

Reiling et al. BMC Nephrology 2012, **13**:111 http://www.biomedcentral.com/1471-2369/13/111

RESEARCH ARTICLE

Open Access

Association of pre-transplant statin use with delayed graft function in kidney transplant recipients

Janske Reiling^{1,2}, David W Johnson^{1,3*}, Peter S Kruger^{3,4}, Peter Pillans^{3,5} and Daryl R Wall^{1,3}

Abstract

Background: Administration of HMG-CoA reductase inhibitors (statins), prior to ischemia or prior to reperfusion has been shown to decrease ischemia-reperfusion renal injury in animal studies. It is unknown whether this protective effect is applicable to renal transplantation in humans. The aim of this study was to determine the relationship between prior statin use in renal transplant recipients and the subsequent risk of delayed graft function.

Methods: All patients who underwent deceased or living donor renal transplantation at the Princess Alexandra Hospital between 1 July 2008 and 1 August 2010 were included in this retrospective, observational cohort study. Graft function was classified as immediate graft function (IGF), dialysis-requiring (D-DGF) and non-dialysis-requiring (ND-DGF) delayed graft function. The independent predictors of graft function were evaluated by multivariable logistic regression, adjusting for donor characteristics, recipient characteristics, HLA mismatch and ischaemic times.

Results: Overall, of the 266 renal transplant recipients, 21% exhibited D-DGF, 39% had ND-DGF and 40% had IGF. Statin use prior to renal transplantation was not significantly associated with the risk of D-DGF (adjusted odds ratio [OR] 1.05, 95% CI 0.96 – 1.15, P = 0.28). This finding was not altered when D-DGF and ND-DGF were pooled together (OR 0.98; 95% CI 0.89-1.06, p = 0.56).

Conclusions: The present study did not show a significant, independent association between prior statin use in kidney transplant recipients and the occurrence of delayed graft function.

Background

Delayed graft function (DGF), describing impairment of graft function immediately after transplantation, is associated with significant morbidity, including increased risks of acute allograft rejection, prolonged hospitalization, higher health care costs and poorer graft survival [1-6]. The incidence of DGF in the renal transplant population varies from as low as 4.7% in live related transplants [7] to as high as 53-69% in kidneys following donation after cardiac death (DCD) [8]. Factors associated with an increased risk of DGF include both recipient factors (male gender, pre-transplant diabetes mellitus, increased BMI, greater HLA mismatch, higher panel reactive antibodies, previous blood transfusions, previous transplants, pre-transplant

³University of Queensland, Brisbane, Australia

DGF is strongly associated with longer periods of ischemia between retrieval of the kidney from the donor and subsequent reperfusion of the kidney in the recipient. Such ischemic injury tends to be more marked in deceased donor renal transplantation, particularly donation after cardiac death [8]. The reintroduction of renal blood flow is associated with the production of oxygen free radicals, which in turn promote inflammation, necrosis, and apoptosis within the renal allograft [13,14]. Although there are currently no treatments that effectively reduce the severity of ischemia-reperfusion injury and delayed graft function, 3-hydroxymethylglutaryl coenzyme A inhibitors (also known as statins) show considerable promise. In addition to lowering serum cholesterol, these agents decrease the formation of reactive oxygen species and inflammatory

© 2012 Reiling et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: David_Johnson@health.qld.gov.au

¹Queensland Renal Transplant Service, Princess Alexandra Hospital, Brisbane, Australia

Full list of author information is available at the end of the article

cytokines by inhibiting the isoprenylation of intracellular signal molecules (Ras, Rac1, cdc42 and Rho), so-called pleiotropic effects [15]. Administration of statins prior to ischemia or prior to reperfusion has been shown to decrease ischemia-reperfusion renal injury in rats [16-22]. However, it is unknown whether this protective effect is applicable to renal transplantation in human beings.

The aim of this study was to determine the relationship between prior statin use in renal transplant recipients and the subsequent risk of DGF.

Methods

All patients who underwent deceased or living donor renal transplantation at the Princess Alexandra Hospital between 1 July 2008 and 1 August 2010 were included in this retrospective, observational cohort study. All T cell cross matches were negative. The preservation fluid used was University of Wisconsin preservation solution. An interleukin-2 receptor antagonist (basiliximab) was routinely administered at induction of immunosuppression. The immunosuppression regimen included a calcineurin inhibitor (primarily tacrolimus), prednisolone and mycophenolate mofetil. Tacrolimus dosages were titrated to maintain trough serum concentrations between 8 and 10 μ g/L. Cyclosporine was used in a small minority of patients with a low immunological risk or if there was a contra-indication for tacrolimus use. All anti-hypertensive agents were ceased prior to transplantation and avoided during the first two post-operative weeks. Dopamine and other inotropic agents were not administered to any recipient during the study period.

Data collection

Data collection for the study was approved by the Princess Alexandra Hospital Research Ethics Committee and individual consent was obtained from all transplant recipients. For each patient, demographic data, operative data, donor data, post-operative complications, medical complications, admission histories, medications and renal allograft function were prospectively recorded on a computerised integrated renal database. If recipients were using statins prior to transplantation, the type and dose of statin were recorded. Unfortunately there were no data available concerning the duration of statin use prior to transplantation.

Classification and outcome measure

Graft function after transplantation was classified as dialysis- delayed graft function (D-DGF) when recipients required dialysis within the first 72 h post transplantation, non-dialysis delayed graft function (ND-DGF) [23,24] when the creatinine reduction ratio at postoperative day 2 (CRR2) was less than 30% without the need for dialysis and immediate graft function (IGF) when the CRR2 value was greater than 30%. The CRR2 was calculated using the creatinine levels on post operative days 1 (Cr1) and 2 (Cr2) using the following formula:

$$CRR2(\%) = ([Cr1 - Cr2] \times 100)/Cr1$$

The primary outcome measure was the incidence of delayed graft function (both D-DGF and ND-DGF were assessed).

Statistical analysis

Results are presented as number (%) for categorical data, mean \pm SD for continuous data and median (interguartile range; 25th-75th percentile) for continuous variables not normally distributed. Comparisons between groups were made by χ^2 test for categorical variables, unpaired t-test for continuous normally distributed variables and Mann-Whitney test for continuous variables not normally distributed. The independent predictors of DGF were evaluated by multivariable logistic regression using backward stepwise elimination based on a p value cutpoint of 0.2 until the most parsimonious model was identified. Variables initially included in the model were donor characteristics (age, gender, body mass index [BMI], hypertension, diabetes mellitus, smoking status, donor type, cause of death, inotropic support, estimated glomerular filtration rate [eGFR]), recipient characteristics (age, gender, race, BMI, hypertension, cardiovascular disease, diabetes mellitus, smoking status, end-stage renal failure cause, prior renal replacement therapy, previous renal transplantation) and operation characteristics (number of HLA mismatches, cold ischemic time, warm ischemic time). BMI was categorized as underweight (<18.5 kg/m²), normal range (18.5-24.99 kg/m²), overweight $(25-29.99 \text{ kg/m}^2)$ and obese $(>30 \text{ kg/m}^2)$ according to the World Health Organization [25].

First-order interaction terms between the significant covariates were examined for all models. Data were analysed using the software packages SPSS for Windows, Release Version 18.0, (© SPSS, Inc., 2009, Chicago, IL, www.spss.com). P values less than 0.05 were considered statistically significant. No assumptions were made regarding missing data and all proportions were calculated as percentages of the patients with available data.

Results

Population characteristics

A total of 270 patients underwent renal transplantation during the study period. 269 patients were included in the final analysis as prior statin use could not be determined in one recipient. Of these, 93 (35%) patients were using statins prior to transplantation. Compared with patients not receiving statins, prior statin users were significantly more likely to be older, hypertensive and a

Table 1 Baseline recipient, donor and transplant procedure characteristics

N=93 N=176 N=269 Relpient Characteristics 3.37-11.0 47.5 + 13.0 4.0001 Male gender (%) 626.748 1156598 1.7/16649 0.033 Race 0.06 Calcacaian 0.081 1.005989 2116996 0.061 Other 1.21598 2.01599 38(1498) 0.061 Other 1.21598 2.01599 38(1498) 0.061 Calcacaian 10199 5.090 62(90) 1.01599 18.52.49 3.3(2796) 76(4396) 102(1896) - 2.52.90 3.2(2796) 76(4396) 102(1896) - 2.53.90 3.2(2796) 76(4396) 102(1896) - Connotoldites	Characteristics	Statin	Non-statin	Total	p-value
Reciperational control 475 ± 13.0 475 ± 13.0 407 ± 13.0 40001 Male gender (%) 637578) 115(67%) 173(67%) 0.83 Bace 0.06 0.06 0.06 0.06 Caucatain 112(3%) 26(5%) 23(18%) 5 Body Mass Inden ² (kg/m ²) 123(3%) 6(2%) 1 5 185.54.0 1(1%) 53(%) 6(2%) 1 1 185.54.0 132(3%) 70(49%) 102(3%) 1 1 25.529.9 32(35%) 70(49%) 102(3%) 1 1 1 25.529.9 32(3%) 102(3%) 23(3%) 0.005		N=93	N = 176	N = 269	
App (years)37.4 1.107.5 4 1.354.97.4 1.304.00.01Male gender (%)0.267.0%1.156.05%)1.77.06%)0.33Bec1.156.05%)7.51.60%)7.51.60%)0.10Other1.21.0%2.61.0%7.51.60%)0.10Other1.13.0%2.61.0%0.21.0%0.10Body Mass Index' (fig/m')2.61.0%6.62%)0.102.3%)0.102.3%)2.5.29.92.3.0%7.60.0%0.102.3%)0.102.3%)0.102.5.301.01.7%7.00.0%0.102.3%)0.10Corronational and positional disease4.94%7.83%0.3730.16Paripherational disease4.94%5.73%0.23%0.16Paripherational disease6.75%1.27%2.16%0.16Diabates mellitus9.10%)1.01%1.21%0.16Stodey fish0.10%1.21%0.160.16Paripherational profilement0.16%1.25%0.16Stodey disease1.11%1.11%1.25%0.16Diabates mellitus9.10%)1.25%0.161.25%Stodey disease3.25%0.11%1.25%0.16Paripherational profilement1.11%2.11%1.25%Stodey disease3.25%0.11%1.25%1.85%Paripherational profilement1.11%3.11%1.25%Stodey disease3.25%0.11%1.25%1.85%Paripherational profilement2.12%0.10%1.11%Dia	Recipient characteristics				
Male gandar (%)626.%112(65%)172(66%)0.83Pace	Age (years)	53.7±11.0	47.5 ± 13.5	49.7±13.0	<0.001
BecUUUUUUUUGular150(85%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)26(19%)27(19%)26(19%)27(19%)26(19%)27(19%)26(19%) <td>Male gender (%)</td> <td>62(67%)</td> <td>115(65%)</td> <td>177(66%)</td> <td>0.83</td>	Male gender (%)	62(67%)	115(65%)	177(66%)	0.83
GaucasianB(87%)150(85%)231(85%)21(85%)Dir120%)23(3%)2(5%)2(3%)2(3%)218.532(3%)76(4%)10/21%)25.20.032(3%)76(4%)10/21%)2.5.20.032(3%)70(4%)45(19%)10/21%)5.3032(3%)70(4%)45(19%)Comobilities4275%)23/89%418(8%)32/89%0.05Comobilities120%120%23/89%0.05Comobilities62%)23/89%0.05Comobilities120%23/89%0.05Comobilities62%)23/89%0.05Comobilities120%23/89%0.05Comobilities90%148(8%)23/89%0.05Comobilities90%120%23/89%0.16Comobilities90%120%23/89%0.16Comobilities90%120%23/89%0.16Socker90%120%120%0.16Comobilities1149%120%14/8%114Socker1149%14/19%14/19%14/19%Comobilities1149%14/19%14/19%14/19%Comobilities14/19%14/19%14/19%14/19%Comobilities14/19%14/19%14/19%14/19%Comobilities14/19%14/19%14/19%14/19%Comobilities14/19%14/19%14/19%14/19%Former14/19%14/19%14/19%14/19%	Race				0.06
Deter12(13%)26(15%)38(14%)Body Mars Index ² (leg/m ²)11%)53%)62%)10%185-24.933(73%)7643%)109(19%)107(38%)3-302023%)20(40%)107(38%)10%Co-moticities11/2%)120%23(8%)0.005Coronay artery disease11/2%)120%23(8%)0.051Coronay artery disease11/2%)120%23(8%)0.051Coronay artery disease44%53%)30%0.051Coronay artery disease67%)127%18/7%0.161Dibers mellitus910%)127%18/7%0.17Dibers mellitus910%127%18/7%0.17Dibers mellitus216%)0.17%31/9%11Polycytic Kalney disease325%91/5%31/9%11Former4144%63%017%53/9%11Polycytic Kalney disease325%31/9%41/9%11Focal and segmental poliferative14/15%33/19%41/9%11Focal and segmental poliferative14/15%33/19%31/9%11IgA nephropathy14/15%32/10%31/9%1111Polycytic Kalney disease32/26%31/9%31/9%1111Focal and segmental poliferative14/15%31/9%31/9%1111IgA nephropathy14/15%13/15%111111IgA nephropathy15%12/15%13/15% </td <td>Caucasian</td> <td>81(87%)</td> <td>150(85%)</td> <td>231(86%)</td> <td></td>	Caucasian	81(87%)	150(85%)	231(86%)	
BodyJask Index1 (kg/m)ImageJobaJobaJoba118,510,9076,490102,580102,580Jask 24.9313,7%070,4090102,580102,580Jask 24.921,25022,154040,190102,580Solution 10,10012,78023,780,900.005Combran stray disease111,28012,7%023,789,900.005Combran stray disease44,49012,7%023,99,900.01Chronic Ling disease6,7%112,7%018,0%10.01Chronic Ling disease6,7%112,7%018,0%10.01Diabetes mellitus9,0%312,7%018,0%10.01Solution of disease6,7%111,0%121,0%114,0%1Solution of disease6,7%111,0%121,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%111,0%112,0%114,0%1Solution of disease11,0%112,0%114,0%114,0%1Solution of disease10,0%110,0%114,0%114,0%114,0%1Jaster of disease10,0%110,0%114,0%114,0%114,0%114,0%1 <td>Other</td> <td>12(13%)</td> <td>26(15%)</td> <td>38(14%)</td> <td></td>	Other	12(13%)	26(15%)	38(14%)	
<18.5(19.9)(53%)(62%)18.5-24.932.07%)70.40%)100/41%)25-29.932.07%)70.40%)49.19%)2-50.924.27%)21.11%)49.19%)2-morbidities21.11%)23.08%)0.05Coronary artery disease11.12%)12.7%)23.08%)0.05Coronary artery disease44%153.04%0.16Peripheri vascular disease47%121.7%)81.7%)0.51Coronary artery disease67%112.7%)81.7%)0.51Coronary artery disease67%112.7%)81.7%)0.41Diabetes mellitus00%121.7%)12.6%)0.41Somker11.9%11.4%)21.4%)0.41Former11.6%)81.4%)12.5(0%)1.4%)Fology disease11.9%11.4%)12.5(0%)1.4%)Fology disease23.0%)91.6%)12.5(0%)1.4%Focal scherosing414%331.9%)47.17%)1.4%Focal scherosing419.5%31.9%)47.17%)1.4%Focal scherosing60%163.1%1.4%1.4%Polycystic kidney disease14.1%%31.9%)47.17%)1.4%Focal scherosing60%163.1%1.4%1.4%Focal scherosing60%163.1%1.4%1.4%Focal scherosing60%163.1%1.4%1.5%Focal scherosing60%063.1%1.5%1.5%Focal scherosing60	Body Mass Index ¹ (kg/m ²)				0.08
18-524.933(37%)76(43%)109(41%)25.92(25%)7040%)42(3%)23(3%)7040%)>3024(7%)22(4%)42(3%)72(3%)0.05Cornorbidties11(7%)12(7%)23(8%)0.05Coronay artery disease44%)63%)93%)0.31Coronay artery disease44%)23%93%)0.31Coronay artery disease44%)23%93%)0.31Coronay artery disease44%)21%)187%)0.91Diabets mollitus01%)127%)187%)0.91Diabets mollitus01%)127%)187%)0.91Diabets mollitus10%)12%)0.910.91Diabets mollitus10%)11%0.910.91Diabets mollitus10%)12%)0.910.91Never105%)11%0.910.910.91Never105%)10%%1250%11%11%Foral endonophritis101%101%11%11%11%Foral and segmental proliferative10%21(5%)33(19%)11%11%Bella endering10%12%%11%11%11%Produalisis10%10%11%11%11%Diabet nephropathy10%10%11%11%11%Foral and segmental proliferative10%%11%11%11%Produalisis10%%10%%11%11%11%11%D	<18,5	1(1%)	5(3%)	6(2%)	
25-29.932(35%)70(40%)102(38%)>302020%)23(14%)40(99%)Co-morbiditiesHypertonsion80(96%)148(484%)23(98%)0.05Coronary artory disease11(12%)127%)30(3%)0.53Cerbovascular disease444%)53%03%)0.51Chronic lung disease67%)127%)167%)01%)Chronic lung disease67%)127%)167%)01%Jabetes mellitus010%)127%)25(40%)041Swer11%11%11%25(40%)142Never515%9(51%)142(5%)142Former14(44%)30(1%)53(19%)142Focal scleasing41%30(1%)53(19%)141Glomenulonephtiks14(5%)30(1%)53(19%)141Focal scleasing44%63%30(1%)144Focal and segmential proliferative00%95%30(3%)144Jahe nephropathy14(5%)25(30%)30(3%)144Jahe nephropathy16%42(5%)30(3%)144None10(1%)25(30%)30(3%)14415Jahe nephropathy10%30(3%)14%16%Jahe nephropathy10%30(3%)14%16%Jahe nephropathy10%30(3%)14%16%Jahe nephropathy10%30(3%)14%16%Jahe nephropathy10%30(3%)14	18.5-24.9	33(37%)	76(43%)	109(41%)	
⇒024(2%)2(14%)49(9%)C→moticitiesFeripherlansion890%)148(84%)237(88%)0.05Goronay artery disease1(14%)12(%)93(%)0.53Peripherlansicular disease4(%)50%)93(%)0.51Chronic lung disease0(%)12(%)4(%)0.51Diabets mellitus0(%)12(%)14(%)0.51Diabets mellitus0(%)12(%)14(%)0.51Diabets mellitus0(%)12(%)12(%)0.51Current1(%)1(%)2(%)12(%)14(%)Never0(%)8(48%)125(46%)14(23%)14(23%)Never0(%)8(14%)12(34%)14(23%)14(13%)Glomenulonephritis14(15%)3(19%)3(19%)14(17%)Focal sclenosing4(4%)63%)0(%)14(%)1Globerty and propathy4(%)63%)0(%)14(%)1Polycstic kidney disease0(%)9(%)14(%)11Globerty and propathy4(%)61%)14(%)11Focal sclenosing4(%)61%)9(%)3(16%)11IgA nephropathy10(%)9(%)14(%)111IgA nephropathy0(%)10(%)10(%)111IgA nephropathy0(%)10(%)10(%)111IgA nephropathy0(%)10(%)10(%)1 <t< td=""><td>25-29.9</td><td>32(35%)</td><td>70(40%)</td><td>102(38%)</td><td></td></t<>	25-29.9	32(35%)	70(40%)	102(38%)	
Co-mobilitieskperpension890%1480%23708%0.05Perpherpation110%127%36%0.53Perpheral vascular disease44%53%41%0.51Cerebrovascular disease22%11%41%0.51Chronic lung disease67%127%187%0.51Diabets mellitus91%127%187%0.51Smort10%12%12%0.510.51Former1444%8448%125(49%)1Never5155%1455%1455%1455%Polycystic kidne patients310%310%470%1Giomerulonephritis1415%310%470%1Giomerulonephritis1415%310%470%1Focal scleosing60%05%03%1IgAn ephropathy1415%310%316%1IgAn ephropathy1415%310%316%1IgAn ephropathy66%90%337%1Peritoreal dialysis10%510%315%1IgAn ephropathy10%510%315%1Relar englander10%210%316%1IgAn ephropathy10%10%316%1IgAn ephropathy10%10%316%1IgAn ephropathy10%10%10%1IgAn ephropathy10%10%10%1IgAn ephropathy10%10%10%1<	>30	24(27%)	25(14%)	49(19%)	
Hypertension99(96)()148(84)()237(88)()0.051Coronary artery disease11(12%)12/%)23(9%)0.16Petipheral vascular disease4/%)5/3%)03%)0.53Cerebrovascular disease22%)12/%)18/%)0.51Chronic lung disease07%)12/%)12/%)0.11Diabetes mellitus910%)12/%)218%)0.41Smoker12/%)12/%)218%)0.41Former11/%)8148%)125(46%)142Never5155%)91(51%)125(46%)142Never5155%)31(19%)31(19%)118Commulonephritis1415%33(19%)47(17%)141Focal and segmental proliferative02%)30(17%)33(19%)114%)Golabetic nephropathy1415%33(19%)43(16%)146Periloneal dilayis66(0%)91(5%)135(5%)155Periloneal dilayis56(0%)97(5%)153(5%)15None1011%27(10%)13111%101Previous transplants56(0%)97(5%)135(7%)16101Previous transplants56(0%)97(5%)153(5%)1616Previous transplants56(0%)97(5%)135(7%)1616Previous transplants56(0%)97(5%)1361616Previous transplants16%97(5%)1361616Previous transplant (years)72%	Co-morbidities				
Coronary artery disease11(12%)127%)23(9%)0.16Peripheral vascular disease4(4%)5(3%)9(3%)0.53Cerebrovascular disease22%)21%)4(1%)0.91Diabetes mellitus9(0%)12(7%)18(7%)0.41Diabetes mellitus9(0%)12(7%)18(7%)0.41Smoker10(7%)11%)21%%0.41Current1(1%)11%)21%%125(46%)Never51(55%)91(51%)142(53%)1Polycystic kidney disease23(25%)30(17%)3(19%)1Giomerulonephritis14(15%)33(19%)47(7%)1Focal and segmental proliferative00%63%10/4%)1Other00%95%)93(%)11Jabetic nephropathy14(15%)32(19%)37(19%)1Diabetic nephropathy89%A111%27(10%)1Diabetic nephropathy660%9(15%)11.4%)55None10(11%)23(25%)37(14%)1Previous transplants56(0%)97(5%)133(57%)1None10(11%)21(5%)133(19%)11Previous transplants56(0%)92(5%)37(14%)1Ingel admission (days)64/279:33832,4200.19None10(11%)21(5%)133(15%)11Previous transplant (gars)42,45%940.101Ingel admission (days	Hypertension	89(96%)	148(84%)	237(88%)	0.005
Peripheral vascular disease444%5(3%)9(3%)0.33Creebrovascular disease22%)21%)41%)0.51Diabets mellitus67%)127%)167%)0.91Diabets mellitus01%)12%)0.410.91Smore11%)11%)218%)0.41Current11%)11%218%)12546%)Never5155%)9151%)12546%)12546%)Forder Joseph Parker2325%)3017%)31(9%)14253%)Glomerulonephritis2325%)3017%)31(9%)1415%)Focal clossing4(4%)6(3%)90(%)10(4%)Focal clossing4(4%)29(16%)30(9%)1415%)Glamerulonephritis00%90(%)31(6%)11Focal and segmental proliferative00%90(%)31(6%)11Quebropathy4(15%)29(16%)31(6%)11Diabetic nephropathy8(%)10(11%)20(10%)11Diabetic nephropathy6(60%)90(5%)13(57%)15None10(11%)20(15%)31(9%)15Previous transplants56(60%)97(5%)13(6%)10None1011%)21(15%)31(14%)10Previous transplants56(60%)97(30%)31(4%)15Previous transplants56(60%)97(30%)31(4%)15Previous transplants15%9631(3%)31(3%)31(3%)Previous transplants <td< td=""><td>Coronary artery disease</td><td>11(12%)</td><td>12(7%)</td><td>23(9%)</td><td>0.16</td></td<>	Coronary artery disease	11(12%)	12(7%)	23(9%)	0.16
Cerebroxecular disease2(2%)2(1%)4(1%)0.51Chronic lung disease67%)127%)187%)0.31Diabetes mellitus9(1%)127%)218%)0.41SructI11%)17%)218%)0.41SructI11%)11%21%)0.78Current11%)844%)12546%)1256%)1256%)Never105%)91501256%)1265%)130%Etiology of ESRD23(25%)30(17%)3(19%)11%Gomerulonephritis14(15%)33(19%)47(7%)16Focal calcosing00%63%10(4%)11Focal calcosing00%95%33(3%)1Refux rephropathy14(15%)29(16%)33(3%)1IgA nephropathy14(15%)29(16%)3(3%)1IgA nephropathy209%)11.4%11Other27(29%)135%)88(33%)1Refux rephropathy76%)97(5%)11.4%1IgA nephropaths56(6%)97(5%)153(57%)1Previous ransplants56(6%)97(5%)153(5%)1None1011%2121,4%0.1%IgA nephropathy66(6%)97(5%)153(5%)1Previous ransplants56(6%)97(5%)153(5%)1IgA nephropaths1011%9111IgA nephropaths66(6%)911541IgA nephropath	Peripheral vascular disease	4(4%)	5(3%)	9(3%)	0.53
Chronic lung disease67%)127%)187%)0.91Dabetes mellitus9(0%)12(%)218%)0.41Dabetes mellitus10%)10%)218%)0.81Current11%)11%)216%)218%)18Former310%)8448%)1245%)18Never55%)3017%)1425%)18Bolycystic kidney disease2325%)3017%)53(19%)18Giomerulonephritis1415%)319%)4717%)18Focal sclerosing64%)63%)044%)144%)14Focal and segmental proliferative00%)95%)03(19%)14Jabete nephropathy1415%)2016%)43(19%)1Jabeten phopathy63%)101%)21(19%)1Jabeten phopathy63%)101%)21(19%)1Jabeten phopathy63%)313%)313%)1Previous tansplants560%)915%)863%)1Internal dialysis560%)915%)316%)11Previous tansplants1011%)210%)319%)11Internal dialysis660%)915%)314%)11Previous tansplants16%)915%)31430201Internal dialysis616%)915%)31430201Previous tansplant (vairs)6423792483243001Internal dialysis616%)816%)16%)16%)1	Cerebrovascular disease	2(2%)	2(1%)	4(1%)	0.51
Dabetes mellitus9(0%)12(%)9(1%)9(1%)9(1%)Surver1(%)1(%)1(%)12(%)1/%Former41(4%)8(4%)12(%)1/%1/%Never515%)9(1%)12(%)1/%1/%Elister515%)12(%)3(1%)3(1%)1/%Glomerulonephritus2025%)301%)3(1%)1/%1/%Glomerulonephritus4(1%)6(%)4(1%)1/%1/%Focal actiossing4(%)6(%)0(%)4(1%)1/%Focal act segmental proliferative0(%)9(%)3(1%)1/%Babetic nephropathy6(%)9(1%)2(1%)1/%Ibabetic nephropathy2(%)10(%)3(1%)1/%None2029%)2(3%)13(5%)1/%1/%Pertoneal dialysis2(2%)2(3%)3(1%)1/%1/%None101%)2(15%)3(1%)1/%1/%1/%It and palation (dys)8(±42)19433(1%)1/%1/%1/%It angelant (veins)8(±42)19433(1%)1/%1/%1/%1/%It angelant (veins)10%11%11%1/%<	Chronic lung disease	6(7%)	12(7%)	18(7%)	0.91
Sroker10%10%20%Current10%10%20%Former4144%844%1254%Never5155%1255%1255%Eti-Jogy of ESRD2325%3017%3510%Gomenulonephritis1415%3119%470%Focal sclenosing40%63%40%Focal and segmental proliferative00%9310%40%Jabelic nephropathy1415%2016%316%Dabelic nephropathy60%114%140%Other2029%613%833%Perioneal dialysis560%3030%315%None1011%211%315%11%Perioneal dialysis560%3230%314%10%None1011%211%3140201%Iter and participants15%94.11%0.10Iter anglant (years)654.2479.33.8421.400.10Iter anglant (years)78.14.6440.15.2443.31.10.20.16Iter anglant (years)78.14.6440.15.2431.10.240.16Iter anglant (years)78.14.6440.15.2413.31.10.20.16Iter anglant (years)78.14.6440.15.2413.15.020.16Iter anglant (years)78.14.6486.14.15.2413.15.020.16Iter anglant (years)78.14.6486.16%33.15.020.16Iter anglant (years)78.14.6486.16%33.15.020.16Iter anglant (years)78.14.64	Diabetes mellitus	9(10%)	12(7%)	21(8%)	0.41
Current1(1%)1(1%)2(1%)2(1%)Former4(44%)84(48%)125(46%)Never5(5%)9(5%)14(253%)Fology of ESRD23(25%)30(17%)53(19%)Glomerulonephritis14(15%)33(19%)47(17%)Glomerulonephritis14(15%)33(19%)47(17%)Focal and segmental proliferative00%063%00(3%)IgA nephropathy44%929(16%)43(16%)IgA nephropathy60%029(16%)43(16%)Ibelic nephropathy60%010(1%)27(10%)Ibelic nephropathy7(8%)10(3%)27(10%)Other2(29%)61(3%)8(3%)1Peritoneal dialysis56(60%)97(5%)153(57%)55None10(11%)27(15%)37(14%)10Ivot atmasplants15%9%11%0.10Length of admission (days)8.54.27.94.388.24.00.10Jour Catteristis15%12%1.55(7%)1.56Ivot atmasplant (vens)47.84.16.44.04.15.245.33.41.020.05Isolar dialysis7.84.16.44.04.15.25.24.9%0.05Isolar dialysis6.78.16.6.5%0.5%0.57Isolar dialysis6.78.16.6.5%0.5%0.5%Isolar dialysis16%6.5%0.5%0.5%Isolar dialysis15%0.5%0.5%0.5%Isolar dialysis15%0.5%0.5%0.5%<	Smoker				0.78
Former41(44%)84(48%)125(46%)Never51(55%)91(51%)142(53%)Etiology of ESRD23(25%)30(17%)53(19%)Polycystic kidney disease23(25%)30(17%)47(17%)Glomerulonephritis14(15%)33(19%)47(17%)Focal aclerosing44%)63%)10(4%)Focal and segmental proliferative00%)95%)93%)IgA nephropathy14(15%)29(16%)43(16%)Reflux nephropathy14(15%)29(16%)43(16%)Diabetic nephropathy7(8%)4(2%)11 (4%)Other20(29%)61(35%)88(33%)Remark therapy7(29%)61(35%)53(57%)Preitoneal dialysis56(60%)97(55%)51(357%)None10(11%)27(15%)37(14%)Icmodalisisin (days)26429%311%Previous transplants16%9%32(14%)Length of admission (days)84249%31Diaber chargener therapy21(15%)3132(14%)Previous transplants16%40.15.245.33 ±13.020.05None4245%43.4440.15.245.33 ±13.020.05Nola (days)42.5%)63.6%)32.6%)0.5Langlant (kegm²)21.5%40.2%52.6%)0.5Langlant (kegm²)23.5%)23.5%)33.5%)0.5Langlant (kegm²)23.5%)33.5%)0.50.5Langlant (kegm²)23.5%) <td< td=""><td>Current</td><td>1(1%)</td><td>1(1%)</td><td>2(1%)</td><td></td></td<>	Current	1(1%)	1(1%)	2(1%)	
Nevr5155%9151%9151%14253%Ford525%3017%5319%5319%Polycystic kidney disease2325%3017%5319%4717%Giomerulonephritis1415%3319%4717%5Focal aclerosing44%63%04%55Focal and segmental proliferative00%95%93%55IgA nephropathy1415%2916%316%55Beflux nephropathy89%1911%2710%55Diabetic nephropathy290%6135%363%55Other229%6135%363%555Peritoneal dialysis5660%9755%5357%55Non011%2710%3714%11%0101L=rt ansplants5642%726%7215%3714%55Drive transplants642.4%94.51.2%363.51.02%0.555L=rt ansplant (pars)42.5%43.64.51.2%45.31.51.2%0.55L=rt ansplant (pars)42.65%43.64.51.2%45.31.51.2%0.55L=rt ansplant (pars)42.65%43.64.51.2%45.31.51.2%0.55L=rt ansplant (pars)42.65%43.64.51.2%45.31.51.2%0.55L=rt ansplant (pars)42.65%56.75%56.75%56.75%56.75%L=rt ansplant (pars)42.65%56.75%56.75%56.75%56.75%56.75%L=rt ansplant (pars)42.65	Former	41(44%)	84(48%)	125(46%)	
Evolution of ESRD0.13Polycystic kidney disease24,25%30(17%)5,31(9%)Gomerulonephritis14,15%33(19%)47(7%)Focal sclerosing4(4%)6(3%)04%)Focal and segmental poliferative00%95%)3(3%)IgA nephropathy14,15%29(16%)43(16%)Diabetic nephropathy6(9%)11(4%)7(10%)Diabetic nephropathy7(8%)4(2%)11(4%)Other2729%)6135%)88(33%)Pertoneal dialysis56(6%)9755%)53(57%)None10(11%)27(15%)729%)None10(11%)27(15%)3(14%)Ivent of admission (days)68/4279±388±4.0None10(11%)29±388±4.0101Ivent of admission (days)86±4.279±3.88±4.010Ivent of admission (days)65%9%11%0.10Ivent of admission (days)47±1.4540.4±1.5245.3±1.30.20.57Ivent of admission (days)47±4.5481(7%)10.410.4Ivent of admission (days)47±1.45814.6440.4±1.5253.3±1.30.20.57Ivent of admission (days)47±4.5481(7%)10.410.410.4Ivent of admission (days)47±4.54814.6440.4±1.5253.3±1.30.20.57Ivent of admission (days)47±4.54814.54814.5440.4±1.5440.4±1.5440.4±1.54Ivent of admission (days)47±4.54<	Never	51(55%)	91(51%)	142(53%)	
Polycystic kidney disease 2425% 3017% 5319%	Etiology of ESRD				0.18
Glomerulonephritis14(15%)33(19%)47(17%)Focal acl segmental proliferative4(4%)6(3%)10(4%)Focal and segmental proliferative0(0%)9(5%)9(3%)IgA nephropathy14(15%)29(16%)33(16%)Reflux nephropathy8(9%)19(11%)27(10%)Dabetic nephropathy7 (8%)4 (2%)11 (4%)Other029(9%)61(35%)88(33%)Remail replacement therapy7 (2%)61(35%)88(33%)Peritoneal dialysis56(60%)97(55%)153(57%)None10(11%)27(15%)37(14%)Previous transplants15%9%11%Length of admission (days)8.6 ± 2.27.9 ± 3.88.2 ± 4.0Ag-at transplant (years)42(45%)81(47%)125(47%)0.05Mal- gender (%)42(45%)81(47%)125(47%)0.76Its.500%)8(3%)125(47%)0.76Its.500%)8(5%)8(3%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(5%)8(34%)1.52Its.500%)8(35%)8(34%)1.52Its.500%)8(5%)8	Polycystic kidney disease	23(25%)	30(17%)	53(19%)	
Focal sclerosing 44% 63% 104% 1 Focal and segmental proliferative 00% 95% 93% IgA nephropathy 14(15%) 29(16%) 43(16%) Reflux nephropathy 89% 19(11%) 27(10%) Diabetic nephropathy 70% 42% 11 (4%) Diabetic nephropathy 70% 42% 88(33%) Other 070% 6165% 88(33%) 55% Haemodialysis 5660% 975% 515(5%) 55% None 10(11%) 27(15%) 714%) 10 Ivot for familysis 5660% 9% 314% 0.10 None 10(11%) 27(15%) 314% 0.10 Ivot for familysis 5660% 9% 314% 0.10 Ivot for familysis 10(11%) 27(15%) 314% 0.10 Ivot for familysis 660% 9% 314% 0.10 Ivot for familysis 6142 79±38 8±4.0 0.10 Ivot for familysis 42.45% 40.415.2 45.33±13.02 0.50 <	Glomerulonephritis	14(15%)	33(19%)	47(17%)	
Focal and segmental proliferative00%95%93%[gA nephropathy14(15%)29(16%)43(16%)Reflux nephropathy80%)1011%)27(10%)Diabetic nephropathy7 (8%)4 (2%)11 (4%)Other700%)61(35%)88(33%)Remodialysis56(60%)97(55%)153(57%)Peritoneal dialysis56(60%)97(55%)153(57%)None1011%)2010%)37(14%)Pretioneal dialysis66(42)9%37(4%)None1011%)2015%)314160.10L=rup of admission (days)15%46.429%11%None15%9%31.4160.10L=rup of upsplant (years)47.8±14644.0±15245.3±13.020.55Mage nder (%)47.8±14644.0±1525.3±13.020.57Istar Insplant (years)42.65%)8.3(7%)12.6(7%)0.76Istar Insplant (kg/m ²)0.0%8.3(7%)0.750.23Istar Insplant (kg/m ²)20.5%)5.35%)8.34%)0.55Istar Insplant (kg/m ²)0.0%8.3(7%)0.760.76Istar Insplant (kg/m ²)20.5%)5.35%)6.3%)0.5%Istar Insplant (kg/m ²)20.5%)5.35%)0.35%)0.5%Istar Insplant (kg/m ²)20.5%)5.35%)0.3%0.5%Istar Insplant (kg/m ²)20.5%)5.35%)0.3%0.5%Istar Insplant (kg/m ²)20.5%)5.35%)0.3% </td <td>Focal sclerosing</td> <td>4(4%)</td> <td>6(3%)</td> <td>10(4%)</td> <td></td>	Focal sclerosing	4(4%)	6(3%)	10(4%)	
IgA nephropathy14(15%)29(16%)43(16%)Reflux nephropathy60%)19(11%)27(10%)Diabetic nephropathy7 (8%)4 (2%)11 (4%)Other27(29%)61(35%)88(33%)Remodialysis56(60%)97(55%)85(37%)Peritoneal dialysis27(29%)52(30%)70(29%)None10(11%)27(15%)70(29%)Ivone10(11%)27(15%)37(14%)Ivone101%27(15%)37(14%)Ivone15%9%11%0.10Ivona15%9%11%0.10Ivona55%9%3131.020.19Ivona42450440±15.245.3±1.020.05Ivona4245%347%)12(47%)0.26Ivona12(47%)245%)36.6%)36.1%Ivona12.5*1.600%8(5%)8(3%)	Focal and segmental proliferative	0(0%)	9(5%)	9(3%)	
Reflux nephropathy80%9011%27(10%Diabetic nephropathy7 (8%)4 (2%)11 (4%)Other27(29%)61(35%)88(33%)Remail replacement therapy5660%97(55%)153(57%)Haemodialysis5660%97(55%)153(57%)Peritoneal dialysis27(29%)52(30%)79(29%)None1011%27(15%)37(14%)Prvious transplants15%9%11%Lord participation (days)6±4.279±3.88±4.0Age at transplant (years)47.8±14.644.0±15.245.3±13.02Male gender (%)4245%83(47%)126(47%)0.10Lordy Mass Index ¹ (kg/m ²)0.0%)8(5%)8(3%)0.23stat.50(0%)8(5%)8(3%)1.20.23	IgA nephropathy	14(15%)	29(16%)	43(16%)	
Diabetic nephropathy7 (%)4 (2%)11 (4%)Other27(2%)61(35%)88(33%)Re-lar leplacement therapy56(60%)97(55%)153(57%)Haemodialysis56(60%)97(55%)153(57%)Pertoneal dialysis27(2%)52(30%)79(2%)None10(11%)27(15%)37(14%)Pr-vious transplants1011%)27(15%)37(14%)Longth of admission (days)86 ± 4.279 ± 3.88.2 ± 4.00.10 Dimertativities Age at transplant (years)47.8 ± 14.644.0 ± 15.245.3 ± 13.020.05Male gender (%)42(45%)83(47%)125(47%)0.23s<18.5	Reflux nephropathy	8(9%)	19(11%)	27(10%)	
Other2729%6135%88(33%)R=replacement therapy56(0%)9755%15(37%)Haemodialysis56(0%)9755%15(37%)Pertoneal dialysis27(29%)52(30%)70(29%)None10(1%)27(15%)37(14%)Pr-vous transplants15%9%11%L-rth of admission (days)15%9%11%L-rth of admission (days)614.27.9 ± 3.88.2 ± 4.0L-rth of admission (days)47.8 ± 1.64.0 ± 1.5.24.5.3 ± 1.3.0.2L-rth of admission (days)4.245%8.347%1.25(4.7%)0.76L-rth of admission (days)4.245%8.347%1.25(4.7%)0.23L-rth of admission (days)6.0%8.347%1.25(4.7%)0.23L-rth of admission (days)6.0%8.36%)6.3%1.25(4.7%)L-rth of admission (days)6.2%8.347%6.3%6.3%L-rth of admission (days)6.3%8.3%)6.3%6.3%L-rth of admission (days)6.3%8.3%6.3%6.3%L-rth of admission (days)6.3%8.3%6.3%6.3%L-rth of admission (days)6.3%8.3%6.3%6.3%L-rth of admission (days)6.3%8.3%6.3%6.3%L-rth of admission (days)6.3%6.3%6.3%6.3%L-rth of admission (days)6.3%6.3%6.3%6.3%L-rth of admission (days)6.3%6.3%6.3%6.3%L-rth of admission (days)<	Diabetic nephropathy	7 (8%)	4 (2%)	11 (4%)	
Re-indialysis 560% 9755% 1357% Pertoneal dialysis 2729% 5230% 7929% None 1011% 2715% 3714% Pr-ious transplants 15% 9% 11% 0.10 Length of admission (days) 86 ± 4.2 79 ± 3.8 82 ± 4.0 0.19 Dor tharacteristics 86 ± 4.2 79 ± 3.8 82 ± 4.0 0.19 Alg-gender (%) 478 ± 14.6 4.0 ± 15.2 45.3 ± 13.02 0.05 Maig-gender (%) 4265% 83(47%) 126(47%) 0.62 <18.5	Other	27(29%)	61(35%)	88(33%)	
Haemodialysis 5660% 97(55%) 153(57%) Pertioneal dialysis 27(29%) 52(30%) 79(29%) None 1011%) 27(15%) 37(14%) Previous transplants 15% 9% 11% 0.10 Length of admission (days) 86 ± 4.2 7.9 ± 3.8 8.2 ± 4.0 0.19 Doror characteristics 11% 4.0 ± 15.2 4.5 3 ± 13.02 0.05 Male gender (%) 4245%) 83(47%) 125(47%) 0.76 stass Index ¹ (kg/m ²) 10% 60% 63%) 125(47%) 0.23 stass Index ¹ (kg/m ²) 120% 50% 57(33%) 69(34%) 125(47%) 125(47%)	Renal replacement therapy				0.55
Peritoneal dialysis 27(29%) 52(30%) 79(29%) None 10(1%) 27(15%) 37(14%) Previous transplants 15% 9% 11% 0.10 Length of admission (days) 86 ± 4.2 7.9 ± 3.8 8.2 ± 4.0 0.19 Doror characteristics 44.0 ± 15.2 45.3 ± 13.02 0.05 Male gender (%) 42(5%) 83(47%) 125(47%) 0.23 <18.5	Haemodialysis	56(60%)	97(55%)	153(57%)	
None 10(11%) 27(15%) 37(14%) Previous transplants 15% 9% 11% 0.10 Length of admission (days) 8.6 ± 4.2 7.9 ± 3.8 8.2 ± 4.0 0.19 Donor characteristics 4.0 ± 15.2 8.3 ± 13.02 0.05 Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Sody Mass Index ¹ (kg/m ²) - 0.23 0.23 <18.5	Peritoneal dialysis	27(29%)	52(30%)	79(29%)	
Previous transplants 15% 9% 11% 0.10 Length of admission (days) 8.6 ± 4.2 7.9 ± 3.8 8.2 ± 4.0 0.19 Donor characteristics 47.8 ± 14.6 44.0 ± 15.2 45.33 ± 13.02 0.05 Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Soly Mass Index ¹ (kg/m ²)	None	10(11%)	27(15%)	37(14%)	
Length of admission (days) 8.6 ± 4.2 7.9 ± 3.8 8.2 ± 4.0 0.19 Donor characteristics 4 4 5.2 4 5.3 ± 13.02 0.05 Age at transplant (years) 47.8 ± 14.6 44.0 ± 15.2 45.33 ± 13.02 0.05 Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Body Mass Index ¹ (kg/m ²) 0.05% 83(47%) 0.23 <18.5 00% 8(5%) 8(3%) 12 18.5-24.9 32(35%) 57(33%) 89(34%) 12	Previous transplants	15%	9%	11%	0.10
Donor characteristics Age at transplant (years) 47.8 ± 14.6 44.0 ± 15.2 45.33 ± 13.02 0.05 Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Body Mass Index ¹ (kg/m ²) . 0.23 <18.5	Length of admission (days)	8.6±4.2	7.9 ± 3.8	8.2±4.0	0.19
Age at transplant (years) 47.8 ± 14.6 44.0 ± 15.2 45.33 ± 13.02 0.05 Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Body Mass Index ¹ (kg/m ²)	Donor characteristics				
Male gender (%) 42(45%) 83(47%) 125(47%) 0.76 Body Mass Index ¹ (kg/m ²) 0.23 <18.5	Age at transplant (years)	47.8±14.6	44.0±15.2	45.33 ± 13.02	0.05
Body Mass Index ¹ (kg/m ²) 0.23 <18.5	Male gender (%)	42(45%)	83(47%)	125(47%)	0.76
<18.5 0(0%) 8(5%) 8(3%) 18.5-24.9 32(35%) 57(33%) 89(34%)	Body Mass Index ¹ (kg/m ²)				0.23
18.5-24.9 32(35%) 57(33%) 89(34%)	<18.5	0(0%)	8(5%)	8(3%)	
	18.5-24.9	32(35%)	57(33%)	89(34%)	

http://www.blomedcentral.com/14/12505/15/111	
Table 1 Baseline recipient, donor and transplant procedure characteristics (Continued)	

25-29.9	42(46%)	76(43%)	108(45%)	
>30	17(19%)	32(19%)	49(18%)	
Co-morbidities				
Hypertension	14(15%)	20(11%)	34(13%)	0.38
Hypertension	14(15%)	20(11%)	34(13%)	0.38
Diabetes	2(2%)	4(2%)	6(2%)	0.83
Current	23(25%)	49(28%)	72(27%)	
Former	21(22%)	36(20%)	56(21%)	
Never	49(53%)	91(52%)	140(52%)	
Donor type				0.35
Donation after brain death	49(53%)	94(53%)	143(53%)	
Donation after cardiac death	13(14%)	15(9%)	28(10%)	
Life	31(33%)	67(38%)	98(37%)	
Cause of death	0.36			
Subarachnoid haemorrhage	22(36%)	28(26%)	50(29%)	
Cardiac arrest	6(10%)	19(17%)	25(15%)	
Intracranial haemorrhage	9(14%)	15(14%)	24(14%)	
Cyclist	6(10%)	4(4%)	10(6%)	
Fall	4(6%)	5(4%)	9(5%)	
Traffic accident	2(3%)	5(4%)	7(4%)	
Нурохіа	3(5%)	4(4%)	7(4%)	
Other	10(16%)	29(27%)	39(23%)	
Inotropic support	52(84%)	95(87%)	147(86%)	0.55
eGFR (mL/min/1.73 m ²)	90.8 ± 22.8	94.4 ± 25.0	93.2 ± 24.3	0.25
Transplant procedure characteristics				
Mismatch	3(2–5)	4(2–5)	4(2–5)	0.05
Cold ischaemic time (hours)	8.2 ± 4.5	7.6±4.5	7.7 ± 4.5	0.29
Warm ischaemic time (hours)	0.6 ± 0.2	0.6 ± 0.2	0.6 ± 0.2	0.93

¹BMI classification according to the WHO.

lower degree of HLA mismatch with the donor. They also tended to have a higher BMI, a history or prior renal transplantation and a kidney from an older donor (Table 1). There were no statistically significant differences between the two groups with respect to presence of cardiovascular disease, diabetes mellitus or any of the other donor, recipient or operative characteristics listed in Table 1.

The majority (77%) of recipients using statins prior to transplantation were prescribed atorvastatin followed by simvastatin (14%), pravastatin (8%) and rosuvastatin (1%). 97% of the atorvastatin users used a daily dose of 40 mg or less (Table 2).

Graft function after transplantation

Table 3 shows graft function after transplantation. The CRR2 of 3 patients could not be calculated and were therefore excluded from the analysis. Overall, 57 (21%)

of renal transplant recipients exhibited D-DGF, 103 (39%) exhibited ND-DGF and 106 (40%) exhibited IGF. The occurrence of D-DGF was comparable between recipients who did and did not use statins prior to renal transplantation (21 (23%) versus 36 (21%), respectively, p = 0.69). The occurrence of ND-DGF was not significantly different between statin users and non-statin users (40 (43%) versus 63(36%), p = 0.25). When we pooled D-DGF and ND-DGF, the overall rate of DGF was not significantly different between statin users and non-statin users (61 (66%) versus 99 (57%), respectively, p = 0.14). The rates of pooled D-DGF and ND-DGF were comparable between patients using atorvastatin and those using other statins (38 (66%) versus 23(68%), respectively, p = 0.32).

The rates of acute rejection were not significantly different between recipients using statins (n = 16, 17%) and those who did not (n = 17, 10%; p = 0.17).

Table 2 Types of statins used in recipients

Statin type	Frequency (N = 93)	Percentage of total
Atorvastatin	,,	j
10 mg	21	22.6%
20 mg	29	31.2%
40 mg	20	21.5%
80 mg	2	2.2%
Total	72	77.4%
Pravastatin		
20 mg	3	3.2%
40 mg	4	4.3%
Total	7	7.5%
Simvastatin		
5 mg	1	1.1%
10 mg	3	3.2%
20 mg	8	8.6%
40 mg	1	1.1%
Total	13	14.0%
Rosuvastatin		
40 mg	1	1.1%
Total	1	1.1%

Delayed graft function occurrence according to statin usage Using multivariable logistic regression analysis, D-DGF was not significantly associated with statin use (adjusted odds ratio [OR] 1.05, 95% CI 0.96 - 1.15 p = 0.28)

Table 3	Graft	function	after	trans	plantation
---------	-------	----------	-------	-------	------------

Page 5 of 9

(Table 4). Clustered D-DGF + ND-DGF was also not significantly associated with statin usage (OR 0.98; 95% CI 0.89-1.06, p = 0.56) (Table 5). Older age and BMI greater than 30 kg/m² were significantly associated with a higher likelihood of D-DGF + ND-DGF, whilst undergoing live donor kidney transplantation was associated with a lower likelihood of D-DGF + ND-DGF.

Sensitivity analyses were performed with stratification by donor type. These demonstrated that statin use in living donor transplants was not significantly associated with D-DGF (p = 0.99) or clustered D-DGF + ND-DGF (OR 0.88 95% CI0.76 - 1.01; $p = _0.06$). Similarly, statin use in donation after brain death (DBD) transplants was not significantly associated with D-DGF (OR 1.04; 95% CI0.91 -1.18; p = 0.58) or clustered D-DGF + ND-DGF (OR 1.06; 95% CI 0.94 -1.19; p = 0.33). Multivariable logistic regression analyses were not able to be performed for the small number of kidneys donated after cardiac death (Table 1).

Discussion

The present study is the first to examine the relationship between statin use and the occurrence of delayed graft function (DGF) following renal transplantation in humans. The key finding was that statin use by recipients prior to renal transplantation was not observed to be significantly associated with the risk of D-DGF. This finding was not altered when D-DGF and ND-DGF were pooled together.

These findings contrast with previous studies in rat models of ischemia-reperfusion injury whereby statin

Donor type	Graft function	Statin N = 92	Non-statin N = 174	Total N = 266	p-value
All					0.32
	IGF	31(34%)	75(43%)	106(40%)	0.14
	ND-DGF	40(43%)	63(36%)	103(39%)	0.25
	D-DGF	21(23%)	36(21%)	57(21%)	0.69
Donation after Cardiac Death		N = 13	N = 15	N = 28	0.23
	IGF	0(0%)	0(0%)	0(0%)	
	ND-DGF	4(31%)	8(53%)	12(43%)	
	D-DGF	9(69%)	7(47%)	16(57%)	
Donation after Brain Death		N=49	N = 94	N = 143	0.80
	IGF	15(31%)	27(29%)	42(29%)	
	ND-DGF	23(47%)	41(43%)	64(45%)	
	D-DGF	11(22%)	26(28%)	37(26%)	
Living Donor		N = 30	N = 65	N = 95	0.09
	IGF	16(54%)	48(74%)	64(68%)	
	ND-DGF	13(43%)	14(21%)	27(28%)	
	D-DGF	1(3%)	3(5%)	4(4%)	

IGF, Immediate Graft Function; ND-DGF, Non Dialysis dependent Delayed Graft function; D-DGF, Dialysis dependent Delayed Graft Function.

Table 4 Results of multivariable logistic regression analysis of predictors of delayed graft function requiring dialysis within 72 hours of renal transplantation (D-DGF) $N = 256^*$

Characteristics	Odds ratio	Confidence interval	P value
Recipient characteristics			
Statin use (yes versus no)	1.05	0.96-1.15	0.28
Donor characteristics			
Туре			
Live versus Donation after brain death	0.12	0.03-0.43	<0.01
Donation after cardiac death versus			
Donation after brain death	10.37	3.75-28.66	<0.01
Transplant procedure characteristics			
Warm Ischemic Time (hours)	24.37	2.98-199.29	0.03

Only statin use and statistically significant variables in the final adjusted regression model are shown.

* The final variables included in the model were donor characteristics (hypertension, diabetes mellitus, smoking status, donor type, cause of death, inotropic support, estimated glomerular filtration rate [eGFR]), recipient characteristics (gender, race, BMI, diabetes mellitus, smoking status, end-stage renal failure cause, previous renal transplantation, use of statins) and operation characteristics (cold ischemic time, warm ischemic time).

treatment has been found to significantly reduce the severity of acute kidney injury [16-18,21]. Statins have also have been found to protect against experimental ischemic injury to gut [19], liver [20] and lung [20] tissue. The apparent disparity in findings between these studies and ours may be potentially explained by the appreciably higher doses of statins administered in the animal models (1–10 mg/kg) and the modifying influences of immunosuppressive agents in human renal transplantation, which were not examined in the animal models. However, a previous study by our group demonstrating a significant renoprotective effect of simvastatin on cyclosporine-

Table 5 Results of multivariable logistic regression analysis of delayed graft function (DGF = D-DGF + ND-DGF) N = 256*

Characteristics	Odds ratio	Confidence interval	P value
Recipient characteristics			
Body Mass Index (kg/m ²)			
>30 versus 18.5-24.99	6.14	2.27-16.57	<0.01
<18.5 versus 18.5-24.99	1.24	0.14-11.22	0.85
25-29.99 versus 18.5-24.99	2.03	1.00-4.13	0.05
Statin use (yes versus no)	0.98	0.39-1.06	0.59

Only statin use and statistically significant variables in the final adjusted regression model are shown.

* The initial variables included in the model were donor characteristics (body mass index [BMI], hypertension, smoking status, donor type, cause of death, inotropic support) recipient characteristics (age, , BMI, hypertension, diabetes mellitus, smoking status, end-stage renal failure cause, prior renal replacement therapy, use of statins) and operation characteristics (cold ischemic time).

induced injury in primary cultures of human proximal tubule cells argues against abrogation of the renoprotective effect of statins by calcineurin inhibitors in transplantation-related ischaemia-reperfusion injury [26]. Furthermore, the beneficial effects of statins on human proximal tubule cell injury were independent of the mevalonate-cholesterol pathway [26].

Another reason for the disparity in findings may be the use of animal models for ischemia reperfusion injury. Cardinal differences between animal models and patients exist that may contribute to the differences in study outcomes [27,28]. In animal studies, statins were mostly administered through intraperitoneal and intravenous injection whereas the oral route is typically used in humans. Furthermore, in all previous studies of rat models of ischemia-reperfusion injury, the kidney was pre-treated with statins prior to ischemia or prior to reperfusion. Statin use in the donor population was not recorded in this study. We believe it would be uncommon for the donor population to be coincidentally receiving statin administration. Statin use prior to hospital admission has been reported in up to 30% of the intensive care patients [29-31]. It is unlikely that this number is representative of the donor population given their lower age and minor comorbidities [32]. Even for those donor patients that may have been on prior statin therapy, it is common practice to discontinue statins in critically ill patients because of concern regarding serious side effects [29,33]. Administration of statins to donors prior to organ retrieval (and onset of ischemic acute kidney injury) was not assessed in this study and would require separate evaluation. Indeed, early inflammatory and stress responses can be detected in donor kidneys prior to their retrieval from brain dead patients [34].

It is also possible that prior statin treatment of renal transplant recipients needed to be continued into the early post-operative period to realize any potential beneficial effects on DGF. In the present study, statin users had their statins temporarily interrupted in the immediate post-transplant period until reliable oral intake was re-established, usually around post operative day 2. The literature is divided on the risks or benefits of cessation of maintenance statin therapy in hospitalised patients. It has been shown in previous investigations that cessation of statins in certain clinical settings, such as after coronary syndromes [35], acute stroke [36] and major noncardiac surgery [37], is associated with significantly increased morbidity and mortality. However, these findings were refuted by a recent randomized controlled trial in which the cessation of statins in patients with presumed infection was not associated with an inflammatory rebound effect or other adverse clinical consequences [31]. Given the higher incidence of ND-DGF in prior statin users (40 (43%) versus 63 (36%) P = 0.25), we consider

further investigation of the role of statin withdrawal in this patient population is warranted.

The present study cannot exclude the possibility that some statins may be more effective in mitigating DGF than others. Atorvastatin was used in the majority (77%) of recipients in our study, reflecting common practice in Australia [38]. Atorvastatin, simvastatin, pravastatin and rosuvastatin all have different pharmacokinetics, including half-life time, lipophilicity and potency [39]. Although pleiotrophic effects of statins are generally considered to represent a class effect [15], most studies have shown a protective effect of statins in ischemiareperfusion injury with simvastastin [16-18,21], whilst only one study used atorvastatin [40]. A previously published systematic review by our group of 5 randomised controlled trials found no significant effect of statin use on the risk of acute rejection in renal transplant recipients (relative risk 0.61, 95% CI 0.32-1.16) [41]. Data were not available to evaluate the effect of statins on DGF.

One of the challenges of the present study related to the definition of DGF. There are at least 18 unique definitions of DGF employed in the literature [24]. The one that is used most frequently is the need for dialysis posttransplantation, although the specified timeframe in which dialysis occurs is variable. The need for dialysis within 72 hours after transplantation is the definition used by the Australian and New Zealand Dialysis and Transplant Registry (ANZDATA; www.anzdata.org.au) and was therefore employed in this study. However, given that such a conservative definition potentially excludes a significant number of patients with less severe forms of DGF, a sensitivity analysis was performed to include these patients using a broader definition. Govani et al. devised and validated the creatinine reduction ratio at post-operative day 2 (CRR2) <30% as a simple, objective criterion for early diagnosis of DGF [23]. Both Rodrigo et al. and Vilar et al. subsequently demonstrated that patients with a CRR2 < 30% (ND-DGF) had a significantly lower 5 year graft survival than patients with IGF [3,4]. Nevertheless, regardless of whether the need for dialysis post-renal transplantation was considered alone or in combination with the CRR2 criterion, statin therapy was not associated with DGF in the present study.

Our study has the expected limitations of a retrospective study. Even though we adjusted for a number of patient characteristics, the possibility of residual confounding could not be excluded. Statin use in recipients was not randomized and, as such, the results could be confounded by indication bias. Statin users were significantly older with more hypertensive disease and tended to have a higher BMI, a history of prior renal transplantation and a kidney from an older donor. Such characteristics are associated with a higher incidence of DGF and could have masked any potential beneficial renoprotective effect of statins. Pre-transplant anti-hypertensive medications in both the donors and recipients were not recorded, such that a differential pre-conditioning effect of these agents on subsequent ischaemia-reperfusion injury in the statin and non-statin users could not be excluded. Since statins were only administered to recipients, the current result might only reflect an effect in the reperfusion mediated kidney injuries. Some important variables, such as recipient panel reactive antibodies, were not recorded. This was a single centre study and thus the results may not be generalisable.

Conclusions

In conclusion, the present study did not show evidence of a significant, independent association between the use of statins in kidney transplant recipients and the occurrence of delayed graft function. Further studies on delayed graft function should examine the effects of statin pretreatment of donors (with or without recipient treatment) and the impact of continuing prior statin therapy in recipients in the immediate post-operative period.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

JR was the principal investigator; conceived study; participated in design and data analysis; helped to draft manuscript; read and approved the final manuscript. DJ participated in study design and data analysis; helped to draft manuscript; read and approved the final manuscript. DW was the senior investigator overseeing the conduct of the study; participated in study design and data analysis; helped to draft manuscript; read and approved the final manuscript; read and approved the final manuscript.

Authors' information

JR, Queensland Renal Transplant Service, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane and medical student of the University of Maastricht, Maasticht, The Netherlands.

DJ, Director of Metro South and Ipswich Nephrology & Transplant Services (MINTS), Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Australia and Professor of Medicine and Population Health, University of Queensland, Brisbane, Australia.

PK, Deputy Director of Intensive Care, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Australia, and Associate Professor, University of Queensland, Brisbane, Australia.

PP, Director of Clinical Pharmacology, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Australia and Associate Professor, University of Queensland, Brisbane, Australia.

DW, Queensland Renal Transplant Service, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane and Associate Professor, University of Queensland, Brisbane, Australia.

Acknowledgements

The authors gratefully acknowledge the assistance of Kylie Hurst and the staff within the renal transplantation unit at the Princess Alexandra Hospital, Brisbane for the assistance with data collection. Furthermore we would like to thank E. Jansen for the statistical assistance.

No source of funding was used for this study.

Author details

¹Queensland Renal Transplant Service, Princess Alexandra Hospital, Brisbane, Australia. ²Maastricht University, Maastricht, The Netherlands. ³University of Queensland, Brisbane, Australia. ⁴Intensive Care Unit, Princess Alexandra Hospital, Brisbane, Australia. ⁵Pharmacology Department, Princess Alexandra Hospital, Brisbane, Australia.

Received: 28 November 2011 Accepted: 14 September 2012 Published: 17 September 2012

References

- Chang SH, Russ GR, Chadban SJ, Campbell SB, McDonald SP: Trends in kidney transplantation in Australia and New Zealand, 1993–2004. *Transplantation* 2007, 84(5):611.
- Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR: Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. *Nephrol Dial Transplant* 2009, 24(3):1039–1047.
- Rodrigo E, Ruiz JC, Piñera C, Fernández Fresnedo G, Escallada R, Palomar R, Cotorruelo JG, Zubimendi JA, de Francisco AL M, Arias M: Creatinine Reduction Ratio on Post Transplant Day Two as Criterion in Defining Delayed Graft Function. Am J Transplant 2004, 4(7):1163–1169.
- Vilar E, Varagunam M, Yaqoob MM, Raftery M, Thuraisingham R: Creatinine Reduction Ratio: A Useful Marker to Identify Medium and High-Risk Renal Transplants. *Transplantation* 2010, 89(1):97.
- Perico N, Cattaneo D, Sayegh MH, Remuzzi G: Delayed graft function in kidney transplantation. *Lancet* 2004, 364(9447):1814–1827.
- Rosenthal JT, Danovitch GM, Wilkinson A, Ettenger RB: The high cost of delayed graft function in cadaveric renal transplantation. *Transplantation* 1991, 51(5):1115–1118.
- Narayanan R, Cardella CJ, Cattran DC, Cole EH, Tinckam KJ, Schiff J, Kim SJ: Delayed graft function and the risk of death with graft function in living donor kidney transplant recipients. *Am J Kidney Dis* 2010, 56(5):961–970.
- Jochmans I, Moers C, Smits JM, Leuvenink HGD, Treckmann J, Paul A, Rahmel A, Squifflet JP, van Heurn E, Monbaliu D: Machine Perfusion Versus Cold Storage for the Preservation of Kidneys Donated After Cardiac Death: A Multicenter, Randomized, Controlled Trial. Ann Surg 2010, 252(5):756.
- Irish WD, McCollum DA, Tesi RJ, Owen AB, Brennan DC, Bailly JE, Schnitzler MA: Nomogram for predicting the likelihood of delayed graft function in adult cadaveric renal transplant recipients. J Am Soc Nephrol 2003, 14(11):2967.
- Daly PJA, Power RE, Healy DA, Hickey DP, Fitzpatrick JM, Watson RWG: Delayed graft function: a dilemma in renal transplantation. *BJU Int* 2005, 96(4):498–501.
- Kaisar MO, Johnson DW: Validation of a nomogram for predicting the likelihood of delayed graft function in Australian adult deceased donor renal transplant recipients. *Nephrology* 2006, 11(1):78–79.
- Meier-Kriesche HU, Arndorfer JA, Kaplan B: The impact of body mass index on renal transplant outcomes: a significant independent risk factor for graft failure and patient death. *Transplantation* 2002, 73(1):70.
- Donnahoo KK, Shames BD, Harken AH, Meldrum DR: Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. *J Urol* 1999, 162(1):196–203.
- Rc D, Marc A, de Vries B, Buurman WA: Apoptosis and inflammation in renal reperfusion injury. *Transplantation* 2002, 73(11):1693.
- 15. Zhou Q, Liao J: Pleiotropic effects of statins—basic research and clinical perspectives. *Circ J* 2010, **74**:818–826.
- Gueler F, Rong S, Park JK, Fiebeler A, Menne J, Elger M, Mueller DN, Hampich F, Dechend R, Kunter U: Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol 2002, 13(9):2288.
- Todorovic Z, Nesic Z, Stojanovic R, Basta-Jovanovic G, Radojevic-Skodric S, Velickovic R, Chatterjee PK, Thiemermann C, Prostran M: Acute protective effects of simvastatin in the rat model of renal ischemia-reperfusion injury: It is never too late for the pretreatment. J Pharmacol Sci 2008, 107(4):465–470.

- Yokota N, O'Donnell M, Daniels F, Burne-Taney M, Keane W, Kasiske B, Rabb H: Protective effect of HMG-CoA reductase inhibitor on experimental renal ischemia-reperfusion injury. *Am J Nephrol* 2000, 23(1):13–17.
- Slijper N, Sukhotnik I, Chemodanov E, Bashenko Y, Shaoul R, Coran AG, Mogilner J: Effect of simvastatin on intestinal recovery following gut ischemia-reperfusion injury in a rat. *Pediatr Surg Int* 2010, 26(1):105–110.
- 20. Dibazar F, Hajipour B, Hosseinian M, Hemmati M, Ghandiha A: Simvastatin decreases hepatic ischaemia/reperfusion-induced liver and lung injury in rats. *Folia Morphol* 2008, **67**(4):231.
- Nesic Z, Todorovic Z, Stojanovic R, Basta-Jovanovic G, Radojevic-Skodric S, Velickovic R, Chatterjee PK, Thiemermann C, Prostran M: Single-dose intravenous simvastatin treatment attenuates renal injury in an experimental model of ischemia-reperfusion in the rat. *J Pharmacol Sci* 2006, 102(4):413–417.
- Slotta JE, Laschke MW, Schilling MK, Menger MD, Jeppsson B, Thorlacius H: Simvastatin Attenuates Hepatic Sensitization to Lipopolysaccharide After Partial Hepatectomy. J Surg Res 2010, 162(2):184–192.
- Govani MV, Kwon O, Batiuk TD, Milgrom ML, Filo RS: Creatinine reduction ratio and 24-hour creatinine excretion on posttransplant day two: simple and objective tools to define graft function. J Am Soc Nephrol 2002, 13(6):1645.
- Yarlagadda SG, Coca SG, Garg AX, Doshi M, Poggio E, Marcus RJ, Parikh CR: Marked variation in the definition and diagnosis of delayed graft function: a systematic review. *Nephrol Dial Transplant* 2008, 23(9):2995.
- 25. Consultation W: Obesity: preventing and managing the global epidemic, World Health Organization Technical Report Series. 2000.
- Johnson DW, Saunders HJ, Field MJ, Pollock CA: In vitro effects of simvastatin on tubulointerstitial cells in a human model of cyclosporin nephrotoxicity. Am J Physiol Renal Physiol 1999, 276(3):F467.
- 27. Esmon CT: Why do animal models (sometimes) fail to mimic human sepsis? Crit Care Med 2004, 32(5):S219.
- Marshall JC: Modeling MODS: what can be learned from animal models of the multiple-organ dysfunction syndrome? *Intensive Care Med* 2005, 31(5):605–608.
- Kruger P, Fitzsimmons K, Cook D, Jones M, Nimmo G: Statin therapy is associated with fewer deaths in patients with bacteraemia. *Intensive Care Med* 2006, 32(1):75–79.
- Almog Y, Shefer A, Novack V, Maimon N, Barski L, Eizinger M, Friger M, Zeller L, Danon A: Prior statin therapy is associated with a decreased rate of severe sepsis. *Circulation* 2004, 110(7):880.
- Kruger PS, Harward ML, Jones MA, Joyce CJ, Kostner KM, Roberts MS, Venkatesh B: Continuation of Statin Therapy in Patients with Presumed Infection: A Randomised Controlled Trial. Am J Respir Crit Care Med 2011, 183:774–781.
- Moran JL, Bristow P, Solomon PJ, George C, Hart GK: Mortality and length-of-stay outcomes, 1993–2003, in the binational Australian and New Zealand intensive care adult patient database*. *Crit Care Med* 2008, 36(1):46.
- Pfizer: Prescribing information atorvastatin. MIMS online. https://www.mimsonline.com.au, last updated 25 May 2012, viewed 16 September 2012.
- Nijboer W, Schuurs T, Van Der Hoeven J, Leuvenink H, Van der Heide J, Van Goor H, Ploeg R: Effects of brain death on stress and inflammatory response in the human donor kidney. *Elsevier* 2005, 37(1):367–369.
- Fonarow GC, Wright RS, Spencer FA, Fredrick PD, Dong W, Every N, French WJ: Effect of Statin Use Within the First 24 Hours of Admission for Acute Myocardial Infarction on Early Morbidity and Mortality+. Am J Cardiol 2005, 96(5):611–616.
- 36. Endres M, Laufs U: Discontinuation of statin treatment in stroke patients. *Stroke* 2006, **37**(10):2640.
- Schouten O, Hoeks SE, Welten GMJM, Davignon J, Kastelein JJP, Vidakovic R, Feringa HHH, Dunkelgrun M, van Domburg RT, Bax JJ: Effect of statin withdrawal on frequency of cardiac events after vascular surgery. *Am J Cardiol* 2007, 100(2):316–320.
- 38. Top 10 Drugs. Aust Prescrib 2010, 33(6):181.

- Chong PH, Seeger JD, Franklin C: Clinically relevant differences between the statins: implications for therapeutic selection. *Am J Med* 2001, 111(5):390–400.
- Gottmann U, Brinkkoetter PT, Hoeger S, Gutermann K, Coutinho ZM, Ruf T, Hui S, Liu Z, Schnuelle P, van der Woude FJ: Atorvastatin donor pretreatment prevents ischemia/reperfusion injury in renal transplantation in rats: possible role for aldose-reductase inhibition. *Transplantation* 2007, 84(6):755.
- Navaneethan SD, Nigwekar SU, Perkovic V, Johnson DW, Craig JC, Strippoli G: HMG CoA reductase inhibitors (statins) for dialysis patients. *Cochrane Database Syst Rev* 2009, 3:CD004289.

doi:10.1186/1471-2369-13-111

Cite this article as: Reiling *et al.*: Association of pre-transplant statin use with delayed graft function in kidney transplant recipients. *BMC Nephrology* 2012 **13**:111.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar

BioMed Central

(

• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit