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Abstract

Immunotherapies have emerged as one of the most promising approaches to treat patients with cancer. Recently,
there have been many clinical successes using checkpoint receptor blockade, including T cell inhibitory receptors
such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death-1 (PD-1). Despite
demonstrated successes in a variety of malignancies, responses only typically occur in a minority of patients in any
given histology. Additionally, treatment is associated with inflammatory toxicity and high cost. Therefore,
determining which patients would derive clinical benefit from immunotherapy is a compelling clinical question.
Although numerous candidate biomarkers have been described, there are currently three FDA-approved assays
based on PD-1 ligand expression (PD-L1) that have been clinically validated to identify patients who are more likely
to benefit from a single-agent anti-PD-1/PD-L1 therapy. Because of the complexity of the immune response and
tumor biology, it is unlikely that a single biomarker will be sufficient to predict clinical outcomes in response to
immune-targeted therapy. Rather, the integration of multiple tumor and immune response parameters, such as
protein expression, genomics, and transcriptomics, may be necessary for accurate prediction of clinical benefit.
Before a candidate biomarker and/or new technology can be used in a clinical setting, several steps are necessary
to demonstrate its clinical validity. Although regulatory guidelines provide general roadmaps for the validation
process, their applicability to biomarkers in the cancer immunotherapy field is somewhat limited. Thus, Working
Group 1 (WG1) of the Society for Immunotherapy of Cancer (SITC) Immune Biomarkers Task Force convened to
address this need. In this two volume series, we discuss pre-analytical and analytical (Volume I) as well as clinical
and regulatory (Volume II) aspects of the validation process as applied to predictive biomarkers for cancer
immunotherapy. To illustrate the requirements for validation, we discuss examples of biomarker assays that have
shown preliminary evidence of an association with clinical benefit from immunotherapeutic interventions. The
scope includes only those assays and technologies that have established a certain level of validation for clinical use
(fit-for-purpose). Recommendations to meet challenges and strategies to guide the choice of analytical and clinical
validation design for specific assays are also provided.
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Background
Increased understanding of cellular and molecular tumor
immunology over the past two decades has enabled the
identification of new ways to manipulate the immune re-
sponse against cancer to counteract immunosuppressive
mechanisms that evolve during tumor progression. Mono-
clonal antibodies (mAbs) to the cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4) and programmed cell
death-1 (PD-1) protein, two T cell-inhibitory checkpoint
receptors with independent mechanisms of action, have
demonstrated improvement in overall survival in ad-
vanced melanoma patients [1–3]. Significant clinical bene-
fit (including durable tumor responses and extension of
progression-free and overall survival) has also been shown
in tumor types as diverse as non-small cell lung cancer
(NSCLC), renal cell carcinoma (RCC), bladder cancer, and
Hodgkin’s disease [4–12].
Despite demonstrated successes, responses to im-

munotherapy interventions only occur in a minority of
patients. Attempts are being made to improve the activ-
ity of immunotherapies with novel combinatorial strat-
egies and with biomarker optimization. A wave of recent
clinical trial results has highlighted the potential for
combination therapies that include these immunomodu-
lating agents [13–17]. A wide range of biomarkers and
assays is required to guide cancer therapy for several
reasons: i) a variety of immunotherapy agents with
different mechanisms of action including immunother-
apies that target activating and inhibitory T cell recep-
tors (e.g., CTLA-4 and PD-1), adoptive T cell therapies
that include tissue infiltrating lymphocytes (TILs),
chimeric antigen receptors (CARs), and T cell receptor
(TCR) modified T cells [18]; ii) tumor heterogeneity in-
cluding changes in antigenic profiles over time and loca-
tion for an individual patient; and iii) a variety of
immune-suppressive mechanisms that are active in the
tumor microenvironment (TME). Optimizing bio-
markers for immunotherapy could help to properly se-
lect patients for treatment, identify rational combination
therapies, and define progression and resistance. In
addition, biomarkers may help define the mechanism of
action for different agents and help with dose selection
as well as sequencing of drug combinations. Although
most of immune therapies engage T cells and the assess-
ment of cell-mediated cytotoxicity is integral for the selec-
tion of biomarkers of response to immunotherapy, the
cancer immune response is a multi-step process involving
interactions between the tumor and microenvironment in-
cluding multiple cell subsets and soluble mediators func-
tioning at different times and at different anatomical sites
(tumor, lymph nodes, and blood) as well as the tumor
stroma and vasculature. Thus, profiling of the tumor-
immune interface with multiparametric technologies that
encompass the dimensionality and complexity of this

interaction are likely to be needed to monitor and stratify
cancer patients for individual therapeutic requirements.
A number of candidate biomarkers and platforms with

the potential to be developed into assays to predict
response to immunotherapy have been identified in
research studies. Platforms based on multiplexed tran-
scriptome analysis, protein expression, and genomic
variability are discussed in SITC Immune Biomarker
Task Force reports (Additional file 1). The availability of
these platforms and novel technologies should facilitate
the integration of the molecular features of the tumor
and the host factors for the development of multiplex
profiles to guide personalized treatment in the future.
The focus of this review is to discuss the requirements

for advancing a biomarker assay through the validation
process to its clinical application. The validation of such
assays should ultimately qualify them for use in clinical
decision making. Specific examples of the assays already
in use such as immunohistochemistry (IHC) based PD-L1
assays or soon be approved for use in clinical laboratories
are discussed to illustrate the requirements for analytical
validation (Table 1). Prototypes of these assays have been
shown in research and small clinical studies to be poten-
tially useful as patient enrichment tools. Although analyt-
ical validation data for each specific platform are available,
none of these have been clinically validated yet as a pre-
dictive biomarker, except for PD-L1, which will be dis-
cussed below.
According to the position paper by Lee and col-

leagues [19], the biomarker assay validation process
can be separated into several continuous steps: as-
sessment of basic assay performance (analytical val-
idation); characterization of the performance of the
assay with regard to its intended use (clinical valid-
ation); and validation in clinical trials that ensures
that the assay performs robustly according to prede-
fined specifications (fit-for-purpose) and facilitates
the establishment of definitive acceptance criteria for
clinical use (validation of clinical utility). The fit-for-
purpose approach for biomarker development and
validation addresses the assay validation that should
be tailored to meet the intended purpose of the bio-
marker. The fit-for-purpose method validation is an
umbrella term that is used to describe distinct stages
of the validation process.
Specifically,

� Analytical validation defines how accurately and
reliably the test measures the analyte(s) of interest in
the patient specimen. Analytical validity is defined as
the assay’s ability to accurately and reliably measure
the analyte of interest in the clinical laboratory and
in specimens representative of the population of
interest. Analytical validity refers to the three
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different phases of assay development: pre-analytical,
analytical, and post-analytical phase.

� Clinical validation should demonstrate how robustly
and reliably the test results correlate with the
clinical outcome of interest. Practically, clinical
validity implies that the cancer biomarker assay
separates a population into two or more distinct
groups with different biological characteristics or
clinical outcomes.

� Clinical utility is defined as an assay’s ability to
significantly improve clinical outcomes, i.e., does the
use of the biomarker result in patient benefit or add
value to patient management decision making
compared with current practices.

Pre-analytical and analytical assay validation steps are
discussed in Volume I, while Volume II is focused on
the clinical validation and validation of clinical utility of
the assays as well as regulatory considerations.

Assays examples
Specific examples of relevant assays are discussed in detail
in the following section and are summarized in Table 1.
The scope of the paper includes only those assays that have
established a certain level of validation for clinical use as
biomarkers predictive of response to immunotherapy. Mul-
tiple biomarkers and platforms that require standardized
assays and are lacking even initial clinical validation dem-
onstrating its clinical utility (fit-for-purpose) are not the
focus of this publication.

1. Flow cytometry
Phenotypic analysis of T cells can provide information
regarding their activation status using assays based on
multiplex flow cytometry examining a panel of lympho-
cyte markers. A baseline signature of frequencies of
myeloid-derived suppressor cells (MDSCs) and regula-
tory T cells (Tregs), and high absolute eosinophil counts
(AEC) has been recently shown to be associated with fa-
vorable outcome in patients with melanoma receiving
ipilimumab [20]. Interestingly, higher baseline frequen-
cies of circulating CD4 + CD25 + FoxP3+ Tregs were as-
sociated with improved overall survival (OS) in this
patient population [20]. Tregs represent direct target
cells of ipilimumab due to constitutive expression of
CTLA-4 by those cells which might be one of the rea-
sons that patients with higher levels of circulating Tregs
are more likely to benefit from anti-CTLA-4 antibodies.
In order to be implemented in routine clinical settings,
this biomarker signature needs to be analytically and
clinically validated (including a panel of markers re-
quired for the analysis and enumeration of MDSCs and
Tregs) [20].

2. Enzyme-linked ImmunoSpot (ELISpot)
Enzyme-Linked ImmunoSpot (ELISpot) is a highly quan-
titative assay for monitoring the secretion of cytokines
and cytotoxic mediators (e.g., perforin, granzyme B). It
can measure a wide range of cellular responses and is
capable of assessing critical immune-related activity of
antigen-specific T cell stimulation. The most common
analytes investigated today are cytokines (interferon (IFN)ɣ,
interleukin (IL)-2, IL-5, IL-10, IL-17, granzyme B, tumor
necrosis factor (TNF), and granulocyte-macrophage
colony-stimulating factor (GM-CSF)). Other factors can
also be evaluated with this platform, such as chemokines
(e.g., CXCL8, CCL4). The IFNγ ELISpot assay has been
used extensively for monitoring immune responses in the
development of vaccines for the prevention and treatment
of infectious diseases; however, there is also a body of litera-
ture demonstrating the correlation of the clinical outcome
of cancer patients in immunotherapeutic trials with ELI-
Spot results [21, 22].
Specifically, clinical trials have shown a significant cor-

relation of antigen-specific ELISpot responses with patient
survival after administration of a melanoma antigen-
specific peptide based vaccine in advanced-stage patients
[23]. The magnitude of antigen-specific IFNγ-secreting
cells, as measured by ELISpot, showed correlation towards
survival after the administration of a prostate-specific anti-
gen vaccine in prostate cancer patients, as well as a hu-
man epidermal growth factor receptor 2 (HER2/neu)
specific vaccine in breast cancer patients [24–26]. Com-
pared to the IFNγ ELISpot assay, the granzyme B ELISpot
may be a more direct measure of cytotoxic cell activity be-
cause it measures one of the primary effector molecules of
cell-mediated cytotoxicity. Cytotoxic activity of CD8+ T
cells measured by granzyme B release after stimulation
with MUC antigen was found to be predictive for the sur-
vival of pancreatic cancer patients independently of type
of therapy (chemoradioimmunotherapy or 5FU-based
chemotherapy) [27]. Considering that the tumor infiltra-
tion is a reflection of a pre-existing immunity and is pre-
dictive of response to anti-checkpoint immunotherapy
(discussed below), it appears logical to assume that func-
tional assessment of cytotoxic activity of CD8+ T cells
following stimulation with specific tumor associated anti-
gen(s) by ELISpot may also be predictive of response to
immunotherapy.

3. Single cell network profiling (SCNP)
Single Cell Network Profiling (SCNP) is a unique prote-
omic approach that quantifies functional immune signal-
ing capacity, simultaneously across multiple immune cell
subsets. One of the major advantages of this technology
in the context of tumor immunotherapy is the ability to
monitor cellular functional capacity without physical cell
isolation. This enables the detection and monitoring of

Masucci et al. Journal for ImmunoTherapy of Cancer  (2016) 4:76 Page 4 of 25



immune signaling and communication within the
complex and interlocked immune system. The data gen-
erated are highly dimensional, including functional infor-
mation across many signaling pathways at one time,
with resolution down to rare immune cell subsets. This
enables the generation of predictive and prognostic in-
formation in heterogeneous disease states. Clinical valid-
ation of the technology has been established in non-M3
AML, with classifiers for the prediction of response to
frontline standard induction therapy in the elderly and
pediatric populations [28, 29].

4. Immunohistochemistry

PD-L1 level measurement There is increasing evidence
to support the hypothesis that a pre-existent adaptive
anti-tumor immune response in the TME correlates
with clinical benefit to checkpoint blockade with anti-
CTLA-4 or anti-PD-1/PD-L1 inhibitors [30, 31]. Re-
cently, three IHC assays to measure PD-L1 expression
have been approved by the U.S. Food and Drug Ad-
ministration (FDA). One is a companion diagnostic
assay to identify advanced NSCLC patients that may
be treated with pembrolizumab [32]. The second
assay was approved as a complementary diagnostic to
inform on risk-benefit for patients with non-squamous
NSCLC and melanoma patients treated with nivolu-
mab [33]. The third and most recently approved assay
is also a complementary diagnostic that was approved
for patients with metastatic urothelial cancer con-
sidering treatment with the anti-PD-L1 therapy atezo-
lizumab [34].
Although PD-L1 appears to enrich for response to

anti-PD-1/L1 therapy in some disease settings, it has low
Negative Predictive Value (NPV), which is of concern in
life-threatening diseases such as the end-stage cancer
setting, and low Positive Predictive Value (PPV). Adding
to the complexity of applying PD-L1 IHC assay in clin-
ical practice is that there are numerous separate diag-
nostic assays in development, and each might be tied to
a different therapeutic agent. Existing tests for PD-L1
detection that have not been FDA approved will require
analytical and clinical validation and it is unclear
whether the assays will be interchangeable. Conse-
quently, testing the same sample with different PD-L1
assays may yield different results even when used in ac-
cordance with the manufacturer’s instructions. The dis-
crepancy in PD-L1 staining using different assays
including negative results may be due in part to cellular,
spatial, and temporal heterogeneity in PD-L1 expression,
which is a dynamic marker of response to T cell activa-
tion and it is up-regulated on tumor cells by IFNγ. In
addition, differences in antibody usage, various algo-
rithms for scoring as well as cut-off values contribute to

the challenge of data interpretation in the clinical setting
for this marker.

T cell infiltrate There are indications that an “inflamed”
signature in tumors (i.e., the presence of T cell infil-
trates) may be associated with improved clinical out-
come in response to checkpoint inhibitors as compared
with a “noninflamed” phenotype observed in tumors
lacking a T cell infiltrate. In addition, significant correl-
ation between the presence of tumor infiltrating lympho-
cytes (TILs) and the PD-L1 expression in the TME has
been described [30].
Pre-treatment samples from melanoma patients who

benefited from anti-PD-1 treatment showed a signifi-
cantly higher density of CD8+ cells at both the inva-
sive margin and the tumor center compared with the
group of patients who experienced progression under
the same treatment. However, the best predictive
parameter for the probability of clinical response to
PD-1 blocking therapy was high density of CD8+ T
cells at the invasive tumor margin. The next best pre-
dictors were CD8+ cells in the tumor center, tumor
and invasive margin PD-1 expression, and tumor and
invasive margin PD-L1 expression [6]. Classification
of tumors into four groups on the basis of their PD-
L1 status and presence or absence of TILs has the
potential to identify pathways that should be targeted
to elicit the best response for each tumor type [35].
Furthermore, clinical responses to checkpoint block-
ade therapy were found to be associated with T
helper type 1 (Th1) gene expression and elevated ex-
pression of IFNγ as well as IFNγ-inducible genes
[36–38]. Suppressive Tregs and MDSCs may also have
a role in negatively affecting the activity of anti-PD-
L1-blockade in various tumors [39–41].
The pattern of expression of PD-L1 and tumor inflam-

mation can also differ in tumor subtypes. For example,
PD-1/PD-L1 receptors are differentially expressed in
molecular subtypes of breast cancer (triple negative
breast cancer (TNBC) vs. non-TNBC and colon cancer
(CRC) (microsatellite-high (MSI-H) vs. microsatellite
stable (MSS) cases). These subsets of immunogenic tu-
mors (e.g., MSI-H CRC) attract TILs, which produce
IFNγ that up-regulates PD-L1 on tumor cells and dem-
onstrate characteristic of an inflamed phenotype, such as
prominent tumor lymphocytic infiltrate and macro-
phages located at the invasive front of the tumor. In
contrast, most non-inflamed tumors at baseline show a
lack of PD-L1 by either tumor cells or tumor infiltrating
immune cells. Thus, the presence of T cells and PD-1/
PD-L1 can provide an indication for potential benefit of
immunotherapy in aggressive subtypes of breast and
colon cancers for which no targeted therapy is currently
available [42, 43].
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It has been previously shown that quantifying the
densities of two lymphocyte populations—cytotoxic CD8
+ T cells and memory T cells expressing CD45RO+ anti-
gen, CD3+ and CD8+ T cells, or CD3+ and memory
CD45RO+ T cells (CD3/CD45RO, CD3/CD8 or CD8/
CD45RO)—both in the tumor core and in the invasive
margin of tumors, termed “Immunoscore,” could predict
survival of early-stage colorectal cancer patients [44, 45].
The prognostic value of the “Immunoscore” is currently
undergoing clinical validation as an international effort
(NCT01688232). Considering the importance of T cell
infiltrate for cancer prognosis, the immune profiling
may potentially serve as a predictive biomarker for cer-
tain type of immune manipulation, if it can be clinically
validated.
Overall, these data suggest that pre-existing adaptive

immunity as measured at the tumor level by CD8 T cell
infiltration and their spatial distribution as well as PD-
L1 expression may be required to predict clinical
response to anti-PD-L1 inhibitors. In addition, the pres-
ence of Tregs, MDSC, or other T cell inhibitory mole-
cules (such as LAG-3, TIM-3, and IDO) needs to also be
characterized to provide a complete view of the inter-
action between cancer and immune system at the level
of the individual patient.

5. Genomic landscape
Recent advances in next generation sequencing (NGS)
technologies allow for rapid sequencing of large seg-
ments of an individual’s DNA including whole exomes
(WES) and entire genome (WGS). NGS technologies
utilize high-throughput approaches of clonally amplified
or single molecule templates, which are then sequenced
in a massively parallel fashion. NGS allows for the iden-
tification of a large panel of somatic mutations, i.e., mu-
tational load across different types of cancer. Overall,
patients who had tumors bearing a high frequency of
somatic mutations like melanoma, NSCLC, and MSI-H
colorectal cancer were significantly more likely to
achieve clinical benefit from checkpoint blockade includ-
ing CTLA-4 and PD-1 inhibitors [46–50]. The increased
mutation load may activate adaptive immunity and at-
tract CD8+ cell infiltrates, which results in the inflamed
tumor phenotype. This suggests that genomic analysis to
assess total mutational load could be incorporated in the
treatment decision making process to determine who
will benefit from immune-therapeutic approaches.
Improvements in computer algorithms to predict neoe-

pitopes from exome sequences that are presented with
MHC class I and II as potential targets to T cell receptors
will allow further evaluation of the clinical relevance of
somatic mutations. These neo-epitopes may aid in the
identification of biomarkers to predict overall survival in
tumors such as primary lung adenocarcinomas in

response to immunotherapy [51]. Putative immunogenic
9– and 10–amino acid neoantigens with affinity for HLA
class I molecules using patient-specific nonsynonymous
mutations based on HLA types were significantly associ-
ated with clinical benefit in some studies [46]. However,
the correlation between neoantigen load and clinical bene-
fit diminished when increasingly stringent thresholds for
affinity of binding were applied and recurrent neoantigens
did not reveal any shared features or features exclusive to
responders [52]. These data suggest that clinical relevance
of the neoantigens might depend on the proper antigen
processing and neoepitope affinity as well as HLA expres-
sion, which is frequently aberrant in tumors. Better algo-
rithms might be also needed to assess the
immunoprotective properties of mutation derived
neoepitopes.
Recent clinical trial data also demonstrated the utility

of microsatellite instability (MSI) status as a predictive
marker for response to PD-1 blockade in CRC patients
treated with a checkpoint inhibitor pembrolizumab [53].
Mismatch repair (MMR) deficiency occurs in a small
fraction of CRC as well as cancers of the uterus, stom-
ach, biliary tract, pancreas, ovary, prostate, and small in-
testine. Tumors with genetic defects in the MMR
pathway are known to harbor hundreds to thousands of
somatic mutations, especially in regions of repetitive
DNA known as microsatellites, which result from defi-
cient MMR machinery. Moreover, MMR–deficient tu-
mors display prominent immune infiltration and Th1-T
cells associated cytokine-rich environment as well as im-
mune checkpoint receptors including PD-1 (and its lig-
and PD-L1), CTLA-4 and LAG-3, a finding consistent
with a pre-existent immune response [42, 53–57].
WES of tumor samples followed by extensive bioinfor-

matic analysis to identify immunogenic epitopes is not
yet practical for routine diagnostic use. MSI testing, in
contrast, is routinely performed in most diagnostic la-
boratories through the evaluation of selected microsatel-
lite sequences or through an IHC based approach.
Therefore, MSI testing has the potential to be an imme-
diately useful approach to predict clinical benefit to PD-
1/PD-L1 pathway inhibitors in patients with MMR defi-
cient tumors.

6. Immunosequencing
Immunosequencing is a multiplex PCR-based method that
amplifies rearranged TCR complementarity determining
region (CDR) 3 sequences for a given TCR locus and ex-
ploits the capacity of high-throughput sequencing (HTS)
technology to enumerate and quantify hundreds of thou-
sands of TCR CDR3 chains simultaneously. Multiple V, D,
and J gene segments exist in the germline genome. Initial
receptor diversity is generated by recombination of V, D,
and J segments, and additional non-templated diversity is
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introduced at the junctions by insertion of random nucle-
otides (N). The immunosequencing assay uses a multiplex
PCR with forward primers in each V segment and reverse
primers in each J segment. The TCR repertoire from cir-
culating peripheral blood mononuclear cells has been pro-
filed prior to and following administration of an anti-
CTLA-4 blocking antibody [58]. In response to the ad-
ministration of the anti-CTLA-4 monoclonal antibody,
there was a marked increase in both the “richness” (num-
ber of unique TCRβ sequences) of circulating T cells and
the diversity of the T cell population. Interestingly, this in-
crease appeared to be generalized, with no particular clone
or subgroup of clones demonstrating a significantly
greater increase than others. This observation suggests
that clones that have been sequestered or “kept at bay” are
somehow released by this therapeutic intervention. Of
note, the degree of systemic toxicity associated with this
form of therapy also correlated with increases in the rich-
ness and diversity metrics, suggesting that some of the
clones being kept at bay are those that are capable of con-
ferring more generalized inflammatory or autoimmune re-
sponsiveness. Biopsies of skin lesions from patients with
metastatic melanoma were obtained and subjected to
TCRβ immunosequencing analysis before treatment with
anti-PD1 blocking monoclonal antibody [6, 59]. Patients
whose tumors had the highest number of T cells and the
more clonal T cell repertoire were most likely to respond
to this therapy. Conversely, all of those patients whose
total T cell number and clonality measure fell below the
median for each of these parameters had progressive dis-
ease. Moreover, biopsies obtained more than 3 weeks fol-
lowing the initiation of the anti-PD-1 therapy showed that
patients whose tumors showed significant expansion of
pre-existing T cell clones in response to the therapy were
most likely to have demonstrated a clinical response.

7. Multiplexed-gene expression profiling
While the focus of the approaches discussed earlier has
been on tumor or immune cells, other technologies asses-
sing predictive biomarkers in the immune-oncology space
are focusing on the interaction of tumor cells with the
TME including immune cells. Gene expression analysis of
RNA levels incorporates a large amount of data that can
have prognostic and predictive relevance and can be used
to characterize both tumor and immune cells.
The nCounter Dx Analysis system (NanoString Labora-

tories, Inc.) uses gene-specific probe pairs that hybridize
directly with the mRNA in solution eliminating any en-
zymatic reactions, and does not require RNA amplifica-
tion that might introduce bias in the results. The
nCounter Dx Analysis System assay simultaneously mea-
sures the expression levels of up to 800 target genes and a
specific panel of immune response genes is also available.
The instrument, reagents and software have received

510(k) clearance from the FDA for use with the Prosigna
Breast Cancer Prognostic Gene Signature Assay [60].
Considering that there are clinically validated, multi-

gene expression prognostic tests currently used in the
clinical setting (such as OncoTypeDX, Prosigna, and
Mammaprint, the latter two cleared by FDA through the
510(k) process), the probability of gene expression signa-
tures to be developed as markers predicting response to
immunotherapy is significant. In this regard, recent data
showed that measuring immune-related biomarkers, in-
cluding T cell specific, antigen presentation–related, and
IFNγ signaling–related genes, may allow for improved
selection of patients likely to respond to anti–PD-1 ther-
apy with pembrolizumab consistent with the hypothesis
that clinical responses to PD-1 blockade occur in pa-
tients with a preexisting interferon-mediated adaptive
immune response [61, 62].

Pre-analytical and analytical validation
Although assays for immune-oncology are subject to the
same analytical validation requirements as other bio-
analytic assays, there are some basic differences that
may impact the analytical validation process. Table 2
highlights the differences between single analyte bioas-
says (measuring a single protein or metabolite) vs. assays
measuring immune response. Although immune re-
sponse assays can be singular, most biomarkers will re-
quire multiparameter tests that depend on an increased
number of controls, complex scoring algorithms, high-
throughput performance data analysis, and results out-
put. In addition, in the US, when a predictive marker
will be used to direct patient enrollment or for patient
stratification in clinical trials, the assay will need to be
performed in a Clinical Laboratory Improvement
Amendments (CLIA) laboratory. CLIA labs follow Clin-
ical and Laboratory Standards Institute (CLSI) guidelines
for determination of standard assay parameters such as
precision, accuracy, limit of detection, specificity, and
reference range. A typical analytical validation plan
involves several steps in which the assay must be
optimized for multiple parameters:

a) Sample-related (pre-analytic parameters)
b) Assay-related (analytical parameters)
c) Data-related (post-analytical parameters)

Pre-analytical validation
An important step in biomarker validation is the evalu-
ation of pre-analytical factors that may affect assay per-
formance due to specimen-related variability as outlined
below (Fig. 1). For immunotherapies, there may be a
need to monitor ex vivo immune responses in phenotyp-
ical or functional assays, which require high-quality sam-
ples to ensure reliable analytic output. To ensure that
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optimal pre-analytic processing regimens are followed,
standard operating procedures (SOPs) for controlling
specific biomarker development steps are essential. To
create the best practice metrics, blood collection and stor-
age media optimization protocols are often developed in
conjunction with other pre-analytical parameters. General
guidance on pre-analytical quality indicators and their
harmonization, including analytical stability and labora-
tory quality control (QC) have been published [63].
To improve standardization of specimens, the US Na-

tional Cancer Institute (NCI) has published best practice
guidelines for biospecimen collections [64]. In addition,
specific guidelines for the analytical requirements of bio-
markers have been set up [65, 66].

1. Whole blood and specific immune cell subsets assays
Pre-analytical processing of samples for diagnostic as-
says including those used for single cell immune re-
sponse assays, such as ELISpot, flow cytometric
analysis, and SCNP, includes patient-related factors
such as tissue-ischemia time, pretreatment with drugs,
dynamic nature of the analyte, and sample heterogen-
eity. Analyte stability can be affected by the sample
collection process including anticoagulants used for
blood draws, freezing/thawing, time between collec-
tion and testing, and storage conditions before pro-
cessing. Guidance documents related to the handling of
peripheral blood mononuclear cells (PBMC) has been
published previously by the Immunology of Diabetes

Table 2 Comparison of bioanalytical assays with immune response-based assays

Characteristics Bio-analytical Assays Immune-based Assays

Number of analytes Single analyte relative to biological functions
(small molecules or macromolecules)

Multiple analytes with complex functional relationships
between tumor and immune system

Category of measurement Absolute quantitation Quasi-quantitative, relative-quantitative or qualitative.
Qantification is available for specific assays

Reference material Available Not available, limited availability or available -
depends on the assay

Linearity of analyte(s) Known Unknown or do not demonstrate linearity, often unknown
dynamic ranges, or dynamic range can be established-depends
on the assay

Limit of detection (LOD) Available Not quantifiable or LOD available - depends on the assay

Sample processing Extraction required for small molecules;
Direct measurement in biological matrix
without sample pretreatment

Single cells or specific cell types frequently required for
blood-based assay; tissue processing required for FFPE samples;
tissue processing required for DNA and RNA

Function assessment Not necessary - a determinant of the static
molecular status

Functional assays often require ex vivo response to stimuli

Time for archived clinical samples
analysis

Relatively short, <1 yr Often long >1 yr; Depends on the stability of biomarker/assay

Source: Guidance for Industry: Bioanalytical Method Validation [178]

Fig. 1 The biomarker development process can be divided into sequential phases, including preanalytical and analytical validation, clinical validation,
regulatory approval, and demonstration of clinical utility. This paper focuses on the aspects of the pre-analytical as well as analytical phases of the validation
process prior to clinical validation and regulatory approval phases of development. In the pre-analytical phase, pre-analytical quality indicators should be
harmonized including sample collection, process, and storage. In the analytical phase, the sensitivity/specificity, linearity, precision, limit-of-detection,
accuracy, reproducibility, repeatability, and robustness of the assay must be illustrated
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Society that contains recommendations and references
addressing the various pre-analytical steps that need
to be considered [67]. Additional guidelines regarding
isolation and preservation of PBMC for functional
analysis are also available [67–70]. A highly relevant
issue for immune-based assays is the avoidance of
contamination with granulocytes [71] that are potent
suppressors of T cell function in in vitro assays [72,
73]. Processing of fresh whole blood or PBMCs is not
always practical in large clinical trials. Thus, cryo-
preservation of PBMCs is an alternative for the pur-
pose of batching samples over time and for banking
samples for future use. However, it can decrease cell via-
bility and function and decrease yield. Therefore, it requires
standardization between sites and infrastructure commitment
to decrease the variability.

Anticoagulants The optimal anticoagulants chosen to
preserve blood samples are highly dependent on the type
of target analyte (e.g., nucleic acid or protein), the spe-
cific blood cell type of interest (e.g., T cells, B cells, or
NK cells), and the specific assay platform. As an ex-
ample, a study addressing this issue for a gene expres-
sion profiling assay resulted in recommendations for
Na2EDTA over formaldehyde as an RNA stability addi-
tive [74] whereas others have found that to preserve cell
surface antigen integrity for flow cytometry, sodium
heparin was optimal [67]. Special collection tubes, chip-
based devices, or media additives for preservation of
particular cell subsets are increasingly being deployed to
achieve better compatibility with multicenter based late
stage clinical trials especially for “liquid biopsy” (circulat-
ing tumor cells [75], cell-free DNA [76], and exosomes
[77]). These specialized tubes can be prohibitively costly
when used in an exploratory banking setting. Thus, in
trials testing undefined and exploratory biomarkers,
blood cells, serum, and/or plasma may be banked under
generalized conditions that may or may not be optimal
for a particular analyte and platform.

Blood cell components Immunotherapies targeting spe-
cific components of the immune system, e.g., innate, adap-
tive, memory, naïve cells, and Tregs, can affect both target
cells as well as other cells across the immune system.
Most of the therapies currently in development engage
CD8+ cytotoxic cells, and assessment of cell-mediated
cytotoxicity is an important measure to predict immuno-
therapy response. These therapies might, however, require
the development and validation of assays to interrogate
other cell subsets for which assays have not been routinely
generated, including immune cell subsets such as B cells
[78], monocytes/macrophages [79], MDSCs [80], natural
killer (NK) cells [81], T helper cells, and other T cell sub-
types (Tregs, naïve, and memory T cells) [82].

Different cell subsets require specific pre-analytical
protocols, to preserve their cell type-specific functional
qualities. To ensure delivery of meaningful results, con-
current assessment of integrity of multiple cell subsets
during pre-analytical validation for an optimal combin-
ation of parameters (storage, collection, and processing)
is highly recommended.
Flow cytometry allows for characterization of many

subsets of cells, including rare subsets in a complex mix-
ture such as blood. Flow cytometry can be used to assess
not only expression of cell-surface proteins, but also that
of intracellular phosphoproteins, cytokines, transcription
factors, and functional readouts. The accurate mea-
surements of variation in the human immune system re-
quires precise and standardized assays to distinguish
true biological changes from technical artifacts [83]. Be-
cause flow cytometry remains highly variable with regard
to sample handling, reagents, instruments set up, and
data analysis the Human Immunology Project has been
proposed for global standardization of flow-cytometry
immunophenotyping. In addition, a repository of im-
munological data for data mining for biomarkers will be
part of the project [83].
The ELISpot platform enables analysis of T, B, NK

cells as well as of monocytes at the single cell level,
though is mainly restricted to the functional aspect of
cell analysis. For this platform, PBMC or TILs need to
be isolated within a strict time frame to avoid granulo-
cyte contamination and related suppression of func-
tionality [84, 85]. Excellent guidance is provided in the
latest CLSI document for the performance of single cell
immune assays [69]. Apoptotic cell contamination
should be kept to a minimum [86]. Overnight resting of
previously frozen samples prior to the assay has been
shown to remove apoptotic cells and restore functional-
ity [87, 88].
Multiparametric technology platforms, such as SCNP,

enable simultaneous analysis of the functional capacity
of multiple and rare immune cell subsets without the
need for cell subset isolation or novel sample processing
procedures. Samples are drawn into standard sodium-
heparin coated tubes, and where necessary, PBMCs are
prepared using standard Ficoll separation and cryo-
preservation procedures for viable sample preparation
and storage [89]. Cell-subset identification is performed
by in silico “isolation” of subsets that are identified by
fluorochrome-conjugated antibodies recognizing pheno-
typic markers.

Plasma and serum Circulating free proteins, chemokine,
and cytokine levels can be measured using either plasma
or serum samples. Circulating free DNA (cfDNA) in
plasma is gaining significance as a monitoring tool for
tumor progression and therapy response.
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Because major differences exist in the protein profile of
plasma and serum, it is important that once chosen as the
primary sample type either serum or plasma is consist-
ently used during the entire course of the validation of a
blood biomarker test, unless these fluids have been shown
to be interchangeable [90]. Common variables to pay at-
tention include: i) the nonlinear dilution pattern of major-
ity of soluble cytokines, ii) preferential distribution
behavior of different analyte levels in plasma, and iii) non-
specific background that can affect signal reproducibility
via inhibitory or stimulatory mechanisms. When no one
matrix covers every target of interest, thorough validation
is highly recommended to define the best matrices to ob-
tain optimal performance, especially under multiplexed
setups [91]. For example, IL-6 was found to be signifi-
cantly less represented in serum than in plasma, while the
level of CXCL8 was found higher in serum than in plasma
[92]. For individual circulating proteins, chemokine and
cytokine, quantitative immunoassays, such as singleplex
enzyme-linked immunosorbent assay (ELISA), are fre-
quently used. Multiplex platforms like Luminex or Meso
Scale (MSD) technologies are commonly used for quanti-
tation of groups of analytes.
For assay development using biofluids, including

cfDNA or miRNA, background effects on the assay
readout such as hemolysis should be assessed. The pref-
erence is for plasma because the clotting reaction for
serum preparation not only alters the proteomic com-
position of the sample, but also contains DNA from leu-
kocytes and thus is less suitable for tumor specific
cfDNA analysis. It is feasible to use samples taken for
routine hematology measurements, but lithium heparin
tubes should be avoided as lithium is a PCR inhibitor
[93, 94]. Consensus SOPs for the collection, processing,
handling, and storage of serum and plasma samples for
biomarker discovery and validation are available [95].

2. Tissue-based assays

Immunohistochemistry (IHC) Tissue based bio-
markers can be measured on freshly frozen (FF)
tumor samples or formalin fixed paraffin embedded
(FFPE) tissue. FFPE tissue blocks are often available
as archival materials as part of bio-banked samples
for conventional IHC, which is the most widely used
platform for biomarker assessment in diagnostic sur-
gical pathology and for retrospective research. How-
ever, damage to the protein and nucleic acid
frequently occurs through the fixation, embedding,
and prolonged storage of FFPE samples.
IHC is a multi-step process that requires standardized

conditions for tissue collection, fixation and processing,
preparation of the IHC slide, and interpretation of the
staining results. IHC based assays remain important tests

as companion diagnostics (CDx) to assess antigen expres-
sion on diagnostic or surgical specimens for selecting pa-
tients and predicting patient-response to specific targeted
therapies (e.g., HER2 expression for Herceptin), and more
recently PD-L1 measurement as a CDx for pembrolizumab
treatment of NSCLC patients. Published guidelines for
measuring established biomarkers such as estrogen recep-
tor, progesterone receptor, and HER2 are available [96, 97].
Of particular importance is the consideration of tissue col-
lection and shipping of paraffin slides, which is a major
challenge for multi-institution studies where central pro-
cessing and banking is performed [98]. General guidelines,
including analyte stability and laboratory quality control,
for performing analysis of tissue-based molecular bio-
markers have been published [99].
Time is a critical factor throughout the biospecimen

collection and processing period, especially for proteins
that are highly labile. Minimizing the pre-analytic vari-
ability for IHC-based analysis needs to address tissue re-
moval from the patient. It is generally accepted that 2 h
of ischemia does not significantly alter the protein, DNA
or RNA conformation, or preservation of microscopic
features. To preserve antigenicity of PD-L1 in IHC as-
says, it is recommended to store slide-mounted tissue
sections in the dark at 2-8 °C. In addition, staining
within 6 months of sectioning is recommended for reli-
able interpretation of PD-L1 expression due to the in-
stability of the antigen [32].
Time to fixation and the fixation period are also crit-

ical factors affecting the quality of both RNA and pro-
tein, especially phosphoproteins that are notoriously
unstable depending on the time of fixation, duration of
fixation, and the type of fixative [100]. Published guide-
lines for optimal protein staining include fixation in
10 % neutral buffered formalin (NBF) for 24 h, dehydra-
tion in several changes of xylene and ethanol for 1.5-
15 h, and embedding in paraffin for 0.5–4.5 h [101]. For
PD-L1 detection, fixation time for 12–72 h in 10 % NBF
is recommended, as fixation times of ≤3 h may result in
variable PD-L1 detection [32]. The specific conditions,
however, may vary from protein to protein due to the
biochemical nature of the protein.
Embedding can have a great impact on pre-analytical and

analytical variability especially when the presence of tumor
immune-infiltrate is required to be integrated in the con-
text of specific location in the tissue specimen, e.g., invasive
tumor margin. Association of TILs (e.g., CD3, CD8) at the
invasive margin in melanoma has been shown to correlate
with response to PD-1 pathway inhibitors [35, 36]. T cell-
infiltrate location (invasive margin and/or tumor center)
has been previously identified as an important consider-
ation in the “Immunoscore” algorithm for prognosis in
CRC and a variety of other tumors [102]. Standardization
and consensus guidelines for TILs assessment in breast
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cancer to foster their integration into future clinical trials
and diagnostic practice has also been published [103].
Antigen retrieval conditions also depend on the nature

of the antigen and should be carefully controlled (e.g.,
the pH of the retrieval solution for PD-L1 must be 6.1 ±
0.2, as a pH below 5.9 may give erroneous results). Spe-
cific conditions, however, will vary due to the biochem-
ical nature of the antigen, membrane vs. cytoplasmic or
nuclear localization as well as variability of expression of
the specific antigen in different histologies. To control
pre-analytical requirements of the assay’s performance,
running the test on a series of in-house tissues with
known IHC performance characteristics representing
known positive and negative tissues is recommended
(reference samples).
Although IHC for a single marker remains a stand-

ard method in pathology laboratories, tumor stratifi-
cation, in particular in immune-oncology, will likely
require quantitative and multiple marker approaches
to accurately define the multi-dimensional interactions
between cancer and the immune system, which are
relevant for clinical decision making. A standardized
methodology for evaluating PD-L1 expression and
TILs might be required as a prerequisite for integrat-
ing these parameters in standard histopathological
practice as well as in clinical trials. Quantitative and
multiplexed IHC and immunofluorescence-based plat-
forms have been discussed in detail in publications
resulting from other Biomarker Task Force activities
(Additional file 1) [104].

DNA-based assays Next Generation Sequencing
(NGS)-based tests for tumor mutation analysis, similar
to other complex molecular diagnostics, should demon-
strate adequate analytical and clinical performance [105].
They should follow SOPs that specifically address mate-
rials and procedures including patient’s sample type,
method of DNA extraction as well as technical metrics
for DNA quantification and quality, which can negatively
impact sensitivity and reproducibility of the assay [106].
For somatic mutation detection using NGS assays, an

important pre-analytical consideration is the collection
and storage of quality controlled samples. Various stan-
dardized preservation methods have been developed for
DNA [107] in various sample types including FFPE, FF
tissues, and fine-needle biopsies [108, 109]. Nucleic
acids, in particular DNA, are more stable than proteins
and are therefore less sensitive to variation in sample
processing, although formalin fixation has been shown
to reduce DNA and RNA solubility and induce a high
frequency of sequence alterations [110]. An important
factor is determining the minimal amount of FFPE ma-
terial required for a NGS clinical assay. Usually a mini-
mum of 80 % tumor content in the extracted material

from FFPE tumor samples is required, but samples with
as low as 10 % of tumor content have been used in re-
search studies [105, 111].
Tumor enrichment using macro-dissection is helpful

to quantitatively assess somatic variant allele frequency
and copy number values (CNV). It also increases sensi-
tivity and reproducibility of the data. Whole tumor sec-
tion should be considered when assessing contribution
of the tumor stroma, which could be important for
quantitation of components of TME including immune
system components such as TILs.
The quantity of DNA needed as input for an assay can

vary depending on the analyte and assay platform. FFPE
tumor DNA from clinical samples presents a challenge
for mutation testing specifically when the DNA input
from mutated cells is low, the DNA can be damaged,
and C > T artifacts in DNA from the fixation and embed-
ding process frequently occur. Amplification steps can
be used before sequencing (i.e., library creation), but this
process is associated with an increased risk of errors.
Quantification of DNA and RNA can be performed by
spectrophotometry, fluorimetry, or by PCR. Yet, absorb-
ance does not reflect integrity of DNA since it does not
measure fragmentation or degradation resulting from
tissue processing. These limitations can be overcome by
utilizing novel qPCR type approaches for input material
optimization [112].
Immunosequencing of TCRβ for T cell clonality used a

multiplex PCR and is routinely performed on genomic
DNA extracted from FFPE samples. The size of the
amplicon for TCRβ analysis is generally compatible with
the level of degradation of DNA caused by the fixation
process. Further refinements of the immunosequencing
assay to make it even more robust on DNA extracted
from FFPE samples are currently under development
[113].

Gene expression-based tests The preparation of intact
and pure mRNA is one of the key factors in mRNA gene
quantification. Extraction of nucleic acids and particu-
larly RNA is very sensitive to nucleases. Thus, nuclease-
free conditions should be implemented to control vari-
ability in steps such as sample collection, tissue fixation,
and FFPE blocks handling including sectioning. For the
extraction of nucleic acids from the FFPE tumor tissue,
a method for the simultaneous isolation of high-quality
DNA, RNA, and microRNA as well as protein from the
same sample has been developed [114, 115].
To measure quality, the RNA Integrity Number (RIN)

obtained from RNA electropherogram traces (e.g., Bioa-
nalyzer traces) has been used traditionally as measures
of FFPE RNA. However, RIN values from degraded FFPE
fragments samples are not a sensitive measure of RNA
quality and are not reliable predictors for successful
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library preparation. Illumina developed the DV200
metric to access FFPE RNA quality by accurately meas-
uring the percentage of RNA >200 nucleotides. DV200 >
30 % of RNA samples ensures that degraded RNA frag-
ments meet the requirements for efficient target capture
and is a reliable predictor of library preparation [116].
Gene expression analysis using RNAseq, microarrays,

or qPCR platforms on RNA prepared from FFPE tissues
has been notoriously challenging due to poor quality
RNA and the chemical modification of the nucleic acids.
Furthermore, assessment of RNA degradation indicates
that the degree of RNA fragmentation and the sensitivity
to fragmentation depend on the specific transcript.
Therefore, selecting a proper internal control gene from
listed housekeeping genes for normalization is very crit-
ical for successful gene expression analysis using RNA-
seq analysis. However, other platforms, such as the
Nanostring nCounter System, which have been opti-
mized for RNA prepared from FFPE samples do not suf-
fer from the same limitations. Specifically, NanoString
probe code-set design and detection method appear to
be able to accommodate the fragmented nature of FFPE
tissue RNA better than most of the other currently avail-
able technologies.
Recent clearance by FDA under 510(k) regulation of the

NanoString’s Prosigna (PAM50) gene signature panel
showed that when using macro-dissected FFPE tissue
slides as the starting sample, the reproducibility was quite
high. The analytic validation of a gene expression prog-
nostic signature has been recently published [60]. The
analytic studies described in the publication resulted in
the optimal tissue and optimal RNA specifications re-
quired for acceptance of clinical samples in the marketed
assay (i.e., tumor surface area in H&E stained slides
>4 mm2/slide, tumor cellularity required (>10 %), and
need for non-tumor tissue macro-dissection). These data
suggest that gene expression profiling upon application of
suitable controls and standard procedure can achieve a fit-
for-purpose assay for successful clinical application [117].

3. Reagent qualification and stability
One of the crucial steps in the analytic validation of any
assay is the qualification of the specific reagents, unique
to each test. Chemical compounds can decompose under
freeze and thaw cycles, and both short and long term
storage conditions can affect cell processing and DNA/
RNA extraction. The stability of the stock solutions, of
the analyte and the internal standard should be evalu-
ated at assay specific conditions. Conditions used in re-
agent stability testing should reflect situations likely to
be encountered during actual sample handling, storage,
and analysis.
As part of the qualification process of assay reagents,

stability testing of critical reagents, such as primary

antibodies, enzymes, and recombinant cytokines, should
be performed to define stability windows and sample ex-
piration dates. Clear directions in prequalification cri-
teria for large-batch stored materials are highly
recommended (e.g., a viability cut-off to qualify control
donor PBMC used as an in-study quality control). For
functional cell-based assays, such as ELISpot and SCNP
that require cell-preconditioning, specific validated SOPs
ensuring reproducibility are necessary [88, 118].
For example, in order to qualify reagents for SCPN,

each antibody-fluorochrome conjugate is titrated inde-
pendently against 3 qualified control samples to select
the optimal titer in the relevant buffer conditions follow-
ing reagent qualification SOPs. Cocktails comprising all
components are then generated following SOPs and be-
fore incorporation in the assay are qualified for perform-
ance using SOP qualified control samples (cell lines and/
or banked control PBMC from healthy donors). Modula-
tors (e.g., cytokines, drugs, anti-TCR, or anti-BCR) are
formulated and qualified for assay incorporation using
standard samples as for the assay cocktails, testing for
both positive and negative signaling (e.g., anti-TCR
stimulation should induce signaling in the T cells but
not B cells within the well).

Analytical validation
Analytical validation involves confirming that the assay
used for the biomarker measurement has established: i)
Accuracy, ii) Precision, iii) Analytical sensitivity, iv) Ana-
lytical specificity, v) Reportable range of test results for
the test system, vi) Reference intervals (normal values)
with controls and calibrators, vii) Harmonized analytical
performance if the assay is to be performed in multiple
laboratories, and viii) Establishment of appropriate qual-
ity control measures. The requirements for analytical
validation as well as their definitions are summarized in
full in Table 3.

1. Precision
Analytic repeatability and reproducibility is a require-
ment for the implementation of all diagnostic tests and
is particularly critical for predictive assays given the im-
plications of misclassifications of patients for treatment.
Use of positive and negative controls and standardized
SOPs are required to assure reproducibility. Guidelines
for the number of replicates needed to validate the
performance of molecular diagnostic assays, as well as
such considerations as the linearity of assay response,
dynamic range, limits of detection, analyte stability
within the intended matrix, and intra- and inter-
laboratory coefficient of variability have been provided
[19, 119].
Precision refers to closeness of agreement between a

series of measurements and evaluates random error that
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may be identified as within-run, between-run within-day,
between-day, or within-laboratory. Precision is quantita-
tively expressed in terms of the standard deviation (SD),
variance, or coefficient of variation (CV) of a series of
measurements. Precision is often a function of the analyte
concentration, with small concentrations resulting in
poorer precision (i.e., larger SD, variance, and CV) than
high concentrations. Precision should be assessed at the
medical decision points of relevance to the intended clin-
ical application of the tumor biomarker. Precision is deter-
mined by reproducibility and repeatability of the assay
which allow quantitative determination of the closeness of
agreement among measurements. The reproducibility is
generally measured by the % CV, which is defined as the
standard deviation divided by the mean of the assay result
expressed as a percent [65].
The FDA and European Medicines Agency (EMA) ac-

ceptance criteria for biological assays typically define the
required between-run and within-run precision as CV of
10 or 15 % for quality control samples and 20 % for
lower limit of quantification (LLOQ) samples [120, 121].
However, the new CLSI guidelines for single cell-based
functional assays suggests larger CV acceptance (up to
30 %) and requires more repetitions (6 to 10 replicates)
in assay validation to reflect the high degree of hetero-
geneity of the majority of live cell-based immune assays
(including intracellular cytokine staining, HLA-peptide
multimer assay, ELISpot, and cell proliferation assays)
[69]. It is important to note that the ultimate CV accept-
ance can only be evaluated in the clinical context in
which the test is used (e.g., for a patient stratification
assay variability around the test cutoff together with the

distribution in the target patient population of the test
results will need to be considered).
Depending on the particular category, an assay can

require a distinct type of analytic validation. Definite
quantitative assays make use of calibrators and a re-
gression model to calculate absolute quantitative
values for unknown samples. The reference standard
must be well defined and should be a representative of
the biomarker. This type of assay can be accurate and
precise. In relative-quantitative assays, reference
calibrators can be used; however, because standards
are not fully representative of the biomarker, assay
precision can be validated, while the accuracy of the
assay can only be estimated.
Precision for single cell immune assays, e.g., ELISpot

(including intra- and inter-assay variability as well as re-
producibility) is a particularly critical validation param-
eter. Inherent variability of these assays should be
adequately addressed as they are frequently used in the
clinic to longitudinally monitor changes in immune pa-
rameters in response to an immune intervention (such a
vaccine administration). Precision data are essential to
render results of measurements at different time points
that are comparable in a meaningful way i.e., an increase
in the magnitude of measured responses after vaccin-
ation/treatment has to significantly differ from the deter-
mined variability. Precision testing includes replicate
measurements of the same conditions in one experiment
(repeatability) and repetition of the assay with the same
samples on different days by all assay operators involved
in a study (intra-assay precision) and in all participating
laboratories (reproducibility), if applicable.
A rather challenging task with these assays is to deter-

mine accuracy, i.e., the closeness of agreement of the
measured value and the true value. This is particularly
true for ELISpot as well as for other single cell func-
tional assays, due to the lack of a gold standard/test that
is able to provide an exact measurement of antigen-
specific cells in a given sample. Obtaining data on how
accurate a laboratory performance is in relation to a spe-
cific assay can be achieved via participation in large pro-
ficiency panels that provide relative accuracy for a
laboratory in comparison to other laboratories testing
the same sample(s) in the same assay. An international
ELISpot Proficiency Panel for IFNɣ is conducted on a
yearly basis and is open for participation to any laboratory
independent of affiliation or research background [122].
Efforts to harmonize classic single-cell immune monitor-

ing assays have included the identification of critical assay
steps, and guidelines for harmonized assay conduct have
been made available (ELISpot [123–125], multimer staining
[126, 127], intracellular cytokine staining [128–130] and
Immunoscore [131, 132]). These efforts have been shown
to dramatically reduce the variability among laboratories

Table 3 Analytical validation requirements for biomarker assays

Requirement Definition

Analytical
sensitivity

The ability of the assay to distinguish the analyte of
interest from structurally similar substance

Analytical
specificity

The degree of interference by compounds that may
resemble but differ from the analyte to be quantified

Linearity The ability of an assay to give concentrations that are
directly proportional to the levels of the analyte
following sample dilution

Precision The agreement between replicate measurements

Limit of
detection

The lowest concentration of analyte significantly
different from zero, also called the analytical sensitivity

Accuracy Agreement between the best estimate of a quantity
and its true value

Repeatability Describes measurements made under the same
conditions

Reproducibility Describes measurements done under different
conditions

Robustness Precision of an assay following changes in assay
conditions, e.g., variation in ambient temperature,
storage condition of reagents

Source: Jennings et al., 2009 [179]
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and provide a basis for the comparison of immune assay re-
sults obtained at different sites, or even across trials [133].
For SCNP, captured data include quantification of cell

subset frequencies and specific intracellular read outs for
each of the cell subsets in both the basal (unmodulated)
and modulated state. In addition, various aspects of
modulated signaling in each cell subset and/or signaling
inhibition by in vitro drug exposure are captured by
metrics that are computed by comparing data for cells
subject to different conditions. In this manner, the de-
gree of evoked signal, for example, is established by
comparing data obtained in the modulated well for a
specific donor sample with the data obtained from the
same sample in the adjacent unmodulated well. The
“Fold” metric is applied to measure magnitude of the
responsiveness of a signal in a specific cell population
relative to the unmodulated reference. The proportion
of a cell population that is responsive to modulation is
measured by the Uu (rank based metric based on
Mann–Whitney U statistic) metric. Similarly, inhibited
signaling is captured using both magnitude and
population-based metrics [118].
Reproducibility of semi-quantitative assays such as IHC

is a unique problem in that it is difficult to measure vari-
ation between assay results. For IHC assays, results are
usually expressed as low, medium, or high or on a scale of
1 to 3. For such assays, reproducibility is generally mea-
sured in terms of the kappa (ĸ) statistic and percent agree-
ment among different observers [134]. Although there is
no generally accepted value of ĸ that indicates the level of
agreement, it has been suggested that ĸ <0.4 represents
poor, 0.4–0.6 moderate, 0.6–0.8 significant, and 0.8 very
good agreement: total agreement is indicated by a value of
1.0 [135].
A semi-quantitative assays do not use calibration stan-

dards but has a continuous response that is expressed in
terms of a characteristic of the test sample. Precision can
be validated but not accuracy. The ideal level of agreement
or concordance in such assays is unclear, although a level
of agreement of 85 % is considered to be acceptable. Inter-
observer reproducibility might represent a major chal-
lenge to the reliable assessment of the IHC results in
addition to tissue-processing.

2. Multiparametric assays
Validation and maintaining reproducibility of multipara-
metric assays is much more challenging considering the
number of analytic variables associated with high content
assays (such as NanoString, flow cytometry, SCNP, muta-
tional load, and TCR sequencing). The capacity of high-
throughput platforms, such as nCounter Dx Analysis
System (NanoString) or flow cytometry based analysis
SCNP enable multi-dimensional analysis of the immune
system. Instead of detecting a single or limited number of

molecular targets, assays are able to detect tens to hun-
dreds of distinct molecular features simultaneously [136].
SCNP enables the simultaneous analysis of the func-

tional capacity of multiple immune cell subsets in the
same well. Controls for assay performance, reagents, and
multiplexing are therefore required to validate reproduci-
bility and precision [118]. Multiplexed reagent “cocktails”
are generated comprising 8 or more fluorochrome-
conjugated antibodies that recognize both cell surface and
intracellular phenotyping molecules (e.g., CD3, CD4,
CD56, and FoxP3) and intracellular readouts of activity
(e.g., p-Akt, and p-ERK) following sample modulation
with selected stimuli. The use of pre-formatted
lyophilized-reagent plates (Lyoplates, BD Biosciences) can
help to decrease staining variability compared with using
individual liquid reagents in multiple studies in immuno-
phenotyping [137] as well as functional assays [138].
To control for multiplexing, each assay should be run

with a well-characterized control for assay performance
included in the top row of every plate (healthy control
donor PBMCs or cell line). In addition, rainbow control
particles included in the final column of each plate
should be included to control for cytometer performance
and enable normalization within and across plates. The
control samples (typically healthy donor PBMCs) are
typically from leukapheresed whole blood in which mul-
tiple vials of the same donor preparation are available
and are qualified for use following a standard signaling
panel defined by SOPs. Control donor bridging across
assays is also performed where appropriate. When cell
lines are used, batch preparations are made to cover
multiple assay runs and are qualified following SOPs.
For NGS, assay performance characteristics include:

accuracy (degree of agreement between the nucleic acid
sequences derived from the assay and reference se-
quence); precision (the degree to which repeated se-
quence analyses give the same results); repeatability
(within-run precision); reproducibility (between-run pre-
cision); and sensitivity (the likelihood that the assay will
detect the targeted sequence variations, if present). Sen-
sitivity also includes the probability that the assay will
not detect a sequence variation when none is present.
Two different NGS platforms using different chemistries for
amplification based systems coupled to massively parallel se-
quencing are commonly used for NGS applications (Illu-
mina TruSeq and Ion Torrent AmpliSeq). Each platform
has specific parameters relevant to the laboratory and test
requirements including instrument size, instrument cost,
run time, read length, and cost per sample [116, 139, 140].
For WES and WGS, the focus of validation is on de-

veloping metrics that define a high-quality exome/gen-
ome, such as the average coverage across the exome/
genome and the percentage of bases that meet a set
minimum coverage threshold. The minimum acceptable
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level of the concordance of single nucleotide polymor-
phisms (SNPs) identified as compared with the reference
should be established). Minimum coverage threshold ne-
cessary to determine variants relevant for the diagnostics
need to be also established experimentally as low cover-
age increases the risk of missing low-level variants. Even
after the macro-dissection step, patient tumor samples
are still contaminated with normal cells derived from
surrounding tissue or from reactive infiltrate, which may
skew the representation of mutant alleles. The American
College of Medical Genetics (ACMG) has developed clin-
ical laboratory standards for NGS [106], which specifically
address the unique challenges of WES/WGS [141].
The TCR immunosequencing assay is a Laboratory De-

veloped Test (LDT) that has been CLIA and CAP certi-
fied. Data presented at the time of these certifications
supported the following assay parameters: analytic accur-
acy, sensitivity, lower level of detection (LOD), lower limit
of quantification (LLOQ), specificity (including interfering
factors), linear reportable range, and precision.
Two methods have been analytically validated to deter-

mine MSI phenotype in colon cancer, yet neither is FDA
approved/cleared. PCR analysis with a panel of mononu-
cleotide markers (BAT-25, BAT-26, MONO-27, NRhwe21,
and NR-24) and IHC based analysis of the MMR proteins
(MLH1, MSH2, MSH6, and PMS2) have been proposed.
Both tests show high reproducibility; however, IHC-based
test, unlike PCR, has disadvantages such as dependence
on antibody panels and challenges of analytical perform-
ance evaluation of the IHC based assay. CAP provides a
detailed summary on several clinically important issues,
such as the number and types of markers used, methods
used to perform the assay, and definition of MSI-H and
MSI-L phenotypes. This information is valuable to clinical
laboratories that are currently offering this test as well as
to those that are planning to launch this test for predicting
response to anti-PD-1 inhibitors [142, 143].

3. Reference materials for immune assays
For efficient assay development, particular care must be
given to establish the conditions that allow validation of the
assay to meet required sensitivity and specificity by usage of
well-defined standards. Inclusion of appropriate control ma-
terials to ensure that assays are working accurately and re-
producibly is a key to the success of any assay. Each
experiment must include controls that reflect both the ana-
lytical and post-analytical processing to assess artefactual
findings leading to misinterpretation of experimental results.
Ideally, consistent reference materials should be used across
all stages of analytical validation. Table 4 provides a list of
recommended standard materials as reliable controls for
specific immune assays. There are two different types of ref-
erence materials depending on the purpose of application: i)
validation references and ii) quality control references.

Reference materials are used in assay validation to esti-
mate intra- and inter-run accuracy/precision and stability.
Quality control reference materials are used during in-
study sample analysis to accept or reject assay runs. For
both types of reference materials, low (undetectable,
<LOD) and high (maximum working concentration) refer-
ence levels can be established as negative and positive con-
trols, respectively. The same biological sample can serve
multiple purposes (e.g., as validation reference and quality
control reference). However, a validation reference, by its
nature, is used to show assay parallelism with patient sam-
ples, behaving with similar performance measurements (i.e.,
specificity, precision, and sensitivity), while the quality con-
trol references are used to test acceptance criteria.
Because of the lack of well-characterized and well-

regulated “reference standard materials” (typically autho-
rized by US Pharmacopeial Convention (USP) and Na-
tional Institute of Standards & Technology (NIST) or
other international agencies such as National Institute for
Biological Standards and Controls (NIBSC), World Health
Organization (WHO), etc.) for quantitative measures of
immune analytes, reference materials often in the forms of
biological samples are used to assess relative accuracy of
an assay performance (cell lines and tissue specimens). To
better reflect the complexity of immune cell-based assays,
synthetic reference materials or “home-brew” references
are created by preparing mixtures of known analyte(s)
(e.g., recombinant proteins) at known concentrations.
Unlike quantitative assays in which the result is a con-

tinuous number expressed using an approved or certified
reference standard, semi-quantitative assays, such as im-
mune response assays, rarely have reference standards
and are expressed in relation to a baseline characteristic
of a sample. These assays generally lack calibrators but
may have standards for the different categorical values
that are usually not certified by a regulatory body.
For blood-based assays, the reference samples may in-

clude cell lines or control PBMC donor samples that are
prepared and cryopreserved following SOPs to ensure

Table 4 Recommended standard materials for immune assays

Technology/Assay Recommended Reference Materials

Blood-based assays Cell lines or control PBMC donor
samples prepared and
cryopreserved following SOP
(reference samples)

Immunohistochemistry assays Control cell lines or tissue
specimens (e.g., human tonsil for
PD-L1 staining) or cell lines proc-
essed and embedded in paraffin
(not to be used for interpreting pa-
tient data)

RNA/DNA based assays (NGS,
TCR/BCR sequencing, gene
expression profiling)

Synthetic mimic libraries, TCR/BCR
DNA synthetic templates, synthetic
vectors, company or WHO and NIST
references
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standardized preparation. These controls are qualified for
use following SOPs that define both the test and the re-
quired output data parameters for inclusion in the assay.
For example, in SCNP a defined range of signaling across
pre-specified nodes is used to qualify a sample for use as a
control. The use of PBMC from leukapheresed whole
blood enables the generation of large batches of control
donor PBMC that can cross multiple assay runs. For T cell
assays, specific TCR-engineered T cells can be obtained
and used as performance control [144]. “Bridging” sam-
ples are used to enable the transfer of one control donor
to another over time and multiple assay runs in instances
where one donor sample would be exhausted.
For IHC, cores containing positive and negative protein

expressing or genetically modified cell lines that are exten-
sively characterized using molecular assays, IHC, Western
blot and fluorescent in situ hybridization (FISH) or well
characterized tissue specimens are recommended to be in-
cluded on the same slide. For example, human tonsil tis-
sue is recommended for PD-L1 IHC as strong positive
staining should be detected in portions of the crypt epi-
thelium and weak to moderate staining of the follicular
macrophages in the germinal centers. Negative staining
should be observed in endothelium, fibroblasts, and sur-
face epithelium [32]. Cultured cell lines could represent
an alternative source of material for quality control that
are homogenous, uniform in quality, and can be processed
and embedded in paraffin. Culture cell lines can be used
as a control for the validity of the staining, but should not
be used for interpretation of patients’ data [145]. Efforts
using validation of RNA levels for accurate PD-L1 detec-
tion is also ongoing [146].
Although relative quantitative assays constitute the

great majority of immune response assays so far, RNA or
DNA-based methods, such as NGS, TCR sequencing or
gene expression profiling methods that may become pre-
dictive for response to immunotherapy, if validated, are
highly quantitative due to availability of synthetic refer-
ence materials. Generally, major sequencing reagent pro-
viders have a set of standards that serve to control
instrument performance in addition to standards for
technical performance of the assay in order to conserve
reads for clinical samples in a run.
The NIST recommended HapMap NA12878 control is

used for standardization of platform performance when
the data are compared with the well-curated, publically
available data from different consortia, e.g., Genome in a
Bottle (GIAB) Consortium for NA12878, which has exten-
sively quality-controlled reference standard materials for
analytical validation of NGS platforms, including DNA
standard reference materials with high accuracy for whole
genome sequences [147].
In the case of FFPE tissue-based tests for somatic mu-

tations, control DNA samples available from companies,

such as Horizon Dx or Acrometrix (Thermo Fisher,
Inc.), provide controls with a clear readout of variant
calls at defined positions that greatly aid in the develop-
ment of somatic mutation assays. Use of controls that
match anticipated specimens (such as FFPE controls) in
addition to high quality, non-formalin fixed cellular
HapMap control materials like NA12878 is particularly
useful for establishing background error for formalin-
fixation caused deamination based errors, e.g., high
background of C/T variant calls and other fixation based
artifacts as well as calculation of index calling efficiency
with pipelines being utilized [105].
The immunosequencing assay makes use of independ-

ently chemically synthesized templates for every possible
V and J combination for any locus for which the assay is
developed [148]. These templates provide a known set
and frequency of rearranged sequences that allow for
control of PCR-bias. They serve as internal controls for
every reaction that is run. They can be distributed by a
third party regulatory concern for use in laboratory pro-
ficiency testing.
Examples of synthetic reference materials also include

synthetic vectors serving as reference to control amplifica-
tion bias for DNA, and cDNA-based NGS, “alien” sequences
(sequences of nucleotides which do not exist in humans) as
negative controls for the nCounter platform [148].

Post-analytical criteria
The post-analytical phase of biomarker evaluations in-
volves data interpretation of the assay results. Dichotom-
ous variables are relatively straightforward to incorporate
into calculations of data sensitivity and specificity. How-
ever, most variables in measurement of immune response
are continuous, resulting in variability with respect to ana-
lytical performance criteria and clinical relevance of the
assay, e.g., cutoff points for clinical decision making.
Essentially, a cutoff for classifying a sample as positive or
negative needs to be determined empirically by correlating
results with clinical outcomes in a clinical trial exploring
efficacy of a drug as discussed in Volume II.
Flow cytometry-based data interpretation considers

many different aspects such as pre-defined gating and
clustering strategies, choice of appropriate data trans-
formation for data visualization, inclusion and exclusion
criteria, and so on, as shown by numerous published
harmonization efforts [129, 149–151]. The minimal
reporting guidelines for biological and biomedical inves-
tigations (MIBBI) project include a series of reporting
frameworks (http://mibbi.sourceforge.net/foundry.shtml)
to guide scientific publishing and data reporting to spe-
cific web sites where independent analysis is possible.
There are several “minimal information” sub-projects
under assay or platform-specific focus groups. Flow cy-
tometry (MIFlowCyt) [152] and T cell assays (MIATA)
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[153], NK cell assays (MIANKA), and FISH assay (MIS-
FISHIE) [154] are those most relevant to immune status
monitoring. These initiatives provide useful suggestions
for scientific data reporting and may help researchers to
determine the degree of laboratory details captured.
Immunohistochemical methods are notoriously non-

linear, and scoring systems are generally vulnerable to
heterogeneity in intensity extent and topography of
staining. Because of a lack of universal methods, scoring
systems for IHC are usually based on characteristics of
overall staining intensity using a scale of 0 to 3+ and
subcellular localization [119]. The main pitfalls of PD-L1
as a predictive biomarker may be related to both the
variability in expression due to tumor heterogeneity as
well as IHC assay variability due to different antibody
clones, staining platforms, scoring systems, and clinical
sampling points. These factors increase the uncertainty
for using PD-L1 expression as a patient selection bio-
marker. Together, these challenges may contribute to
the low NPV and PPV of PD-L1 as a predictive marker
of clinical benefit to anti-PD-1/PD-L1 blockade.
There are numerous drugs in development targeting the

PD-1/PD-L1 pathway; the practice has been to independ-
ently develop anti-PD-L1 IHC CDx for individual agents.
The different PD-L1 IHC diagnostic kits and assays vary
in different percentages of positive cells, scoring systems,
and cutoff values (from 1 to 50 %), cells scored (tumor
cells and/or infiltrating immune cells), and in the subcel-
lular localization of staining (membrane vs. cytoplasmic).
If each therapeutic was approved in conjunction with a
specific CDx, this may present a challenge for testing and
decision making in the clinic. Examples of tumor samples
with different percentage of tumor cells staining for PD-
L1 are shown in Fig. 2. PD-L1 immunostaining with a per-
centage of tumor cell staining of 50 % or higher was asso-
ciated with significantly longer progression-free survival
and overall survival than a lower than 50 % percent of
stained cells in a KEYNOTE 001 trial with pembrolizumab
in NSCLC. If each therapeutic was approved in conjunc-
tion with a specific CDx, this may present a challenge for
testing and decision making in the clinic.
Thus, the FDA, the American Association for Cancer

Research (AACR),and American Society of Clinical On-
cology (ASCO) convened a workshop titled “Complex-
ities in Personalized Medicine: Harmonizing Companion
Diagnostics Across a Class of Targeted Therapies” to ad-
dress comparability across multiple PD-L1 tests. A high-
light of the workshop was the unveiling of a “blueprint”
proposal developed by four pharmaceutical companies
(Bristol-Myers Squibb, Merck & Co. Inc., AstraZeneca
PLC, and Genentech, Inc.) and two diagnostic compan-
ies (Agilent Technologies, Inc./Dako Corp and Roche/
Ventana Medical Systems, Inc.) to analytically cross-
compare the four different diagnostics [155]. The scope

of this study was to establish technical comparability and to
define the key performance parameters of each assay. Prelim-
inary results of this effort were presented at the 2016 AARC
annual meeting. Analyses from the Blueprint Project confirm
that there is high concordance for the two approved PD-L1
diagnostics in NSCLC [156].
Because IHC is the cornerstone of hospital pathology, sig-

nificant efforts to measure Tcell immune infiltrates as poten-
tial predictive markers for clinical decision-making in
immunotherapy have been focused in particular on multi-
plex quantitative IHC approaches. Image-based readouts for
IHC using automated methods remove the subjectivity of
the traditional system and provide more continuous and re-
producible scoring of protein expression in tissue samples.
The assessment of TILs by digital image analysis has the po-
tential, for example, to determine the number of TILs per
mm2 stromal tissue as an exact measurement contrary to
the approximate semi-quantitative evaluation currently used.
Automated quantitative analysis (AQUA) provides an auto-
mated IHC-based analysis and scoring system for assessing
the target protein’s signal intensity normalized over the
tumor areas and subcellular compartment of biological sig-
nificance [157]. AQUA has been noted as a promising new
strategy for the measurement of hormone receptors testing
in breast cancer tissue [158, 159].
Recently developed mass cytometry techniques with

the ability to allow multiplexed and directly quantitative
imaging of tissue samples helps to overcome many of
the current IHC limitations. In these approaches, pri-
mary antibodies labeled with rare lanthanide metals with
a unique mass that is easily assessed by time-of-flight
mass spectrometry. Imaging software is used to re-
construct the 2-D stained tissue image from the detected
heavy metal ions. CyTOF (Cytometry by Time-Of-
Flight) utilizes a laser to destroy the tissue/antibodies
and free heavy metal ions. A two dimensional image is
created that looks very similar to a routine IHC but with
quantitative multiplexed information [160]. Multiplexed
ion beam imaging (MIBI) uses a scanning ion beam to
liberate the metal ions, which improves the resolution
but requires more specialized setup (vacuum, multiple
detector MS) [161]. These methods will likely allow for
quantitative approaches and development of models to
integrate vast amounts of immune response-related in-
formation and apply it into clinically applicable settings.
Given the huge amount of sequence data produced by

NGS platforms, the development of accurate and efficient
data handling and analysis pipelines is essential. NGS data
analysis can be divided into four primary operations: (i)
base calling, (ii) read alignment, (iii) variant calling, and
(iv) variant annotation. A very large number of algorithms
are available for each discrete step in data analysis. The ac-
curacy of identifying variants greatly depends on the depth
of sequence coverage and variant call quality scores vary
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between algorithms because of the weighting of quality
scores for surrounding bases as well as positional context
with respect to primer position and stretches of repetitive
bases. Therefore, the final list of quality filtered base calls
can be quite different when the same raw data is subjected
to analysis with different data analysis software. Another
common discrepancy between variant callers involves
reporting only non-synonymous and deleterious muta-
tions while other analysis provide a complete list of muta-
tions without filtering for synonymous, coding vs. non-
coding, and deleterious vs. tolerated mutations [105].
For NGS bioinformatics pipelines, a very large number of

algorithms are available for each step in data analysis to as-
sess the quality of raw NGS data available for whole exome
data analysis, including data preprocessing, alignment, post-
alignment processing, variant calling, annotation, and
prioritization tools. Starting from available exome sequen-
cing data, mutations can then be assessed for their immuno-
genic potential in the context of each patient’s MHC
haplotype using epitope prediction algorithms. These algo-
rithms provide an estimate of the total number of mutation-
associated neoantigens in each tumor. Although the number
of predicted mutation-associated neoantigens is usually
small, it might be proportionate to the number of actual
mutation-associated neoantigens, and tumors with a high
number of actual mutation-associated neoantigens are more
likely to stimulate the immune system to react against the
tumor [51, 162, 163].

In the NanoString platform, the nSolver™ Analysis Soft-
ware is a validated data analysis program for automatic
QC, normalization, and data analysis. It performs auto-
mated background subtraction corrections; implements
customized quality control on samples/lanes, runs the
predictive algorithm, and provides customized sample/pa-
tient reports.
As high-throughput methods became widely available

there is a need for computational methodologies for in-
terpretation of the complex data for biological and clin-
ical implications. Algorithms to develop multimodal
signatures integrating various types of molecular tumor
data (i.e., genomics, protein expression, and functional
analyses) with TME factors that reflect the complex bio-
marker information require the development of multi-
factorial classifiers/algorithms. A list of commonly used
bioinformatics tools for different high-throughput tech-
nologies have been provided and discussed in other pub-
lications from the SITC Immune Biomarkers Task Force
activities [104].
Any software used to automate any part of the assay for

clinical application must ultimately be validated for its
intended use prior to clinical application, as required by 21
CFR §820.70(i) [164]. In addition, computer systems used
to create, modify, and maintain electronic records and to
calculate multiplexed assay results (e.g., outputs of algo-
rithmic models) are also subject to the same validation
requirements.

Fig. 2 PD-L1 Expression in Non–Small-Cell Lung Cancers. Results were reported as the percentage of neoplastic cells showing membranous
staining of programmed cell death ligand 1 (PD-L1) (proportion score). Shown are tumor samples obtained from patients with a proportion score
of less than 1 % (Panel a), a score of 1 to 49 % (Panel b), and a score of at least 50 % (Panel c) (all at low magnification). Tumor samples with the
corresponding proportion scores are shown at a higher magnification in Panels d through f. PD-L1 staining is shown by the presence of the brown
chromogen. The blue color is the hematoxylin counterstain. From The New England Journal of Medicine, 2015, 372, 2018-2028 Edward B. Garon et al.,
Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. Copyright © 2015 Massachusetts Medical Society. Reprinted with permis-
sion from Massachusetts Medical Society

Masucci et al. Journal for ImmunoTherapy of Cancer  (2016) 4:76 Page 18 of 25



Such computer systems must be validated to ensure ac-
curacy, reliability, consistent intended performance, and the
ability to discern invalid or altered records. Testing of de-
vice software functionality in a simulated use environment
and user site testing are typically included as components
of an overall design validation program for a software auto-
mated device. In large measure, software validation is a
matter of developing a “level of confidence” that all require-
ments and user expectations for the software automated
functions and features of the device are met.

Conclusions
The biological complexity of the tumor and immune sys-
tem interaction contributes to multiple challenges asso-
ciated with technical development of clinically applicable
assays when evaluating different variables as markers of
clinical benefit to immunotherapy. Recent developments
in research and technologies have facilitated better un-
derstanding of this interaction and will provide means
for development of such assays. However, each of the
potential biomarkers and the associated assay demands
high-quality validation so it can reach clinical applica-
tion. To date, various promising candidate assays and
platforms to predict response to immunotherapy are
available, as discussed in this publication and other re-
ports of the SITC Immune Biomarkers Task Force activ-
ity (Additional file 1). However, so far, only the PD-L1
IHC assays to inform anti-PD-1/PD-L1 treatment have
been validated for clinical utility. Considering the in-
creased relevance and emphasis on biomarker develop-
ment in cancer immunotherapy, there is an enormous
need to facilitate and improve the steps to demonstrate
clinical value of molecular diagnostics in this space. Al-
though many guidelines for assay validation are avail-
able, this review differs from previously published
reports, as it covers the key steps in the entire process
including: i) analytical validation (Volume I), ii) clinical
validation, iii) the strategies for demonstration of clinical
utility and iv) the regulatory approval process for clinic-
ally applicable diagnostics (Volume II) in the context of
assays for immunotherapy response. Applying approaches
and recommendations as outlined in this review should en-
able more efficient assay development to identify bio-
markers, which are crucial to guide personalized therapy
and for advancing immunotherapy options for cancer pa-
tients. Therefore, the implementation of the following prac-
tices/steps are recommended:

1. Ensure a fit-for-purpose approach for assay develop-
ment, including biomarker selection and validation.

2. Specific quality-control and quality assurance prac-
tices for appropriate procurement for blood-based
and the tissue-based assays for each specific biomarker
should be considered.

3. Ensure that optimal pre-analytic processing
regimens and standard operating procedures
(SOPs) for controlling specific biomarker are
followed.

4. Procedures with rigorous quality assurance,
reproducibility, and control procedures built in
should be considered for analytical validation
step.

5. The interpretation of assay results must be
complemented by proper reference standards,
including reagents and assay controls (positive and
negative controls, if appropriate).

6. Biostatistics and computerized approaches for data
quantification and interpretation as well as
algorithm development for multiplex signatures
based on phenotypic, functional, and genomic data
should be considered.

7. Bioinformatics approaches for the integration of
complex, multicomponent, high-throughput types of
molecular data from tumor and immune factor ana-
lysis should be considered.

8. To evaluate the robustness of semi-quantitative
methods and to enable the analytical and clinical
validation of biomarkers, reference standards
and/or coordinated efforts across centralized
laboratories (proficiency panels) are
recommended.

Recommended guidelines

� General Guidance for Fit-for-purpose Biomarker
Validation [19]

� Best Practices for Biospecimen Resources, NCI, NIH
[64]

� List of Cleared or Approved Companion Diagnostic
Devices, FDA [165]

� Regulations of General Biological Products
Standards, FDA [121]

� Guidance for Gene Expression Profiling Platforms,
FDA [117]

� Standards for Next Generation Sequencing [168, 169]
� Principles of Analytical Validation for

Immunohistochemical Assays [167]
� Guidelines for Validation of Cell Based Fluorescence

Assays [170]

CLSI documents

� Guidelines for Evaluation of Qualitative Test
Performance [181]

� Guidelines for Evaluation of Precision Performance of
Clinical Chemistry Devices [180]

� Guidelines for Verification of Precision and
Estimation of Bias [166]
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� Guidelines for Quality Assurance for
Immunohistochemistry [145]

� Guidelines for Performance of Single Cell Immune
Response Assays [69]

� Guidelines for Enumeration of Immunologically
Defined Cell Populations by Flow Cytometry [182]

Additional file

Additional file 1: Publications by the SITC Immune Biomarker Task Force.
(DOCX 14.1 kb)
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