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1 Introduction

Let K be a field. A valuation mapping on K is a function | - | : K — R such that for any
r,s € K the following conditions are satisfied: (i) |r| > 0 and equality holds if and only if
r=0; (i) [rs| = |r| - |s]; (iii) |7+ s| < |r] + |s].

A field endowed with a valuation mapping will be called a valued field. The usual abso-
lute values of R and C are examples of valuations. A trivial example of a non-Archimedean
valuation is the function | - | taking everything except for 0 into 1 and |0] = 0. In the fol-
lowing we will assume that | - | is non-trivial, i.e., there is an ry € K such that |r| # 0, 1.

If the condition (iii) in the definition of a valuation mapping is replaced with a strong
triangle inequality (ultrametric): |7 + s| < max{|r|,|s|}, then the valuation | - | is said to be
non-Archimedean. In any non-Archimedean field we have |1| = | — 1] =1 and |n| <1 for
allmeN.

Throughout this paper, we assume that K is a valued field, X and ) are vector spaces
over K, a,b € K are fixed with A := a® + b> #0,1 (A := 2a #0,1 if a = b) and # is a posi-
tive integer. Moreover, N stands for the set of all positive integers and R (respectively, Q)
denotes the set of all reals (respectively, rationals).

A mapping f: X" — ) is called a general multi-Euler-Lagrange quadratic mapping if it

satisfies the general Euler-Lagrange quadratic equations in each of their # arguments:

f(xl, ce X1, A% + DX, x4, ,x,,) +f (%15 Xim1, DX — AXy Kyt 5 %)
= (@ + D) [f R d0) +F (K1, o Him1s X i1, 5 %) | (1.1)
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foralli=1,...,mand all wy,..., %1, %;, %}, Xis1,. .., %, € X. Letting x; = x} = 0 in (1.1), we get
fler,..5%21,0, %441, ...,%,) = 0. Putting &, = 0 in (1.1), we have

f(xl; ey Xi1, AKX Xiplr v - 7xn) +f(xl’ e Xils bxi; Kitlseees xn) = )"f(xl’ e xn)' (12)
Replacing x; by ax; and «x; by bx; in (1.1), respectively, we obtain

f(xl) e Xio1y )\xilxi+l) oo vxn)

= )"[f(xli e X1, X X1y 1xn) +f(x11 e Xio1, bxi¢xi+17 e ;xn)]’ (13)
From (1.2) and (1.3), one gets

f(xlr e Xl )\xi;xnlr v ;xn) = )"Zf(xl, LR ;xn) (14')

foralli=1,...,nand all xy,...,x, € X.If a = b in (1.1), then we have

f(xl, . ..,xi_l,a(xi + x;),xm, . ,xn) +f(x1, . ,x,-_l,a(xi —x;),xm, . ..,x,,)

= 2612 [f(xl) oo yxn) +f(x1r oo 1xi—1!x;‘yxi+1! “ee )xn)]' (1'5)

Letting &} = x; in (1.5), we obtain
f(xl, ey Xizly klxi,xi+1, ces ,x,,) = )»ff(xl, N ,x,,) (].6)

foralli=1,...,mandall xy,...,x, € X.

The study of stability problems for functional equations is related to a question of Ulam
[30] concerning the stability of group homomorphisms and affirmatively answered for
Banach spaces by Hyers [13]. The result of Hyers was generalized by Aoki [2] for approx-
imate additive mappings and by Rassias [27] for approximate linear mappings by allow-
ing the Cauchy difference operator CDf (x,y) = f(x + ¥) — [f(x) + f(y)] to be controlled by
e(|lx)|? +|y|I”). In 1994, a further generalization was obtained by Gavruta [9], who replaced
e(Jlx[|? + |lyl|?) by a general control function ¢(x, y). We refer the reader to see, for instance,
[1,4-7,14-16, 18, 20, 22, 23, 25, 26, 28, 31-37] for more information on different aspects
of stability of functional equations. On the other hand, for some outcomes on the stability
of multi-quadratic and Euler-Lagrange-type quadratic mappings we refer the reader to [7,
11, 24].

The main purpose of this paper is to prove the generalized Hyers-Ulam stability of multi-
Euler-Lagrange quadratic functional equation (1.1) in complete non-Archimedean fuzzy
normed spaces over a field with valuation using the direct and the fixed point methods.

2 Preliminaries

We recall the notion of non-Archimedean fuzzy normed spaces over a field with valuation
and some preliminary results (see for instance [3, 22, 23, 31, 32]). For more details the
reader is referred to [3, 22].

Definition 2.1 Let X be a linear space over a field K with a non-Archimedean valuation
| - |. A function || - || : X — [0, 00) is said to be a non-Archimedean norm if it satisfies the
following conditions:
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(i) llx]l = 0 if and only if x = 0;
(i) x| = |7|llx]l, 7 € K, x € X;

(iii) the strong triangle inequality
o +yll < max{llx, [lyll},  xyeX.

Then (X, | - ||) is called a non-Archimedean normed space. By a complete non-Archime-

dean normed space, we mean one in which every Cauchy sequence is convergent.

In 1897, Hensel discovered the p-adic numbers as a number-theoretical analogue of
power series in complex analysis. Let p be a prime number. For any nonzero rational num-
ber a, there exists a unique integer » such that a = p"m/n, where m and # are integers not
divisible by p. Then |a|, := p™" defines a non-Archimedean norm on Q. The completion of
Q with respect to the metric d(a, b) = |a — b|, is denoted by O, which is called the p-adic
number field. Note that if p > 2, then |2"|, = 1 for each integer n but |2, < 1.

During the last three decades, p-adic numbers have gained the interest of physicists for
their research, in particular, into problems deriving from quantum physics, p-adic strings,
and superstrings (see for instance [21]).

A triangular norm (shorter £-norm, [29]) is a binary operation 7 : [0,1] x [0,1] —
[0,1] which satisfies the following conditions: (a) T is commutative and associative;
(b) T(a,1) = a for all a € [0,1]; (¢) T(a,b) < T(c,d) whenever a < ¢ and b < d for all
a,b,c,d € [0,1]. Basic examples of continuous ¢-norms are the Lukasiewicz t-norm 77,
Tr(a,b) = max{a + b — 1,0}, the product t-norm Tp, Tp(a, b) = ab and the strongest trian-
gular norm Ty, Ta(a, b) = min{a, b}. A t-norm is called continuous if it is continuous with
respect to the product topology on the set [0,1] x [0,1].

A t-norm T can be extended (by associativity) in a unique way to an m-array operation
taking for (x1,...,%,,) € [0,1]™, the value T(xy, ..., x,,) defined recurrently by 77 ,x; = 1 and
T x; = T(T" %, %) for m € N. T can also be extended to a countable operation, taking
for any sequence {x;};ey in [0,1], the value T75x; is defined as lim,,_, o 777, %;. The limit
exists since the sequence {77”,%;}sen is non-increasing and bounded from below. T7S, x;

is defined as T2 %+

Definition 2.2 A t-norm 7 is said to be of Hadzi¢-type (H-type, we denote by T' € H) ifa
family of functions {7}7,(¢)} for all m € N is equicontinuous at ¢ = 1, that is, for all ¢ € (0,1)
there exists § € (0,1) such that

t>1-8 = TZ(t)>1-¢ forallmeNlN.

15

The t-norm Ty is a t-norm of Hadzi¢-type. Other important triangular norms we refer
the reader to [12].

Proposition 2.3 (see [12]) (1) I[f T =Tp or T = Ty, then

o0
lim TR %=1 <~ Z(l —X;) < 00,

m— 00
i=1
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(2) If T is of Hadzié-type, then

H (o9} H o0
lim T;5 x; = lim T %, =1
m—> 00 m—> 00

for every sequence {x;};cn in [0,1] such that lim;_, 5 x; = 1.

Definition 2.4 (see [22]) Let X be alinear space over a valued field K and T be a continu-
ous ¢t-norm. A function N : X x R — [0, 1] is said to be a non-Archimedean fuzzy Menger
normon X ifforallx,y € X and all s,z e R:

(N1) N(x,t)=0 forallt <0;

(N2) x=0ifand onlyif N(x,£) =1, ¢ > 0;

(N3) N(cx,t) = N(x,t/|c]) if ¢ #0;

(N4) N(x+y,max{s,t}) > T(N(x,s), N, t)),s,t>0;

(N5) limy_, oo N(x,2) = 1.

If N is anon-Archimedean fuzzy Menger norm on &', then the triple (X, N, T) is called a
non-Archimedean fuzzy normed space. It should be noticed that from the condition (N4)
it follows that

N(x,t) = T(N(0,),N(x,5)) = N(x,s)

for every ¢t >s >0 and x,y € X, that is, N(x, -) is non-decreasing for every x. This implies
N(x,s + t) > N(x, max{s, t}). If (N4) holds, then so does

(N6) N(x+y,s+t) > T(N(x,5s),N(y,¢)).

We repeatedly use the fact N(—x,t) = N(x,¢), x € X, t > 0, which is deduced from (N3).
We also note that Definition 2.4 is more general than the definition of a non-Archimedean
Menger norm in [23, 31], where only fields with a non-Archimedean valuation have been
considered.

Definition 2.5 Let (X, N, T) be a non-Archimedean fuzzy normed space. Let {x,,},,cn be
a sequence in X. Then {x,,}cn is said to be convergent if there exists x € X such that
lim,;,— 0o N(x,, — x,¢) = 1 for all £ > 0. In that case, x is called the limit of the sequence
{xm}men and we denote it by lim,,,_, o, x;, = x. The sequence {x,,},cr in X is said to be a
Cauchy sequence if limy,,_, oo N(Xp4p — %, t) = 1 forall£ > 0and p = 1,2,... . If every Cauchy
sequence in X is convergent, then the space is called a complete non-Archimedean fuzzy
normed space.

Example 2.6 Let (X, -||) be areal (or non-Archimedean) normed space. For each k > 0,
consider

t
Nyt 1) = | #0120
0, t<0.

Then (X, Nk, Ty) is a non-Archimedean fuzzy normed space.

Example 2.7 (see [22]) Let (&, ] - ||) be a real normed space. Then the triple (X', N, Tp),
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where
e—\lx\l/t, t>0,
N(x,t) =
0, t<0
is a non-Archimedean fuzzy normed space. Moreover, if (X, - ||) is complete, then

(X,N, Tp) is complete and therefore it is a complete non-Archimedean fuzzy normed

space over an Archimedean valued field.

Let Q2 be a set. A function d: Q2 x @ — [0,00] is called a generalized metric on 2 if d
satisfies

(1) d(x,y) =0 ifand only if x = y; (2) d(x,y) = d(y,x), x,y € @; (3) d(x,y) < d(x,2) + d(y,2),
x,9,2 € Q2.

For explicitly later use, we recall the following result by Diaz and Margolis [8].

Theorem 2.8 Let (2, d) be a complete generalized metric space and ] : Q@ — Q be a strictly
contractive mapping with Lipschitz constant 0 < L < 1, that is

dUx,Jy) < Ld(x,y), x,y€ Q.

If there exists a nonnegative integer mg such that d(J™x, ]J"™0*'x) < co for an x € Q, then
(1) the sequence {J"x}men converges to a fixed point x° of J;
(2) x" is the unique fixed point of ] in the set ',

Q' ={y e Qld(J"x,y) < oo};
(3) ifye Q, then

d(y,x) < ——d(y,Jy).

1
1-L
3 Stability of the functional equation (1.1): a direct method
Throughout this section, using a direct method, we prove the stability of Eq. (1.1) in com-

plete non-Archimedean fuzzy normed spaces.

Theorem 3.1 Let K be a valued field, X be a vector space over K and (Y,N,T) be
a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
i€{l,2,...,n}, ¥;: X1 x [0,00) — [0,1] is a mapping such that

llm \I/,»()»jxl, .. .,x,-,x;,xm, ey Xy, |)»|2jt)
J—> 00

. i / 2j
= lim Wi (%1, .5 Xm0, MoXio1, 20, X Xis1, - %, |17 E)

j—o00

. . - 2
= lim \Ili(xl,...,xi_l,)\’xi,)nlxi,xi+1,...,x,,, |)\| ]t)

Jj—00

. ;o 2
= 'llm \I-’,»(xl,...,xi,xi,k’x,-ﬂ,xm,...,x,,, |}»| It) =
J—>00

= hm \Il,»(xl,...,xi,x;,xi+1,...,xn_l,ijn, |)»|2jt) =1 (31)
J—> 00
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and
: j 2j+1
khm YTjﬁT(\pi(xlrn-,xi—lr)\lxir O;xi+11'-~,xm |)‘-| /* t),
— 00

\Ili(xl, ey Xi1, a)»jxi, b)Jx,-,x,-H, ey Xy |)\|2(i+1)t))

= klgglo | T(Wi(xr, ..o xi1, W 0, %001, -+ %oy |A|2k+2/’1t),
\IJi(xl, e X, N DA e it X |k|2k+2jt)) =1 (3.2)
forall xy, ..., %% %i41,...,%, € X and t > 0. If f : X" — Y is a mapping satisfying
flx, . 2i0,0,%01,...,%,) =0, (3.3)
and

N(f(xl, cer i1, A% + DX} Kisl, ,xn) +f(x1, v Xin1, b — axl, X, . ,x,,)
- (ﬂ2 + bz)[f(xb e 1xn) +f(xlr oo ,xiflrx;'rxiJrl; e ;xn)]r t)
> \I/,»(xl,...,xi,xg,xﬂl,...,xn, If) (34)
Sfor all xy,...,%,%,%i1,...,%, € X, i € {1,2,...,n} and t € [0,00), then for every i €
{1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic mapping Q; :

X" — Y such that

N(f(xlr v 7xn) - Qi(xlr v 7xn)) t)
> T}ozol T(lyi(xly e Xio1 )"j_lxiy O,le, ) |}"|2j_lt);

v; (xb e X, aN o, DY X X, X |)\|2it)) (3.5)
forallx,...,x, € X and t> 0.
Proof Fixxy,...,x, € X,je NU{0},i€{1,2,...,n} and ¢ > 0. Putting x} = 0 in (3.4), we get

N(f(xl’ ey Ki 1, AXjy Kl e o :xn) +f(xlr e Xi-1s bxirle» oo ,xn)

- kf(xl, cee ,xn), t) > \IJ,»(xl, ey X 0, %0015 000y Xy t). (36)
Replacing x; by ax; and x| by bx; in (3.4), respectively, we have

N(f(xlr e Xi-l, )\xi)xi+l1 e ;xn) - )"f(xl; ey Xim1, X X1y e o 7xrl)

- )"f(xl: cees Xl bxi)xi+l) oo yxn)) t) = \Iji(xlr oo Xis1, AXiy bxinyl: v Ky t)' (3'7)

From (3.6) and (3.7), one gets

1
N(Ff(xl, ey Xio1, )in,xm, v ,xn) —f(xl, e ,xn), t)
> T(\I-’i(xl, s X 0, %0150 Xy |)L|t),

lIJi(xl, ey Xio1, AXi, bxi,xm, ey Xy |)\|2t)) (38)
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Therefore one can get

1 1
N(Wf(xlw~~,xi—h)‘-kﬂ?xi;xﬂl’H'rxn) - ﬁf(xl;unxi—l: )‘-kxirle»-u,xn):t)
> I;Zizp_lT(\pi(xlj---;xz’—lr)‘jxi,0¢xi+1’-~:xm A7),
\IJi(xl,...,xi_l,aiji,biji,xi+1,...,x,,, |)\|2(j+l)t)),
and thus from (3.2) it follows that {ﬁf(xl,...,xi_l,)\jxi,xm,...,xn)}jeN is a Cauchy se-

quence in a complete non-Archimedean fuzzy normed space. Hence, we can define a map-
ping Q; : X" — Y such that

. 1 ;
lim N(ﬁf(xl, e X1, N Xy X1y ..,x,,) - Qi(x1, ..., %), t) =1.

Jj—00

Next, for each k € N with k > 1, we have
1 k
N f(xl,...,x,,) - ﬁf(xl,...,xi_l,)\ xi,x,-+1,...,x,,),t

1 N
= I;Z(:lN<mf(x1?-~~,xil1)‘-] lxirxiJrl:”',xn)

1 .
_'f(xly e X1, )"]xi;xHII v 7xn), t)

— e
j—1 2j-1
> T/k=1 T(\Iji(xl, e Xio1y N Xis 0>xi+11 e Xy |)‘-| / t);

j—1 j—1 2j
\I/i(xl,...,xi_l,akl x,-,b)J x,',xm,...,x,,,l)\l }t)).
Therefore,

N(f(xlr'--rxn)_Qi(xlr'--rxn))t)
1 k
= T|\N f(xlr-n,xn) - ﬁf(xlwnyxi—l,)‘- xi,xz’Jrlwurxn),t )

1
N<ﬁf(xlr ey Xiz1s )\,kxi,xi+1, e ,x,,) — Qi(xl, . ,xn), t))
= T(T}kﬂT(\Ijl (xlr e Xio1 )\-j_lxir O;xi+1: R |)‘-|2j_1t);
\I/i(xl, e Xiz1y ak’"lxi, bk’"lxi,xi+1, B T |)\|2jt)),
N()L_Zkf(xl, ey Xi1y Akxixi+1, ces ,x,,) — Q,-(xl, v ,xn), t))
Letting k — oo in this inequality, we obtain (3.5). Now, fix also x; € X, from (3.1) and (3.4)
it follows that

N(Qi(%1, .. » i1, a%; + bX} Xiss o %) + Qi(%1, .., i1, DXy — AKX, - %)

— (@ + D) [ Qi1 .. %) + Qi1 s X1, K K1 %) | £)
> T(N(Qi(%1, - . Xic1, A%; + B}y K41, .., %)

- A’zlf(xl, e Xic1 )J(ax,» + bx;),xm, ceer )5 ),

Page 7 of 19
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N(Qi(%1, ..., %ii1, bx; — AKX}, Xis, .. %)
- )Czjf(xl, o Xill )J(bxi - ax;),xm, ... ,x,,), t),
N(_}"Qi(xly

N (-2 Qi(x1,

e Xp) + A_2j+1]‘(x1, . ..,xi_l,iji,xi+1,...,x,,), t),

/ —2j+1 i J
e K1 K Kigls %) + AT (0, X, VK it %), E),

\Ili(xl,...,xi_l,)»jxi,ij;,xi+1,...,x,,, |)»|2jt) —1 (]—) OO)

Next, fix k € {1,...,n}\{i}, x;, € X, and assume, without loss of generality, that k < i (the
same arguments apply to the case where k > i). From (3.1) and (3.4), it follows that

N(Qi(xl, ee oy Kk1, A + DX, K1, - ..,x,,) + Q,'(xl, e X1, bxg — ax}(,xk+1,...,xn)
— (@ + D) [ Qi1 %) + Qi1 s Kty X K1+ %) | £)
> T(N(Qi(xl, ee s Xp1, A + DXy X1, - .,,xn)
- )Czlf(xl, e XR1, Ay + DX X1y Xil1, N X, - cor%n)s £),
N(Qi(%1, .- » i1, b2k — AXJ, Kiei1, - . %)
= A7 (1,

e Xkt bR — A Kier1, s Hin1, Ny K15 %), 8,
N(_)"Qi(xl’

coe ,xn) + )\'_2j+l_f(x1) cees i1, )\-jxi’xiJrl) R ,xn)) t);

N(=2Qi(%1, o Xao1s X K15 -5 %)
+ )"_2/+l_f(xly cee xxk—l)x;@xlﬂlx e Xio1 }\.jx,',le, e :xn)x t)x
Wi (X1, s Xer Kier Xks1s 2 X1, Ny K1y« s [N 7)) > 1 (= 00).

Hence the mapping Q; is a general multi-Euler-Lagrange quadratic mapping. Let us finally

assume that Q; : X” — ) is another multi-Euler-Lagrange quadratic mapping satisfying
(3.5). Then, by (1.4), (3.5) and (3.2), it follows that

N(Qi(x1,...,%n) — Qix1, ..., %), £)
= N(Q,»(xl, e i A i1 ,x,,) - Qi(x1,... X1, M %01, ,x,,), |A|2kt)
> T(TS T (Wil oio0 70, 0,200,077,
(%1, .5 %1 @ BT e Xt X |)L|2k*2jt)),
T T(Wilxn, 21, A0, 0,501, o s [P 71),
Wi (1,251, @Ay, DR g, a2, AR

-1 (k— )

and therefore Q; = Q,

i

For a = b, we get the following result.

Theorem 3.2 Let K be a valued field, X be a vector space over K and (Y,N,T) be

a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
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i€{1,2,...,n}, ¥;: X x [0,00) — [0,1] is a mapping such that

. 2'
lim \I/i()\llxl,...,xi,x;,xm,...,x,,, |A117¢)

J—> 00

. j / 2j
= ‘hm “Iji(xlr ceesXio2, Alxi—lrxirxl‘)xhlr v Xy |)"1| ]t)

J—> 00

: J J ot 2j
= ’111’1’1 \Iji(xlr ceesXio1, Alxir Alxi’xﬂly ces Ky |)\1| ]t)

J—> 00

: =V 2j
= lim \Iji(xlr--~,xi,xi,)\-lxiﬂxxub~~-¢xm |)‘-1| lt) =

j—o00
= 1im W (%1, .o X0 %y K1, s Bt Mo [ M1 ] 7E) =11 (3.9)
]—)OO

and

. joaj 2j+2
lim TS Wi (%1, .o X, M Myis i1, -0 %, [ 2117 21)

koo
. k+j-1 k+j-1 2k+2j
=kl1m TRWi(x ki A Xy Ko Xt Xy [ M| 2P E) = 1 (3.10)
— 00

Jorallxy,..., %% %i1,...,%, € X and t > 0. Iff : X" — Y is a mapping satisfying (3.3) and

N(f(xl,..-;xi—l’a(xi + x;),xm,---’xn) +f(x1,...,x171,a(xi —x;),xm,.,.,xn)
_2ﬂ2[f(xly-..,Xn) +f(x1,...,xi—l:x;’xiﬁ-l’”"x”)]’t)
> \I/i(xl,...,xi,x;,xi+1,,,.,x,,, t) (3.11)
Jor all xi,...,%;,%,%i11,...,%, € X, i € {1,2,...,n} and t € [0,00), then for every i €

{1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic mapping Q; :
X" — Y satisfying the functional equation (1.5) and such that

N(f (1, %0) — Qi(x1,..., %), 1)

-1 -1 i
> Ziol‘lfi(xb---,xsz)ull Xiy My Xy Xy e » X |)»1|2]t) (3.12)
forall xy,...,x, € X and t > 0.

Proof Fix xy,...,x, € X,j € NU{0},i€{1,2,...,n} and ¢ > 0. Putting x; = x; in (3.11), we
get

1
N(Ff(xly«~~;xi—1:)hlxi;xi+l»~~:xn) —f(x1,..., %), t)
1
> Wi (Xs o0 X Xy Kl -0 s | M1 E). (3.13)

Hence,

1 " 1 ,
N(—A20+1)f(x1"“’xi1’)‘]1+ Xis Kisly oK) = Ff(xl,...,x,«1,A’1xi,xi+1,...,x,,),t>
1 1

J J 2j+2
> \pi(xlv'wxi—ly)\lxi; A’lxirxi-f-l?"')x}’l) |)‘1| a t)'
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Therefore one can get

1 ‘ 1
N(—Az(kw)f(xl,...,xihkl*”xi,xm,...,xn) - A—%kf(xl,...,xi1,Akx,«,xi+1,...,x,,),t>
1

kp-1 1 j+1
= T,’:k N(Wf(xl;---yxi—b)\l xirxi+1,~-;xn)
1

1 j
)\' If(xl’ )xi—b)"lxi¢xi+17--wxn)yt
1

fap-1 i %2y
=T Wi (%1 - Ximt, M M Xt -0, [ M7 122),

and thus by (3.10) it follows that { - 7 = f(®1, .. %1, A{xl,xl+1, .»%n)}jen is a Cauchy sequence

in a complete non-Archimedean fuzzy normed space. Hence, we can define a mapping
Q; : X" — )Y such that

1 ,
lim N()\—zf(xl, ey X1, Ny Xy X1, - %) = QilX1, .5 %), t) =1
1

]—)OO

Using (3.13) and induction, one can show that for any k € N we have

1
N(f(xlr v ’xn) - ﬁf(xl, e Xiol1s )»]fxi,xm, v )xn), t)
1
j—1 j—1 i
> T}];l\yi(xlx e Xio1 }"]1 Xis )"11 XiyXitls oo o3Xn» |)"1 |21t)~
Therefore,

N(f(xlr ve ’xn) - Qi(xlr cee 7xn)) t)
i1 i1 .
> T(Y;!;]\Iji(xly«~~;xi—1:)\11 xiy)Vll xi’xi+1r~~yxm|)‘«l|21t)y

N(A{Zkf(xl, o Xy, M xi, %) — Qi(X1,. .., %), 2)).

Letting k — o0 in this inequality, we obtain (3.12). The rest of the proof of this theorem is
omitted as being similar to the corresponding that of Theorem 3.1. O

Let (), N, T) be acomplete non-Archimedean fuzzy normed space over a non-Archime-
dean field K. In any such space, a sequence {x}ien is Cauchy if and only if {xx.1 — xk }ken
converges to zero. Analysis similar to that in the proof of Theorem 3.2 gives the following.

Theorem 3.3 Let K be a non-Archimedean field, X be a vector space over K and (J,N, T)
be a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
€{1,2,...,n}, ¥;: X! x [0,00) — [0,1] is a mapping such that (3.9) holds and

k+j-1 k+j-1

k]l)n;lo Y}Z‘illfi(xl, Ry 1,)\, xl,kl B xi,xi+1,...,x,,,|k1|2k+2jt) =1

for all x1,...,%,%,%i415...,%, € X and t > 0. If f : X" — YV is a mapping satisfying (3.3)
and (3.11), then for every i € {1,2,...,n} there exists a unique general multi-Euler-Lagrange
quadratic mapping Q; : X" — Y satisfying (1.5) and (3.12).
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Remark 3.4 Let a,b € N and X be a commutative group, Theorems 3.1-3.3 also hold.
For a = 1, consider the non-Archimedean fuzzy normed space (), Ny, Tx1) defined as in
Example 2.6, Theorem 3.3 yields Theorem 2 in [7]. If a = b = :I:% € K, then A =2a =
+2 #1 in Theorems 3.2-3.3 and A = ¢ + b> =1 which is a singular case A =1 of Theo-
rem 3.1.

Analysis similar to that in the proof of Theorem 3.1 gives the following.

Theorem 3.5 Let K be a valued field, X be a vector space over K and (Y,N,T) be
a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
i€{1,2,...,n}, ¥;: X x [0,00) — [0,1] is a mapping such that

lim Wy (A7, . 260 X i1 -0 0, [ A7 E)

Jj—0o0

. - / -2j
‘hm \pi(xly ey Xio2, A ]xi—lrxirxl‘jxi+17 ces Xy |)"| 1t)
J—> 00

. i i _9j
= lim W, (%1, ..., %01, A7 %0 AT K g1, | ATV E)
]—){X)
) L L
= lim \Iji(xlr“-;xi’xi’)‘- ]xi+1’xi+2r---’xnr |)‘-| ]t) =0

j—o00

= 1im Wy (%1, ., X0 X Kiats o X1, A [A]7E) = 1 (3.14)

J—> 00

and

klglolo Y}ﬁT(‘I’i (1w X1, A7 705, 0,141 20, |77 7E),
Wi (w11, ah 7 oy, DA g, K, o %0, AP E))
= klinolo f it T(Wi(x1, ..., %1, AT, 0, %0415 s Xy |k|‘2k‘27‘1t),
W%, X ar T, DA T e K, I)Ll_zk_th)) =1 (3.15)
for all x1,...,%,%,%i415...,%, € X and t > 0. If f : X" — Y is a mapping satisfying (3.3)

and (3.4), then for every i € {1,2,...,n} there exists a unique general multi-Euler-Lagrange
quadratic mapping Q; : X" — Y such that

N(f(xlr vee ,xn) - Qi(xlr e ,xn)) t)
2 T}ozolT(lyt(xly e Xio1 )"_j_lxi; O;le; ey |)¥|_2j_1t)1

lIli (xb e X1, a)"_j_lxiv b)"_j_lxix Kitlr 1 Xn> |)"|_21t))
forall xy,...,x, € X and t > 0.

Corollary 3.6 Let K be a non-Archimedean field with 0 < |A| <1, X be a normed space
over K and let (Y, N, T) be a complete non-Archimedean fuzzy normed space over K under
a t-norm T € H. Assume also that § > 0 and « : [0,00) — [0,00) is a function such that
a(IA™) <A and a(|A|71e) < a(IA|™Yal(t) for all t € [0, 00).

Page 11 of 19


http://www.advancesindifferenceequations.com/content/2012/1/119

Xu and Rassias Advances in Difference Equations 2012,2012:119
http://www.advancesindifferenceequations.com/content/2012/1/119

Iff : X" — Y is a mapping satisfying (3.3) and

N(f (%15 o Xty @i + DXy Xig1, s 20) +f (K155 i, DX — AX} Xig1s 5 %)

— (@ + D) [fCorseees ) +f (51, Xio1, X K, %) |, 2)
t
> ;
£+ Sa([loe; |Dec((lx511)

(3.16)

for all x,,...,%,%%i1,...,%, € X, i € {1,2,...,n} and t € [0,00), then for every i €
{1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic mapping Q; :
X" — Y such that

N(f (%1, %0) — Qi(x1,..., %), 1)

(o]

t t
>THT - - ) - -
- (t+SIKIZ’“O!(Ikl‘l)/*la(llxill)a(o) t+5|)»|2’Ol(|)»|‘1)2”201(IIﬂinI)a(Ibeill)>

forallx,...,x, € X and t>0.

Proof Fix i € {1,2,...,1}, X1,..., %X}, Xis1,...,%, € X and ¢ € [0,00). Let ; : Al
- t

[0,00) = [0,1] be defined by W;(x1,...,%;, %}, X1, ..., Xps ) := sl Dl

apply Theorem 3.5 to obtain the result. d

Then we can

Remark 3.7 Let 0 < |A| <1 and p € (0,1). Then the mapping « : [0, 00) — [0, c0) given by
a(t):=t, t € [0, 00) satisfies a(|A|™!) < [A|™' and a(JA|E) < a(JA| ™D (2) for all £ € [0, 00).

4 Stability of the functional equation (1.1): a fixed point method
Throughout this section, we prove the stability of Eq. (1.1) in complete non-Archimedean

fuzzy normed spaces using the fixed point method.

Theorem 4.1 Let K be a valued field, X be a vector space over K and (Y,N,T) be
a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
i€{1,2,...,n}, ¥;: X1 x [0,00) — [0,1] is a mapping such that (3.1) holds and
\I-’l-(xl, s K1y ARGy A K1y e e ey Ky |A|2Lit)
> \Ili(xl,...,x,»,xi,xm,...,x,,,t), XyeosXp €X (4-1)
for an L; € (0,1). If f : X" — Y is a mapping satisfying (3.3) and (3.4), then for ev-

eryi€{1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic mapping
Q;: X" — Y such that

N(f(xl" . ';xn) - Qi(xl’ cee ,xn)r t)
> T(\I/,'(xl, cesXiy 0,.76,4.1,. R |)»|(1 —Li)t),

\Ijl'(xlr e Xio1, X, bxi’be e Xy |)\|2(1 - Ll)t)) (4'2)

forallx,...,x, € X and t>0.
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Proof Fixanie€{1,2,...,n}. Consider the set 2 := {g: X" — )} and introduce the gener-
alized metric on Q:

di(g, h) = inf{C € [0,00] : N(g(x1,...,%4) — h(x1,...,%,), Ct)
Z T(\I’i(xl,...,xi,O,le,...,xm |}"|t);
\Ili(xl,...,xi_l,axi,bxi,xm,...,x,,, |)L|2t)),

KlyeoosXn eX,t>0}, g heqQ.

A standard verification (see for instance [19]) shows that (€2, d};) is a complete generalized
metric space. We now define an operator J; : 2 — Q by

1
]ig(xb e vxn) = ﬁg(xlv .. -:xi—lr)"xi¢xi+17 .. ~;xn)¢ ge nyh o)Xy € X.
Letg,h € Q and C,, € [0, 00] with d;(g, h) < C, .. Then

N(g(xl, e X)) = h(x1, .., x,), Cg,ht) > T(\Ili(xl, s %, 0,%041, 4+ Xy |ME),

\Ijl'(xlr s Xi1, A%, bxi’ler e Xy |)"|2t));

which together with (4.1) gives

At
N(]ig(xlyn.)xn) —]ih(xl;...,xn), t) > T(\I’,’(xl,...,xi, O,le,...,xn, T ~ )
Lng,h

AR
“Ili xl!'--7xi—lraxi;bxi¢xi+17---;xrn T~ )
LiCy

and consequently, d;(/;g, /i) < L;C,, which means that the operator J; is strictly contrac-
tive. Moreover, from (3.8) it follows that

N(]if(xlrn«xxn) _f(xlnuyxn); t) Z T(“Iji(xlynwxi; nyi+11~~;xm |)‘-|t)r

\Ili(xl, ey Xi—1,aXi, bx,»,xM, e Xy |)»|2t))

and thus d;(Jif,f) <1 < co. Therefore, by Theorem 2.8, J; has a unique fixed point Q; :
X" — Yintheset Q = {g € Q:d(f,g) < oo} such that

1
ﬁQi(xh e Xzl )"xirxz#l’ ee :xn) = Qi(xl: ee !xn) (43)

and

.1 ;
Q,»(xl,...,x,,) =j1i)I& ﬁf(xl,...,xi_l,)\’xi,xiﬂ,...,x,,).

Furthermore, from the fact that f € Q°, Theorem 2.8, and d;(Jif,f) < 1, we get

L 40f.f) <

di , Qi) = =
Q) 1-1, 1-1,
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and (4.2) follows. Similar to the proof of Theorem 3.1, one can prove that the mapping Q;
is also general multi-Euler-Lagrange quadratic.

Let us finally assume that Q; : X” — ) is a general multi-Euler-Lagrange quadratic map-
ping satisfying condition (4.2). Then Q; fulfills (4.3), and therefore, it is a fixed point of the
operator J;. Moreover, by (4.2), we have d;(f,Q}) < %~ < 00, and consequently Q, € Q".

— 1-L;
Theorem 2.8 shows that Q; = Q;. O

Similar to Theorem 4.1, one can prove the following result.

Theorem 4.2 Let K be a valued field, X be a vector space over K and (Y,N,T) be
a complete non-Archimedean fuzzy normed space over K. Assume also that, for every
ie{l,2,...,n}, ¥;: X1 x [0,00) — [0,1] is a mapping such that (3.14) holds and
\Ill'(xl, ey Xio1, A’lxi, k"lxi,xm, R ) |)\|_2L,‘t)
> \I/,»(xl,...,xi,xi,xi+1,...,x,,,t), XlyeooyXy €X
for an L; € (0,1). If f : X" — Y is a mapping satisfying (3.3) and (3.4), then for ev-

eryi€{1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic mapping
Q;: X" — Y such that

N(f(xl,...,x,,) - Qi(xl,...,xn),t) > T(\Ili(xl,...,xi,O,xM,...,xn, |)\|(Ll71 - 1)t),

llfi(xl, ey Xi—1, axi,bx,-,xm, ey Xy, |)»|2(Ll_1 - 1)t))
forallx,...,x, € X and t> 0.

Remark 4.3 Similar to the proof of Corollary 3.6, one can deduce from Theorem 4.2 an
analog of Corollary 3.6.

As applications of Theorems 4.1 and 4.2 , we get the following corollaries.

Corollary 4.4 Let X be a real normed space, Y be a real Banach space and (Y,N, Tp)
be the complete non-Archimedean fuzzy normed space defined as in the second example
in the preliminaries. Let 8,r,p,q € (0,00) such that r,s:=p + q € (2,00), or r,s € (0,2). If
f: X" = Y is a mapping satisfying (3.3) and (3.4), where

t

\I‘]i(xl)“'rxirx/‘;le,~n;xmt) = )
' £+ Slloet 17 - Mozt 117 Cllowa 12 N D) ez 17 - - <l 1]

then for every i € {1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic
mapping Q; : X" — Y such that

o Lot -Qi1 i)l
- |AS = A2t
T A = A2t + Slalp (bl - o 17 o l1E i 17 - - Nl ]l7)

(4.4)

forallx,...,x, € X and t>0.
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Proof Fix i € {1,2,...,1}, X1,..., %, X3 Xis1,..., %, € X, t € [0,00) and assume that A > 1,
1,8 € (2,00) (the same arguments apply to the case where A <1, r,s € (0,2)). Then we can
choose L; = 1> <1 and apply Theorem 4.2 to obtain the result. For A > 1, r,s € (0,2), or
A <1, 1,5 € (2,00), the corollary follows from Theorem 4.1. O

Corollary 4.5 Let X be a real normed space and Y be a real Banach space (or X be a non-
Archimedean normed space and ) be a complete non-Archimedean normed space over a
non-Archimedean field K, respectively). Let § >0 and r € (0,2) U (2,00). Iff: X" — YV isa
mapping satisfying (3.3) and

|Lf(x1,...,xi,1,ax,» + b, %41, ..,x,,) +f(x1, e Xii1, by — axl, ki, . .,,x,,),
- (a2 + bz)v(xl, e %) +f(x1,...,x,»_1,x;.,xi+1, . ..,x,,)] H
< S[ Ml - Mot I (leell” + [l | Hoeiea - < 7],

then for every i € {1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic
mapping Q; : X" — Y such that

max{|A], |a]” + [b|"}8(llx]|”- - - 14 ]I")

@) = Qi )| < A = AP

forall x1,...,x, € X.

Proof Consider the non-Archimedean fuzzy normed space (), Ny, Tys) defined as in the
first example in the preliminaries, ¥; be defined by

¢
£+ 80all”- - i I llacill” + Nl 1) e - - - e [I71°

/
\I/j(xl, s Xy Xp Kl e e o3 Xy t) :

and apply Theorems 4.1 and 4.2.
The following example shows that the Hyers-Ulam stability problem for the case of r = 2
was excluded in Corollary 4.5. O

Example 4.6 Let ¢ : C — C be defined by

x2, for x| <1,

ox) =

1, for|x| >1.

Consider the function f : C — C be defined by

for all x € C, where @ > max{|a|, |b|,1}. Then f satisfies the functional inequality

f (ax + by) + f(bx — ay) — (a® + B*)[f () + £ ()]
- 20*(|al? + |b)? +1)
- a?-1

(Ixl* + [y1%) (4.5)
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for all x,y € C, but there do not exist a general multi-Euler-Lagrange quadratic function
Q:C — C and a constant 4 > 0 such that |[f(x) - Q(x)| < d|x|* for allx € C.
It is clear that f is bounded by a‘;—: on C.If |x|* + |y|* = 0 or |x|* + [y|> > -, then

20 (|al? + |b)? + 1)

[Flax+ by) + f(bx = ay) = (a* + ) [f(5) + ]| = == (1l + y1?)-

Now suppose that 0 < |x|? + |y|? < a% Then there exists an integer k > 1 such that

1 2 2
W < |x| + |y| < a2(k+1). (46)
Hence
al|ax+by| <1, al|bx—ay| <1, ollx| <1, al|y| <1

forall/=0,1,...,k — 1. From the definition of f and the inequality (4.6), we obtain that
f satisfies (4.5). Now, we claim that the functional equation (1.1) is not stable for r = 2 in
Corollary 4.5. Suppose, on the contrary, that there exist a general multi-Euler-Lagrange
quadratic function Q : C — C and a constant d > 0 such that |f(x) — Q(x)| < d|x|? for all
x € C. Then there exists a constant ¢ € C such that Q(x) = c¢x? for all rational numbers x.

So, we obtain that
[f@)| < (d + Icl)x? (4.7)

for all rational numbers x. Let s € N with s + 1 > d + |¢|. If x is a rational number in (0, ™),
then o/x € (0,1) for all j = 0,1,...,s, and for this x we get

flx)= Z ¢§x;c) > Z qﬁf;x;c) =(s+1)x%> (d + |c|)x2,
j=0 j=0

which contradicts (4.7).

Corollary 4.7 Let K be a non-Archimedean field with 0 < |A| <1, X be a normed space
over K and ) be a complete non-Archimedean normed space over K. Let §,p,q € (0,00)
such thatp +q € (0,2). If f : X" — Y is a mapping satisfying (3.3) and

Hf(xl, v Xi1, A% + DX} K, ,x,,) +f(x1, v Xin1, b — ax}, X, . ,x,,),

- (a2 + bz)U(xl,...,x,,) +f(x1,...,x,»_l,x;,xm,...,x,,)] H < 8(||xi||p ”x;”q),

then for every i € {1,2,...,n} there exists a unique general multi-Euler-Lagrange quadratic
mapping Q; : X" — Y such that

8lalP|b| x|+

4.8
|Alpra — | f? (8

“f(xl; s ’xn) - Qi(‘xlﬂ (XK ’xn)” =

forall x,,...,x, € X.


http://www.advancesindifferenceequations.com/content/2012/1/119

Xu and Rassias Advances in Difference Equations 2012,2012:119 Page 17 of 19
http://www.advancesindifferenceequations.com/content/2012/1/119

Proof Fix i € {1,2,...,n}, ®1,..., %, %}, %is1,...,%, € X and ¢ € [0,00). Let W; : X" x
[0,00) — [0,1] be defined by W;(x1,...,%:,%}, Xis1, ..., X, ) 1= m Consider the

non-Archimedean fuzzy normed space (), N, T) defined as in Example 2.6, and apply
Theorem 4.2. O

Corollary 4.8 Let X be a real normed space and Y be a real Banach space. Let §,1,p,q €
(0,00) such that r,p + q € (0,2), or r,p + q € (2,00). If f : X" — Y is a mapping satisfying
(3.3) and

If (o1 i, @i + B it ooy %) +f (R o Xim1, DX — Xy K, 5 %),
- (a2 + bz)[f(xl, e Xp) +f(x1,...,x,»_1,x;.,x,'+1, . ..,x,,)] H
< 8[ el - a7 (w17 o | “) loezan 17 - - 7]

then, foreveryi e {1,2,...,n}, there exists a unique general multi-Euler-Lagrange quadratic
mapping Q; : X" — Y such that

”f(xlwu;xn)_ Qi(xlwnyxn)”
_ Slal1p i ll”- - - e 1" el i 17 - - - ")
- |AP+d — 22|

forall x1,...,x, € X.

Proof Fix i € {1,2,...,n}, ®1,..., %, %}, %is1,...,%, € X and ¢ € [0,00). Let W; : X" x
[0,00) — [0,1] be defined by

¢
e Sl 1 - a7l 1P 1 N g 17 - < (16, 117]

/
\I"i(xb e Ky Xy Xigls e o3 Xpy t) :

Consider the non-Archimedean fuzzy normed space (), N, Ty) defined as in Exam-
ple 2.6, and apply Theorems 4.1 and 4.2. d

Remark 4.9 Theorems 4.1 and 4.2 can be regarded as a generalization of the classical sta-
bility result in the framework of normed spaces (see [14]). For a = b =1 and n = 1, Corol-
lary 4.8 yields the main theorem in [17]. The generalized Hyers-Ulam stability problem
for the case of r = p + g = 2 was excluded in Corollary 4.8 (see[10]).

Note that by (4.4) one can get

|V(x1, oo %) — Qi . ..,xn)||

81af?|bla(lalI” - - - Nl I o7+ a7 - - ™) \*
<In(1+ .
|AP+T — Q2| . ¢

Letting ¢ — oo in this inequality, we obtain (4.9). Thus Corollary 4.8 is a singular case of
Corollary 4.4. This study indeed presents a relationship between three various disciplines:
the theory of non-Archimedean fuzzy normed spaces, the theory of stability of functional
equations and the fixed point theory.
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