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We investigate the asymptotic behavior of the recursive difference equation yn+1 = (α+
βyn)/(1 + yn−1) when the parameters α < 0 and β ∈ R. In particular, we establish the
boundedness and the global stability of solutions for different ranges of the parameters
α and β. We also give a summary of results and open questions on the more general re-
cursive sequences yn+1 = (a+ byn)/(A+Byn−1), when the parameters a,b,A,B ∈ R and
abAB �= 0.

1. Introduction

The monograph by Kulenović and Ladas [10] presents a wealth of up-to-date results on
the boundedness, global stability, and the periodicity of solutions of all rational difference
equations of the form

xn+1 = a+ bxn + cxn−1
A+Bxn +Cxn−1

, (1.1)

where the parameters a, b, c,A, B,C, and the initial conditions x−1 and x0 are nonnegative
real numbers. The nonnegativity of the parameters and the initial conditions ensures the
existence of the sequence {xn} for all positive integers n.

The techniques and results developed to understand the dynamics of (1.1) are instru-
mental in exploring the dynamics of many biological models and other applications. As
simple as (1.1) may seem, many open problems and conjectures remain to be investi-
gated. One of these questions suggested in both [7, 10] is to study (1.1) when some of
the parameters are negative. To this effect, there have been a few papers that dealt with
negative parameters. See, for example, [1, 2, 3, 4, 11, 12]. In [1], Aboutaleb et al. studied
the equation

xn+1 = a+ bxn
A+Bxn−1

, (1.2)
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where b is the only negative parameter. The purpose of this paper is to complete the study
of (1.2) for all parameters a, b, A, and B such that abAB �= 0 as a first step in understand-
ing the dynamics of (1.1) without the nonnegativity requirement. Understanding the wild
and rich dynamics exhibited by this more general version of (1.1) is our ultimate goal and
motivation.

From now on, we will assume that a, b, A, B ∈ R and abAB �= 0. The change of vari-
ables yn = Bxn/A reduces (1.2) to

yn+1 = α+βyn
1+ yn−1

, (1.3)

where α= aB/A2 and β = b/A.
The case (α > 0 and β > 0) has been studied extensively, see, for example, [5, 6, 7, 8, 9,

10]. The cases (α > 0 and −1 < β < 0), and (α= 0 and β < 0) were studied in [1].
In this paper, we will study the case (α < 0 and β ∈ R), and for convenience, we will

make α positive and write

yn+1 = −α+βyn
1+ yn−1

, α > 0, β ∈R, β �= 0. (1.4)

Equation (1.4) has two real fixed points when 0 < 4α < (β− 1)2, namely,

y1,2 =
(β− 1)±

√
(β− 1)2− 4α

2
. (1.5)

The fixed points will be both positive if β > 1, and both negative if β < 1. When 4α=
(β− 1)2, (1.4) can be rewritten as

yn+1 = 4βyn− (β− 1)2

4
(
1+ yn−1

) , (1.6)

and has a unique fixed point y = (β− 1)/2. The case (α = 0 and β = 1) is covered, for
example, in [7, 10]. Finally, when 4α > (β− 1)2, (1.4) has two complex fixed points

y1,2 =
(β− 1)± i

√
4α− (β− 1)2

2
. (1.7)

The following theorem establishes the stability of the real fixed points of the rational
recursion (1.4).

Theorem 1.1. (i) When 0 < 4α < (β− 1)2 and β > 0, the fixed point y1 is stable and y2 is
unstable. Moreover, y2 is a repeller if 4α < (1− 3β)(1+β) and a saddle if 4α > (1− 3β)(1+
β).

(ii)When 4α= (β− 1)2, then the unique fixed point y = (β− 1)/2 is unstable.
(iii)When 0 < 4α < (β− 1)2 and β < 0, the fixed point ȳ1 is asymptotically stable if 4α <

(1− 3β)(1+β) and unstable if 4α > (1− 3β)(1+β). The fixed point ȳ2 is a repeller.
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Proof. (i) Linearizing around a fixed point y, we obtain the characteristic equation

λ2− β

1+ y
λ+

y

1+ y
= 0. (1.8)

Stability at a fixed point y of (1.4) requires that
∣∣∣∣ β

1+ y

∣∣∣∣− 1 <
y

1+ y
< 1. (1.9)

When β > 0, one can easily check that 1 + y > 0. Thus we only have to check that β− 1 <

2y < 1+ 2y, which is clearly satisfied for y1 = (β− 1+
√
(β− 1)2− 4α)/2 and violated for

y2 = (β− 1−
√
(β− 1)2− 4α)/2, whenever 4α < (β− 1)2.

(ii) The linearized stability analysis in the case 4α= (β− 1)2 yields the eigenvalues

λ1 = β− 1
β+1

, λ2 = 1. (1.10)

While the norm of λ1 is less than one, the linearized stability test remains inconclusive.
The proof of the instability of the fixed point y = (β− 1)/2 will be established in Section 3.

(iii) When β < 0, inequality (1.9) holds if

y >−1, |β| < 1+2y. (1.11)

These two inequalities will in turn hold for y = y1 when

4α < (1− 3β+1)(1+β). (1.12)

However, when y = y2, we have that β > 1+2y2 and it is easy to check that the fixed point
y2 is a repeller. �

The rest of the paper is organized as follows. In Section 2, we briefly state results about
the case 0 < β < 1 and 0 < 4α≤ (β− 1)2. When β > 1, Sections 3 and 4, respectively, treat
the cases 4α= (β− 1)2 and 0 < 4α < (β− 1)2. Sections 5 and 6 establish the boundedness
of solutions of (1.4) as well as the global stability of one of the fixed points. Finally, the
last part of the paper is meant to be a summary of results and open problems concerning
(1.3).

2. The case 0 < β < 1 and 0 < α≤ (β− 1)2/4

When 0 < β < 1, and 0 < 4α ≤ (β− 1)2, the change of variable yn = y2 − y2δn in (1.4)
leads to the difference equation

δn+1 = pδn + δn−1
q+ δn−1

, (2.1)

where

p =− β

y2
> 0, q =−1+ y2

y2
> 0. (2.2)
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A simple calculation shows that

p+1− q =
−
√
(β− 1)2− 4α

2y2
≥ 0, p > q. (2.3)

A straightforward application of the work in [10, Section 6.8, page 109] leads to the fol-
lowing theorem.

Theorem 2.1. If 0 < β < 1, and 0 < 4α≤ (β− 1)2, then the equilibrium point y1 is asymp-
totically stable. Moreover, if yk and yk+1 are in the interval [y2,+∞) for some k ≥−1, and
yk + yk+1 > 2y2, then yn→ y1 as n→∞.

A closer examination of recursion (2.1) shows that one can take advantage of the in-
variability of the first quadrant to extend the basin of attraction of the fixed point y1 to a
much wider range.

Theorem 2.2. Let δ−1 = 1− (y−1/y2) and let δ0 = 1− (y0/y2). Then, yn→ y1 as n→∞ if
one of the following conditions is satisfied.

(i) δ−1 >−q and δ0 > sup(−δ−1/p,−pδ−1/(p2 + q+ δ−1),−q).
(ii) δ−1 >−q and −δ−1/p < δ0 < inf(−pδ−1/(p2 + q+ δ−1),−q).
(iii) −(p2 + q) < δ−1 <−q and −pδ−1/(p2 + q+ δ−1) < δ0 < inf(−δ−1/p,−q).
(iv) −(p2 + q) < δ−1 <−q and −q < δ0 < inf(−δ−1/p,−pδ−1/(p2 + q+ δ−1)).
(v) δ−1 <−(p2 + q) and δ0 < inf(−δ−1/p,−pδ−1/(p2 + q+ δ−1),−q).
(vi) δ−1 <−(p2 + q) and sup(−q,−pδ−1/(p2 + q+ δ−1)) < δ0 <−δ−1/p.

Proof. In all of the above cases, it is easy to check that both

δ1 = pδ0 + δ−1
q+ δ−1

> 0, δ2 =
(
p2 + q+ δ−1

)
δ0 + pδ−1(

q+ δ−1
)(
q+ δ0

) > 0. (2.4)

The rest follows from Theorem 2.1. �

We end this section with a theorem giving different bound estimates for positive solu-
tions of recursion (2.1). In particular, this theorem shows that positive solutions quickly
get absorbed in the interval [q/p, p/q].

Theorem 2.3. Let p > q > 0, let t = logq/p(pq), and consider {δn}∞n=−1 a positive solution
of (2.1). Assume that for n≥ 0,

δn =
(
q

p

)r

, δn−1 =
(
q

p

)s

. (2.5)

Then, the following statements are true:
(i) if r ≥ 1, then (q/p)r−1 ≤ δn+1 ≤ 1;
(ii) if r ≤ 1, then 1≤ δn+1 ≤ (q/p)r−1;
(iii) if r− 2s+ t ≤ 0, then (1/p)(q/p)s−1 ≤ δn+1 ≤ p(q/p)r−s;
(iv) if r− 2s+ t ≥ 0, then p(q/p)r−s ≤ δn+1 ≤ (1/p)(q/p)s−1.
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Proof. We will prove (i) and (iii) only. To prove (i), notice that if r ≥ 1, then (q/p)r−1 ≤ 1.
Thus we can write

p

(
q

p

)r

≤ q, p

(
q

p

)r

+

(
q

p

)s

≤ q+

(
q

p

)s

, (2.6)

which leads to the conclusion that δn+1 ≤ 1. On the other hand, we also have

(
q

p

)r+s−1
≤
(
q

p

)s

, q

(
q

p

)r

+

(
q

p

)r+s−1
≤ p

(
q

p

)r−1
+

(
q

p

)s

. (2.7)

Dividing both sides of the inequality by q+ (q/p)s completes the proof of (i).
To prove (iii), notice that if r− 2s+ t ≤ 0, then

pq

(
q

p

)r−2s
≥ 1 or equivalently, p2

(
q

p

)r−2s+1
≥ 1. (2.8)

Thus

p

(
q

p

)r

+

(
q

p

)s

≥
(
q

p

)s

+
1
p

(
q

p

)2s−1
= 1

p

(
q

p

)s−1q+
(
q

p

)s

 , (2.9)

and consequently δn+1 ≥ (1/p)(q/p)s−1. The second part of the inequality follows from a
similar manipulation. �

3. The case 4α= (β− 1)2 and β > 1

In this section, we present a sequence of lemmas showing the instability of the unique
fixed point y = (β− 1)/2. We also prove the existence of a convergent subsequence and
establish the existence of an invariant domain. For the proofs of the lemmas, we will focus
on the case β > 1.

Lemma 3.1. Every negative semicycle (except perhaps the first one) has at least two elements.
Moreover, if yk+1 > 0 is the first element in a negative semicycle, then yk+2 < yk+1.

Proof. Consider the equation

yk+2 = 4βyk+1− (β− 1)2

4
(
1+ yk

) = yk+1 +
4yk+1

(
β− 1− yk

)
4
(
1+ yk

) − (β− 1)2

4
(
1+ yk

) . (3.1)

When 0 < yk+1 < (β− 1)/2 and yk > (β− 1)/2, it is easy to see that 4yk+1(β− 1− yk) < (β−
1)2, and thus yk+2 < yk+1 as required. On the other hand, if yk+1 < 0, then so is yk+2. �
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Lemma 3.2. If y0 < y−1 < (β− 1)/2, then there exists k ≥−1 such that yk+1 < yk <−1.
Proof. There are three cases to be discussed
Case 1. When y0 < y−1 <−1, the lemma is trivial and k =−1.
Case 2. If y0 <−1 < y−1 < (β− 1)/2, then

y1 = 4βy0− (β− 1)2

4
(
1+ y−1

) = y0 +
4y0
(
β− 1− y−1

)
4
(
1+ y−1

) − (β− 1)2

4
(
1+ y−1

) . (3.2)

The second and third terms of the above equality are both negative. Hence, y1 < y0 <−1
and k = 0.
Case 3. If−1< y0< y−1<(β− 1)/2, then let y0=−δ + (β− 1)/2 and y−1 =−κδ + (β− 1)/2,
where 0 < δ < (β+1)/2 and 0 < κ < 1.

We then have that

y1 = 4βy0− (β− 1)2

4
(
1+ y−1

) = y0− 4κδ2 + 2(β− 1)δ(1− κ)
4
(
1+ y−1

) , (3.3)

and thus y1 < y0. If y1 < −1, then we are back to Case 2, otherwise in the same way as
above we can establish that y2 < y1 and so on to obtain yn+1 < yn < ···<y2 < y1. If the se-
quence is bounded below by−1, then it has to converge, creating a contradiction with the
fact that (β− 1)/2 is the only fixed point. The sequence cannot reach the value −1 either,
for otherwise the relation (β+1)2 = 4δ(κ− 1) must hold, which is again a contradiction
with the choice of δ(κ− 1) < 0. The only scenario left is for the sequence to cross the value
−1 for the first time at yn+1 <−1 < yn, in which case we are back again to Case 2. �

Theorem 3.3. The equilibrium point y = (β− 1)/2 is unstable.

Proof. Let 0 < ε� 1 and take y−1 = y + ε and y0 = y− ε. By Lemma 3.1, we obtain that
y1 < y0. By Lemma 3.2, there exists k such that yk <−1 and this proves that y = (β− 1)/2
is unstable. �

While unstable, our numerical investigations show that the fixed point y = (β− 1)/2
is a global attractor for a substantial set of initial conditions; a fact that unfortunately we
cannot prove. Instead, we will establish a bounded invariant region for which y is indeed
a global attractor. To this end, we start by studying positive semicycles.

Lemma 3.4. y0 < y−1 <−1, then y1 > β and y2 < 0.

Proof. By assumption, y0/y−1 > 1 and 0 < (1+1/y−1) < 1. Hence,

y1 = 4βy0− (β− 1)2

4
(
1+ y−1

) = y0
y−1

4β− (β− 1)2/y0
4
(
1+1/y−1

) > β− (β− 1)2

4y0
> β,

y2 = 4βy1− (β− 1)2

4
(
1+ y0

) .

(3.4)

The numerator in the expression of y2 is always greater than 3β2 + 2β− 1 > 0, and the
denominator is negative. �
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Corollary 3.5. If y0 < y−1 <−1, then the next positive semicycle has exactly one element.

Lemma 3.6. A necessary condition for a positive semicycle to have more than one element is
that two consecutive elements yk, yk+1 of the previous negative semicycle satisfy yk < yk+1.

Proof. Let yk, yk+1 be two elements in a negative semicycle. If yk+1 < yk < (β− 1)/2, then
by Lemmas 3.2 and 3.4, the following positive semicycle has exactly one element. Thus
yk+1 must be greater or equal to yk. The cases yk+1 = yk =−1 and yk+1 = yk = (β− 3)/4
are not to be considered because yk+3 does not exist for these choices. If yk+1 = yk, then

yk+2 = yk+1−
(
yk+1− (β− 1)/2

)2(
1+ yk+1

) = β− 1
2

+
(β+1)

(
yk+1− (β− 1)/2

)
2yk+1

. (3.5)

If yk+1 > −1, then yk+2 < yk+1 and the next positive semicycle will have exactly one ele-
ment. If yk+1 <−1, then obviously yk+2 > yk+1 as required. The second part of the above
equality guarantees that yk+2 is still less than (β− 1)/2. �

Lemma 3.7. Assume that
(i) 0 <M < 1/(2β− 2),
(ii)

c ∈

β−

√
1− 2(β− 1)M

β+1+2M
,
β+

√
1− 2(β− 1)M

β+1+2M


 , (3.6)

(iii) cM < δ <M.
Then,

cδ <
2βδ− (β− 1)M
β+1+2M

< δ. (3.7)

Proof. That (2βδ− (β− 1)M)/(β+1+ 2M) < δ follows from a straightforward manipu-
lation of the fact that δ < M. To prove that cδ < (2βδ − (β− 1)M)/(β + 1 + 2M), notice
that if condition (ii) of the lemma is satisfied, then c2(β+1+2M)− 2βc+β− 1 < 0 and

cδ <
δ
(
2β− (β− 1)/c

)
β+1+2M

. (3.8)

Since δ/c >M, the desired inequality is established. �

Theorem 3.8. If y−1 = ȳ + δ < y0 = ȳ +M, and δ and M satisfy the conditions of
Lemma 3.7, then yn→ (β− 1)/2 as n→∞.

Proof. Let yn = ȳ + δn. The conditions imposed on δ and M imply that 0 < cδ−1 < δ0 <
δ−1 < 1/(2(β− 1)). Moreover, the sequence {δn} satisfies the recurrence relation

δn+1 = 2βδn− (β− 1)δn−1
β+1+2δn−1

(3.9)
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which has 0 as its unique fixed point. Using the previous lemma, we obtain that cδ0 <
δ1 < δ0 and by induction that cδn < δn+1 < δn. Thus {δn} is a bounded positive decreasing
sequence whose only possible limit is 0. Hence, {yn} converges to (β− 1)/2. �

4. The case 4α < (β− 1)2 and β > 1

As discussed in Section 1, the point

β− 1
2

< ȳ =
β− 1+

√
(β− 1)2− 4α

2
< β− 1 (4.1)

is a stable fixed point of (1.4). The change of the variable yn = ȳ + δn yields the recurrence
equation

δn+1 = βδn− ȳδn−1
1+ ȳ + δn−1

. (4.2)

Obviously, δ̄ = 0 is a stable fixed point of (4.2).

Lemma 4.1. If (1+ ȳ) < δn−1 < 0 and δn ≥ 0, then
(i) the positive semicycle containing δn has at least 3 elements,
(ii) δn+1 > δn,
(iii) if ȳ > (

√
β2 + 1− 1)/2, then the ratios {δk+1/δk} are strictly decreasing.

Proof. Parts (i) and (ii) of the lemma follow straight from the identities

δn+1 = δn +
(β− 1− ȳ)δn− δn−1

(
ȳ + δn

)
1+ ȳ + δn−1

> δn,

δn+2 = βδn+1− ȳδn
1+ ȳ + δn

>
(β− ȳ)δn
1+ ȳ + δn

> 0.

(4.3)

Let δk−1 > 0 and δk > 0 be two consecutive elements of a positive semicycle and consider
the identity

δk+1
δk

= δk
δk−1

+
−(1+ ȳ + δk−1

)
δ2k +βδkδk−1− ȳδ2k−1

δkδk−1
(
1+ ȳ + δk−1

) . (4.4)

The discriminant of −(1 + ȳ + δk−1)δ2k + βδkδk−1− ȳδ2k−1 viewed as a polynomial of sec-
ond degree in δk is given by

δ2k−1
(
β2− 4 ȳ

(
1+ ȳ + δk−1

))
< δ2k−1

(
β2− 4 ȳ(1+ ȳ)

)
< 0, (4.5)

whenever ȳ > (
√
β2 + 1− 1)/2. �

The following lemma is about negative semicycles. Its content is similar to the previous
lemma and so we will omit its proof.
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Lemma 4.2. Let δn−1 > 0, and let −(1 + ȳ) < δn < 0 be the first element in a negative semi-
cycle. Then

(i) the negative semicycle has at least 3 elements,
(ii) δn+1 < δn,
(iii) if ȳ > (

√
β2 + 1− 1)/2, then the sequence {δk+1/δk} is strictly decreasing.

The previous two lemmas indicate that if ȳ > (
√
β2 + 1− 1)/2, then solutions converg-

ing to δ̄ = 0 spiral to the fixed point clockwise in the space (δn,δn+1). This allows us to
find a basin of attraction of δ̄ = 0. In fact, the sequence {Dn} given by

Dn =
(
δn− aδn−1

)2
+ pδ2n−1, (4.6)

where

a= β

2(1+ ȳ)
, p = (1+2 ȳ)2−β2

4(1+ ȳ)2
, (4.7)

defines a distance between the point (δn−1,δn) and the origin. A rather simple but tedious
computation shows that

Dn+1−Dn = A
(
δn−1

)
δ2n +B

(
δn−1

)
δn +C

(
δn−1

)
(
1+ ȳ + δn−1

)2 , (4.8)

where A(·), B(·), and C(·) are polynomials of degrees 2, 3, and 4, respectively, satisfying
the following conditions.

(i) A(0)=−(3+4 ȳ)/4 and B(0)= C(0)= 0.
(ii) A(δn−1) remains negative as long as

∣∣δn−1∣∣ <M1 =
(1+ ȳ)

(
3+4 ȳ +2β2− 2β

√
3+4y +β2

)
6+8 ȳ

. (4.9)

(iii) The discriminant

B2− 4AC =−Kδ2n−1
(
3+16 ȳ +16 ȳ2− 4β2 + bδn−1 + cδ2n−1

)
(4.10)

is less or equal to zero whenever

∣∣δn−1∣∣ <M2 =
2
√
(3+4 ȳ)

(
(1+2 ȳ)2−β2

)(
ȳ2(3+ 4 ȳ) +β2

)
4(1+ ȳ)2β2− (1+2 ȳ)2(3+4 ȳ)

− (1+2 ȳ)
(
3+10 ȳ +8 ȳ2− 2β2

)
4(1+ ȳ)2β2− (1+2 ȳ)2(3+4 ȳ)

.

(4.11)

The above analysis shows that if |δn−1| < inf(M1,M2), then Dn+1 −Dn ≤ 0. Hence, the
following theorem holds.
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Theorem 4.3. LetM = inf(M1,M2), and let EM be the largest ellipse of the form

(x− ay)2 + py2 = constant (4.12)

that can be fit within the square SM defined by

SM =
{
(x, y) : |x| <M, |y| <M

}
. (4.13)

Then, EM is invariant. Moreover, if for some k ≥−1, (δk,δk+1)∈ EM , then δn→ 0 as n→∞.

5. Boundedness of solutions of (1.4) when β < 0

In this section, we assume that β < 0. For convenience, we assume that β > 0 and rewrite
(1.4) in the form

yn+1 =− α+βyn
1+ yn−1

, α > 0, β > 0. (5.1)

All of the results in this section apply equally to both (5.1) and more generally to differ-
ence equations of the type

yn+1 =− α+
∑k

i=0βi yn−i
1+
∑k

j=0 γj yn− j

, (5.2)

where k is a nonnegative integer and where the coefficients βi and γj are nonnegative real
numbers satisfying

k∑
i=0

βi = β > 0,
k∑
j=0

γj = 1. (5.3)

Theorem 5.1. If 0 < β < 1 and 0 < 4α < (1−β)(3β+1), then for all

c ∈

β− 1−

√
(1−β)(3β+1)− 4α

2
, ȳ1


 ,

d ∈

−1+

√
1− 4(α+βc)

2
,−
(
c2 + c+α

)
β


 ,

(5.4)

the interval [c,d] is invariant. In other words, if yn, yn+1, . . . , and yn+k−1 ∈ [c,d] for some
n≥ 1, then yi ∈ [c,d] for all i≥ n.
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Proof. Let c and d be two real numbers such that−1 < c < d and α+βc > 0. If both yn and
yn+1 belong to the interval [c,d], then

−α+βd

1+ c
≤ yn+2 ≤−α+βc

1+d
. (5.5)

In order to guarantee that yn+1 ∈ [c,d], the following inequalities must hold:

d2 +d+α+βc ≥ 0≥ c2 + c+α+βd. (5.6)

The conditions imposed on the parameters α and β guarantee the existence of a feasible
region to the system of inequalities (5.6). The rest of the proof follows by induction. �

6. Global stability of (5.1)

In this section, we give a global stability result for solutions of (1.4) with initial conditions
in the invariant interval obtained in the previous section.

Theorem 6.1. Assume that 0 < β < 1 and that 0 < 4α < (1− β)(3β+1). If both y0 and y1
are in the interval [c,d] as described in Theorem 5.1, then the sequence {yn} → ȳ1 as n→∞.
Moreover, if (y0 − ȳ1)(y1 − ȳ1) < 0, then the sequence {yn} is strictly oscillatory. That is,
(yn− ȳ1)(yn+1− ȳ1) < 0 for all n≥ 1.

Proof. Choose c and d as described in Theorem 5.1 and consider the function f : [c,d]×
[c,d]→ [c,d] defined by

f (x, y)=−α+βx

1+ y
. (6.1)

The function f is decreasing in the variable x and increasing in the variable y. Moreover,
it is easy to check that the difference equation (5.1) has no prime period-2 solution in the
interval [c,d]. A straightforward application of [10, Theorem 1.4.6, page 12] gives us that
all solutions of (5.1) with initial conditions in [c,d] converge to ȳ1.

To see that the sequence is strictly oscillatory, notice that the change of variables zn =
yn− ȳ1 leads to the difference equation

zn+1 =−βzn + ȳ1zn−1
1+ ȳ1 + zn−1

. (6.2)

Now, it suffices to notice that the denominator in the recursion (6.2) is always positive
when the initial conditions y0 and y1 are in the interval [c,d]. In addition, znzn−1 < 0
implies that zn+1zn < 0 and the proof is complete. �

7. Equation (1.3): summary of results and open questions

In this section, we summarize the results about (1.3) when αβ �= 0, and point out some
important open questions that are yet to be answered.
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7.1. The first quadrant (α > 0 and β > 0). This quadrant was studied in [5, 7, 9, 10],
where the following results were established.

(i) Positive solutions of (1.3) are bounded and persist.
(ii) The positive equilibrium of (1.3) is globally asymptotically stable when either

0 < β < 1 or 0 < α≤ 2(β+1).
However, two questions remain open.
(1) Establishing the forbidden set of (1.3), that is, the set of initial conditions (y0, y1)

for which the sequence becomes undefined for some n≥ 2.
(2) Proving that the positive equilibrium is globally stable for all values of α > 0 and

β > 0.

7.2. The second quadrant (α > 0 and β < 0). This quadrant was studied in [1]. However,
the range of parameters studied was limited to −1/4≤ β ≤ 0 and 2β2 ≤ α≤−2β. For this
range of parameters, an invariant interval was found and the global attractivity of the
positive equilibrium point was established.

The following theorem improves and generalizes the results in [1] to all values of α > 0
and −1 < β < 0. Its proof is also different from the one given in [1].

Theorem 7.1. For all α > 0 and −1 < β < 0,
(i) the interval [0,−α/β] is invariant,
(ii) let ȳ be the positive fixed point of (1.3), c ∈ [0, ȳ], and (α+ βc)/(1 + c) ≤ d ≤ (α−

c)/(c−β). Then, the interval [c,d] is invariant,
(iii) the fixed point ȳ is a global attractor for the whole interval [0,−α/β].

Proof. We will only prove part (iii). To do so, consider the function f : [0,−α/β]× [0,
−α/β]→ [0,−α/β] defined by

f (x, y)= α+βx

1+ y
. (7.1)

Notice that since β ≤ 0, the function f is nonincreasing in each of its arguments. More-
over, if f (m,m) =M and f (M,M) =m for some m and M in [0,−α/β], then m =M.
Applying [10, Theorem 1.4.7, page 13], we obtain that every solution in [0,−α/β] con-
verges to ȳ. �

Still, numerical experiments show that the positive equilibrium ȳ of the recursion (1.3)
is a global attractor for a wider range of the parameters α and β. In fact, the equilibrium
point ȳ is asymptotically stable whenever 4α > (3β− 1)(β + 1). Establishing the global
stability of the fixed point ȳ when β ≤−1 and 4α > (3β− 1)(β+1) as well as establishing
an invariant region for this range of parameters remain open questions.

7.3. The third quadrant α < 0 and β < 0. This was the subject of Sections 5 and 6 of this
paper. When 4α < (3β− 1)(β+1), we have witnessed thin regions delimited by parabolic
curves where every solution seems to converge to a periodic solution. Some of the periods
we have observed are 11, 15, 19, 22, 23, 24, 26, 30, 32, 40, 44, 52, and 60. A detailed
description of the numerical experimentation and its results will be given elsewhere.
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7.4. The fourth quadrant α < 0 and β > 0. This quadrant can be divided into three main
regions. The first two regions were studied in Sections 3 and 4. The third region remains
unstudied.
Region 1 (−(β− 1)2 ≤ 4α < 0 and 0 < β < 1). We proved that the interval

I =

β− 1−

√
(β− 1)2 + 4α

2
,+∞


 (7.2)

is invariant and that all solutions with initial conditions inside this interval converge to

ȳ = (β− 1+
√
(β− 1)2 + 4α)/2.

Region 2 (−(β− 1)2 ≤ 4α < 0 and β > 1). When 4α = −(β− 1)2, we proved that even
though the fixed point ȳ = (β− 1)/2 is unstable, there exists an invariant region for which
ȳ is a global attractor. We also proved that when (β− 1)2 + 4α > 0, the larger of the two
positive fixed points is asymptotically stable with an ellipsoidal basin of attraction.
Region 3 (4α <−(β− 1)2). In this region, there are no fixed points, and as far as we know,
there are no studies of (1.3) for this range of parameters. This is despite the rich dynamics
exhibited in this range. For example, our numerical simulations suggest that there is a
region delimited by parabolic-like curves for which all solutions converge to period-5
solutions. Other regions also delimited by parabolic-like curves exist for different periods.
Unfortunately, establishing the existence, the global stability, or just the stability of these
periodic solutions with the “usual” tools used so far in studying (1.3) seems unlikely.
Perhaps, new theoretical tools should be introduced.
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[10] M. R. S. Kulenović and G. Ladas, Dynamics of Second Order Rational Difference Equations,
Chapman & Hall/CRC, Florida, 2002.



332 On a rational sequence

[11] X.-X. Yan andW.-T. Li,Global attractivity in a rational recursive sequence, Appl. Math. Comput.
145 (2003), no. 1, 1–12.

[12] , Global attractivity for a class of higher order nonlinear difference equations, Appl. Math.
Comput. 149 (2004), no. 2, 533–546.

Mohamed Ben Rhouma: Department of Mathematics and Statistics, Sultan Qaboos University,
P.O. Box 36, 123 Al-Khodh, Muscat, Oman

E-mail address: rhouma@squ.edu.om

M. A. El-Sayed: Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,
Egypt

Current address: Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box
36, 123 Al-Khodh, Muscat, Oman

E-mail address: masayed@squ.edu.om

Azza K. Khalifa: Department of Mathematics, Faculty of Science, Cairo University, Giza 12613,
Egypt

Current address: Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box
36, 123 Al-Khodh, Muscat, Oman

E-mail address: azzamk@squ.edu.om

mailto:rhouma@squ.edu.om
mailto:masayed@squ.edu.om
mailto:azzamk@squ.edu.om

	1. Introduction
	2. The case 0 < β < 1 and 0 < α ≤ (β−1)2/4
	3. The case 4α = (β−1)2 and β > 1
	4. The case 4α < (β−1)2 and β > 1
	5. Boundedness of solutions of (1.4) when β < 0
	6. Global stability of (5.1)
	7. Equation (1.3): summary of results and open questions
	7.1. The first quadrant (α > 0 and β > 0).
	7.2. The second quadrant (α > 0 and β < 0).
	7.3. The third quadrant α < 0 and β < 0.
	7.4. The fourth quadranta α < 0 and β > 0.

	References

