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1. INTRODUCTION

The basic problem in speaker recognition can be formulated
like this. Given two speech recordings, decide whether
they belong to the same speaker or they belong to two
different speakers. Putting it another way, our task is to
decide whether the differences between the recordings (i.e.,
the intersession variability) are better attributable to the
interspeaker variability or to the intraspeaker variability.
Intraspeaker variability refers to all the phenomena that
cause different recordings of the same speaker to sound
different from each other. Usually this can be attributed
mostly to channel effects, although some other factors (e.g.,
the aging phenomenon, the state of health and mind as well
as text dependency) can play an important role.

The problem of channel variability is especially appar-
ent during telephone speech, where there are different
transmission channels and different handset types involved.
Performance degradation due to channel variability has been
clearly demonstrated during a few previous NIST speaker
recognition evaluations [1].

Many methods have been proposed to tackle the problem
of channel variability. Based on their application domain,
they can be categorized into three groups: feature-domain
[2–5], model-domain [6–9], and score-domain [10, 11].

Since no individual method is capable of completely remov-
ing the channel effects, it is common practice to combine a
number of different methods together.

Recently, eigenchannel analysis (or its more advanced
counterpart, joint factor analysis) and nuisance attribute
projection (NAP) have become especially popular among the
model-based methods [12–15]. The main reason for their
widespread adoption is that they are both unsupervised and
they treat channel effects as continuous rather then discrete
and thus do not require a special preprocessing step for
channel detection, which is the case for other methods.

Although the key algorithm of both methods is formu-
lated as an eigenvalue problem, their implementation and
usage differ significantly. While the first one was designed to
be used in combination with a decision criterion based on
the likelihood ratio (LR) statistics, the other was originally
designed to work with a criterion based on the support vector
machines (SVMs). In this work, we point out that there is no
real reason for such a distinction, since both methods can be
used with both LR-based and SVM-based decision criteria.
To prove our case, we propose three different variants of
integrating the NAP approach with the LR-based decision
criterion.

In this work, we do not deal with eigenchannel analysis,
rather we focus exclusively on nuisance attribute projection.
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Using the NIST 2005 data set, we compare the performance
of discriminative (SVM-based) and generative (LR-based)
decision criteria in combination with NAP-based channel
variability compensation. We found that both criteria exhibit
comparable performance, and more importantly that the
overall performance can be further improved if we carry out
the score-level fusion of both approaches.

The remainder of this paper is organized as follows.
In Section 2, a brief introduction to GMM-based speaker
verification is presented. In Section 3, a short review of NAP-
based session variability modeling is given. In Section 4, the
LR and SVM decision criteria are presented, and we describe
how they give rise to different implementations of NAP. In
Section 5, experimental results on the core test of the NIST
SRE 2005 [16] are presented and analyzed. In the last section,
conclusions are given and directions for further research are
suggested.

2. GMM-BASED SPEAKER VERIFICATION

Although there has recently been some success reported
with methods for text-independent speaker recognition that
try to exploit the high-level information (e.g., prosody)
embraced in the speech signal, their performance is still
inferior to that of the methods which are based on the low-
level acoustic properties of the speech signal [17–19]. Most of
these acoustic-based methods that perform well are based on
Gaussian mixture modeling (GMM) of the cepstral features.
Here, we will give a brief overview of the main steps involved
in GMM-based speaker verification.

The main assumption in GMM-based speaker verifica-
tion is that each speaker can be represented as a weighted
sum (mixture) of K multivariate diagonal covariance Gaus-
sian densities, defined over a D-dimensional feature space
(The number of Gaussians is typically 512 or 2048.):

p(x) =
K∑

k=1

πkN
(

x|µk,Σk
)
. (1)

Since only a limited amount of the target speaker’s
data is available in practice, the maximum likelihood (ML)
estimation of the parameters of the speaker model would
lead to overfitting. A better way would be to use a speaker-
independent GMM—usually referred as a universal back-
ground model (UBM)—and estimate the parameters of the
target speaker model by means of maximum a posteriori
(MAP) adaptation [20].

Although, in general, all the parameters (i.e., weights,
mean vectors, and covariance matrices) could be adapted,
experiments show that it is better to adapt only the mean
vectors, while keeping the weights and covariance matrices
constant [21].

An important consequence of the UBM approach is that
it induces a strict ordering of the Gaussian mixture compo-
nents in the speaker models. This allows us to concatenate
the components’ mean vectors into one composite vector—
supervector.

3. NUISANCE ATTRIBUTE PROJECTIONAPPROACH TO
SESSION VARIABILITY COMPENSATION

3.1. Relevancemaximuma posteriori

In order to explain the NAP approach to session variability
compensation, it is worthwhile to look first at the MAP algo-
rithm, which is used for deriving the speaker models from
the UBM. Since we are not adapting weights and covariance
matrices, it is sufficient to specify a prior distribution only
for the mean vectors, which takes the following form:

mk(s) = mk + dkzk(s), k = 1, . . . ,K , (2)

where mk is a speaker-independent mean vector of the kth
mixture component, dk is a D × D diagonal matrix, and
zk(s) is a speaker-dependent random vector with a standard
normal distribution, which implies that mk(s) is distributed
normally with a mean mk and a diagonal covariance d2

k.
Given the training data X(s) = {x1(s), . . . , xT(s)} for the

target speaker s, we are able to derive a MAP estimate of the
vector mk(s), which is given by

E
[

mk(s)
] = mk +

(
I + d2

kΣ
−1
k Nk

)−1
d2
kΣ

−1
k

(
Fk −Nkmk

)
, (3)

where the statistics Nk and Fk are computed in the E-step of
the EM algorithm using the following relations:

Nk =
T∑

t=1

γk,t,

Fk =
T∑

t=1

γk,txt(s),

(4)

where γk,t is the responsibility of the mixture component k
for generating the observation xt(s).

Although matrix dk can be estimated from the data [22]
itself, it is usually assumed to be related to Σ−1

k by an equation
of the form d2

k = τ−1Σk. The constant τ is known as a
relevance factor and is chosen empirically, typically in the
range between 8 and 16 [21].

The MAP estimate of the vectors mk(s) should ideally
be identical (or sufficiently similar at least) for different
recordings of the same speaker. Unfortunately, this is not the
case, since we know that different channels cause the same
speaker to sound different from one recording to another.
Nevertheless, it turns out that it is possible to compensate (to
some extent) for the channel effects if we make some minor
assumptions about the channel.

3.2. Nuisance attribute projection

The problem that we want to address is, how to decompose,
for a given recording, the speaker- and channel-dependent
supervector M, obtained by a MAP adaptation of the UBM
(3), to the speaker-dependent supervector S and the channel-
dependent supervector C:

M−M0 = S + C, (5)
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where the offset M0 corresponds to the supervector represen-
tation of the UBM.

The linear model of (5) states that perturbations of
the background model can be split linearly into a speaker-
dependent and a channel-dependent parts. Although this
linear assumption plays the central role in most well-
performing models of channel variability [5, 7, 9, 14], an
explicit evidence for its validity has not yet been presented.

In order to present the arguments for the linearity in (5),
it helps to consider the channel effects as noise, which is being
convolutionally mixed with speech in the signal domain.
Since convolution in the signal domain becomes addition
in the cepstrum domain, the cepstral feature vectors consist
of a sum of speech and noise (channel). If we further treat
speech and channel as two independent random variables,
each of them being distributed according to a (finite) mixture
of Gaussians (MoGs), it follows (see the appendix) that their
sum is also distributed as a MoG. Moreover, each mean
of this MoG equals the sum of two means, one coming
from the speech MoG and the other from the channel
MoG.

Note, however, that although the number of Gaussian
components in the sum will be M·N , where M and N
are numbers of components of the speech and channel
GMM’s, respectively, not all of the components will be
observed—due to a finite duration—for a specific recording.
Fortunately, this hindrance can be avoided by incorporating
prior knowledge while inferring the parameters of the GMM
(i.e., Bayesian learning, MAP adaptation).

To be able to carry out the decomposition, it turns out
that we have to confine the channel-dependent supervector
to lie in a low-dimensional subspace. This requirement
seems reasonable, since the channel should not be able
to transform one speaker into another, otherwise speaker
recognition would be an ill-posed problem. In fact, some
evidence has been presented [23] which indicates that the
channel covariance matrix is indeed of low rank.

If we assume that the channel variability is constrained
to a low-dimensional subspace (given by the matrix U) of
a supervector space and that the channel space and speaker
space intersect only at the origin, then we are able to estimate
the channel component C simply by centering the speaker-
and channel-dependent supervector M, projecting it onto
the channel subspace, and finally projecting the resulting
supervector from the channel subspace back to the original
supervector space:

C = UU∗(M−M0
)
. (6)

By knowing the channel C, retrieving the speaker
component S is as simple as rearranging (5).

Since they were found in the cepstral domain, the
projection of supervectors can be alternatively seen as a
filtering operation—so, projecting the supervector into the
speaker-subspace means that certain kinds of (speaker-
dependent) filtering will be allowed, while other kinds of
(channel-dependent) filtering will be suppressed.

The NAP approach is illustrated in Figure 1.

C
M
−

M
0

S

Figure 1: Schematic illustration of the NAP technique in a
3-dimensional supervector space. The speaker- and channel-
dependent supervector M can be written as the sum of two
supervectors, one of which (S) lies in the speaker space and the other
(C) lies in the channel space.

3.3. Channel subspace estimation

In contrast to the diagonal matrix dk, the channel subspace
matrix U has to be estimated from the data. The only
requirement is that we have a sufficiently large database
with multiple recordings available for each speaker. The
steps needed to estimate the channel subspace matrix can be
summarized with the following algorithm.

(i) For each recording, estimate a speaker- and channel-
dependent supervector (see (3)).

(ii) Compute the mean supervector of each speaker by
averaging the supervectors from all the recordings of
that speaker. This averaging process will effectively
filter out (at least if the number of recordings is
sufficiently large) the channel component, since it is
assumed to be zero-mean distributed.

(iii) Calculate the channel component of each recording
by subtracting the corresponding mean supervector.

(iv) Use the principal component analysis (PCA) tech-
nique to estimate the first n largest eigenvalues and
the corresponding eigenvectors from the covariance
matrix of the channel supervectors.

Since the dimension of the supervectors can be very
large, a straightforward PCA decomposition will not work
in practice. A simple solution, popularized by Turk and
Pentland [24], is based on the fact that the nonzero-valued
eigenvalues of the matrix product AAT are the same as those
of the product ATA. Yet another alternative would be to use
the probabilistic variant of the PCA algorithm [25].

3.4. Relation to joint factor analysis

Although joint factor analysis and NAP are based on the
same assumptions, there is an important difference between
them. While NAP needs to explicitly calculate the channel-
and speaker-dependent supervectors and uses a purely alge-
braic approach to derive the matrix U, and later to project
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out the channel component, the joint factor analysis treats
the channel and speaker supervectors as hidden variables and
derives a special ML algorithm to estimate the matrix U (and
possibly also other hyper-parameters) from their posterior
distributions (instead of point estimates).

Although joint factor analysis is evidently theoretically
more advanced than NAP, its drawback is that it is compu-
tationally more demanding and it is harder to implement.
Since it is based on a probabilistic approach, it can only be
applied to GMM-based speaker recognition. On the other
hand, NAP is easier to implement and has a broader scope of
applications, as demonstrated recently by the impressive per-
formance of NAP in the context of the maximum likelihood
linear regression (MLLR) approach to speaker recognition
[14], and even in high-level speaker recognition [17].

4. DECISION CRITERIA

Many different classifiers can in principle be used for making
the decision for or against the hypothesis that the speaker in
the test utterance is the same as the speaker in the training
utterance. However, the most common and successful for
speaker verification have been LR and SVMs, which will be
presented in the following subsections. Note that only the
basic concepts of SVMs will be described; for a more general
treatment see [26].

4.1. The LR-based decision criterion

If the decision criterion is based on the likelihood ratio,
then the verification score is calculated as (In practice, the
likelihood ratio is computed in the log domain for numer-
ical reasons. Moreover, the score should be appropriately
normalized to compensate for the different lengths T of the
feature vector sequences.)

p
(

X|Λs
)

p
(

X|Λ0
) , (7)

where X is a feature vector sequence of length T , representing
the test utterance, while Λs and Λ0 denote the parameters
(weights, mean vectors, and covariance matrices) of the
speaker model (estimated from the training utterance) and
UBM, respectively.

4.2. The SVM-based decision criterion

An SVM is a two-class classifier, based on the concept of
the maximum margin. It can be expressed as a separating
hyperplane given by

f (x) =
N∑

i=1

αi yiK
(

x, xi
)

+ b, (8)

within the constraints
∑N

i=1αi yi = 0 and αi > 0. The yi are
target values (either −1 or 1, depending on which class the
corresponding support vector xi comes from). The function
K is called the kernel, and it has to obey Mercer’s condition.
A class decision for vector x is based on whether the value
f (x) is above or below a given threshold.

Although SVMs were originally applicable only to fixed-
length data (i.e., vectors), they were later extended to work
also with variable-length data in a straightforward way
through the use of sequence kernels. The sequence kernel can
be defined as

K(X, Y) = Φ(X)∗R−1Φ(Y), (9)

where Φ(X) and Φ(Y) are high-dimensional vector represen-
tations of the sequences X and Y, respectively, and R is a
diagonal matrix. Note that the “kernel trick” is redundant,
since the sequence expansion is done explicitly. Moreover,
if each vector Φ(X) is multiplied by R−1/2, a linear SVM
is obtained. As a consequence, an SVM model can be
represented in a compact form [27], which enables a rapid
evaluation of the value f (X).

Two popular sequence kernels for speaker verification are
the generalized linear discriminant sequence kernel [27] and
the GMM supervector kernel [28]. We will focus on the latter.

The GMM training described in the previous section
can be seen as an expansion of a sequence of cepstral
vectors into a GMM. A natural choice for a distance between
GMMs would be the Kullback-Leibler (KL) divergence.
Unfortunately, the KL divergence does not obey the Mercer’s
condition and there exists no closed-form solution for
calculating the KL divergence between GMMs. So instead of
using the KL divergence directly, we consider its upper bound
[29], which satisfies the Mercer’s condition. The diagonal
entries of the matrix R−1 are, in this case, given by πkΣ

−1
k ,

where πk are the mixture weights and Σk are the covariance
matrices of the UBM.

4.3. Combining NAPwith LR and SVMs

While there have been different variants of LR-based classi-
fication strategies proposed, which naturally arise from the
joint factor analysis model [23] for speaker verification, the
NAP approach has been limited to the SVM-based decision
criterion [9, 30]. The reason for this discrepancy comes from
the fact that the LR criterion is asymmetric in the sense that
only the training utterance is used to estimate the speaker
model (supervector), while the SVM criterion is symmetric
since both the training and the test utterance are “expanded”
to supervectors.

We see that NAP suits well the SVM criterion, since both
the training and the test supervectors can be compensated
in the same way by simply projecting out the channel
component of each supervector (see (7)).

However, the same approach is not feasible in the case of
the LR criterion. Although the channel compensation can be
made for the training model by first converting the GMM to
a supervector, projecting out the channel component in the
supervector space, and converting the resulting supervector
back to a (channel-independent) GMM, this would only be
a partial solution, since the test utterance would, in this
case, remain uncompensated. Therefore, a different strategy
is needed if we want to perform the compensation for both
the training and the test utterances. We will now describe
three methods for doing this.
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4.3.1. Feature space channel compensation

The solution of transforming features to compensate for the
channel mismatch between the training and test utterances
(in the context of GMM-based speaker recognition) became
known as feature mapping [5]. Recently, a very similar
approach has been proposed by Castaldo et al. [15] for the
eigenchannels, which can be adapted to the NAP approach
in a straightforward way.

In the first step, the channel component C of the
utterance is detected by projecting the centered supervector
M to the channel subspace (see (6)). In the second step, this
channel supervector is used to transform each feature vector
xt using the following formula:

x̂t = xt −
K∑

k=1

γk,tck , (10)

where γk,t is the posterior probability (responsibility) that the
observation xt was generated by the kth mixture component
and ck is part of the supervector C that corresponds to the
kth mixture component.

In this way, we are able to compensate for both the
training and test utterances prior to training the target
speaker model and calculating the LR score.

An important property of the feature space channel
compensation is that it can be regarded as a (front-end)
preprocessing step and is therefore independent of the
application and the classifier. For example, a similar feature
space compensation method was recently used in a speech
recognition task [31].

4.3.2. Asymmetric channel compensation

Another possibility is to normalize the training utterance
in the same way as in the SVM case, and to normalize the
test utterance in the feature space. A similar strategy was
proposed recently for the eigenchannel approach [13].

4.3.3. Model space channel compensation

We propose another alternative where both the training
and test utterances are normalized in the model space. The
idea is to transform the channel component of the training
supervector M from the training channel C to the test
channel Ct, using the following equation:

M′ = M− (C− Ct
) = M0 + S + Ct . (11)

The resulting supervector M′ is converted back to GMM
space and then used for calculating the nominator of the LR
(see (8)).

Since the UBM, which is used for calculating the denom-
inator of the LR, is inherently channel-neutral, (The channel
component has been averaged out in the training process
because the UBM is trained from a large number of different
speakers recorded in many different channel conditions.) it
is important to adapt the UBM in a similar fashion in order
to avoid any bias towards positive LR scores. Note, however,
that the normalization of the UBM is not necessary when a t-
norm score normalization is applied, since the denominator
of (7), in this case, effectively drops out.

Observe that only the speaker component of the training
signal is required, while the channel component is discarded.
On the other hand, the speaker component of the test signal
is discarded, while the channel component is needed to adapt
the training speaker supervector to the test conditions. Since
this is very similar to the idea of the standard eigenchannel
approach and is also more straightforward to implement
than the other two alternatives, we have decided to use the
model-space variant of the channel compensation algorithm
in our experiments.

5. EXPERIMENTS

We carried out the verification experiments on the core
condition (1conv4w-1conv4w) of the NIST 2005 speaker
recognition evaluation (SRE) [16]. This evaluation set
consists of 636 target speakers (372 females, 264 males) and
31418 test trials (2771 target trials, 28647 impostor trials).
For each target speaker, there is a 5-minute-long recording
available, containing roughly 2 minutes of speech. Note that
in order to obey the rules of the NIST protocol, each trial
must be processed independently of all the others.

5.1. System configuration

We used a (gender-dependent) UBM that contained 512
Gaussians, trained on the data collected from different data
sets (Switchboard-II Phase 3, Switchboard Cellular I, Switch-
board Cellular II, NIST SRE 2004, and NIST SRE 2005).
The amount of data used from the individual databases is
summarized in Table 1. The features were standard MFCCs
(12 + log-energy, appended with their deltas), extracted
every 10 milliseconds from a 25-millisecond-long windowed
speech signal, using the HTK toolkit [32]. Feature warping
[2] with a 3-second-long sliding window was also applied,
as suggested in [7], where a strong synergy between feature
warping and channel compensation was reported, although a
mean-variance normalization would probably have a similar
impact on the system’s performance. To remove the silence
(nonspeech) frames, a simple three-Gaussians energy-based
speech detector was employed [33], retaining, on average,
around one-third of the frames per recording.

The channel matrix U was estimated using the algorithm
described in Section 3.3. The training data was extracted
from the NIST 2004 SRE collection. It consisted of all
the recordings of those speakers that were recorded in at
least eight different sessions. Altogether, there were 184-
female and 121-male speakers present in 4551 recordings (see
Table 1). The rank of the channel matrix was chosen empiri-
cally and remained fixed (at 40) throughout the experiments.

Note that in contrast to the LR-based verification another
data set is needed for training the target speaker models in
the case of the SVM-based approach. This background data
set was selected as a subset of the data used for training the
UBM and the channel subspace. As a consequence, a fair
comparison between the SVM-based and LR-based systems
was possible since the same data was used for training both
systems.
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Table 1: Development data sets used in the experiments. The figures in the table correspond to the number of conversation sides from the
data sets that were used in different tasks.

Task/data set SWB2P3 SWBCELL1 SWBCELL2 SRE-04 Overall

UBM 2324/2631 1165/1023 1635/2013 1895/2656 7019/8323

Channel subspace 1895/2656 1895/2656

Background 1895/2656 1895/2656

z-norm 100/100 100/100 100/100 300/300

t-norm 100/100 100/100 100/100 300/300

5.2. Score normalization

The main idea of many score-normalization methods (see
[10] for an overview) is to linearly transform each score
s (produced by comparing the client model with the test
recording) according to the following equation:

sn =
s− μ

σ
, (12)

where the parameters μ and σ can be estimated either from
the client model (z-norm) or the test recording (t-norm).

Since both techniques can be easily combined by suc-
cessively applying z-norm and t-norm (in that order), we
considered also zt-norm in our experiments.

5.3. Performancemetrics

Speaker-verification systems are susceptible to two type of
errors—rejection of the true speaker (false rejection; miss)
and acceptance of the impostor speaker (false acceptance;
false alarm). The two errors are coupled in a way such that
if one wants to achieve low false rejection rate, this inevitably
increases the false acceptance rate (and vice versa). To see the
relation between the two errors explicitly, we usually draw
either receiver operating characteristic (ROC) curve or its
variant, detection error tradeoff (DET) curve [34].

Accuracy of speaker-verification systems is usually mea-
sured in terms of equal error rate (EER), which is the
point on the DET curve where the two errors are equal.
An additional performance metric, preferred by NIST, is
detection cost function (DCF), which is the (minimal)
weighted sum of the two errors [16].

5.4. Results and analysis

We present the results for the core condition (all trials) of
the NIST SRE 2005 for the “uncompensated” baseline system
and for the system where NAP-based channel compensation
was performed. Two different decision criteria (SVM-based
and LR-based) were applied to each of the systems. While
the standard (symmetric) NAP algorithm was used for the
channel compensation of the SVM-based system, the model-
space variant (Section 4.3.3) of the NAP algorithm was used
in the case of LR-based system. The reasons for choosing the
latter are discussed in the last paragraph of Section 4.3.3.

The impact of the channel compensation on the two-
decision criteria was analyzed, and the effect of different
types of score normalization (namely, z-norm, t-norm, and
zt-norm) on systems’ performance was compared.

5.4.1. Effect of score normalization

The most evident observation from the DET curves in
Figures 2 and 3 is that score normalization rotates the
DET curve counterclockwise. This effectively means that
normalization is always beneficial for the DCF point, but it
can be detrimental for the EER point. However, the rotation
is more evident for the LR-based systems, especially if they
are combined with channel compensation (see Figure 3(b)).
This could lead to the conclusion that channel normalization
tends to produce scores that are more diverse (comparing
to the scores produced by systems that do not use channel
normalization). This agrees with the findings presented in
[7], where a similar synergy between the joint factor analysis
and the zt-norm was observed.

On the other hand, the different sensitivity to score-
normalization for LR- and SVM-based systems (compare
Figures 3(a) and 3(b)) could be explained by hypothesizing
that the SVMs are inherently capable of performing score-
normalization to some degree already by themselves.

5.4.2. Effect of channel compensation

By comparing the performance of the BAS (see Figure 2,
Table 2) and NAP (see Figure 3, Table 3) systems, it is evident
that the channel compensation is crucial for achieving high
performance. However, the impact of channel compensation
is not the same for the LR and SVM systems. We can see
that in the case of the SVM decision criterion, the EER
drops from 7.5% (t-norm) to 6.1% (t-norm, zt-norm) and
DCF drops from 0.027 (zt-norm) to 0.021 (t-norm, zt-
norm), while on the other hand, in the case of the LR
criterion, the EER drops from 9.9% (no score normalization)
to 6.4% (no score normalization, z-norm) and the DCF
drops from 0.040 (t-norm, zt-norm) to 0.021 (zt-norm).
The reason for greater impact of channel compensation on
the performance of the LR-based systems can be due to the
discriminative nature of the SVMs, which enables them to
perform channel compensation (as previously hypothesized
also for score-normalization) to some extent by themselves.
This can be seen by noting that SVMs tend to orient the
separating hyperplane approximately perpendicular to the
subspace spanned by the background supervectors. Since
background supervectors contain speaker variability as well
as channel variability, this effectively means that projecting
the test supervector to the hyperplane helps to “filter” out
the channel effects.
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Figure 2: Speaker verification results of the baseline (BAS) systems. The DET curves for (a) the SVM and (b) LR decision criteria as well as
(c) their fusion are shown. The black circle on each DET curve represents the DCF point.

5.4.3. Fusion of LR and SVM systems

Although the idea of fusing similar classifiers into a better
one is not new (see, e.g., [35]), it has not been extensively
used for speaker-verification. Most of speaker-verification
systems that make use of score-level fusion rely on combining
scores from highly heterogeneous systems [36]. Therefor, we

found it interesting to explore to what extent can we improve
the results by fusing scores that come from almost identical
systems, trained on the same data, which differ only in one
detail, that is, the decision criterion.

To answer this question, we carried out a score-level
fusion of the LR- and SVM-based systems. (We included
all the scores produced by different score-normalization
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Figure 3: Speaker verification results of the NAP-based systems. The DET curves for (a) the SVM and (b) LR decision criteria as well as (c)
their fusion are shown. The black circle on each DET curve represents the DCF point.

methods in the fusion.) We performed a weighted linear
fusion using linear logistic regression [37], as implemented
in the FoCal toolkit [38]. Although it can be seen (see Figures
2(c), 3(c)) that the fusion of different score normalization
methods helps on its own, the results clearly show that
the generative and discriminative decision criteria indeed

introduce complementary information that significantly
improves the verification performance in terms of the DCF
and especially in terms of the EER, which (for the fusion of
NAP systems) drops from 0.020 to 0.018 (10% relatively) and
from 5.6% to 4.5% (20% relatively) in terms of the EER and
DCF, respectively.
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Table 2: Speaker verification results of the baseline (BAS) systems.
The EER and DCF figures for (a) the SVM and (b) LR decision
criteria as well as (c) their fusion are given.

(a) BAS-SVM

Norm. type EER DCF

— 7.8 0.031

t-norm 7.5 0.029

z-norm 8.3 0.030

zt-norm 8.1 0.027

(b) BAS-LR

Norm. type EER DCF

— 9.9 0.044

t-norm 11.2 0.040

z-norm 10.4 0.043

zt-norm 12.0 0.040

(c) BAS-FUS

Fusion EER DCF

LR 10.3 0.038

SVM 8.0 0.026

LR + SVM 6.7 0.024

Table 3: Speaker verification results of the NAP-based systems. The
EER and DCF figures for (a) the SVM and (b) LR decision criteria
as well as (c) their fusion are given.

(a) NAP-SVM

Norm. type EER DCF

— 6.7 0.025

t-norm 6.1 0.021

z-norm 6.8 0.023

zt-norm 6.1 0.021

(b) NAP-LR

Norm. type EER DCF

— 6.4 0.031

t-norm 6.8 0.029

z-norm 6.4 0.024

zt-norm 7.1 0.021

(c) NAP-FUS

Fusion EER DCF

LR 5.6 0.020

SVM 5.9 0.020

LR + SVM 4.5 0.018

6. CONCLUSION

We have proposed a novel way of integrating the NAP
approach to channel compensation, which was previously
limited to an SVM-based decision criterion, with a LR
decision criterion for the speaker verification task.

Experimental results on the core test of the NIST 2005
SRE have shown that the performance of the proposed
approach is comparable to the standard approach that uses
SVM-based decision criterion. However, we have found out
that both approaches respond differently to score normal-
ization. It turns out that score normalization (especially zt-
norm) is much more effective for LR than for SVM decision
criterion. The apparent reasons for this discrepancy have
been presented in Section 5.4.

The proposed approach provides an attractive alternative
to the more general approach of joint factor analysis [22],
which is computationally more expensive and harder to
implement. Additionally, the PCA-based NAP algorithm,
described in Section 3.3, can be easily substituted with
some other method for subspace estimation, for example,
independent component analysis (ICA), linear discriminant
analysis (LDA), or even their nonlinear variants [39, 40].
However, the effectiveness of those methods is yet to be
explored.

A further important contribution of this paper is that we
confirmed that generative (LR) and discriminative (SVM)
decision criteria introduce complementary information,
which can significantly improve the performance of speaker
verification by fusing the scores from both criteria.

APPENDIX

A. SUMOF TWO INDEPENDENT RANDOMVARIABLES

Lemma 1. If the p.d.f. of the multivariate random variable X
is given by fX(x) =∑N

n=1σnN (x|μn,Σn), then its characteristic
function equals ϕX(t) =∑N

n=1σn exp(iμTn t − (1/2)tTΣnt).

Proof. The characteristic function of a multivariate random
variable is defined by ϕX(t) = E[exp(itTX)], thus

ϕX(t) =
∫

x∈Rd

( N∑

n=1

σnN
(
x|μn,Σn

)
)

exp
(
itTx

)
dx. (A.1)

By linearity, we are allowed to change the order of summa-
tion and integration:

ϕX(t) =
N∑

n=1

σn

∫

x∈Rd
N
(
x|μn,Σn

)
exp

(
itTx

)
dx. (A.2)

Solving the integral, we get the required result.

Theorem 1. Let X and Y be d-variate independent r.v.’s.
If their p.d.f.’s are given by fX(x) = ∑N

n=1σnN (x|μn,Σn)
and fY (y) = ∑M

m=1ωmN (y|νm,Ωm), respectively, then the
distribution of the sum Z = X + Y is given by

fZ(z) =
N∑

n=1

M∑

m=1

σnωmN
(
z|μn + νm,Σn + Ωm

)
. (A.3)
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Proof. The characteristic function of the sum of two inde-
pendent (multivariate) random variables is given by the
product of their characteristic functions. Therefore,

ϕZ(t) =
( N∑

n=1

σn exp
(
iμTn t −

1
2
tTΣnt

))

·
( M∑

m=1

ωm exp
(
iνTmt −

1
2
tTΩmt

))
.

(A.4)

After rearranging, we get

ϕZ(t) =
N∑

n=1

M∑

m=1

σnωm exp
(
i
(
μn + νm

)T
t − 1

2
tT
(
Σn + Ωm

)
t
)
.

(A.5)

By Lemma 1, this is exactly the characteristic function of
fZ(z). Since for any characteristic function there is exactly
one probability distribution, the theorem is proved.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of
Defence and the Ministry of Higher Education, Science and
Technology, under Contract no. M2-0210.

REFERENCES

[1] M. A. Przybocki, A. F. Martin, and A. N. Le, “NIST speaker
recognition evaluations utilizing the mixer corpora—2004,
2005, 2006,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 7, pp. 1951–1959, 2007.

[2] J. Pelecanos and S. Sridharan, “Feature warping for robust
speaker verification,” in A Speaker Odyssey: The Speaker
Recognition Workshop, pp. 213–218, Crete, Greece, June 2001.

[3] B. Xiang, U. V. Chaudhari, J. Navrátil, G. N. Ramaswamy,
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