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dDipartimento di Matematica, Università di Cagliari and INFN, Sezione di Cagliari,

viale Merello 92, 09123 Cagliari, Italy

E-mail: kumars.gupta@saha.ac.in, harisp@uohyd.ernet.in, tjuric@irb.hr,

meljanac@irb.hr, samsarov@unica.it

Abstract: We obtain an exact analytic expression for the quasinormal modes of a non-

commutative massless scalar field in the background of a massive spinless BTZ black hole

up to the first order in the deformation parameter. We also show that the equations of mo-

tion governing these quasinormal modes are identical in form to the equations of motion of

a commutative massive scalar field in the background of a fictitious massive spinning BTZ

black hole. This results hints at a duality between the commutative and noncommutative

systems in the background of a BTZ black hole. Using the obtained results for quasinormal

mode frequencies, the area and entropy spectra for the BTZ black hole in the presence of

noncommutativity are calculated. In particular, the separations between the neighboring

values of these spectra are determined and it is found that they are nonuniform. There-

fore, it appears that the noncommutativity leads to a non-equispaced (discrete) area and

entropy spectra.

Keywords: Non-Commutative Geometry, Models of Quantum Gravity, AdS-CFT Corre-

spondence, Space-Time Symmetries

ArXiv ePrint: 1505.04068

1On a leave of absence from the Rudjer Boskovic Institute, Zagreb, Croatia.

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP09(2015)025

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Springer - Publisher Connector

https://core.ac.uk/display/81876308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kumars.gupta@saha.ac.in
mailto:harisp@uohyd.ernet.in
mailto:tjuric@irb.hr
mailto:meljanac@irb.hr
mailto:samsarov@unica.it
http://arxiv.org/abs/1505.04068
http://dx.doi.org/10.1007/JHEP09(2015)025


J
H
E
P
0
9
(
2
0
1
5
)
0
2
5

Contents

1 Introduction 1

2 Quasinormal modes 2

3 Mapping to a fictitious commutative BTZ black hole 5

4 Quantization of entropy 6

5 Conclusion 10

A κ-deformed Klein-Gordon equation in the BTZ background 12

1 Introduction

Quasinormal modes (QNM) of black holes [1–4] provide an important tool to explore the

AdS/CFT duality [5]. The QNM frequencies govern the decay of the gravitational pertur-

bations in the bulk [1] and they are related to the relaxation time of the two-point function

of the thermal CFT at the boundary of a BTZ black hole [6–8]. The QNM thus provide a

correspondence between the perturbation of the gravity in the bulk to that of a boundary

CFT in BTZ space-time. While this result provide an evidence for the AdS/CFT duality,

it would be important to test its validity at the Planck scale, which is a natural regime

for holography and quantum gravity. A first step in this direction would involve the study

of QNM in a theory of gravity which is relevant at the Planck scale. Noncommutative

geometry is one of the candidates of the quantum gravity at the Planck scale [9]. It is well

known that the quantum theory and general relativity together lead to a noncommutative

description of space-time [10, 11]. In particular, the noncommutative description of the

BTZ black hole is given by the κ-Minkowski algebra [12–14]. It is therefore useful to study

the QNM of the BTZ black hole within the κ-Minkowski framework [15–17].

In the commutative case, the scalar QNM of the BTZ black hole are obtained by solving

the Klein-Gordon (KG) equation with the QNM boundary conditions [18, 19]. The QNM in

the noncommutative case should therefore be obtained by solving the noncommutative KG

equation in the BTZ background. In principle even the BTZ background could be made

noncommutative. However, in this paper, we are dealing with a toy version of quantum

gravity where the noncommutative effects are analyzed only up to the first order in the

deformation parameter. For this purpose, it is sufficient to consider the scalar field to be

noncommutative and analyze the corresponding KG equation in the background of the

commutative BTZ geometry [20].

In a previous paper we have derived the equations of motion (EOM) of a noncom-

mutative scalar field propagating in the commutative spinless BTZ background [20]. We

– 1 –



J
H
E
P
0
9
(
2
0
1
5
)
0
2
5

used the κ-Minkowski algebra as a model of the noncommutativity. The noncommutative

corrections to the EOM’s were obtained using the method of realization [21–25] and are

restricted to the first order in the deformation parameter. Here we will show that in terms

of a suitable variable, those EOM’s reduce to an exactly solvable equation. In addition, the

EOM’s have a structure as those derived from a fictitious BTZ black hole with both mass

and spin. In other words, the EOM of a noncommutative scalar field in the background of

a massive spinless BTZ black hole have the same mathematical form as that of the EOM

of a commutative scalar field in the background of a fictitious massive BTZ black hole with

nonzero spin, which is exactly solvable. Both the mass and spin of this fictitious black

hole contain terms which are proportional to the deformation parameter. This allows us

to obtain an analytical expression for the QNM of the noncommutative scalar field in the

BTZ background. The QNM thus obtained contain the noncommutative corrections up to

the first order and have the correct commutative limit. This toy model therefore gives a

hint as to how the Planck scale physics might affect the QNM frequencies.

There is an interesting proposal that relates the QNM frequency to the black hole area

quantization. The area quantization was originally proposed by Bekenstein [26] assuming

that the area of the black hole horizon is an adiabatic invariant. Hod proposed that the

level spacing of the quantized area can be determined from the real part Re ω of the highly

damped QNM frequencies [27]. Subsequently it was proposed by Maggiore [28] that the

level spacing of the quantized black hole area should be related to
√

(Re ω)2 + (Im ω)2,

where Im ω is the imaginary part of the QNM frequency. Here we shall use the proposal by

Maggiore to obtain a noncommutative correction to the black hole area law quantization.

The plan of the paper is the following. In section 2 we investigate the radial equation of

motion governing the noncommutative (NC) scalar field in the background of the massive

spinless BTZ black hole. We find quasinormal mode solutions to this equation, that is wave

functions and corresponding energies/frequencies. In section 3 we show that the physical

system described by the radial equation from the preceding section is mathematically

equivalent to the physical system comprised of a massive commutative scalar field in a

background of the massive spinning BTZ black hole. Following this, we give a novel

view on noncommutativity, which emerges from our analysis, by assigning it a role of

a mass generating agent, as well as a driving force that lies behind the black hole spin

(see section 4). In section 4 the issue of the area and entropy quantization is discussed.

It is shown that the spectra of both of these quantities are discrete and nonequidistant.

Moreover, it appears that the source responsible for the none equidistant nature of the

spectra is the spacetime noncommutativity, which apparently breaks the equidistantness

in the area/entropy spectrum, so that their eigenvalues are no more equally spaced. We

conclude with section 5.

2 Quasinormal modes

In [20] we have investigated some of the properties of κ-deformed scalar field theory in

the curved background. As explained before, we consider a commutative geometry which

is probed with a NC scalar field. The noncommutativity is introduced by replacing the
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usual pointwise multiplication, between the fields in the action functional, with the NC star

product, i.e. φ(x)φ(x) −→ φ(x) ⋆ φ(x). Then, we postulated the following physical action

Ŝ =

∫

d4x
√−g gµν (∂µφ ⋆ ∂νφ)

=

∫

d4x
√−g gµν

(

∂µφ̂∂ν φ̂ ⊲ 1
)

= S0 +

∫

d4x

(

Aρσγδ
∂2φ

∂xρ∂xσ

∂2φ

∂xγ∂xδ

)

+O(a2)

(2.1)

where we used the “method of realization” [21–25], S0 is the undeformed action and Aρσγδ

is given by1

Aρσγδ = i
√−g gσδ (αxρaγ + β(a · x)ηργ + γaρxγ) . (2.2)

Here α, β, γ are the parameters determining the differential operator representation of

the κ-Minkowski algebra [15–17]. In what follows we focus on the family of realizations

that is parametrized only by the parameter β (since only terms proportional to β appear

in the equations of motion in the long wavelength approximation [20]). In this family

of realizations there is one that is particularly interesting. It is determined by β = 1

and corresponds to the phase space noncommutativity that is related to a generalized

uncertainty principle emerging from a study of string collisions at Planckian energies [29].

It is for the first time considered by Maggiore [30, 31]. It was also considered in [22, 24, 32–

36] where it is denoted as natural realization or classical basis.

Eq. (2.1) is valid for a general curved spacetime metric gµν(x). For our analysis,

we shall focus on the commutative massive BTZ geometry [37, 38], which is taken to be

spinless. We substitute this BTZ metric explicitly in eq. (2.1) and use the κ-deformed

scalar field to probe the geometry. The massive spinless BTZ black hole is described by

the metric [37, 38]

gµν =









r2

l2
−M 0 0

0 − 1
r2

l2
−M

0

0 0 −r2









, (2.3)

where we have taken the angular momentum to be zero, i.e. J = 0 and l is related to

the cosmological constant Λ as l =
√

− 1
Λ . In order to find the κ-deformed Klein-Gordon

equation, for simplicity, we use the long-wavelength limit and obtain the following radial

equation [20]

r

(

M− r2

l2

)

∂2R

∂r2
+

(

M− 3r2

l2

)

∂R

∂r
+

(

m2

r
−ω2 r

r2

l2
−M

−aβω
8r

l2

3r2

2l2
−M

r2

l2
−M

)

R = 0, (2.4)

which will be the cornerstone of the whole subsequent analyzes, presented in this paper.

See appendix A for a brief derivation of (2.4) whose full details can be found in [20].

1In eq. (2.2) aµ is a 4-vector of deformation, but in the subsequent analysis we choose one particular

orientation, aµ = (a, 0, 0, 0), so that henceforth the symbol a is reserved for the time component of the

deformation 4-vector.
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Before proceeding further, let us address an important point. The NC field theory is

highly non-linear and it may therefore appear surprising that the higher derivative terms

do not contribute to the equation of motion. This point has been discussed in detail in [20]

and here we shall recall the essential features of that analysis. The main point to note is

that we are looking for the NC correction to the lowest order in the deformation parameter.

The NC effects are expected to arise at the Planck scale and the NC deformation parameter

would be suppressed in powers of the Planck mass. It is therefore logical to consider the

NC effects only to the lowest order. In addition, we also look at the long wavelength or low

frequency limit of the quasi-normal modes. The reason is that the QNM’s are associated

to the gravitational perturbations, which are inherently very weak [39] and there is a

considerable effort from the experimental side to detect the low frequency signals [40]. It is

therefore both logical and important to consider the low frequency limit. With these two

approximations, the equation of motion reduces to the form given in (2.4).

Now we show that eq. (2.4) has an exact solution for QNM boundary conditions. Using

the following substitution

z = 1− Ml2

r2
, (2.5)

we re-express eq. (2.4) as

z(1− z)
d2R

dz2
+ (1− z)

dR

dz
+

(

A

z
+B +

C

1− z

)

R = 0, (2.6)

where the constants A,B and C are

A =
ω2l2

4M
+ aβω, B = −m2

4M
, C = 3aβω. (2.7)

Radial eq. (2.6) is analytically solvable2 and the solution is given by

R(z) = zλ1(1− z)λ2F (z) (2.8)

where F (z) is the hypergeometric function satisfying

z(1− z)
d2F

dz2
+ [c− (1 + a+ b)z]

dF

dz
− abF = 0. (2.9)

After defining

c = 2λ1 + 1, a+ b = 2λ1 + 2λ2, ab = (λ1 + λ2)
2 −B (2.10)

and

λ2
1 = −A, λ2 =

1

2
(1±

√
1− 4C), (2.11)

it subsequently follows

a = λ1 + λ2 + i
√
−B, b = λ1 + λ2 − i

√
−B. (2.12)

We choose λ1 = −i
√
A and λ2 =

1
2(1−

√
1− 4C) without loss of generality.

2Note that eq. (2.6) has the same form as eq. (8) in [19].
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The quasinormal modes are defined as solutions which are purely ingoing at the hori-

zon, and which vanish at infinity [6]. We have two linearly independent solutions of eq. (2.6),

F (a, b, c, z) and z1−cF (a−c+1, b−c+1, 2−c, z) near the horizon z = 0. Thus, the solution

which has ingoing flux at the horizon is given by

R(z) = zλ1(1− z)λ2F (a, b, c, z) (2.13)

Since (2.13) is valid only in some neighborhood of the horizon, for the infinity, z = 1, we

use the linear transformation formula

R(z) = zλ1(1− z)λ2+c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1, 1− z)

+ zλ1(1− z)λ2
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1, 1− z),

(2.14)

where the first term vanishes and the vanishing of the second term imposes the following

conditions

c− a = −n, or c− b = −n, (2.15)

and n = 0, 1, 2 . . . These conditions determine the frequencies of the quasinormal modes.

The left and right quasinormal mode frequencies are given by3

ωL,R = ±m

l
+ aβ

2M

l2
(6n+ 5)− 2i

[√
M

l
(n+ 1)∓ 3aβ

m

l2

√
M

]

. (2.16)

Notice that for a → 0 we recover the result for the quasinormal frequencies of massless

scalar field in the BTZ background with J = 0 (see [19]). Also it may be observed that non-

commutativity introduced the n dependence into the real part and the angular momentum

m dependence into the imaginary part of the quasinormal mode frequencies.

3 Mapping to a fictitious commutative BTZ black hole

The equation (2.6), together with the coefficients (2.7), describes the dynamics of massless

NC scalar field with energy ω and angular momentum m, in the background of a BTZ black

hole with mass M and with vanishing angular momentum (J = 0). A close inspection of

the form of equation (2.6) leads to an interesting observation. To see that, consider the

equation of motion of a different scalar field of mass µf , energy ω and angular momentum

m in the background of a fictitious BTZ black hole with mass Mf and angular moment

Jf , which corresponds to equation (8) of ref. [19]. Our equation (2.6) and equation (8) of

ref. [19] have exactly the same analytical structure, except that the coefficients A,B and

C in ref. [19] have different forms, which depend on the parameters of the new scalar field

and the fictitious BTZ black hole. Thus we see that the equations of motion of a massless

noncommutative scalar field in the background of a massive spinless BTZ black hole has

the identical form as that of a massive commutative scalar field in the background of a

massive spinning BTZ black hole.

3We neglect the terms of the order O(a2).
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Since we have the equivalence between two equations of motion, which pertain to the

two completely different physical situations, a question naturally arises as to whether it is

possible to find some kind of mathematical correspondence between them.The answer is

yes. Namely, it appears that it is really possible to find a direct mapping between the case

considered here, that is NC massless scalar field in the non-rotational BTZ background,

and the physical setting where the ordinary massive scalar field probes a BTZ geometry

with nonvanishing angular momentum. In what follows, the later setting we shall refer

to as the fictitious one (see [19] for the explicit expressions that correspond to this ficti-

tious situation).

Therefore, by comparing the constants A,B and C, appearing in (2.6), with the ap-

propriate constants from the reference [19], we get the following set of conditions

A =
ω2l2

4M
+ aβω =

l4

4(r2+ − r2−)
2

(

ωr+ − m

l
r−

)2
= Af

B = −m2

4M
= − l4

4(r2+ − r2−)
2

(

ωr− − m

l
r+

)2
= Bf

C = 3aβω = −µf

4
= Cf ,

(3.1)

with r+, r− being the outer, i.e. inner radius of the equivalent spinning BTZ black hole,

respectively.4

Furthermore, since [37, 38]

Mf =
r2+ + r2−

l2
, Jf =

2r+r−
l

, (3.2)

we can express the parameters of the commutative fictitious situation completely in terms

of the parameters defining the NC case we analyze here,

Mf = Mf (a,M), Jf = Jf (a,M), µf = µf (a,M). (3.3)

This mapping is similar to the one obtained in [41], where the analogy between the NC

version of Schwarzschild black hole and the commutative Reisner-Nordstrom black hole

was made.

In order to understand the physical meaning behind the above equivalence, note that

when the noncommutative parameter goes to zero, the parameters of the two situations

coincide with each other. This observation suggests that the noncommutativity of the

scalar field generates, possibly through some back reaction, the additional mass and angular

momentum of the system with the fictitious black hole.

4 Quantization of entropy

In quantum gravity theory the black hole area is represented by a quantum operator and

its values are therefore supposed to constitute a discrete set, made of eigenvalues of the

4Note that to be completely correct, we should use the notation r
f
+ and r

f
−

instead of r+, r− for the

radii, to distinguish them from the radii pertaining to the spinless BTZ, which are respectively given by

r+ = l
√
M and r

−
= 0. However, to keep the notation as simple as possible, we omitted the superscript.

– 6 –
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area operator. In order to gain insight into the nature of the area spectrum, one may

approach the problem in a semiclassical way, which utilities the Bohr-Sommerfeld quan-

tization applied to a typical adiabatic invariant, characteristic for the physical system in

question. Generally, for the system of energy E and characteristic frequency ∆ω(E), the

typical adiabatic invariant is of the form
E

∆ω(E)
[42]. In our case of interest, namely the

black hole with horizon area, we may replace the energy E with the black hole mass M and

for ∆ω(E) we may take [43, 44] the transition frequency between the two adjacent states of

the black hole. The qualitative picture one may have in mind here is the semiclassical one

where the black hole is considered as a physical system that can exist in different quantum

states and whose energies are given by the quasinormal mode frequencies.

When undergoing a transition between the two states in their quasinormal mode spec-

trum, these oscillating black holes then emit elementary quanta of energy/mass. However,

since quasinormal mode frequencies are complex valued quantities, a question naturally

raises as to which part of them carries the genuine information about the energy, especially

the elementary quantum of energy/mass that is emitted or absorbed from outside of the

black hole horizon.

In this respect, the first who pointed out that the quasinormal modes could have a

relevance to these elementary quanta and subsequently to the quantization of the area and

entropy of the black hole was Hod [27]. He identified the mass of the elementary black

hole quanta with the real part of the quasinormal mode frequencies. Afterwords, while

retaining the crucial role for the quasinormal modes in quantizing the black hole area,

Maggiore proposed that instead of the real part of the quasinormal mode frequencies, it

might be that it is their absolute value that has the real physical meaning [28].

If we apply this conjecture to our case in hand, we get that the elementary quantum

of mass ∆M that is emitted or absorbed by the black hole is given by

∆M = ~∆ω = ~(|ωL,R|n − |ωL,R|n−1), (4.1)

where |ωL,R| =
√

(Re ωL,R)
2 + (Im ωL,R)

2 and n is generally understood to be large, in

concordance with the Bohr’s correspondence principle which only holds for transitions

where both radial quantum numbers (here n and n − 1) are large. Nevertheless, even if

we extrapolate the analysis to low n and to the transitions from and to a black hole in its

fundamental state, where semiclassical reasoning might be wrong, we are still left with a

non-vanishing quantum of mass (i.e. quantum of black hole area).

Now, using quasinormal mode frequencies (2.16), the frequency difference ∆ω can be

calculated as

∆ω = |ωL,R|n − |ωL,R|n−1 =
2
√
M

l

(

1± aβ

2l

m

n(n+ 1)

)

. (4.2)

Recalling that the area of the non-rotating BTZ black hole is given by

A = 2πr+ = 2πl
√
M, (4.3)

– 7 –
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we determine the elementary quantum ∆A = 2πl 1
2
√
M
∆M of the BTZ black hole area, in

the presence of noncommutativity, to be given as

∆A = 2π~

(

1± aβ

2l

m

n(n+ 1)

)

. (4.4)

The result obtained suggests that the amount of area by which the black hole horizon

“shrinks” depends on the quantum states of the black hole that are involved in the partic-

ular process of transition. One may note that in the limit of vanishing noncommutativity,

a → 0, this feature disappears, keeping the elementary quantum of area insensitive to the

details of the quasinormal mode spectra (or equivalently, the black hole spectra).

In order to determine, within the semiclassical approach, the area spectrum for the

BTZ black hole in noncommutative setting, we turn to the observation mentioned at the

beginning of this section in relation to adiabatic invariant. As already noted, for the black

hole of mass M and characteristic vibrational frequency ∆ω the quantity of interest is

I =

∫

dM

∆ω
, (4.5)

where for the large n the vibration frequency ∆ω is given by (4.2). In making this choice

here we follow [43, 44, 52].

Then again, by using quasinormal mode frequencies (2.16) and substituting (4.2)

in (4.5), it is possible to evaluate the adiabatic invariant I as

I = l
√
M

1

1± aβ
2l

m
n(n+1)

≈ l
√
M

(

1∓ aβ

2l

m

n(n+ 1)

)

. (4.6)

Now, imposing the Bohr-Sommerfeld quantization condition, we have

I = Nǫ, N ∈ N, (4.7)

where, unlike for example [52], we allow a somewhat broader range of possibilities for ǫ. It

might be ~, Planck length or some intermediate scale a, which settles the noncommutativity

scale somewhere in between LHC energies and the Planck energy.

Based on the formula (4.3), the spectrum of the area of BTZ black hole in the setting

of noncommutative geometry is

A = 2πI
(

1± aβ

2l

m

n(n+ 1)

)

⇒ AN = 2πNǫ

(

1± aβ

2l

m

n(n+ 1)

)

. (4.8)

Note that this result is in concordance with (4.4) since it predicts the same elementary

quantum of area, although obtained by somewhat different approach [28]. It can also be

seen that while the spectrum is linear in the quantum number N , it becomes increasingly

more complex in the quantum numbers n,m. Furthermore, one finds that it is the effect of

noncommutativity that brings in this additional richness and complexity into the pattern

of the area spectrum, rendering it nonuniform. This feature is new when compared to [52].

Note however that for a → 0, our result reduces to that in [52].

– 8 –
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Assuming the Bekenstein-Hawking relation, the entropy of the nonrotational BTZ

black hole in the same noncommutative setting is then given by

SN =
AN

4G∗
, (4.9)

where5 G∗ denotes the rescaled Newton’s gravitational constant, with rescaling being in-

duced by the noncommutativity related effects (see [20] for more details). Utilizing in (4.9)

the result for the rescaled gravitational constant from [20], we get for the entropy

SN =
AN

4G

(

1 + aβ
8

3

π

l

ζ(2)

ζ(3)

√
8GM

)

, (4.10)

which after making use of the area relation (4.8) and keeping only terms linear in a,

subsequently leads to the result

SN = Nǫ
π

2G

(

1± aβ

2l

m

n(n+ 1)
+ aβ

8

3

π

l

ζ(2)

ζ(3)

√
8GM

)

. (4.11)

We see from this result that the entropy exhibits the similar pattern of behavior as its area

counterpart.

Thereby the noncommutativity breaks the equidistantness in the spectrum. The hori-

zon area, being quantized with elementary quantum of area (4.4), must be of the form

AN = N∆A. Hence, at the level N (and with the choice ǫ = ~) one can expect that the

number of black hole microstates is given by BN = exp(N/(4G)2π~(1± aβ
2l

m
n(n+1))).

Besides, the interesting point about the entropy (4.11) is that it may be used to

deduce the angular momentum of the equivalent spinning black hole. We may recall the

argumentation from section 3 where we argued that the nonrotational BTZ black hole in

noncommutative setting can be mapped to an equivalent spinning BTZ in the absence

of noncommutativity. The point here is that the above result may be used to deduce

the angular momentum which pertains to this equivalent picture and may be viewed as

being generated due to the effects driven by noncommutativity. Bearing on the equivalence

between two pictures, one may equate the corresponding entropies, namely S = Sf . Here S

is the entropy (4.11) and Sf = Af

4G is the entropy of the equivalent spinning BTZ black hole

in the standard commutative background. Owing to the fact that the later case describes

the spinning black hole, the corresponding radius rf+ acquires the additional contribution

due to the nonvanishing angular momentum

rf+ =
l
√
8GM

2

(

1 +

√

1−
(

Jf

8GMl

)2)

, (4.12)

so that the corresponding area Af = 2πrf+ modifies appropriately. Of course, since in the

later case the underlying setting is commutative one, one may use the standard gravitational

5Note that so far we were carrying the study in the units where 8G = 1. For the purpose of the

remaining analysis we switch to the standard unit system, which in turn formally corresponds to putting

8GM everywhere in place of M . Note also that the result (4.8) is insensitive to this change. That is, it

remains the same after one makes the above described change of units.
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constant G to calculate the entropy. The straightforward calculation then shows that the

square of the induced angular momentum scales with the noncommutativity parameter as

Jf 2 ∼ aβN2ǫ2
π

l

ζ(2)

ζ(3)
(8GM)3/2 +O(a2), (4.13)

exposing in this way the black hole angular momentum as being purely due to the non-

commutative nature of the underlying spacetime geometry.

Finally, few comments concerning the decay rate of a black hole may be given. The

decay of small perturbations of a black hole at equilibrium may be described by the quasi-

normal modes, which represent a discrete set of solutions to the wave equation subject to

particular boundary conditions, and which are characterized by the spectrum of complex

frequencies.

In the most rudimentary approximation of the black hole, which may be taken to

be that of the classical damped oscillator, the imaginary part of the quasinormal mode

frequencies may be related to the decay rate of the black hole, or equivalently, to the

relaxation of the system back to thermal equilibrium [7, 28]. In this picture the small

perturbations of black holes vanish in time as a superposition of damped oscillations whose

decay time is then determined by the imaginary part of these quasinormal frequencies.

From the result (2.16) obtained in section 2 we see that the imaginary part of the

QNM frequencies scales linearly with the radial quantum number n, which is seen to be

the case for both, left and right modes. This means that as n grows, which corresponds

to more and more excited states, the imaginary part of the QNM frequencies also grows.

Moreover, as their imaginary part is proportional to the decay rate, which in turn is

inversely proportional to the life time of the particular excited state, we finally have the

conclusion that higher excited states live shorter. Since this result is highly plausible on the

general ground of physical intuition, we stress that our calculations confirm and support

this assertion.

The next interesting observation is that the effect of noncommutativity is either to

suppress or boost the decay rate depending on whether the left or right modes are con-

cerned. In particular, as n increases, the decay rate will increase too, but for the left modes

this effect will be suppressed, due to the presence of noncommutativity. Analogously, for

the right modes the increase of the decay rate (decrease in the life time) with the increase

of n will be additionally boosted, that being the net effect of noncommutativity too, as is

plainly suggested from the expression (2.16).

5 Conclusion

In this paper we have calculated the noncommutative corrections to the QNM frequencies

of the BTZ black hole, up to the first order in the deformation parameter. The calculation

has been performed within the context of the κ-Minkowski algebra, which is a type of

noncommutativity that is associated with several black hole spacetimes. We started with

a massless NC scalar field coupled to a commutative spinless BTZ background, from which

we obtained the differential equation and deformed QNM were obtained by solving this
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equation. This equation has the same analytic form as that of a massive commutative

scalar field in the background of a massive spinning commutative BTZ black hole. This

remarkable result, which is valid up to the first order in the deformation parameter, allows

us to analytically obtain the deformed NC QNM. The deformed NC QNM frequencies

reduce to their commutative counterpart when the deformation parameter is removed.

This result indicates that the NC deformation of the field operator in the lowest order

respects the SL(2,R) symmetry of the BTZ black hole, which can be understood as follows.

Let us first note that we started with a classical commutative BTZ black hole and considered

a NC scalar field in its background. At that level, the classical symmetries of the BTZ

are left unchanged. But still there is a question if the NC effect somehow spoils it. It has

been shown in an earlier paper [12, 13] that general deformations of the BTZ black hole

are of the κ-Minkowski type. Indeed, the way this was deduced in [12, 13] is by asking

what is the most general type of NC deformation that is compatible with the symmetries

of the BTZ and that led to a κ-Minkowski type algebra. This has also been subsequently

found in other works, namely that in [14]. Hence, at the NC level, κ-Minkowski algebra

is compatible with the symmetries of the BTZ black hole. In the present work, we have a

dual scenario where the field is NC and the geometry is classical. In this dual picture, and

in the lowest order in the deformation parameter as mentioned above, the NC field respects

the symmetries of the BTZ space-time. The terms which are of higher orders in the NC

parameter, including the ones containing the higher derivatives, are in general unlikely to

respect the classical symmetries of the BTZ black hole.

As discussed in [6–8], QNM of the BTZ black hole provide a tool to study AdS/CFT

duality or holography. In addition, the commutative BTZ black hole is compatible with a

precise kinematical description of holography, as encoded in the Sullivan’s theorem [45–47].

This theorem states that for certain classes of hyperbolic spaces, which are called geomet-

rically finite, there is a one-to-one correspondence between the hyperbolic structure in the

interior and the conformal structure at the boundary. It has been shown that the Euclidean

BTZ black hole as well as some of its variants are geometrically finite for which the Sul-

livan’s theorem holds [48–50]. We have already mentioned that our resulting equation for

the QNM has the structure as if it was obtained for a massive commutative scalar field in

the background of a commutative massive spinning BTZ black hole. Note that Sullivan’s

theorem is valid for these classes of black holes. We can therefore say that the AdS/CFT

duality or the holographic principle is compatible with the probing of a BTZ black hole

geometry with a noncommutative scalar field obeying the κ-Minkowski algebra.

It is natural to ask how general our results would be, since they are specific to the BTZ

blak hole. In this context it may be noted that a very large class of string theories contain

a BTZ factor in the near-horizon limit [5]. It is thus plausible that our results would apply

for this wide class of geometries as well (even for dilaton black holes [51]).

Following the idea due to Bekenstein that in quantum gravity the area of the black hole

horizon should be quantized, we turned to the problem of finding the discrete spectrum for

the BTZ black hole horizon area and the corresponding entropy. In the approach presented

here we followed the original proposal put forward by Hod that QNM, as the leading and

most dominant signal from the gravitational perturbations of the oscillating black holes,

– 11 –



J
H
E
P
0
9
(
2
0
1
5
)
0
2
5

may shed some light on the problem of the black hole area quantization. This in particular

pertains to the spacing of the area spectrum, for which varied results are available in the

literature. Here we find that within the κ-deformed noncommutative framework, the area

and entropy of the BTZ black hole are both described by the discrete spectra comprising

of the sets of nonequidistant values.

It should be noted that this conclusion differs from the results known in the litera-

ture [52], where the BTZ black hole spectra for the area as well as for the entropy were

found to be equidistant. Here we have a different situation, namely, based on the results

obtained here, it appears that it is the noncommutativity which makes the difference and

gives rise to a nonuniform separation between the adjacent values across the area and en-

tropy spectra. Moreover, the bare effect of the noncommutativity is to give the relevance to

both quantum numbers, the radial quantum number and the angular momentum quantum

number, which are otherwise put aside, and intertwine them to produce the nonequidistant

spectra. In the absence of noncommutativity these quantum numbers do not play any role

in shaping the area/entropy spectrum and are completely irrelevant when it comes up to

an identification of the elementary quanta for these quantities (black hole area/entropy).

As we have seen, this situation abruptly changes once the noncommutativity is switched on.
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A κ-deformed Klein-Gordon equation in the BTZ background

We start with the following physical action for the NC scalar field

Ŝ =

∫

d4x
√−g gµν (∂µφ ⋆ ∂νφ) . (A.1)

Now we shall use the “method of realization” [21–25] up to the first order in a, where the

star product is given by

f(x)⋆g(x) = f(x)g(x)+ iα

(

x · ∂f
∂x

)(

a · ∂g
∂x

)

+ iβ(a ·x)
(

∂f

∂x
· ∂g
∂x

)

+ iγ

(

a · ∂f
∂x

)(

x · ∂g
∂x

)

.

(A.2)

Setting f = g = ∂φ in eq. (A.1), we expand the action up to the first order in the

deformation parameter aµ as

Ŝ=S0+

∫

d4x
√−g gµν

[

iαxσ
∂2φ

∂xσ∂xµ
aβ+iβ(a · x) ∂2φ

∂xβ∂xµ
+iγ

∂2φ

∂xα∂xµ
aαx

β

]

(∂β∂νφ) .

(A.3)
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By defining

Aαβγδ = i
√−g gβδ (αxαaγ + β(a · x)ηαγ + γaαxγ) , (A.4)

we re-write the above action in a more compact form as

Ŝ = S0 +

∫

d4x

(

Aαβγδ
∂2φ

∂xα∂xβ

∂2φ

∂xγ∂xδ

)

. (A.5)

Starting from the noncommutative scalar field theory described by the above action,

we derive the equations of motion for the field φ. Notice that the action in eq. (A.5)

has the terms involving higher derivatives of the scalar field, i.e., our Lagrangian is L =

L(φ, ∂φ, ∂2φ, x) and hence the Euler-Lagrange equations will be more general, as in the

case of higher derivative theories. Therefore, the Euler-Lagrange equation relevant here is

∂µ
δL

δ(∂µφ)
− ∂µ∂ν

δL
δ(∂µ∂νφ)

=
δL
δφ

. (A.6)

Before calculating the Euler-Lagrange equation let us notice that ∂2φ
∂xα∂xβ

= (∂αgβρ)∂ρφ +

gανgβρ∂ν∂ρφ, so that the NC part of the action in (A.5) is actually proportional to three

types of terms. Namely, terms proportional to (∂φ)2, terms proportional to (∂φ)(∂2φ)

and terms proportional to (∂2φ)2 (where we omit the index structure, but assume that

all partial derivatives are ∂µ = ∂
∂xµ ). Therefore when calculating the equation of motion

using (A.6), for the NC contribution we will get four types of terms: ∂φ, ∂2φ, ∂3φ and ∂4φ.

It can be seen that in the special case of time-like deformations, aµ = (a,~0), for the

BTZ metric and under the approximation of the long wavelength limit there will be no

contributions in the radial equation coming from the higher derivative terms, as far as the

lowest order in deformation is concerned.

The analysis presented so far is applicable for a general curved spacetime metric gµν(x).

As a next step we use the explicit form of the BTZ metric in eq. (A.5) and use the κ-

deformed scalar field φ̂ to probe the classical BTZ geometry in order to infer new features

that the noncommutativity might bring into the black hole physics. Also the choice aµ =

(a,~0) is understood. Even with these simplifying assumptions, the equations of motion

still appear to be non-trivial. Nevertheless, there is still enough space for making further

simplifications, motivated and based on physical grounds. The first approximation that

we take is the long wavelength limit, where we keep terms in the equations of motion that

are of the lowest order in derivatives (∂φ ≫ ∂2φ, ∂3φ, ∂4φ). In this approximation the

terms dependent on α and γ do not contribute since they are all proportional to ∂(2,3,4)φ.

Consequently, only terms depending on β give rise to noncommutative contributions and

this in turn leads to the situation where only terms proportional to ∂φ survive. The

outcome of the foregoing analysis is that only realizations with nonvanishing parameter β

contribute in the lowest order of the long wavelength approximation. On the other side,

the choice of realization corresponds to the choice of the vacuum of the theory and this

should be fixed by experiment, in principle. For example, β = 1 corresponds to the natural

realization (classical basis [25]).
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The final step in deriving the radial equation involves using the ansatz φ(r, θ, t) =

R(r)e−iωteimθ, as long as M ≫ 1, and keeping terms up to first order in the deformation

parameter a. Taking all of the above into account, we get the radial equation as

r

(

8GM− r2

l2

)

∂2R

∂r2
+

(

8GM− 3r2

l2

)

∂R

∂r
+

(

m2

r
−ω2 r

r2

l2
−8GM

−aβω
8r

l2

3r2

2l2
−8GM

r2

l2
−8GM

)

R=0.

(A.7)
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