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2 CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
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Abstract. We perform systematic calculations of pairing gaps in semi-magic nuclei across the nuclear chart
using the Energy Density Functional method and a non-empirical pairing functional derived, without
further approximation, at lowest order in the two-nucleon vacuum interaction, including the Coulomb
force. The correlated single-particle motion is accounted for by the SLy4 semi-empirical functional. Rather
unexpectedly, both neutron and proton pairing gaps thus generated are systematically close to experimental
data. Such a result further suggests that missing effects, i.e. higher partial waves of the NN interaction,
the NNN interaction and the coupling to collective fluctuations, provide an overall contribution that is
sub-leading as for generating pairing gaps in nuclei. We find that including the Coulomb interaction is
essential as it reduces proton pairing gaps by up to 40%.

PACS. 21.60.Jz Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-
phase approximations) – 21.30.Cb Nuclear forces in vacuum – 21.30.Fe Forces in hadronic systems and
effective interactions – 21.60.De Ab initio methods

1 Introduction

It was realized long ago [1] that features such as the odd-
even staggering of nuclear binding energies, or moments
of inertia having half the corresponding rigid-body value,
were related to the superfluid character of atomic nuclei.
As a matter of fact, like-particle pairing has become an
essential ingredient of nuclear-structure models, in par-
ticular regarding the description of exotic nuclei [2]. In
addition, superfluidity plays a key role in neutron stars,
e.g. it strongly impacts post-glitch timing observations [3]
or their cooling history [4].

Although ab initio calculations of pairing properties
are possible for the idealized infinite-nuclear-matter sys-
tem [5–7], they remain a challenge for finite nuclei beyond
the lightest ones. In particular, finite-size effects require to
go beyond a simple extrapolation of the results obtained in
infinite nuclear matter. The nuclear Energy Density Func-
tional (EDF) approach is the microscopic tool of choice
to study medium-mass and heavy nuclei in a systematic
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manner [8]. Within a single-reference (SR) implementa-
tion, pairing is treated through U(1) symmetry breaking
which leads to solving Hartree-Fock-Bogoliubov (HFB) [9]
or Bogoliubov-de Gennes equations. However, the latter
are usually solved in terms of empirical nuclear function-
als for both single-particle and pairing channels. It is of
current interest to construct non-empirical energy density
functionals derived explicitly from two- and three-nucleon
vacuum interactions [10], e.g. on the basis of many-body
perturbation theory (MBPT), in view of the challenge
posed by exotic nuclei displaying an unusually large ra-
tio of neutrons over protons. The recent advent of low-
momentum nuclear interactions based on renormalization
group (RG) techniques [11] opens up such a possibility.

Describing pairing through MBPT [12,13] translates
into solving a generalized Bardeen-Cooper-Schrieffer gap
equation. Doing so requires two essential ingredients: the
normal self-energy function, summing interaction pro-
cesses between a single nucleon and the medium, together
with the pairing interaction kernel, both of which can
be expanded in terms of the vacuum interaction ver-
tex. The first-order contribution to the two-particle ir-
reducible pairing kernel is the vacuum interaction itself,
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while higher-order terms include the induced interaction
describing the process of paired particles interacting
through the exchange of collective medium fluctuations. A
fundamental, yet unresolved, question relates to how much
of the pairing gaps in finite nuclei are accounted for at
lowest order, i.e. by the direct term of the two-nucleon in-
teraction, and how much is due to higher-order processes.
That the direct nuclear interaction can generate superflu-
idity is at variance with the situation in electronic systems.

Calculations of pairing gaps in a non-homogeneous sys-
tem have been performed for a slab of nuclear matter [14,
15] building the pairing kernel at lowest order in the vac-
uum interaction and complementing it with a schematic
normal self-energy. Rare studies performed in finite nuclei
tend to show that the direct term of the vacuum inter-
action only accounts for a fraction of experimental pair-
ing gaps [16], and that induced interactions due to cou-
pling with collective modes [17,18] can explain the remain-
der [16,19,20]. However, due to the complexity of such cal-
culations, only a single nucleus (120Sn) has been studied.

In the present paper, we contribute to the discussion
by performing a systematic study of gaps generated by a
pairing interaction kernel computed at first order in the
two-body (NN) vacuum interaction, using the method out-
lined below [21,22] and detailed in a forthcoming pub-
lication [23]. We shall treat the NN interaction fully,
including hadronic charge-symmetry-breaking terms and
the Coulomb interaction, but shall omit the three-nucleon
(NNN) interaction at this point.

2 Method

We use the low-momentum NN interaction Vlow k [11] built
from the Argonne v18 NN potential [24] with a renormal-
ization cut-off Λ = 2.5 fm−1. As for the description of low-
energy nuclear phenomena, Vlow k is as a valid vacuum NN
interaction as any more conventional NN potential that
tries to model explicitly the short-range, i.e. high-energy
physics. As a result, pairing gaps computed in infinite nu-
clear matter (INM) using free kinetic energy and a pairing
kernel at lowest order in the NN interaction are essentially
independent of the intrinsic resolution scale Λ that char-
acterizes the latter, from Λ = 1.8 fm−1 up to values that
are typical of the Argonne v18 potential [7].

Low-momentum interactions are technically easier to
handle in many-body calculations than conventional hard-
core potentials. In particular, low-momentum interactions
are easily amenable to a low-rank separable represen-
tation [25] which enables their efficient use in a dedi-
cated EDF code [21,26]. Nuclear superfluidity at sub-
saturation densities is mostly generated in the spin-singlet
and isospin-triplet channels of the L = 0 partial wave
of relative motion [5]. We thus generate a high-precision
rank-three separable representation of the numerical Vlow k

in the 1S0 channel [22], whose spatial part reads

〈r1r2|V S |r3r4〉 =
3∑

α=1

λα Gα(s12) Gα(s34) δ(R12 − R34), (1)

where relative and center-of-mass coordinates are defined
as sij = |sij | = |ri − rj | and Rij = (ri + rj)/2, respec-
tively. In eq. (1), Gα(s) denotes coordinate-space form fac-
tors whose analytical expression and free parameters are
optimized to reproduce the nuclear part of Vlow k matrix
elements and the corresponding scattering phase-shifts. As
for the Coulomb contribution to the proton-proton pair-
ing kernel, an accurate separable representation of the
Coulomb interaction truncated at a radius r = 2Rnucleus

is built [22]. Having a separable representation of the NN
interaction is essential to obtain a non-local pairing func-
tional leading to HFB equations that are of a similar com-
putational burden to those generated by local (empirical)
pairing functionals [22].

The remaining part of the nuclear EDF, i.e. the
part accounting for correlated single-particle motions, is
taken as the semi-empirical SLy4 Skyrme functional [27].
The corresponding density-dependent but momentum-
independent isoscalar effective-mass is equal to m∗

0 =
0.7m at nuclear saturation density which is consistent
with Hartree-Fock results obtained with low-momentum
interactions [28]. Consistently with the pairing vertex
used, such a value of m∗

0 corresponds to leaving out con-
tributions to the normal self-energy associated with the
coupling to collective fluctuations. Higher-order contribu-
tions to the pairing kernel and the normal self-energy are
left out for future works.

The BSLHFB code [29] solves HFB equations in a
spherical box of 24 fm radius, with a mesh step of 0.3 fm.
Single-particle wave functions are expanded on a basis of
spherical Bessel functions j�(kr) with a momentum cut-off
kcut = 4.0 fm−1 allowing the description of single-particle
states up to energies of about 300MeV and ensuring con-
vergence of the pairing gaps to a fraction of a keV.

3 Results

We presently limit ourselves to discussing a single observ-
able related to pairing correlations, i.e. the odd-even mass
staggering (OEMS), whereas additional results will be re-
ported in a separate publication [23]. The connection be-
tween finite-difference mass formulae employed to extract
the OEMS and theoretical pairing gaps is not straight-
forward. In the case of strong pairing and tightly-spaced
single-particle levels, the experimental three-point mass
difference formula Δ

(3)
q (N/Z) centered on odd N/Z pro-

vides the best estimate of theoretical pairing gaps calcu-
lated in even-even nuclei [30]. The latter theoretical gaps
are provided by Δq

LCS which denotes the diagonal pairing
matrix element Δq

k corresponding to the canonical single-
particle state φk whose quasi-particle energy1

Eq
k =

√
(εq

k − λq)2 + Δq 2
k , (2)

is the lowest, where εq
k is the diagonal matrix element of

the single-particle field hq in φk, λq the chemical potential

1 The acronym LCS stands for Lowest Canonical State.
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Fig. 1. Neutron/proton gaps along isotopic/isotonic chains obtained using the neutron-neutron part of Vlow k for both the
neutron and proton pairing kernels, the full charge-symmetry breaking (CSB) nuclear Vlow k while including or excluding the
Coulomb interaction.

for the species of isospin projection q and Δq
k the corre-

sponding diagonal pairing-field matrix element.
Figure 1 displays neutron/proton gaps Δ

n/p
LCS along all

semi-magic isotopic/isotonic chains from proton to neu-
tron drip lines, together with experimental values of Δ

(3)
q

where available. Theoretical pairing gaps are zero at (sub-)
shell closures. Moving away from the latter, they increase
more slowly than data. It is known that variation after
particle number restoration, or an approximate variant
thereof such as the Lipkin-Nogami method, increase gaps
near shell closures [31]. It is thus necessary for such nu-
clei to perform a more involved multi-reference (MR) EDF
calculation, which is beyond the scope of the present work.

Let us first focus on neutron gaps in the upper panel
of fig. 1. The main message to convey is the overall close-
ness of the predictions with experimental data; this being
true from rather light nuclei (calcium) up to heavy ones
(lead). This comes as a surprise given that the calculation
is performed at first order in the NN interaction and that
only two thirds of the experimental neutron pairing gap in
120Sn was obtained in ref. [20] through a calculation simi-
lar to the one performed here for many more nuclei. Also,
it was advocated there that the missing one-third was pro-
vided by the coupling to collective fluctuations. We will
briefly comment on the mismatch between the two sets of
calculations in the last section of the present paper.

On a detailed basis, of course, the agreement between
theoretical predictions and experimental data is not per-
fect. In addition to the fact that no agreement is to
be expected at the present level of many-body treat-
ment, why one should not aim at a detailed, nucleus-by-

nucleus, analysis at this point because i) comparing Δq
LCS

and Δ
(3)
q (N/Z) is only an appropriate zeroth-order pro-

cedure [30], ii) gaps in a particular nucleus or region may
be spoiled by the semi-empirical nature of the Skyrme
EDF that generates the underlying single-particle spec-
trum; e.g. the depletion of gaps around N = 65 in tin
suggests the existence of a sub-shell closure not predicted
by SLy4 whereas the decrease before N = 126 in lead
isotopes is steeper for the calculated gaps, suggesting too-
large a level density consistently with the too high-lying
ν1i13/2 single-particle shell [32].

Let us now come to proton gaps along semi-magic
isotonic chains. Calculating proton gaps requires to in-
corporate charge-symmetry breaking (CSB) contributions
to the NN interaction, which are of two distinct origins
i) electromagnetic, principally through the Coulomb inter-
action between protons, ii) hadronic, more slightly break-
ing the symmetry such that the NN interaction between
protons is less attractive than between neutrons. Four
sets of results for proton gaps are displayed in the lower
panel of fig. 1 that correspond to incorporating/omitting
hadronic and/or Coulomb CSB terms in the NN interac-
tion that builds the proton pairing interaction kernel.

Proton gaps generated from a purely charge-symmetric
pairing functional over-estimate experimental data sys-
tematically. As a matter of fact, calculated proton gaps
are, in the heaviest isotonic chains, larger than neutron
gaps in neighboring isotopic chains, with values standing
above 1.5MeV for protons and between 1 and 1.5MeV
for neutrons. Although it is known that proton gaps are
similar in magnitude, or marginally larger, than neutron



124 The European Physical Journal A

ones in heavy nuclei [33], the difference observed here is
larger than the one present in experimental data. Con-
structing the pairing kernel from the charge-symmetric
part of Vlow k, larger proton gaps may be traced back to
the neutron excess in heavy nuclei which makes the pro-
ton density and the local proton Fermi momentum to be
lower than the neutron ones. As a result, the momentum
density distribution of proton states close to the Fermi en-
ergy is peaked at lower momenta than for neutrons which
makes the proton pairing tensor to probe more attrac-
tive matrix elements of the NN interaction than the neu-
tron one; see ref. [11] for Vlow k(k, k′) matrix elements in
the 1S0 channel. The same effect can be invoked to some
extent for the neutron-excess-dependence of gaps: Δn

LCS
globally decreases with N for all four chains shown in
fig. 1, due to the increase of the neutron density and the lo-
cal Fermi momentum. Proton gaps exhibit a less marked
decrease with Z, probably attributable to the Coulomb
barrier in the single-particle proton field. As discussed in
ref. [23], such isospin trends are partly washed out when
the wrong isovector effective mass of the SLy4 functional
is corrected [34].

Including hadronic CSB contributions only produces a
slight shift of proton-gap curves which is negligible com-
pared to Coulomb effects. Coulomb decreases Δp

LCS values
by 30% to 50%. Once it is included, an unexpected and
rather impressive agreement with experiment is obtained
for both neutron and proton gaps. Again, a detailed com-
parison reveals qualitative discrepancies that can often be
attributed to the underlying single-particle spectrum gen-
erated by the Skyrme semi-empirical functional; e.g. in
N = 50 isotones, the relative magnitude of gaps below
and above Z = 40 is not captured, while the decrease of
the gap at Z = 40 is quite stronger than in data, which
do not clearly distinguish between a shell closure at 38Sr
or at 40Zr. This points to the inappropriate predictions of
level spacings by SLy4 in this region, the position of the
1g9/2 shell being too high.

We are aware of only one other systematic HFB calcu-
lation explicitly including the Coulomb interaction in the
proton pairing channel [35]. It was performed in a triax-
ial harmonic-oscillator basis using the Gogny D1 or D1S
semi-empirical kernels in both channels of the EDF. Al-
though no specific study of pairing gaps was proposed in
ref. [35], it was found that proton pairing energies were
reduced by 30 to as much as 60% (for semi-magic 90Zr)
when including the Coulomb pairing term self-consistently
in the variational procedure. Lowest two-quasiproton en-
ergies, which are the quantities discussed in ref. [35] that
relate the most to pairing gaps, were reduced by 20 to 30%.
Bearing in mind the different EDF used for the hadronic
part, the reduction of the pairing gaps observed in our
study agrees with the conclusions of ref. [35]. Such a re-
duction due to the Coulomb interaction is large enough to
be systematically taken into consideration in HFB calcu-
lations. When using empirical local pairing functionals, it
validates the use of distinct values for neutron and proton
pairing parameters [36], although additional (effective) ef-
fects come into play in this context [37].

4 Discussion, conclusions and outlook

A key result of the present work is that proton and neu-
tron pairing gaps computed at lowest order in the low-
momentum nuclear plus Coulomb two-body interaction
are close to experimental data for a large set of semi-
magic spherical nuclei. Such a result, which was nei-
ther expected nor hoped for, remains unchanged [23] over
the whole range of renormalization group cut-off values
Λ ∈ [1.8, 3.0] fm−1 that characterizes perturbative NN in-
teractions [25,38]. Also, such a result does not depend
significantly on the Skyrme isoscalar effective mass [23],
as long as the value of the latter at saturation density is
within the interval [0.65, 0.75] authorized by ab initio cal-
culations of Infinite Nuclear Matter consistent with the
use of the vacuum NN interaction in the pairing chan-
nel [28]. The closeness of presently computed pairing gaps
with experimental data does raise legitimate questions,
some of which are briefly addressed below and more exten-
sively in refs. [23,28]. In any case, it is clear that the situa-
tion in nuclei is largely different from the one encountered
in electronic systems where the direct electron-electron in-
teraction cannot contribute to building superfluidity.

Of course, it is essential to check that computing the
normal part of the first-order self-energy directly from low-
momentum NN interactions, rather than from the semi-
empirical SLy4 functional, does not alter the results re-
ported here. It is shown in ref. [28] that pairing gaps ob-
tained in infinite nuclear matter using both types of nor-
mal self-energy are the same over the density range that is
relevant to finite nuclei. Still, such an equivalence remains
to be studied directly in finite nuclei by computing both
the normal [39,40] and anomalous first-order self-energies
from the same low-momentum interaction2.

Keeping such a caveat in mind, the present results in-
dicate that missing effects, i.e. contributions of higher par-
tial waves of the NN interaction and of the NNN interac-
tion to the spin-singlet/isospin-triplet pairing kernel, as
well as the coupling to density, spin and isospin collec-
tive fluctuations that come in at higher orders3, provide
an overall contribution to pairing gaps in nuclei that is
sub-leading4. In this context, it remains to be understood
how such missing contributions could alter pairing gaps,

2 References [39,40] focus on the Hartree-Fock single-particle
spectrum of 40Ca which displays significant differences with the
corresponding spectrum generated by Skyrme EDFs character-
ized by m∗

0 = 0.7 m at nuclear saturation density. However, it
should be remembered that 40Ca constitutes an anomaly as
for the spectrum generated by Skyrme EDFs which is unnatu-
rally dense around the Fermi energy [32,41]. In addition, and
even though the density of states should be mainly governed by
the NN interaction, a meaningful calculation of single-particle
spectra based on microscopic interactions must include the
NNN interaction as the latter is expected to contribute sig-
nificantly to spin-orbit splittings.

3 We denote here the consistent renormalization of both the
normal self-energy and the pairing interaction kernel through
the coupling to collective fluctuations.

4 Of course, missing contributions do not have to be individ-
ually small or negligible.
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i.e. the difference of two successive one-nucleon separa-
tion energies, only mildly while coupling to fluctuations
are known to strongly renormalize the density of states
at the Fermi energy, e.g. the sum of two successive one-
nucleon separation energies. It is thus of great interest in
the near future i) to extend the present study to deformed
nuclei, which is underway, and ii) to check the impact of
all missing contributions by incorporating them explicitly,
and consistently, in the calculation.

The results presented here are at variance with those of
ref. [20] where only two-thirds of the experimental neutron
pairing gap was obtained in 120Sn from a calculation sim-
ilar to the one performed here, except that the hard-core
vacuum Argonne v14 NN interaction [24] was used to build
the pairing interaction kernel. From a general standpoint,
it is first essential to realize that many-body expansion
schemes crucially depend on the softness of the NN and
NNN interactions, such that finite-order results for soft
and hard interactions are not equivalent and immediately
comparable. Soft interactions (Λ ≤ 3.0 fm−1) rely on a
perturbative expansion whereas hard ones (Λ ≥ 3.0 fm−1)
require to recast the expansion in terms of a hole-line ex-
pansion. Due to the necessity to rearrange the expansion
scheme as one raises the resolution scale Λ, results ob-
tained through truncated calculations cannot be expected
to be independent of that cut-off Λ. Beyond such a crucial
remark, whose consequences for the computation of pair-
ing gaps are extensively addressed in ref. [28], the differ-
ence between our result and the one obtained in ref. [20]
relates to another topic; i.e. the inappropriate use of a
Skyrme EDF to generate the single-particle field when it
is combined with a hard interaction in the pairing channel.
As demonstrated in ref. [28], the momentum-averaging
procedure of the effective mass in the vicinity of the Fermi
surface that underlines such a calculation is inappropriate
when performing the many-body calculation on the basis
of an interaction presenting a large intrinsic momentum
resolution scale, as is the case of Argonne v14. As such a
NN interaction scatters pairs up to momenta about which
the non-approximate momentum-dependent effective mass
has significantly increased beyond its value at k ∼ kq

F,
the use of the momentum-independent Skyrme effective
mass leads to an artificial decrease of pairing gaps that
accounts for the difference between our result and the one
of ref. [20].

Last but not least, the pairing gap obtained presently
for 120Sn differs from the one computed in ref. [42] using
the same low-momentum interaction in the pairing chan-
nel. As demonstrated in ref. [23], the results of ref. [42] are
plagued with the use of a Woods-Saxon potential charac-
terized by an effective mass m∗

0 = 0.7m. In addition to
being artificially reduced at high momenta, such an ef-
fective mass is also position independent, i.e. it keeps a
constant reduced value from inside to outside the nucleus
where it should recover its bare value, as is the case for the
Skyrme functional. This leads to an artificial reduction of
the density of single-particle states around the Fermi en-
ergy compared to a Skyrme functional characterized by
m∗

0 = 0.7m at nuclear saturation density. Eventually, this
produces an artificial reduction of the pairing gaps that

explains, in a quantitative manner, the discrepancy with
our results. Note that such an artificial reduction of the
density of states around the Fermi energy impacts pairing
gaps independently on whether one uses a hard or a soft
interaction in the pairing channel.
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