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Global Versus Local Casimir Effect
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Abstract. This paper continues the investigation of the Casimir effect with
the use of the algebraic formulation of quantum field theory in the initial
value setting. Basing on earlier papers by one of us (AH), we approximate
the Dirichlet and Neumann boundary conditions by simple interaction
models whose nonlocality in physical space is under strict control, but
which at the same time are admissible from the point of view of algebraic
restrictions imposed on models in the context of Casimir backreaction.
The geometrical setting is that of the original parallel plates. By scaling
our models and taking appropriate limit, we approach the sharp bound-
ary conditions in the limit. The global force is analyzed in that limit.
One finds in Neumann case that although the sharp boundary interac-
tion is recovered in the norm resolvent sense for each model considered,
the total force per area depends substantially on its choice and diverges in
the sharp boundary conditions limit. On the other hand the local energy
density outside the interaction region, which in the limit includes any
compact set outside the strict position of the plates, has a universal limit
corresponding to sharp conditions. This is what one should expect in gen-
eral, and the lack of this discrepancy in Dirichlet case is rather accidental.
Our discussion pins down its precise origin: the difference in the order in
which scaling limit and integration over the whole space is carried out.

1. Introduction and the Main Idea

The most natural setting for the consideration of the Casimir effect is the
algebraic approach. This approach allows a mathematically rigorous analysis
of the effect and gives a clear understanding of the sources of the difficul-
ties one encounters in more traditional treatments. In application to quantum
fields this analysis rests, in broad terms, on the following cornerstones.

(i) A quantum relativistic theory is defined by an algebra of observables, in
simple cases defined directly by ‘fields’ (scalar, electromagnetic).

(ii) Each particular physical system obeying this theory is described by a
Hilbert space representation of this algebra. Inequivalent representations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81873734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1172 A. Herdegen and M. Stopa Ann. Henri Poincaré

refer to physically non-comparable systems or idealizations (such as a
local isolated system and a thermodynamic limit system).

(iii) The change of external conditions under which a quantum system is
placed leads to a change of the state of the system.

For the calculation of the global Casimir-type effects, as the backreaction
force, one needs models which respect the above three constituents of a quan-
tum theory. Thus the model of a quantum field should be based on one definite
algebra, and the interaction with the external conditions should not lead to a
change of its representation. If this condition is fulfilled then the Casimir force
results from the change in the expectation value of one and the same energy
observable, as defined by free field, as the state changes with changing external
conditions (such as position of macroscopic bodies).

This analysis has been conducted at length by one of us in [1,2], where
also clear cut criterions for the admissibility of external interaction models for
a class of systems were formulated. In application to the free quantum scalar
field these amount to the following. Let φ(x) be a scalar field and denote by
h2 the standard self-adjoint extension in L2(R3,d3x) of −Δ. The free field
dynamics is then

(∂2
t + h2)φ(t, �x) = 0. (1)

Suppose now that one introduces to the system external macroscopic bodies,
such as conducting plates in the original Casimir system, which change the
dynamics of the field. Let a denote free parameters of these bodies, such as
separation of the plates, and let the modified dynamics (for fixed a) be given
by

(∂2
t + h2

a)φ(t, �x) = 0, (2)

where h2
a is a positive self-adjoint operator. Now, the two settings can be

described by one choice of observables algebra, and in common representation
of this algebra if, and only if, h−1/2

a (ha−h)h−1/2 is a Hilbert–Schmidt operator
in L2(R3,d3x), that is

Tr
[
h−1/2(ha − h)h−1

a (ha − h)h−1/2
]
< ∞. (3)

Suppose this condition holds and let the algebra of the field be represented in
some Hilbert space H. Let further H be the energy operator as defined by free
field dynamics, and let Ωa be the minimal energy state vector as defined by
the modified dynamics (2). The Casimir energy is then given by

Ea = (Ωa,HΩa) =
1
4
Tr
[
(ha − h)h−1

a (ha − h)
]
. (4)

That this energy be finite is another condition on the model of ha, and only
if both conditions are satisfied the Casimir problem has a finite solution and
the Casimir force is then

Fa = −dEa

da
.
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These admissibility conditions say, roughly, that the modified dynamics
h2

a cannot differ much from the free dynamics h2. Introducing sharp bound-
ary conditions, such as Dirichlet/Neumann conditions on plates, violates these
demands. One faces therefore the problem of an appropriate approximation
for the description of such plates.

We consider the simplest geometrical situation, the original Casimir prob-
lem of two infinite, parallel plane plates at a distance a from each other. We
assume that z-axis is perpendicular to the planes and the modification of
dynamics affects this direction only, thus

h2 = h2
z + h2

⊥, h2
a = h2

za + h2
⊥.

where h2
⊥ is the free dynamics in the directions perpendicular to z-axis and h2

za

is a modification of h2
z = −∂2

z in L2(R,dz); we refer the reader for details to
[2]. In this setting the conditions of finiteness of (3) and (4) cannot be expected
to hold as they stand because of translation symmetry in the planes, and must
be replaced by conditions ‘per unit area’ of the planes. It has been shown in
[2] that this amounts to

Tr
[
(hza − hz)2

]
< ∞, (5)

Tr [(hza − hz)hz(hza − hz)] < ∞, (6)

where the trace refers to the Hilbert space L2(R,dz). If these conditions are
satisfied, the energy per unit area is finite and reads

εa =
1

24π
Tr [(hza − hz)(2hz + hza)(hza − hz)] . (7)

A class of models for h2
za imitating the boundary conditions, but con-

sistent with the above demands, was considered in [2]. The idea was to take
h2

za = (function of)(hz, h
B
za), where (hB

za)2 is −∂2
z with boundary conditions

at z = ±a/2. The choice of functions assured that for small spectral val-
ues of h2

z and (hB
za)2 the models reproduced the sharp boundaries, while for

large spectral values tended to free dynamics. Moreover, one could introduce
a scaling parameter μ such that for μ → ∞ the models approached the sharp
boundaries in the whole spectrum. For the Casimir energy per area in the
rescaled models ελ

a (we prefer to work with λ = 1/μ here) one then found

ελ
a =

ε∞
λ3

+
c

λa2
− π2

1440a3
+ (terms → 0 for λ → 0), (8)

where ε∞ and c are constants, c = 0 in Dirichlet case, but c �= 0 in Neumann
case. It was also shown that the direct sum of the two models describes the set-
ting of the electromagnetic field between conducting plates. Thus the Casimir
force per unit area is then

−d[ελ
a(D) + ελ

a(N)]
da

=
2c
λa3

− π2

240a4
+ (terms → 0 for λ → 0).

The second term reproduces the well-known Casimir’s formula, but the first
term is model-dependent and dominates for large a. Moreover, in typical sit-
uations there is c > 0 and the force becomes repulsive for large a.
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In the present paper we want to find out whether these results will be con-
firmed in another class of models, constructed in a wholly different way. Rather
than manipulate spectral properties directly, now we want to approximate
interaction with the plates directly in the physical space. It is easy to see that
strictly local potential interaction of the form [h2

zaψ](z) = −∂2
zψ(z)+V (z)ψ(z)

violates our conditions. Therefore we replace V by a slightly nonlocal integral
quasi-potential [V ψ](z) =

∫
V (z, z′)ψ(z′)dz′ with the kernel V (z, z′) concen-

trated around the position of the plates. We show that with an appropriately
defined scaling of some simple kernels of this kind one can reproduce sharp
boundary conditions on the plates in the limit. The Casimir energy can again
be calculated and for a class of models the result (8) is confirmed. However,
in general the Neumann case proves to be even more singular here than in the
models considered in [2] and the universal term could be disturbed. Nonlocal
quasi-potentials has been considered in the Casimir context by other authors
before, but in different formalisms and with rather different motivations (see
e.g. [3,4]).

The present choice of models makes also possible a local analysis of the
local energy density. We show that outside the interaction region the den-
sity tends in the scaling limit to a well defined universal form corresponding
to sharp boundary conditions. The present mathematically rigorous setting
allows the comparison and better understanding of the local–global relation.
The model-dependent and divergent (in the limit) contributions to the global
force are due to the interaction region. We discuss this point more fully in the
Discussion section.

For a more extensive discussion of the background of the present paper, as
well as for more extensive literature we refer the reader to [1,2]. We define our
models in Sect. 2. Appropriate scaling of these models is shown to reproduce
the sharp boundary conditions in Sect. 3. Spectral properties of the models are
discussed in Sect. 4 and the admissibility of the models in the sense mentioned
above is proved in Sect. 5. It is shown in Sect. 6 that the Casimir energy of
the scaled models is obtained by the expansion of the formula for energy in
inverse powers of a, and this expansion (up to a significant order) is obtained
in Sect. 7. For comparison, in Sect. 8 we obtain local results and their scaling
limit. The discussion occupies Sect. 9. More technical points of our derivations
are shifted to Appendices.

2. The Models

We postulate for our analysis the following quasi-potentials

V = σ (|Ubg〉 〈Ubg| + |U−bg〉 〈U−bg|) , b = a/2 > 0, σ = ±1, (9)

where U is the translation operator and σ = 1,−1 corresponds to Dirichlet (D)
and Neumann (N) conditions respectively. These conditions will be achieved
in the two cases by an appropriate scaling limit to be defined below. In all
what follows one should keep in mind that unless stated otherwise we treat
parallelly both cases, but the dependence of quantities on σ is suppressed.



Vol. 11 (2010) Global Versus Local Casimir Effect 1175

In position representation the quasi-potential is an integral operator
(V ψ)(z) =

∫
V (z, z′)ψ(z′) dz′ with the kernel

V (z, z′) = σ
[
g(z − b)g(z′ − b) + g(z + b)g(z′ + b)

]
.

For the functions g we assume that

g(z) =

{
f(z) if σ = 1, (D)
−i d

dz
f(z) if σ = −1, (N)

(10)

where f is a complex, compactly supported smooth function, with the following
properties

f(−z) = f(z), suppf ⊆ 〈−R,R〉, R < b, f̂(0) �= 0, (11)
‖f‖ = 1, (N) (12)

where f̂ is the Fourier-transformed function

f̂(p) =
1√
2π

∫
f(z)e−ipzdz,

and the last property is assumed only in the Neumann case. The first con-
dition reflects the symmetry of each of the plates, the second says that the
nonlocalities of the two interaction centers at z = ±b do not overlap, and the
third and fourth are technical.

We denote by hz and hza the self-adjoint, non-negative square roots of
the operators

h2
z = −(d/dz)2, h2

za = h2
z + V, (13)

respectively. Operator h2
z is the standard one-dimensional Laplace operator

(with opposite sign), while h2
za is its Kato–Rellich perturbation, with

unchanged domain, as V is bounded. The (strict) positivity of h2
za in the

Dirichlet case is obvious, while in the Neumann case one has by (10) that for
all ψ in the domain of h2

z there is

(ψ, h2
zaψ) = ‖ψ′‖2 − |(U+bf, ψ

′)|2 − |(U−bf, ψ
′)|2, (N)

where ψ′(z) = dψ(z)/dz. The functions U±bf do not overlap, and satisfy
‖U±bf‖ = ‖f‖. Thus by (12) they form an orthonormal system, which implies
(ψ, h2

zaψ) ≥ 0 for each ψ. (Here a more strongly bounding condition ‖f‖ < 1
would produce a strictly positive operator; this, however, would not lead to
the recovery of Neumann condition in a limit to be defined below.)

For w2 ∈ C with Imw2 �= 0 the resolvents denoted by

G0(w2) = (w2 − h2
z)

−1, G(w2) = (w2 − h2
za)−1, (14)

are bounded operators. In all what follows for given w2 we fix w by Imw > 0.
We also introduce the T -operator known from the stationary scattering theory

T (w2) = V + V G0(w2)T (w2). (15)
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This equation may be explicitly solved for T : making the Ansatz

T (w2) =
(
|U+bg〉 |U−bg〉

)
T (w2)

(
〈U+bg|
〈U−bg|

)
, (16)

with T (w2) a numerical matrix, one easily finds

T (w2) =
(
σ − (g,G0(w2)g) −(Uag,G0(w2)g)
−(Uag,G0(w2)g) σ − (g,G0(w2)g)

)−1

. (17)

The resolvent may be then expressed by

G(w2) = G0(w2) +G0(w2)T (w2)G0(w2). (18)

In momentum representation, taking into account (10) and denoting

Fp = p
1−σ

2 f̂(p)
(
e−ibp e+ibp

)
, Mp = |f̂(p)|2, (19)

we have

〈p|T (w2) |q〉 = FpT (w2)F†
q , (20)

〈p|G(w2) −G0(w2) |q〉 =
Fp

w2 − p2
T (w2)

F†
q

w2 − q2
, (21)

with elements in the matrix (17) given by

σ −
(
g,G0(w2)g

)
= σ −

∫
p1−σMp

w2 − p2
dp, (22)

−
(
Uag,G0(w2)g

)
= −

∫
eiapp1−σMp

w2 − p2
dp = iπw−σeiawMw. (23)

The integral in the last formula is calculated in the complex plane by residues,
with the use of analyticity and asymptotic properties of Mw discussed at the
beginning of Appendix A.

3. Reproduction of the Sharp Boundary Conditions

We consider now a family of rescaled quasi-potentials Vλ, λ ∈ (0, 1〉, built as
in (9), but with the use of rescaled functions gλ instead of g. We write the
scaling in several equivalent forms:

gλ(z) = λ− 3
2 g
( z
λ

)
, fλ(z) = λ−1− σ

2 f
( z
λ

)
, f̂λ(p) = λ− σ

2 f̂(λp),

and note also that Mp,λ = λ−σMp. The rescaled potentials give rise to the cor-
responding operators hza,λ. All quantities referring to these operators acquire
the subscript λ.

Let hB
za be the self-adjoint, positive square root of the operator

[hB
za]2 =

[
− d2

dz2

]

boundary conditions

(24)
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with standard domains in L2(R), Dirichlet/Neumann (for σ = +1/−1) condi-
tions in z = ±b, and denote by GB(w2) the resolvent of [hB

za]2. Our objective
in this section is to show the limiting property

lim
λ→0+

‖Gλ(w2) −GB(w2)‖HS = 0, (25)

where the Hilbert–Schmidt norm is ‖A‖2
HS = Tr(A∗A) ≥ ‖A‖2. From this

relation it follows then the norm convergence

lim
λ→0+

‖F (hza,λ) − F (hB
za)‖ = 0

for each continuous and vanishing in infinity complex function F on R, and
the strong convergence

lim
λ→0+

‖[F (hza,λ) − F (hB
za)]ψ‖ = 0,

for each bounded continuous function F and vector ψ ∈ L2.
It is clear from the form of Eq. (21) that G(w2) −G0(w2) and its scaled

version Gλ(w2) − G0(w2) are finite rank, hence Hilbert–Schmidt, operators.
Thus it is sufficient to calculate the strong–L2(R2,dpdq) limit for λ → 0+ of
the integral kernel 〈p|Gλ(w2) − G0(w2) |q〉. First we consider the numerical
matrix Tλ, and for later use we also look at higher orders in λ. We observe
that

1
λ

∫
Mλp −M0

w2 − p2
dp = I0 +O(λ), (26)

with

I0 =
∫
M0 −Mp

p2
dp. (27)

This is shown by writing the difference of (26) and (27) as

λw

∫
Mu −M0

u2

λw

(λw)2 − u2
du

and Fourier-transforming the integral as a scalar product of two L2-functions.
This integral is shown in this way to be bounded by a constant. Using (22),
(23), (26) and the assumption (12) (in Neumann case), we find

σ −
(
gλ, G0(w2)gλ

)
= iπ(λw)−σM0 + (λw)1−σ

(
1+σ

2 − I0
)

+O(λ2−σ),
(28)

−
(
Uagλ, G0(w2)gλ

)
= iπ(λw)−σeiawM0 +O(λ2−σ). (29)

From these we get

Tλ(w2) =
−i(λw)σ

πM0(1 − e2iaw)

(
1 −eiaw

hboxeiaw 1

)

+ (λw)1+σ
(

1+σ
2 − I0

)
× {matrix independent of λ} +O(λ2+σ).

Next, we observe that (this is shown in Appendix A)∥∥∥∥∥
λ

σ
2 f̂λ(p)p

1−σ
2

w2 − p2
− f̂(0)p

1−σ
2

w2 − p2

∥∥∥∥∥ ≤
{

const(w)λ
3
2 , (D)

const(w)λ
1
2 , (N)

(30)
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and in addition, for Neumann case
∥∥∥∥∥
λ− 1

2 f̂λ(p)
w2 − p2

− f̂(0)
w2 − p2

∥∥∥∥∥ ≤ const(w)λ
3
2 (N) (31)

(norms of functions of p as elements of L2). Now we easily obtain in the
L2(R2,dpdq)–sense

s − lim
λ→0+

〈p|Gλ(w2) −G0(w2) |q〉 = − iwσ

π(1 − e2iaw)
(pq)

1−σ
2

(w2 − p2)(w2 − q2)

×
[
e−ibqeibp − eiaweibqeibp + eibqe−ibp − eiawe−ibqe−ibp

]
.

We transform this to position representation and get

s − lim
λ→0+

〈z|Gλ(w2) −G0(w2) |z′〉

= − σ

2iw (1 − e2iaw)

{[
θ(b+ z)ei(b+z)w + σθ(−b− z)e−i(b+z)w

]

×
[
σθ(−b− z′)e−i(b+z′)w + θ(b+ z′)ei(b+z′)w

−σ θ(b− z′)eiawei(b−z′)w − θ(−b+ z′)eiawe−i(b−z′)w
]

+
[
θ(−b+ z)e−i(b−z)w + σθ(b− z)ei(b−z)w

]

×
[
σθ(b− z′)ei(b−z′)w + θ(−b+ z′)e−i(b−z′)w

−σ θ(−b− z′)eiawe−i(b+z′)w − θ(b+ z′)eiawei(b+z′)w
]}

.

We shall use also the explicit form of the unperturbed Green function in this
representation

〈z|G0(w2) |z′〉 = − i

2w

[
θ(z − z′)ei(z−z′)w + θ(z′ − z)ei(z′−z)w

]
. (32)

In this way we find

s − lim
λ→0+

〈z|Gλ(w2) |z′〉 = 〈z|GB(w2) |z′〉 ,

where

〈z|GB(w2) |z′〉

=
[
〈z|G0(w2) |z′〉 + σ

i

2w
e−i(z+z′+a)w

]
χ(−∞,−b)(z)χ(−∞,−b)(z′)

+
[
〈z|G0(w2) |z′〉 + σ

i

2w
ei(z+z′−a)w

]
χ(b,+∞)(z)χ(b,+∞)(z′)

+
[
〈z|G0(w2) |z′〉 +

i

w

(
cos(zw) cos(z′w)

1 + σe−iaw
+

sin(zw) sin(z′w)
1 − σe−iaw

)]

×χ(−b,b)(z)χ(−b,b)(z′), (33)

and χΩ is the characteristic function of the set Ω.
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In the three regions 〈z|GB(w2) |z′〉 differs from 〈z|G0(w2) |z′〉 only by
solutions of homogeneous equation and satisfies the boundary conditions

〈±b|GB(w2) |z′〉 = 〈z|GB(w2) |±b〉 = 0, (D)
d
dz

〈z|GB(w2) |z′〉 |z=±b =
d

dz′ 〈z|GB(w2) |z′〉 |z′=±b = 0, (N)

so it is indeed the Green function of the Dirichlet/Neumann operator and
therefore (25) is finally proven.

We now want to acquire some information on the rate at which the limit
(25) is achieved. Using (30) one finds for any ϕ, η ∈ L2

(
ϕ,Gλ(w2)η

)
=
(
ϕ,GB(w2)η

)
+

{
(1 − I0)O(λ) +O(λ3/2), (D)
O(λ1/2). (N)

(34)

The Neumann case turns out to be here, as in many other problems, more
singular. However, we also note that if we assume that ϕ and η are in the
domain of hz then the estimate (31) implies

(
ϕ,Gλ(w2)η

)
=
(
ϕ,GB(w2)η

)
+ I0O(λ) +O(λ3/2). (N) (35)

In the following two sections we treat unscaled models. The scaling is
again considered in Sect. 6.

4. Spectral Analysis

We add now some further assumptions on the choice of functions f . We denote
for k ∈ R

Ik =
∫
Mk −Mp

p2 − k2
dp, (36)

and demand that

0 < Ik for k �= 0 (D,N), (37)
Ik < 1 (D). (38)

Note that by continuity I0 ≥ 0 (this is the quantity introduced in (27)). We
also denote

πNk = |k|σ
{
σ +

∫
q1−σM(q) − k1−σM(k)

q2 − k2
dq
}

= 1
2 (1 + σ)|k|σ − |k|Ik.

(39)

The operators h2
za are non-negative, and outside a compact set in R they

act as −∂2
z . Therefore their continuous spectrum covers the whole positive axis

and thus the spectrum is 〈0,+∞). This does not resolve the question of point
spectrum, and we treat it first.

The eigenvector equation

h2
zaψk = k2ψk, ψk ∈ L2(R), k ≥ 0 (40)
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is solved in momentum space. It is easily seen that the distributional solution
which is square-integrable at infinity must have the form

ψ̂k(p) =
cbe−ibp + c−beibp

p2 − k2
p

1−σ
2 f̂(p), (41)

with constants c±b to be determined. Putting this form back into Eq. (40),
one finds for k > 0 that the constants c±b have to satisfy the linear system

Nkc+b −Mk sin(ak)c−b = 0, Mk sin(ak)c+b −Nk c−b = 0, (42)

where the integration leading to coefficients Mk sin(ak) is carried out with the
use of analyticity and asymptotic behavior of Mk discussed in Appendix A.
Now, for k > 0 the conditions (37) and (38) imply Nk �= 0, thus non-trivial
solutions to the system (42) exist only if Mk sin(ak) = ±Nk, and in that cases
(41) takes, respectively, the form

ψ̂k(p) = c−b
eibp ∓ e−ibp

p2 − k2
p

1−σ
2 f̂(p).

The condition ψ̂k ∈ L2(R) requires that f̂(±k) = 0 or eibk ±e−ibk = 0. Each of
these cases implies Mk sin(ak) = 0, which shows that there are no eigenvectors
for k > 0.

For k = 0 in Dirichlet case the solution (41) cannot be in L2 as f̂(0) �= 0.
For Neumann case one finds that (41) is a distributional solution for any con-
stants c±b, so we are free to choose them so as to satisfy the square-integrability
of (41). This happens only for c−b = −cb and then

ψ̂0(p) = N sin(bp)
p

f̂(p), (N) (43)

where N is a proportionality factor. The normalization condition ||ψ̂0||L2 = 1
gives

|N |2 =
2

aπM0 − I0
. (44)

Summarizing, there are no bound states for Dirichlet case, however, for Neu-
mann case there is one bound state, which corresponds to the zero eigenvalue,
described by (43) and (44).

We now consider the continuous spectrum and for this purpose use the
stationary scattering formalism. The improper eigenfunctions of scattering
states in momentum representation are given in standard notation by

ψ̂k(p) = 〈p | k+〉 = δ(p− k) +
〈p|T (k2 + i0) |k〉
k2 − p2 + i0

, (45)

where T (w2) is the operator discussed in Sect. 2. The variable k takes all val-
ues k �= 0 and each spectrum point k2 has two-fold degeneracy corresponding
to ±k. Taking into account the results of Sect. 2, we can write

T (k2 + i0) =
|k|σ
iπ

(
Mk − iNk Mk eia|k|

Mkeia|k| Mk − iNk

)−1

. (46)
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For later use we write this in two alternative forms. We introduce matrix nota-
tion

M(k) = F†
kFk, N (k) =

2|k|
π

[
σ1 + P

∫ M(p)
p2 − k2

dp
]
, (47)

L(k) = M(k) + M(−k) = 2k1−σMk

(
1 cos(ak)

cos(ak) 1

)
. (48)

and then

T (k2 + i0) =
2|k|
π

(N (k) + iL(k))−1
, (49)

∣∣〈p|T (k2 + i0) |k〉
∣∣2 = Tr

[
M(p)T (k2 + i0)M(k)T (k2 + i0)†] . (50)

Finally, we calculate the inverse in (46) and write the result in the form

T (k2 + i0) =
1
iπ

|k|σsk

1 − (qkeia|k|)2

(
1 −qkeia|k|

−qkeia|k| 1

)
, (51)

where

sk =
1

Mk − iNk
, qk =

Mk

Mk − iNk
= Mksk.

Some properties of sk function are shown in Appendix A.

5. Hilbert–Schmidt Properties

In this section we show that our model satisfies the admissibility conditions
(5) and (6). If we write TRτ for the l.h.s. of these two conditions, with τ = 0
for (5) and τ = 1 for (6), then

TRτ =
∫

R2

|p|τ | 〈p|hza − hz |k+〉 |2dk dp+ 1−σ
2

∫

R

|p|2+τ
∣∣ψ̂0(p)

∣∣2dp, (52)

where the first term results from the continuous spectrum space of hza and
the second is the bound state contribution in Neumann case. The second term
is evidently finite (by (43)), and we restrict attention to the first one, which
we denote TRcont

τ . In momentum representation we have

〈p|hza − hz |k+〉 = (|k| − |p|)ψ̂k(p) =
〈p|T (k2 + i0) |k〉

|p| + |k| ,

thus by change of variables for negative arguments we get

TRcont
τ =

∫

R
2
+

pτ

(p+ k)2
∑
±±

∣∣ 〈±p|T (k2 + i0) |±k〉
∣∣2dk dp, (53)

where the signs in ‘bra’ and ‘ket’ are uncorrelated and the sum is over all four
possibilities. From now on we assume that k, p ≥ 0. Using Eqs. (48), (50) we
can write∑

±±

∣∣ 〈±p|T (k2 + i0) |±k〉
∣∣2 = Tr

[
L(p)T (k2 + i0)L(k)T (k2 + i0)†] ,
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and substituting here (from (49))

L(k) =
ik

π

(
T (k2 + i0)†−1 − T (k2 + i0)−1

)

we give Eq. (53) the form

TRcont
τ =

2
π

∫

R
2
+

kpτ

(p+ k)2
Re

[
iTr

[
L(p)T (k2 + i0)

]]
dk dp. (54)

With the use of (48) and (51) we have

kRe
[
iTr

[
L(p)T (k2 + i0)

]]
=

4
π
p1−σk1+σMp Re

[
sk

1 − cos(ap)qkeiak

1 − (qkeiak)2

]
(55)

Writing out the real part gives us the appropriate behavior of the nomina-
tor for k = 0 and the whole expression becomes proportional to Mk. Using
the estimates (92), (91) and (87), one finds that TRcont

τ are finite and the
admissibility conditions (5) and (6) are satisfied.

6. Scaling

We return to the scaling transformation to view it from a different point. If
we make the dependence of the potential V on a explicit by writing it as Va

and the rescaled potential as Va,λ then we have

Va,λ(z, z′) = λ−3Va/λ(z/λ, z′/λ).

It is then an easy exercise to show that this implies a simple scaling law of the
eigenfunctions (43) and (45):

ψ̂λ
k,b(p) = λψ̂λk,b/λ(λp), ψ̂λ

0,b(p) = λ1/2ψ̂0,b/λ(λp)

(different powers of λ reflect different normalizations: to the Dirac delta and to
unity, respectively). Denoting the scaled versions of (52), with explicit depen-
dence on a, by TRλ

τ,a we find

TRλ
τ,a = λ−2−τTRτ,a/λ.

Thus the admissibility conditions are satisfied also for the rescaled potential
(but not in the limit). In the same way one obtains the scaling law for the
Casimir energy:

ελ
a = λ−3εa/λ. (56)

Therefore to identify the scaling behavior of the energy in the limit it is suf-
ficient to expand the unscaled energy in inverse powers of a up to the third
order. This will be done in the next section.
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7. The Energy

In this section we prove the following expansion of Casimir energy for large a:

εa = ε∞ − π2

1440a3
+ o(a−3), (D) (57)

εa = ε∞ +
1

48πM0a2
+

I0
8π2M2

0 a
3

(
ζ(3)
π2

+
1
3

)
− π2

1440a3
+ o(a−3). (N)

(58)

We postpone the discussion of this result to the concluding section and here
only note that there are functions in our class for which I0 = 0, and then the
a−3-term has the known universal form.

The two conditions (5) and (6), considered in Sect. 5, imply already finite-
ness of the Casimir energy per unit area (7), as mentioned in the Introduction.
This can be easily seen: we observe that conditions (5) and (6) mean that
Δ = hza − hz and h1/2

z Δ are Hilbert–Schmidt operators. Also, from

ΔhzaΔ = ΔhzΔ + Δ3

we infer that h1/2
za Δ is HS as well, which is sufficient for the claim.

The expression (7) closely parallels that of the condition (6) and can be
written in analogy to (52). We split the trace in (7) into two terms and cal-
culate these traces in hza or hz (improper) basis in the first and second line
below, respectively. Then we insert the spectral decomposition of the operators
hz or hza, respectively. In this way we get

Tr [2ΔhzΔ] = 2
∫

R2

|p|
∣∣ 〈p|hza − hz |k+〉

∣∣2dk dp+ (1 − σ)
∫

R

|p|3
∣∣ψ̂0(p)

∣∣2dp,

Tr [ΔhzaΔ] =
∫

R2

|k|
∣∣ 〈p|hza − hz |k+〉

∣∣2dk dp.

Therefore the expression (7) may be written in the form

εa =
1

24π

∫

R2

(2|p| + |k|)
∣∣ 〈p|hza − hz |k+〉

∣∣2dk dp+
1 − σ

24π

∫

R

|p|3
∣∣ψ̂0(p)

∣∣2dp.

(59)

The bound state contribution εbound
a —the second term—will be calculated in

the Neumann case subsection. Following the same steps as in Sect. 5 and using
(55) we give the continuous spectrum contribution the form

εcont
a =

1
3π3

∫

R
2
+

χ(k, p)Mp Re

[
sk

1 − cos(ap)qkeiak

1 − (qkeiak)2

]
dk dp, (60)

where

χ(k, p) =
k1+σp1−σ(2p+ k)

(p+ k)2
.



1184 A. Herdegen and M. Stopa Ann. Henri Poincaré

We write this as the limit for ε → 0+ of the integral restricted to k ∈ 〈ε,+∞)
and expand the denominator into geometric power series (note that |qk| < 1
for k > 0)

1

1 − (qkeiak)2
=

∞∑
n=0

(qkeiak)2n,

getting

εcont
a =

1
3π3

lim
ε→0+

∞∫

0

Mp

∞∫

ε

χ(k, p)Re

[
sk

∑
n∈2N0

qn
k einak

−sk cos(ap)
∑

n∈2N−1

qn
k einak

]
dk dp.

We write the n = 0 term separately as

ε∞ =
1

3π3

∫

R
2
+

χ(k, p)MpMk|sk|2dk dp. (61)

For other terms we observe that
N∑

n=1

|qkeiak|2n ≤ |sk|2M2
k

1 − |qk|2 ≤ const M2
k

1 + km−2σ

km

{
m = 2 (D)
m ≥ 2 (N)

(62)

[see (93) and (91)], so we can pull the infinite sum sign outside the integral by
the Lebesgue dominated convergence theorem to obtain

εcont
a = ε∞ +

1
6π3

lim
ε→0+

∑
n∈2N

∞∫

0

Mp

⎡
⎣

∞∫

ε

χ(k, p)sk (qkeiak)ndk + c.c.

⎤
⎦dp

− 1
6π3

lim
ε→0+

∑
n∈2N−1

∞∫

0

Mp cos(ap)

⎡
⎣

∞∫

ε

χ(k, p)sk(qkeiak)ndk + c.c.

⎤
⎦dp.

(63)

We now split the analysis into separate cases.

7.1. Dirichlet Case (σ = 1)

In this case when (62) is multiplied by χ(k, p) the k−2 singularity in k = 0 is
cancelled by k2 from the function χ. Therefore here the intermediate step with
nonzero ε is not needed and (63) should be read with ε = 0. Moreover, there
is no bound state here, so this formula represents the total Casimir energy εa.
If we write (na)3einak = (−i∂k)3einak and integrate three times by parts we
find

(na)3
∞∫

0

χ(k, p)sk (qkeiak)ndk = −i 4Mp

M0p
− i

∞∫

0

∂3
k (χ(k, p)sk q

n
k ) einakdk,



Vol. 11 (2010) Global Versus Local Casimir Effect 1185

and then obtain (the first term on the r.h.s. above is imaginary and falls out)

εa − ε∞ =
i

6π3a3

⎧
⎪⎨
⎪⎩

−
∑

n∈2N

1
n3

∫

R
2
+

Mp∂
3
k (χ(k, p)skq

n
k ) einakdk dp

+
∑

n∈2N−1

1
n3

∫

R
2
+

Mp cos(ap)∂3
k (χ(k, p)sk q

n
k ) einakdk dp

⎫
⎪⎬
⎪⎭

+ c.c..

(64)

Let now Ω be the intersection of R
2
+ with an arbitrary neighborhood of zero.

We now use the results of Appendix B to infer that the following successive
three operations on this formula lead only to the neglect of terms of order
o(a−3):

(i) replacement of ∂3
k (χ(k, p)skq

n
k ) by skq

n
k∂

3
kχ(k, p);

(ii) restriction of the integration region to Ω;
(iii) replacement (in the restricted region) of Mpskq

n
k by M0s0q

n
0 = 1.

In this way we arrive at

εa = ε∞ +
2

π3a3

∑
n∈2N

1
n3

∫

Ω

p2(k − 3p)
(k + p)5

sin(nak)dk dp

− 2
π3a3

∑
n∈2N−1

1
n3

∫

Ω

p2(k − 3p)
(k + p)5

cos(ap) sin(nak)dk dp+ o

(
1
a3

)
. (65)

The integrals are bounded uniformly with respect to a. It is now sufficient to
show that they have well defined limits for a → ∞; then those limits determine
the a−3-term.

Consider the integrals (with k, p > 0)

C(n, �, a) =
∫

k+p≤1

(
p2

(k + p)4
− 4p3

(k + p)5

)
sin(nak + �ap)dpdk, � = 0,±1.

It is easy to show that with the choice Ω = {k, p > 0, k+p ≤ 1} the integral in
the first line of (65) is this integral with � = 0, while the integral in the second
line of (65) is one half of the sum of integrals with � = ±1. By the change of
variables r = a(k + p), t = p/(k + p) we bring this to the form

C(n, �, a) =

1∫

0

(
t2 − 4t3

) a∫

0

1
r

sin [r (n+ t(�− n))] dr dt,

and find

lim
a→∞C(n, �, a) =

{
−π

3 for � = 0, 1,
π
3

(
1 + n3

(n+1)3 − 3n4

(n+1)4

)
for � = −1.
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Using these results we get finally

εa = ε∞ − 1
3π2a3

[∑
n∈2N

2
n3

+
∑

n∈2N−1

(
1

(n+ 1)3
− 3n

(n+ 1)4

)]
+ o

(
1
a3

)

= ε∞ − ζ(4)
16π2a3

+ o

(
1
a3

)
= ε∞ − π2

1440a3
+ o

(
1
a3

)
,

where ε∞ is defined in (61).

7.2. Neumann Case (σ = −1)

We now use formula (63) with the replacement in notation qkeiak = q̃keiãk,
where

α =
I0
πM0

, ã = a− α, q̃k = qkeiαk,

which has the technical advantage that q̃′
0 = 0. After this modification the

general scheme is very similar to the Dirichlet case. Integration by parts gives
expansion in 1/ã but at the end we shall translate it to the 1/a expansion.
Integrating by parts we obtain boundary terms, for which in the present case
the addition of c.c. terms must be taken into account before the limit ε → 0+

is performed. For example, the first integration by parts in k in the first line
in (63) gives a term proportional to (before p-integration)

lim
ε→0+

∑
n∈2N

1
n
χ(ε, p)Im

[
sk q̃

n
k (ε)einãε

]

= − lim
ε→0+

χ(ε, p)Im
[
sε ln

(
1 − q̃2ε e2iãε

)]
=

πp

M0
,

where in the last equality we used the fact that in the neighborhood of zero∣∣ln |1 − q̃2ε e2iãε|
∣∣ ≤ ln const(a)

ε [see (92)]. After integrating by parts three times
in similar way we get the expression

lim
ε→0+

⎡
⎣∑

n∈2N

∞∫

ε

χ(k, p)sk q̃
n
k einãkdk + c.c.

⎤
⎦ = − πp

ãM0
+

π2

4ã2M0
+

3I0ζ(3)
2ã3πM2

0

− lim
ε→0+

⎡
⎣∑

n∈2N

1
(inã)3

∞∫

ε

∂3
k (χ(k, p)sk q̃

n
k ) einãkdk + c.c.

⎤
⎦ .

For the sum over odd natural numbers the computations are similar. The inte-
grals over p we treat in a similar way as in the Dirichlet case (steps (i) to (iii),
for their permissibility here see Appendix B). The integrals of ∂3

kχ over the
neighborhood of zero go similarly as in the Dirichlet case. In this way we find

εcont
a = ε∞ − CM

6π2M0ã
+

1
48πM0ã2

− 1
ã3

[
1

6π2
− I0ζ(3)

8π4M2
0

+
π2

1440

]
+ o

(
1
ã3

)
,
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where

CM =

∞∫

0

pMpdp.

In the calculation we used the relations
∞∫

0

Mpdp =
1
2
,

∞∫

0

pMp cos(ap)dp = −M0

ã2
+ O

(
1
ã3

)
. (66)

The first equality follows from normalization of f . We now return to the bound
state contribution to the energy. From the second term of (59), (43) and (44),
using (66) we get

εbound
a =

CM

6π2M0ã
+

1
6π2ã3

+ o

(
1
ã3

)
.

Adding the two contributions and changing the expansion parameter to a we
obtain (58).

8. Local Properties

In this section we consider the local algebras of fields supported outside the
regions of support of the potential V . For the initial (unscaled) models this
means that the z-support of fields is outside the set 〈−b − R,−b + R〉 ∪
〈b − R, b + R〉, but for λ → 0 eventually every support outside the planes
z = ±b is admitted. Fields thus supported are also in the algebra of fields of
the models with sharp boundary conditions at z = ±b, so one can also consider
sharp boundary conditions for them.

We recall from [1] that we use the initial value fields (smeared on a Cau-
chy surface of constant time) Φ(V ), where V is a pair of real test functions
(v, u), and X(u) = Φ(0, u), P (v) = Φ(v, 0) have the interpretation of canonical
variables. For the present choice of the algebras the test functions are assumed
to be in the space of smooth functions of compact support outside z = ±b,
which we denote by Db. The algebra of fields is formulated, more precisely, in
Weyl form, which means that rather than Φ(V ) elements W (V ) = exp[iΦ(V )]
are used, and the fields Φ are defined on the level of specific representations.
The states on the algebra are given as normalized positive linear functionals
on the algebra of Weyl elements.

With the Hamiltonians of the perpendicular motion hza and hB
za as

defined in (13) and (24) we denote

h2
a = h2

za + h2
⊥, [hB

a ]2 = [hB
za]2 + h2

⊥, (67)

where −h2
⊥ is the two-dimensional Laplacian in the directions parallel to the

plates. Then the ground states of the fields corresponding to the models pro-
posed in the present article and to the sharp boundary conditions are given,
respectively, by

ωa (W (V )) = exp
[
− 1

4‖ja(V )‖2
]
, ωB

a (W (V )) = exp
[
− 1

4‖jB
a (V )‖2

]
, (68)
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where

ja(V ) = h1/2
a v − ih−1/2

a u, jB
a (V ) =

[
hB

a

]1/2
v − i

[
hB

a

]−1/2
u. (69)

(To be precise, to obtain formula (7) for the Casimir energy we start in [2] with
the directions parallel to the plates restricted to a box, whose size then tends
to infinity. This may be shown to reproduce the states given above, but we
omit this step here.) The ground states ωa,λ of the scaled models are defined
analogously with the use of ha,λ.

We show in this section that the scaled states reproduce in the weak limit
the sharp boundary state:

lim
λ→0

ωa,λ (W (V )) = ωB
a (W (V )) . (70)

Also, we consider the limit of the local energy density.

8.1. Local Limit of States

There is ‖ja(V )‖2 = (v, hav) + (u, h−1
a u), thus to prove (70) it is sufficient to

show that (ϕ, h±1
a,λψ) tend to (ϕ,

[
hB

a

]±1
ψ) for λ → 0 and ϕ,ψ ∈ Db. For such

ψ one has

h2
a,λψ =

[
hB

a

]2
ψ = h2ψ ≡ −Δψ

for sufficiently small λ. Therefore (ϕ, ha,λψ) = −(ϕ, h−1
a,λΔψ) and similarly for

hB
a , and the problem is reduced to the h−1

a,λ-case. Moreover, ϕ and ψ are in the

domain of h−1/2
⊥ , so we can write

(ϕ, h−1
a,λψ) =

(
(h−1/2

⊥ ϕ), h1/2
⊥ h−1

a,λh
1/2
⊥ (h−1/2

⊥ ψ)
)

and similarly for hB
a . In this way the problem is reduced to the following:

w − lim
λ→0

h
1/2
⊥ h−1

a,λh
1/2
⊥ = h

1/2
⊥

[
hB

a

]−1
h

1/2
⊥ . (71)

To show this, we first observe that ‖h1/2
⊥ h−1

a,λh
1/2
⊥ ‖ ≤ 1, so it is sufficient

to perform the limit between vectors from the total set of the form
χ(�x) = χ⊥(�x⊥)χz(x3). Using the spectral representation of h2

⊥ one has

(χ, h1/2
⊥ h−1

a,λh
1/2
⊥ ρ) =

∫ ⎛
⎝χz,

|�p⊥|√
h2

za,λ + �p2
⊥
ρz

⎞
⎠ χ̂⊥(�p⊥)ρ̂⊥(�p⊥) d2p⊥. (72)

The scalar product under the integral is bounded by ‖χz‖‖ρz‖ and for each �p⊥,
by the result of Sect. 3, tends to analogous expression with hza,λ

replaced by hB
za. This is sufficient to perform the limit, which ends the proof.
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8.2. Local Energy Density

The state ωa (unlike the state ωB
a ) is defined on the whole algebra. In the lan-

guage used in [1] the energy density in this state (properly normally ordered
with respect to the vacuum) is given in the whole space by point-splitting
procedure by

Ea(�x) = Ta(�x, �x), (73)

where Ta(�x, �y) is the distribution defined by

Ta(ϕ,ψ) = 1
4 (ϕ, (ha − h)ψ) + 1

4

(
�∇ϕ, (h−1

a − h−1)�∇ψ
)
, (74)

with scalar product between the two gradients understood in the second term.
The test functions are taken to be real. If one takes into account the trans-
lational symmetry in the directions parallel to the plates one realizes that
the �x⊥, �y⊥-dependence of Ta may be only through the difference �x⊥ − �y⊥.
The removal of point-splitting in these directions means putting this variable
equal to zero, or integrating the 2-dimensional Fourier transform of Ta over
all space of �p⊥-variables of the spectral representation of h⊥. In this way one
finds (now x, y are variables in the direction orthogonal to plates and ϕ,ψ are
one-dimensional)

Ea(x) = Tza(x, x), (75)

where

Tza(ϕ,ψ) =
1

16π2

∫ {(
ϕ,
[
(h2

za + �p2
⊥)1/2 − (h2

z + �p2
⊥)1/2

]
ψ
)

+�p2
⊥
(
ϕ,
[
(h2

za + �p2
⊥)−1/2 − (h2

z + �p2
⊥)−1/2

]
ψ
)

+
(
ϕ′,

[
(h2

za + �p2
⊥)−1/2 − (h2

z + �p2
⊥)−1/2

]
ψ′
)}

d2p⊥,

with prime in ϕ′, ψ′ denoting the derivative. The integral is easily carried out
explicitly and one finds

Tza(ϕ,ψ) =
1

24π
(ϕ, (h3

za − h3
z)ψ) − 1

8π
(ϕ′, (hza − hz)ψ′). (76)

Our objective is to find the limit of the energy density in the scaled mod-
els. Thus following the introductory remarks of the present section we assume
now the supports of ϕ,ψ to be outside the set 〈−b−R,−b+R〉∪〈b−R, b+R〉.
For such functions there is h2

zaψ = h2
zψ, so

Tza(ϕ,ψ) = − 1
24π

(ϕ, (hza − hz)ψ′′) − 1
8π

(ϕ′, (hza − hz)ψ′). (77)

Consider the general element (ϕ, (hza − hz)ψ) with test functions in the
assumed class. For any non-negative real numbers a, b one has the identity

a− b = − 2
π

∞∫

0

{
1

(a2 + r2)
− 1

(b2 + r2)

}
r2 dr.
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Using this and the spectral representations of hza and hz one finds

(ϕ, (hza − hz)ψ) =
2
π

∞∫

0

(
ϕ,
[
G(−r2) −G0(−r2)

]
ψ
)
r2dr.

To find the integral kernel [G(−r2) − G0(−r2)](x, y) of [G(−r2) − G0(−r2)],
one needs only to transform the kernel (21) to the position space:

[G(−r2) −G0(−r2)](x, y)

=
1
2π

∫
eipx Fp

(p2 + r2)
dp T (−r2)

∫
e−iqy

F†
q

(q2 + r2)
dq.

For x, y in the assumed region the Fourier integrals may be closed to contour
integrals in the complex plane (the half-circular contributions vanish either in
the upper or the lower half-plane due to the bound (83)) and evaluated by
residues. Because eventually we are interested in removal of point-splitting we
assume that x and y are in the same connected part of the region considered.

We denote T (−r2) =
(
A B
B A

)
, where A and B are functions of r, and get

[
G(−r2) −G0(−r2)

]
(x, y) =

π

r1+σ
|f̂(ir)|2

×

⎧
⎪⎨
⎪⎩

e−|x+y|r[A cosh(ar) +B] for x, y > b+R or x, y < −b−R,

e−ar [A cosh ((x+ y)r) + σB cosh ((x− y)r)]

for x, y ∈ (−b+R, b−R).

We use this integral kernel in (77), evaluate derivatives by parts and remove
the point-splitting. In this way we find in the assumed regions

Ea(x) = Tza(x, x)

= − 1
6π

∞∫

0

{
2e−2|x|r (A cosh(ar) +B)

e−ar (2A cosh(2xr) − σB)

}
|f̂(ir)|2r3−σdr,

|x| > b+R,

|x| < b−R.

We now want to consider the limit of this local energy in the scaled version
of the model. Because of the appropriate convergence of the integral this limit
may be performed inside the integral. The scaling of f̂(ir) and T (−r2) fol-
lows from Sect. 3. As for the scaled model the excluded position set shrinks
to ||x| − b| ≤ λR, in the limit all x �= ±b are admitted. A straightforward
calculation yields

lim
λ→0+

Ea,λ(x)

= − σ

6π2

∞∫

0

⎧
⎪⎨
⎪⎩

e−(2|x|−a)r

e(2x−a)r + e−(2x+a)r + σe−2ar

1 − e−2ar

⎫
⎪⎬
⎪⎭
r3dr,

for |x| > b,

for |x| < b.
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With the help of Eq. (94) in Appendix A we get

EB
a (x) ≡ lim

λ→0+
Ea,λ(x)

=

⎧
⎪⎪⎨
⎪⎪⎩

− σ

16π2(|x| − b)4
for |x| > b,

− π2

1440a4
−

∑
n∈(2Z+1)

σ

16π2(nb− x)4
for |x| < b,

(78)

where 2Z + 1 denotes the set of odd whole numbers.
Let us stress once more: the above result holds in the distributional sense

only for test functions supported outside x = ±b, i.e., for functions in that
class there is

lim
λ→0+

∫
Ea,λ(x)ϕ(x)dx =

∫
EB

a (x)ϕ(x)dx.

For functions not in this class our assumptions leading to the above result
cease to hold. Nevertheless, we shall attempt some comparison with our global
results. For that purpose let us denote

EB(x) = − σ

16π2x4
for x �= 0. (79)

Then (78) may be written as

EB
a (x) = EB(x+ b) + EB(x− b) + EB

a,int(x), (80)

where

EB
a,int(x) =

⎧
⎪⎪⎨
⎪⎪⎩

+
σ

16π2(|x| + b)4
for |x| > b,

− π2

1440a4
−

∑
n∈(2Z+1)\{+1,−1}

σ

16π2(nb− x)4
for |x| < b.

(81)

It is easy to see that EB
a,int(x) = a−4F (x/a), where F (y) is an absolutely

bounded and integrable function. Thus for large separation of plates the energy
outside the plates is concentrated in the first two terms in (80). Therefore
(79) has the interpretation of the energy density produced around one single
plate, while EB

a,int(x) may be regarded as the energy density (locally outside
the boundaries) of the interaction. When integrated over x ∈ R it gives

EB
a,int = − π2

1440a3
(82)

for both Dirichlet and Neumann cases.

9. Discussion

The models considered in this article do not pretend to describe the details
of the interaction of quantum field with macroscopic bodies in realistic way.
Their merit comes from the fact that (i) they are consistent with the restric-
tions imposed by the general algebraic analysis of any quantum backreaction
setting [1] while (ii) being simple enough to allow explicit calculations, and
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(iii) approximating sharp boundary conditions in a controllably localized (in
physical space) way. The last point distinguishes them from the class of models
constructed in [2] and allows the comparison of the results of the global and
local analyses.

We summarize the results and lessons to be drawn from them.

(i) The models discussed in the present article are defined on the Weyl alge-
bra of the free theory, and the interaction introduced by the ‘nonlocal
boundaries’ does not lead out of the vacuum representation of the the-
ory. The energy of the field (as defined by the free theory) is finite in the
ground state (as defined by the interaction with ‘boundaries’) without
any arbitrary ‘renormalization’. The change of this ‘Casimir energy’ with
the variation of the position of the boundaries determines the backreac-
tion force.

(ii) The scaled interaction with the ‘nonlocal boundaries’ approaches in the
scaling limit the sharp Dirichlet/Neumann conditions in the Hilbert–
Schmidt norm sense for the resolvents. This implies norm convergence
(or strong convergence) for any continuous, vanishing in infinity (resp.
any bounded) function of the first-quantized hamiltonian. The nonlocal-
ity of the boundaries is under control and tends to zero in the limit.

(iii) The Casimir energy per area of the scaled models obeys the scaling law
(56). Thus it is governed by the a-dependence of the energy given in
Eqs. (57) and (58). The Casimir force per area is minus the derivative
of those formulas. We have not discussed this point, but one can show
that one can differentiate terms in these formulas one by one with o(a−3)
going over to o(a−4). Thus one finds

−dελ
a

da
=

⎧
⎪⎪⎨
⎪⎪⎩

− π2

480a4
+ o

(
λ

a4

)
, (D)

+
1

24πM0λa3
+

I0
8π2M2

0 a
4

(
3ζ(3)
π2

+ 1
)

− π2

480a4
+ o

(
λ

a4

)
. (N)

One finds that in Dirichlet case the force has a well-defined limit, but
in Neumann case depends on the model and diverges for sharp bound-
aries. This model-dependence occurs despite the fact that the models
approximate in many respects the sharp boundaries very well (globally!).
Neumann case models with I0 = 0 (which are among those admitted by
our assumptions—see Appendix C) have faster convergence property [see
Eq. (35)] and for them the additional a−4 term in the force vanishes.

(iv) Algebras of fields localized outside the interaction region (test functions
with supports not intersecting with that region) admit free vacuum state,
ground states of our models, as well as ground state of the sharp bound-
aries. Restricted to these algebras our ground states tend weakly to the
sharp boundaries states in the scaling limit.

(v) The local energy density is unambiguously defined in our models in the
whole physical space by point-splitting, with no ad hoc later renormal-
ization. When restricted to regions not intersecting with the interaction
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area (which in scaling limit just means not intersecting with the bound-
aries) the local Casimir energy has a well defined limit given by a smooth
function Eq. (78). This limit density has universal, model-independent
form. Thus the ‘bulk’ contribution to the total Casimir energy has this
universality and the model-dependent terms in Neumann case turn out
to be squeezed in the limit inside the boundaries. The hope that these
non-regular contributions may be removed in a model-independent way is
therefore not justified. Further confirmation of our interpretation supply
formulas and remarks ending the last section.
Local energy density has been discussed by various authors before [5–8],
but usually with the use of some regularizations, often of not quite clear
status. The results to be found in literature are not consistent. The Dirich-
let case for the region between the plates is discussed in [7] and modulo
some infinite renormalization agrees with ours (formula (2.32) in that
reference). On the other hand the authors of [8] obtain a different result
(by a rather indirect way of ‘regularization’ and removal of cut-off). We
are not aware of a complete rigorous discussion resulting in our formu-
las (78)–(82). It is also worth noting that the density EB

a (x) can be also
obtained directly by the use of sharp boundary conditions Hamiltonian
hB

za instead of hza in (77). This amounts to the use of the difference of
(33) and (32) in the calculation. However, let us stress once more, this
limit value of the density is correct only if smeared with a test function
with support not touching the borders.
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Appendices

If not stated otherwise we work here with the same assumptions as stated in
(11) and (12).

Appendix A. Integrals and Estimates

We gather here a few technical, separate points used in the main text.
(i) We recall that f is a smooth function supported in 〈−R,R〉 if, and only if,
its Fourier transform f̂ is an entire analytic function satisfying the estimates
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|f̂(u)| ≤ const(N)eR| Im u|

(1 + |u|)N
, (83)

for all u ∈ C and N ∈ N.
Therefore Mp, which is the product of the Fourier transforms of f(z) and

of f(−z) = f(z), extends to the analytic function Mu on C satisfying similar
estimates with R replaced by 2R. The inverse transform M̌ of Mp is smooth
and supported in 〈−2R, 2R〉. Using this we find for a > 2R

∫
cos(ap)Mpdp =

√
π

2
[
M̌(a) + M̌(−a)

]
= 0. (84)

As Mu is even,
Mp −Mk

p2 − k2
also extends to an analytic function and with the

use of estimates on Mu one finds, by closing the contour of integration (as
always for a > 2R), that

∫
cos(ap)(Mp −Mk)

p2 − k2
dp = 0. (85)

(ii) In order to prove the estimate (30), we start with Dirichlet case, we note
that (remember that f̂ ′(0) = 0, as f̂ is even)

∣∣∣∣
f̂(λp) − f̂(0)

p2

∣∣∣∣ =

∣∣∣∣∣
λ∫

0

f̂ ′′(pξ)(λ− ξ)dξ

∣∣∣∣∣ ≤ λ

λ∫

0

∣∣f̂ ′′(pξ)
∣∣dξ.

Moreover we have (norms of functions of p as elements of L2)
∥∥∥∥∥

λ∫

0

∣∣f̂ ′′(pξ)
∣∣dξ

∥∥∥∥∥
2

≤
∫

〈0,λ〉2

∥∥f̂ ′′(pξ)
∥∥∥∥f̂ ′′(pξ̃)

∥∥dξdξ̃

≤
∥∥f̂ ′′∥∥2

∫

〈0,λ〉2
(ξξ̃)−1/2dξdξ̃ ≤ constλ,

where in the first step we have used the Schwartz inequality. Now because
p2

w2 − p2
is bounded we get the estimate for Dirichlet. The same consider-

ations show (31). The proof of Neumann case in (30) is almost the same but
with the use of the formula

f̂(λp) − f̂(0) = p

λ∫

0

f̂ ′(pξ)dξ.

(iii) For the function Ik, (36), we first observe that for some 0 < ε0 < 1 there
is

I0 < 2πRM0(1 − ε0). (86)
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This follows from the identity

4

∞∫

0

sin2(Rp)Mp

p2
dp = 2πRM0 − I0,

(used already in the normalization of the bound state, see (43),(44)), as the
l.h.s. is strictly greater than zero. Further, we need the following estimates:

Ik ≥ const(k∗)
k2

, k ≥ k∗,

Ik ≤ const
(1 + k)2

, k ≥ 0,
(87)

with arbitrary k∗ > 0. We write Ik as a principal value distribution calculated
on test function M . In position space, using evenness of f , we have

Ik =
√

2π

∞∫

0

xM̌(x)
sin(kx)
kx

dx. (88)

Integrating once by parts we get

Ik =
√

2π
k2

⎡
⎣M̌(0) +

∞∫

0

M̌ ′(x) cos(kx)dx

⎤
⎦ . (89)

The estimation from above is now trivial, whereas for the estimation from
below we use the Riemann–Lebesgue lemma, the assumption that Ik > 0 for
k �= 0 [see (37)] and continuity of Ik. Expanding further in powers of 1/k the
integral in (89) we find moreover

|∂n
k Ik| ≤ const

(1 + k)n+2
. (90)

(iv) The sk function, defined in the end of Sect. 4, is smooth for k ≥ 0 and
satisfies

|∂n
k sk| ≤ const(n)(1 + k)−(n+σ). (91)

To show this, we note first that |Mk − iNk|−1 is bounded in a neighborhood
of k = 0 as M0 > 0. Outside this neighborhood we have |Mk − iNk|−1 ≤
|Nk|−1 ≤ const(1+ k)−σ due to (38) and the first bound in (87). On the other
hand, due to (90) there is |∂n

kNk| ≤ const(1 + k)−(n+1) for n ≥ 1 except for
n = 1 in the Dirichlet case, when this is replaced by |∂kNk| ≤ const. As Mk is
Schwartz, this ends the proof.

It now follows that qk = skMk and all its derivatives are bounded by
Schwartz functions.
(v) For both (D and N) cases and k ≥ 0 we note the bound

1∣∣1 − (qkeiak)2
∣∣ ≤ const(a)

1 + k

k
. (92)

At k = 0 there is 1 − (q0)2 = 0 but the first derivative of the denominator at
zero does not vanish (in Neumann case use (86)), which is sufficient for (92)
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in a neighborhood of zero. Outside that neighborhood, mainly due to (87), it
follows that

1∣∣1 − (qkeiak)2
∣∣ ≤ 1

1 − |qk|2 =
M2

k +N2
k

N2
k

≤ const,

which ends the proof. We also note that for k ≥ 0 we have

1
1 − |qk|2 ≤ const

1 + km

km
,

{
m = 2, (D)
m ≥ 2, (N)

(93)

where the Neumann case depends on the behavior of Ik at zero (m = 2 for
I0 �= 0 and m = 2 + 4r when Ik �

k→0
k2r, r ≥ 1 as Ik is even).

(vi) Finally, we note the following identity using a known integral representa-
tion of the Hurwitz zeta function: for α > 0 there is

1
6

∞∫

0

r3e−αr

1 − e−2ar
dr =

1
(2a)4

ζ
(
4,
α

2a

)
=

∞∑
n=0

(α+ 2an)−4, (94)

which is needed for the calculation of (78).

Appendix B. Operations (i)–(iii) from Section 7

In this appendix we prove the admissibility of the three operations (i)–(iii)
performed in Sect. 7.1 for the Dirichlet case and mentioned in Sect. 7.2 for the
Neumann case. The key tool for this is the following simple lemma.

Let cn for n ∈ N ⊆ N be complex measurable functions on D ⊆ R. If∑
n∈N |cn(k)| is integrable on D then

lim
a→∞

∑
n∈N

∫

D

cn(k)einakdk = 0. (95)

The proof is straightforward and uses the Lebesgue dominated convergence
theorem and the Riemann–Lebesgue lemma. Throughout this appendix Sk

denotes some Schwartz function in k variable (each time it may be a different
function). All we have to do is to check if the assumption of the mentioned
lemma is fulfilled for the appropriate expressions.

B.1. Dirichlet Case

Let us first consider the following part of the expression (64)

1
a3

∑
n∈2N

i

n3

∫

R
2
+

Mp∂
3
k (χ(k, p)sk q

n
k ) einakdk dp; (96)

we shall need its real part multiplied by −1/3π3 in (64).
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(i) To justify the validity of operation (i) of Sect. 7.1 it is sufficient to check
whether the sequence of functions

cn(k) = n−3

∞∫

0

Mp

[
∂3

k (skq
n
kχ(k, p)) − skq

n
k∂

3
kχ(k, p)

]
dp

satisfies the assumption of lemma (95). For this we note that using properties
of sk and qk described in Appendix A (iv) we have

n−3
∣∣∣∂3

k (skq
n
kχ(k, p)) − skq

n
k∂

3
kχ(k, p)

∣∣∣

≤ Sk

(
n−3|qk|n−1 + n−2|qk|n−1

) 2∑
j=0

|∂j
kχ(k, p)|

+Skn
−2(n− 1)|qk|n−2

1∑
j=0

|∂j
kχ(k, p)|

+Skn
−2(n− 1)(n− 2)|qk|n−3|χ(k, p)|. (97)

A simple calculation yields

|∂j
kχ(k, p)| ≤ const

k2−j

k + p
, j = 0, 1, 2, (98)

and therefore
∞∫

0

Mp|∂j
kχ(k, p)|dp ≤ constk2−j log(1 + k−1), j = 0, 1, 2. (99)

Using this and remembering that |qk| ≤ 1 we obtain

|cn(k)| ≤ Sk log
(
1 + k−1

) (
n−3 + n−2 + n−1k|qk|n−2 + k2|qk|n−3

)
, (100)

where the third and the fourth terms inside the parentheses appear for n ≥ 2
and n ≥ 3 respectively. The summation gives
∑

n∈2N

|cn(k)| ≤ Sk log
(
1 + k−1

) [
1 + k log

(
1

1 − |qk|2
)

+
k2

1 − |qk|2
]
. (101)

The estimate (93) shows that the integral of the r.h.s. over R+ is finite, thus
the assumption of lemma (95) is satisfied.
(ii) For the operation (ii) the assumption of the lemma is fulfilled because

∣∣Mpskq
n
k∂

3
kχ(k, p)

∣∣ ≤ 6p2(k + 3p)
(k + p)5

MpSk ∈ L1
(
R

2
+\Ω

)
,

with Ω as defined in Sect. 7.1.
(iii) The operation (iii) is admissible because

|Mpskq
n
k −M0s0q

n
0 | ≤ const p+ const(1 + n)k + const(1 + n)pk

and k∂3
kχ(k, p), p∂3

kχ(k, p) are both integrable on Ω, so the lemma holds also
in this case. This ends the proof for the terms (96).



1198 A. Herdegen and M. Stopa Ann. Henri Poincaré

For the expression with the sum over odd natural numbers and with
cos(ap) we use the following modification of the lemma. Let cn for n ∈ N ⊆ N

be complex measurable functions on D ⊆ R
2. If

∑
n∈N |cn(k, p)| is integrable

on D then

lim
a→∞

∑
n∈N

∫

D

cn(k, p)einake±iapdkdp = 0. (102)

Now, almost the same considerations as before show the admissibility of oper-
ations (i)–(iii) for this part of energy.

B.2. Neumann Case

First we note that for the terms which we consider here, the limit over ε can be
easily performed. This follows from the estimations below. Therefore we use
the same lemma as for Dirichlet case, i.e., (95) and (102), but we recall that
we now replace qkeiak = q̃keiãk, as mentioned at the beginning of Sect. 7.2.
With this modification the estimation (97) for the terms in the sum (96) is
still valid, but the bounds (98) change: k2−j is replaced by p2−j . In conse-
quence there is no k2−j factor in front of log in (99) and no k, k2 factors in
(100) and (101). With this modification the sum of n−3, n−2 and n−1 terms in
(100) is still sufficiently well bounded, but the sum of n0 terms is to singular
(no k2 in the last term in (101)). Therefore these terms need a more detailed
treatment. In fact, they can be estimated by const|sk||q̃k|n−3|q̃′

k|3 log(1 + k−1)
(prime denotes here the derivative with respect to k) and their sum over n is
bounded by

const
|sk||q̃′

k|3
1 − |q̃k|2 log(1 + k−1).

This function is indeed in L1(R+), since outside the neighborhood of zero,

using (93), we have
|sk||q̃′

k|3
1 − |q̃k|2 ≤ Sk, whereas in the neighborhood we have

q̃′
0 = 0 which is enough for I0 �= 0 case [see (93) and the comment after it] and

if Ik �
k→0

k2r, r ≥ 1 (Ik is even), then
|q̃′

k|3
1 − |q̃k|2 �

k→0
k2r−2. The discussion of

admissibility of operations (ii) and (iii) goes in the same way as for Dirichlet
case (estimates hold also for Neumann case, with q̃k instead of qk). The analy-
sis of the expression with the sum over odd natural numbers and with cos(ap)
is also analogous to the Dirichlet case.

Appendix C. Comments on the Assumed Class of Models

The models discussed in this paper are based on functions f subject to the
conditions formulated in (11), (12), (37) and (38). In this appendix we exhibit
a class of functions conforming to them. It is sufficient to satisfy (11) and (37)
as the other two are then achieved by simple rescaling of the function by a
constant factor.
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First, we note that each even function with the assumed support which
in addition is real, non-negative and monotonically (weakly) decreasing for
positive arguments satisfies the demands. Indeed, for each such function the
last condition in (11) is fulfilled. Moreover, it is easy to see that then M̌(x)
(being the convolution of the function with itself) is also even, positive, com-
pactly supported and decreasing for x > 0. Thus from (89), since for k �= 0
there is

∣∣∣∣
∞∫

0

M̌ ′(x) cos(kx)dx
∣∣∣∣ < −

∞∫

0

M̌ ′(x)dx = M̌(0),

we have Ik > 0 for k �= 0, which ends the proof of (37).
For each function in the class defined in the previous paragraph there is

I0 > 0, which is due to the positivity of M̌(x) [see (88)]. We now extend the
class to include also functions for which I0 = 0 (see Discussion). Let f be a
function in the class of the last paragraph and define a new function

fr(z) = f(z) − μ (f(z − r) + f(z + r)) ,

where μ > 0 and r > R > 0. One finds

Mr
p = |f̂r(p)|2 = (1 − 2μ cos(rp))2Mp.

Using this and taking into account (85) one has

Ir
k =

∫
Mr

k −Mr
p

p2 − k2
dp =

(
1 + 2μ2

)
Ik − 4πμ

sin(rk)
k

(1 − μ cos(rk))Mk.

We impose the condition Ir
0 = 0, which is a quadratic equation for μ:

2(I0 + 2πrM0)μ2 − 4πrM0μ+ I0 = 0.

For sufficiently large r the equation has two roots, and we take the smaller
one, which is less then 1/2 and for large r tends to zero. Then

Ir
k = 4πrμ(1 − μ)M0

Ik
I0

[1 − η(rk)ξ(k)] ,

where

η(rk) =
sin(rk)
rk

1 − μ cos(rk)
1 − μ

, ξ(k) =
I0Mk

M0Ik
.

It is an exercise in function analysis to show that for sufficiently small μ there
is η(u) < 1 for all u �= 0. Below we show that f may be chosen such that also
ξ(k) < 1 for k �= 0, and then Ir

k > 0 for k > 0, which is the condition (37). To
reduce the size of the support of fr one can use the scaling defined in Sect. 3.

Consider now the non-negative and even function ξ(k) for positive argu-
ments. Suppose that ξ′′(0) < 0 (see below). Then there is k0 > 0 such that for
k ∈ (0, k0) it is ξ(k) < 1. For k ≥ k0, using (87), we have ξ(k) ≤ const ≡ ξmax.
We now need to improve the estimation of η for k ≥ k0. It is easy to see that
if r has been chosen large enough then η(rk) < 1

ξmax
for k ≥ k0.
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Finally, we have to choose f so as to satisfy ξ′′(0) < 0. Let f be defined
as f(z) = f0 = const on 〈−R,R〉 and zero outside. Straightforward calculation
gives

Mk =
2|f0|2
π

R2 sin2(Rk)
(Rk)2

, Ik = 8|f0|2R3 2Rk − sin(2Rk)
(2Rk)3

,

ξ′′(0) = − 4
15
R2 < 0.

The function used here needs ‘rounding the corners’ to be in the class of the
second paragraph. But this may be made by a small local variation, and both
Mk and Ik and their derivatives depend continuously on such small variations
of f [for Ik see (88)], which is sufficient to conclude the proof.
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