masses as well

as the trilinear SSB couplings. (For a recent discussion regarding the top quark mass and

related issues in low scale supersymmetric models, see ref. [29])
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We consider two choices for the minimal set of SSB parameters at MGUT which can lead

to t-b-τ Yukawa unification. The first case has universal SSB gaugino mass terms but non-

universal Higgs SSB terms, m2
Hu
6= m2

Hd
[30, 31]. Here mHu,Hd denote the up/down type

Higgs SSB masses. In this case t-b-τ Yukawa unification can be realized if the gluino mass

(Mg̃) is much smaller than the sbottom quark mass (mb̃), and the stop trilinear SSB term

(At) is larger than the stop mass (mt̃). To realize a 125 GeV light CP even Higgs boson in

this scenario we require Mg̃ ≤ 3 TeV and mb̃ ≥ 10 TeV. This also yields bounds on the fun-

damental SSB parameters, namely, m0 & 10 TeV and M1/2 . 1 TeV [9–11]. Here m0 and

M1/2 are GUT scale universal SSB mass terms for the sfermions and gauginos, respectively.

The second class of SO(10) models have universal SSB Higgs mass2 term (m2
Hu

= m2
Hd

),

whereas the gaugino SSB masses are non-universal at MGUT [32–35]. In this scenario the

desired supersymmetric threshold corrections to t-b-τ Yukawa couplings can be realized

with Mg̃ & mb̃ [12–17]. For a particular choice of SSB gaugino masses (M1 : M2 : M3 = 1 :

3 : −2) at MGUT, which can be derived in the framework of SO(10) GUT, it was shown [18,

19] that the CP-even SM-like Higgs boson mass mh ≈ 125 GeV can be predicted from t-b-τ

YU. This result does not change much in terms of the Higgs mass prediction if we relax t-b-τ

YU up to 10% [18, 19]. For this case, 10% or better t-b-τ Yukawa unification consistent with

all constraints (including the Higgs boson mass) requires m0 & 1 TeV and m1/2 & 1 TeV [18,

19]. The colored sparticle spectrum does not change much [12–17] if we consider different

mass relations among the gauginos at MGUT, but the sleptons can be light. Again it leads

to heavy first and second generation squarks which are beyond the reach of LHC 14 [36].

In both the above mentioned scenarios the sfermions were all assumed to have

universal masses at MGUT. The main motivation for this assumption is based on the

constraints obtained from flavor-changing neutral current (FCNC) processes [37]. It

was shown in ref. [38] that constraints from FCNC processes, for the case when third

generation sfermion masses are split from masses of the first and second generations, are

very mild and easily satisfied. It therefore allows for significantly lighter first two family

sfermions, while keeping the third generation sfermions relatively heavy. We adopt this

approach in this paper and we will show that it is possible to have t-b-τ YU with LHC

accessible first and second generation sfermions.

Another motivation for considering split sfermion families is related to the deviation

of the observed muon anomalous magnetic moment aµ = (g− 2)µ/2 (muon g− 2) from its

SM prediction [39, 40]

∆aµ ≡ aµ(exp)− aµ(SM) = (28.6± 8.0)× 10−10. (1.1)

If supersymmetry is to provide a resolution of this discrepancy, the smuon and gaugino

(bino or wino) SSB masses should not be much heavier than a few hundred GeV. On the

other hand, as we mentioned above, t-b-τ YU requires [9–19] the sleptons to be around a

TeV or above, if universality among sfermion masses is assumed at MGUT. Our analysis in

the following sections show that the non-universal gaugino case with split family sfermions

can resolve the g − 2 discrepancy and also realize t-b-τ Yukawa unification, while staying

consistent with all current experimental data.
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We note that recently there have been several attempts to resolve the discrepancy

within the MSSM framework assuming non-universal SSB mass terms at MGUT for

gauginos [41–43] or sfermions [38, 44].

The outline for the rest of the paper is as follows. In section 2 we summarize the

scanning procedure and the experimental constraints applied in our analysis. In sections 3

and 4 we present the results for supersymmetric SO(10) models with non-universal and

universal gaugino masses, respectively. Tables with benchmark points for both cases are

also presented, and section 5 contains our conclusions.

2 Phenomenological constraints and scanning procedure

We employ the ISAJET 7.84 package [48] to perform random scans over the parameter

space. In this package, the weak scale values of gauge and third generation Yukawa

couplings are evolved to MGUT via the MSSM renormalization group equations (RGEs)

in the DR regularization scheme. We do not strictly enforce the unification condition

g3 = g1 = g2 at MGUT, since a few percent deviation from unification can be assigned to

unknown GUT-scale threshold corrections [49–51]. With the boundary conditions given at

MGUT, all the SSB parameters, along with the gauge and third family Yukawa couplings,

are evolved back to the weak scale MZ.

In evaluating the Yukawa couplings the SUSY threshold corrections [52] are taken into

account at a common scale MS =
√
mt̃L

mt̃R
. The entire parameter set is iteratively run

between MZ and MGUT using the full 2-loop RGEs until a stable solution is obtained. To

better account for the leading-log corrections, one-loop step-beta functions are adopted for

the gauge and Yukawa couplings, and the SSB scalar mass parametersmi are extracted from

RGEs at appropriate scales mi = mi(mi).The RGE-improved 1-loop effective potential is

minimized at an optimized scale MS , which effectively accounts for the leading 2-loop

corrections. Full 1-loop radiative corrections are incorporated for all sparticle masses.

We implement the following random scanning procedure: a uniform and logarithmic

distribution of random points is first generated in the given parameter space. The function

RNORMX [72, 73] is then employed to generate a Gaussian distribution around each point

in the parameter space. The data points collected all satisfy the requirement of radiative

electroweak symmetry breaking (REWSB) [58–62], with the neutralino in each case being

the LSP. After collecting the data, we impose the mass bounds on all the particles [53] and

use the IsaTools package [65, 66] to implement the various phenomenological constraints.

We successively apply the following experimental constraints on the data that we acquire

from ISAJET 7.84:

123 GeV ≤ mh ≤ 127 GeV [20, 21]

0.8× 10−9 ≤ BR(Bs → µ+µ−) ≤ 6.2× 10−9 (2σ) [54]

2.99× 10−4 ≤ BR(b→ sγ) ≤ 3.87× 10−4 (2σ) [55]

0.15 ≤ BR(Bu→τντ )MSSM

BR(Bu→τντ )SM ≤ 2.41 (3σ). [55]

We also implement the following mass bounds on the sparticle masses:

– 3 –
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mg̃ & 1.4 TeV (for mg̃ ∼ mq̃) [63, 64]

mg̃ & 1 TeV (for mg̃ � mq̃) [63, 64]

MA & 700 GeV (for tanβ ' 48). [57]

Here mg̃, mq̃, MA respectively stand for the gluino, 1st/2nd generation squarks and the

CP odd Higgs boson masses.

3 SO(10) with non-universal gauginos masses

In this section we present the sparticle spectroscopy of Yukawa unified SO(10) with non-

universal gaugino masses at MGUT. The sfermions of the first and second families are

assigned a common SSB mass term m161,2 , while the third generation sfermions have a

universal SSB mass term m163 . We also employ universal SSB mass term for the MSSM

Higgs bosons, m2
Hu

= m2
Hd
≡ m2

10. As mentioned earlier, gauge coupling unification is one

of the nice features of low scale supersymmetry and indicates that the SM gauge symmetry

is embedded within a a simple gauge group with rank ≥ 4. In this case the MSSM gauginos

are contained within a single vector multiplet. To retain gauge coupling unification and at

the same time have non-universal gaugino masses at MGUT, one way is to employ [74–76]

non-singlet F -terms, compatible with the underlying GUT. Non-universal gauginos can also

be generated from the F -term with a linear combination of two distinct fields of different

dimensions [77]. We can also consider two distinct sources for supersymmetry breaking [78].

Since there are many possibilities for realizing non-universal gaugino masses with either

fixed or arbitrary mass ratios, we employ independent masses for the three MSSM gauginos

in our study. In this case our analysis will cover a variety of scenarios with non-universal

gaugino masses and split sfermion families in the presence of t-b-τ Yukawa unification.

We have performed random scans in the fundamental parameter space of the model

with ranges of the parameters given as follows:

0 ≤ m161,2 ≤ 1 TeV

0 ≤ m163 ≤ 5 TeV

−1 ≤M1 ≤ 0 TeV

−1 ≤M2 ≤ 0 TeV

0 ≤M3 ≤ 5 TeV

−3 ≤ A0/m3 ≤ 3

35 ≤ tanβ ≤ 55

0 ≤ m10 ≤ 5 TeV

µ < 0 (3.1)

In figure 1 we show the results in the Rtbτ − M3, Rtbτ − M2, Rtbτ − m161,2 and

m163 −m161,2 planes. Gray points are consistent with REWSB and neutralino LSP. Green

points form a subset of the gray ones and satisfy sparticles and Higgs mass bounds and

all other constraints described in section 2. Yellow points are a subset of the green points

– 4 –
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Figure 1. Plots in the Rtbτ −M3, Rtbτ −M3, Rtbτ −m161,2 and m163 −m161,2 planes. Gray points

are consistent with REWSB and neutralino LSP. Green points form a subset of the gray points and

satisfy the sparticle and Higgs mass bounds, as well as all other constraints described in section 2.

Yellow points are a subset of the green points and satisfy the ∆aµ constraint in eq. (1.1). Brown

points belong to a subset of yellow points and satisfy bound on the LSP neutralino relic abundance,

0.001 ≤ Ωh2 ≤ 1. In the m163 −m161,2 panel, in addition, blue points are a subset of the green ones

and satisfy Rtbτ < 1.1 and yellow. The yellow region is a subset of the blue region, while brown is

subset of yellow with the definition of the colors mentioned above.

satisfy the muon g − 2 constraint given in eq. (1.1). Brown points are a subset of yellow

points and satisfy the following neutralino relic abundance constraint, 0.001 ≤ Ωh2 ≤ 1.

We have chosen to display our results for a wider range of Ωh2 keeping in mind that

one can always find points which are compatible with the current WMAP range for relic

abundance with dedicated scans within the brown regions. In the m163 − m161,2 plane,

in addition, the blue points are a subset of the green ones and satisfy Rtbτ < 1.1. In this

panel the yellow region is a subset of the blue, and brown is a subset of the yellow region

with the color definitions the same as mentioned above.

From the Rtbτ −M3 plane we see that just from the REWSB condition (gray points),

we cannot have M3 . 1 TeV (or equivalently mg̃ . 3 TeV) if we demand t-b-τ Yukawa unifi-

cation better than 10%. The reasons for such a heavy gluino mass are the combined effects

from REWSB and the necessity for appropriate threshold corrections for t-b-τ Yukawa uni-

– 5 –
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Figure 2. Plots in the ∆aµ−Rtbτ and ∆aµ−mh planes. Gray points are consistent with REWSB

and neutralino LSP. Green points form a subset of the gray points and satisfy the sparticle and

Higgs mass bounds, as well as all other constraints described in section 2. Brown points belong to

a subset of green points and satisfy the bound for LSP relic abundance, 0.001 ≤ Ωh2 ≤ 1. In the

∆aµ −mh panel blue points are subset of the green ones and satisfy Rtbτ < 1.1. Brown points are

subset of blue points and have the same definition as above.

fication [19]. If we apply the current experimental constraint, the lower mass bound on

the gluino changes drastically (green points). In particular, t-b-τ Yukawa unification better

than 10% requires that M3 & 2.5 TeV. This bound is mostly dictated from the Higgs mass

constraint (123 GeV ≤ mh ≤ 127 GeV), the reason being that for t-b-τ Yukawa unification

with non-universal and opposite sign gaugino masses, the following condition is usually

satisfied: At/MS < 1 [19]. On the other hand, it is known [79] that the light CP even

Higgs boson mass receives significant contribution from the At term if At/MS & 1. We can

therefore conclude that there is no significant contribution from finite corrections to the

CP even Higgs boson mass if we require almost perfect Yukawa unification and the Higgs

mass is mostly generated from logarithmic corrections involving the stop quark. It was also

shown in [19] that the stop quark mass in this case has to be & 5 TeV in order to satisfy

the Higgs mass bound. Another constraint from Yukawa unification, namely, M3 > m163 ,

implies that the stop quark mass is mostly determined from radiative corrections from the

gluino. This, therefore, is the reason why the gluino mass affects the Higgs mass bound

so strongly for t-b-τ Yukawa unification better than 10%. The yellow points show that in

this scenario supersymmetry can easily provide the desired contribution to the muon g− 2

anomaly. We will show later that there are several channels that can generate the correct

relic abundance for neutralino dark matter, displayed by the brown points.

In the Rtbτ −M2 plane we observe a very mild constraint on the parameter M2 from

t-b-τ Yukawa unification and all current experimental data including muon g − 2 anomaly

and dark matter relic abundance. The same conclusion applies to M1 which is the reason

we do not display results in terms of M1 here.

Since the Higgs mass bound and t-b-τ Yukawa unification condition only affects the

third generations squarks, the first and second generation sfermions can be as light as

– 6 –
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Figure 3. Color coding same as in the m163 −m161,2 panel in figure 1.

100 GeV, as seen from the Rtbτ − m161,2 plane (gray points). The current experimental

data (including the limit mq̃ & 1.5 TeV) does not significantly change the lower bound

on m161,2 . The reason is that here the gluino and wino masses are independent of each

other and a large gluino mass (mg̃ > 5 TeV) automatically pushes the squark masses to a

few TeV despite the low initial value m161,2 at MGUT. This allows for low values of m161,2

while still being consistent with all experimental results. After applying the muon g − 2

constraint we obtain 0.3 TeV . m161,2 . 0.7 TeV. Again, brown points show that the

correct relic abundance is easily achieved once the muon g − 2 constraint is applied.

From the m163 −m161,2 plane we learn that it is possible to have solutions consistent

with muon g − 2 anomaly when m163 = m161,2 with arbitrary and opposite sign gaugino

– 7 –
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Figure 4. Color coding same as in the m163 −m161,2 panel in figure 1.

mass ratios at MGUT (see yellow points which are subset of blue points showing 10%

or better t-b-τ Yukawa unification). We find that in this case M3 > 3 ·M2 needs to be

satisfied at MGUT. We also see that the solution consistent with muon g − 2 anomaly

mostly occurs for m163 > m161,2 .

In figure 2 we show the results in the ∆aµ −Rtbτ and ∆aµ −mh planes. Gray points

are consistent with REWSB and neutralino LSP. Green points form a subset of the gray

points and satisfy the sparticles, Higgs mass bound and all other constraints described in

section 2. Brown points are a subset of the green points and satisfy the following bound

on the neutralino relic abundance: 0.001 ≤ Ωh2 ≤ 1. In the ∆aµ − mh panel, the blue

points are a subset of the green ones and satisfy Rtbτ < 1.1. In this plane the brown points

are a subset of the blue ones with the same definition mentioned above. We can see from

the ∆aµ − Rtbτ plane that a notable region of the parameter space simultaneously yields

perfect t-b-τ Yukawa unification along with the desired contribution to the muon g − 2

anomaly, while satisfying all experimental constraints described in in section 2.

The ∆aµ − mh panel shows that it is possible to have a 125 GeV light CP-even

Higgs boson consistent with the desired contribution to the muon g − 2 anomaly. The

desired contribution to the muon g − 2 anomaly and a 125 GeV Higgs cannot be easily

attained for a broad class of low scale supersymmetric model. For instance, it was shown

in [80] that with universal SSB gaugino and sfermion masses at MGUT, it is very hard to

simultaneously have a 125 GeV Higgs boson mass and the desired ∆aµ within 1σ deviation

from its theoretical value. In our case this is easily achieved and is also compatible with

good t-b-τ Yukawa unification (blue points).

In figure 3 we present our results in mµ̃R −mχ̃0
1
, mχ̃±

1
−mχ̃0

1
, mτ̃1 −mχ̃0

1
, mA −mχ̃0

1
,

mν̃µ −mχ̃0
1

and mh −mχ̃0
1

planes in order to show the different channels contributing to

yield the correct neutralino dark matter relic abundance. We see that all the channels are

consistent with the desired contribution to muon g − 2 anomaly. We also observe that the

slepton mass in this scenario can be around 200 GeV, and so there is hope that it can be

tested at the LHC. The results in the mχ̃±
1
−mχ̃0

1
plane exhibit bino-wino and bino-higgsino

mixed dark matter scenarios. The mh −mχ̃0
1

panel shows the presence of light Higgs and

Z-resonance neutralino dark matter solutions, consistent with Yukawa unification. The

– 8 –
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Point 1 Point 2 Point 3 Point 4 Point 5

m161,2 375.9 353.2 639 450.7 620.6

m163 2257 562.9 3113 1634 3580

M1 -981.9 -821.8 -526.8 -739.2 -699.1

M2 -701.8 -640.6 -266.5 -389.9 -372.4

M3 4299 3589 4305 3685 4771

tanβ 51.5 51.1 50.7 51.4 50.7

A0/m163 -2.06 -0.73 -1.62 1.87 1.76

m10 2512 988.7 370.5 189.4 1315

mt 173.3 173.3 173.3 173.3 173.3

µ -4845 -3707 -5648 -3926 -6276

∆aµ 31.5× 10−10 31.9× 10−10 25.7× 10−10 34.8× 10−10 28.6× 10−10

mh 124.6 123.3 124.7 123.1 125

mH 1280 1244 1293 778.5 1651

mA 1272 1236 1285 773.5 1641

mH± 1284 1248 1297 784.7 1654

mχ̃0
1,2

466.3, 680.9 392.9, 625.9 259.9, 304.8 361.4, 426.6 340.1, 402.7

mχ̃0
3,4

4843, 4843 3709, 3710 5635, 5635 3930, 3930 6262, 6262

mχ̃±
1,2

683.5, 4841 627.8, 3710 306.1, 5633 428.3, 3929 404.4, 6259

mg̃ 8599 7247 8650 7436 9517

mũL,R 7332, 7346 6204, 6214 7373, 7401 6351, 6372 8094, 8120

mt̃1,2
6232, 6419 5363, 5496 6545, 6730 5734, 5830 7157, 7375

md̃L,R
7332, 7348 6204, 6216 7374, 7406 6351, 6374 8094, 8125

mb̃1,2
6352, 6425 5427, 5489 6659, 6743 5775, 5837 7316, 7412

mν̃1,2 521.2 503.4 568 456.2 555.1

mν̃3 1991 778.7 2846 1437 321.6

mẽL,R 546.5, 493.7 519.1, 448.8 592.3, 642.6 470.9, 510.2 588.4, 640.2

mτ̃1,2 1469, 1994 437.1, 909.9 2454, 2846 1012, 1446 2695, 3209

σSI(pb) 0.29× 10−11 0.49× 10−11 0.22× 10−11 0.16× 10−10 0.13× 10−11

σSD(pb) 0.10× 10−9 0.33× 10−9 0.46× 10−10 0.28× 10−9 0.29× 10−10

ΩCDMh
2 0.12 0.12 0.11 0.11 0.13

R 1.06 1.05 1.05 1.01 1.09

Table 1. Benchmark points with ∆aµ within 1σ deviation from its theoretical value. All the

masses are in units of GeV. Points are chosen to be consistent with all the constraints described on

section 2. Point 1 depicts a solution for smuon (selectron) coannihilation, while point 2 represents

stau-coannihilation. Points 3 and 4 display chargino-neutralino coannihilation and A-resonance

solutions, respectively. Point 5 shows a solution with a 125 GeV Higgs boson and the central value

of muon g − 2.
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solid line in this plane stands for the relation mh = 2 ·mχ̃0
1
. Finally, the mq̃ −mg̃ panel

in figure 4 shows that t-b-τ Yukawa unification predicts mq̃ & 4 TeV and mg̃ & 5 TeV (blue

points), which may be difficult to observe at LHC 14.

Table 1 lists four benchmark points for this scenario that have good Yukawa unification,

satisfy the Higgs mass bound, yield the desired ∆aµ, and satisfy all other constraints

described in section 2. In addition, the relic density is within the WMAP limit on the

dark matter abundance. Point 1 depicts a solution for smuon/selectron-coannihilation

while point 2 represents stau-coannihilation. Points 3 and 4 display chargino-neutralino

coannihilation and A-resonance (mA ∼ 2mχ0
1
) solutions, respectively. Despite a large

splitting between the gaugino masses at MGUT , we find that the gauge couplings unify to

within a few percent. This can be assigned to unknown GUT-scale threshold correction.

4 SO(10) with universal gauginos masses

In this section we present the SO(10) sparticle spectroscopy corresponding to t-b-τ Yukawa

unification and universal gaugino mass terms at MGUT. As shown in ref. [30, 31], in this

case we must have non-universal SSB mass2 terms for the MSSM Higgs bosons, namely

m2
Hu
6= m2

Hd
at MGUT. Otherwise, it is very difficult to simultaneously implement REWSB

and t-b-τ Yukawa unification (for discussion see ref. [19]). As in the previous case, the

sfermions from the first and second families have common universal SSB mass terms m161,2 ,

and the third generation sfermions have the universal SSB mass term m163 .

The random scans are performed for the following range of parameters:

0 ≤ m161,2 ≤ 1 TeV

0 ≤ m163 ≤ 5 TeV

0 ≤M1/2 ≤ 2 TeV

−3 ≤ A0/m3 ≤ 3

35 ≤ tanβ ≤ 55

0 ≤ mHu ≤ 30 TeV

0 ≤ mHd ≤ 30 TeV

µ > 0. (4.1)

Figure 5 shows the results in the Rtbτ −M1/2, Rtbτ −m161,2 , Rtbτ −m163 and m163 −µ
planes. Gray points are consistent with REWSB and neutralino LSP. Green points form

a subset of the gray points and satisfy the sparticle and Higgs mass bounds along with all

other constraints described in section 2.

The Rtbτ − M1/2 plane shows the same interval for the parameter M1/2 which is

compatible with t-b-τ Yukawa unification as previously found with universal SSB sfermion

masses [9–11]. This result was expected since the different SSB mass terms for the

first/second and the third families do not significantly affect the RGE running and

threshold corrections to the third generation fermions which is very crucial for t-b-τ

Yukawa unification. In this scenario, we do not find acceptable solutions with LSP

neutralino as the correct dark mater candidate.

– 10 –



J
H
E
P
0
5
(
2
0
1
4
)
0
7
9

Figure 5. Plots in the Rtbτ −M1/2, Rtbτ −m161,2 , Rtbτ −m163 and m163 − µ planes. Gray points

are consistent with REWSB and neutralino LSP. Green points form a subset of the gray points and

satisfy the sparticle and Higgs mass bounds, as well as all other constraints described in section 2.

Figure 6. Plots in the Rtbτ −mg̃ and Rtbτ −mq̃ planes. Color coding same as in figure 5.

The Rtbτ − m161,2 plane shows how low the SSB mass term for the first and second

generation sfermions (m161,2) can become if they are independent from m163 . We can

compare these observations with the Rtbτ −m163 plane and note that the parameter m161,2

can be 4-5 times lighter than m163 . However, m161,2 lighter than 4 TeV is difficult if the

various experimental constraints are implemented.
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Point 1 Point 2 Point 3

m161,2 7037.9 8195.9 22593.1

m163 22196.8 25916.7 24856.1

M1/2 465.6 644.4 1046.3

A0/m163 −2.2 −2.1 −2.1

tanβ 51.0 51.1 51.8

mHd 29104.8 34726.1 33575.9

mHu 25514.3 30738.2 29095.7

µ 7656 4788 5522

mh 125.8 125.9 124.6

mH 3386 3700 8802

mA 3364 3676 8745

mH± 3388 3701 8803

mχ̃0
1,2

281, 583 372, 760 562, 1119

mχ̃0
3,4

7522, 7522 4724, 4724 5461, 5462

mχ̃±
1,2

585, 7492 762, 4683 1123, 5421

mg̃ 1567 2021 3005

mũL,R 7025, 6507 8199, 7617 22665, 22481

mt̃1,2
3805, 6468 4512, 7579 4393, 7780

md̃L,R
7025, 7216 8200, 8421 22665, 22788

mb̃1,2
6546, 7370 7699, 8752 8037, 9480

mν̃1 6637 7736 22451

mν̃3 16532 19314 18357

mẽL,R 6634, 7629 7733, 8868 22441, 22866

mτ̃1,2 16487, 8172 19261, 9555 18335, 9020

∆aµ 1.45× 10−11 1.82× 10−11 2.88× 10−12

σSI(pb) 2.31× 10−14 6.16× 10−15 1.84× 10−15

σSD(pb) 2.53× 10−12 1.10× 10−10 1.39× 10−10

Rtbτ 1.03 1.04 1.11

Table 2. Benchmark points with good Yukawa unification and mh ∼ 125 GeV. The points are

shown with increasing gluino mass from point 1 to 3.

The large difference between M1/2 and m161,2 (or m163) values, if we require 10% or

better unification, shows that the neutralino coannihilation scenario is not possible in order

to yield the correct neutralino dark matter relic abundance. Since m161,2 & 4 TeV, there
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can be no significant contribution to the muon g − 2 anomalous magnetic moment like we

had in the previous section. We also learn from the m163−µ panel that the µ-term is greater

than 3 TeV if we demand 10% or better Yukawa unification, (green points). Comparing this

result with the gaugino mass interval obtained from demanding 10% or better unification,

we conclude that the bino-higgsino mixed dark matter scenario is not viable here.

In figure 6 we display the results in the Rtbτ−mg̃ and Rtbτ−mq̃ planes, with color coding

the same as in figure 5. The Rtbτ −mg̃ panel shows that t-b-τ Yukawa unification predicts

an upper bound on the gluino mass which can easily be tested at LHC14. The result in

green color from the Rtbτ −mq̃ plane shows that in this model squarks will be difficult to

find at LHC14, but there is some hope that they might be accessible at LHC33 [36].

In table 2 we show three benchmark points for this scenario which display good Yukawa

unification with the required Higgs mass. In addition all other constraints described in

section 2 are satisfied. As previously mentioned, this SO(10) model does not exhibit

coannihilation and the contribution to the g − 2 anomaly is also not significant. The

gluino is the lightest colored sparticle for the three points and may be found at the LHC.

We have shown in this paper that good YU can arise in models with universal gaugino

masses and non-universal Higgs masses at the MGUT (NUHM2). But in this case, in order

to realize good YU with gluino mass more than 1 TeV, one needs to have m161,2 > 4 TeV,

and consequently smuons are at least around 4 TeV. Imposing non-universal gaugino

mass condition at MGUT in the framework of YU can reduce the values of m161,2 but not

enough to provide significant contribution to muon g − 2. Because the aim of our study

was to present scenarios with good YU and sizable contribution to muon g − 2 we did not

consider same sign but non-universal gaugino case in this paper.

5 Conclusion

We discussed supersymmetric SO(10) grand unification with non-universal and universal

gaugino masses at MGUT with the sfermion masses of the first and second generations

different from that of the third generation. We explored the consistency of good t-b-τ

Yukawa unification in these models with various experimental observations, namely, the

Higgs and sparticle mass limits, B-physics constraints, WMAP relic density bound and the

muon anomalous magnetic moment. We further studied the sparticle spectroscopy of these

models and listed some benchmark scenarios that can be explored at 14 TeV LHC.

In the scenario with non-universal gaugino masses, the soft supersymmetry breaking

parameters Mi (i=1, 2, 3) are treated as independent. In this case all of the above men-

tioned constraints can be satisfied. The colored sparticles are all found to be very heavy (&
5 TeV) for 10% or better Yukawa unification. The sleptons (smuon and stau) in this case can

be as light as 200 GeV. The correct relic abundance for neutralino dark matter is realized

through various channels including neutralino-stau(smuon) coannihilation and A resonance.

The second model has universal gaugino masses and non-universal Higgs masses at

MGUT. The gluino turns out to be the lightest colored sparticle with mass & 1.5 TeV.

The sfermions including the sleptons, however, are all very heavy (& 4 TeV), so that the

muon g − 2 anomaly is unresolved. The LSP neutralino in this case is not a viable dark

– 13 –
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matter candidate. The remaining experimental constraints are satisfied in this scenario,

and we present some benchmark points. They exhibit acceptable Yukawa unification and

the gluino is the only sparticle accessible at the LHC.
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