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1 Introduction

The null energy condition (NEC) lies at the origin of the standard picture of early universe’s

cosmological evolution, determining many of its fundamental properties. For a universe

dominated by a perfect fluid, satisfying the NEC is equivalent to the positivity of the sum of

energy and pressure ρ+ p ≥ 0, leading to ever-increasing energy density as the evolution is

run backward in time. The regime of an O(1) sensitivity to the short-distance completion of

gravitational interactions in the past is thus unavoidable for any NEC-satisfying cosmology.

Usually, violating the NEC is synonymous with instabilities — at least for a system

consisting of an arbitrary number of scalar fields with up to one derivative per field in the

action [1, 2]. The theorem is not without loopholes, though. One possibility of evading

it is provided by the ghost condensate [3], that crucially relies on (spontaneously) broken

Lorentz invariance in a way that gives rise to a non-standard ω ∼ k2 infrared dispersion

relation for the scalar driving the NEC violation. And indeed, it was argued in ref. [4] that

ghost condensation can lead to consistent alternative cosmologies with a weak (Ḣ � H2)

violation of the null energy condition. Another loophole has emerged with the discovery

of higher-derivative, yet ghost free theory of a scalar in flat spacetime — the galileon [5].

The simplest such theory with a cubic self-interaction arises [6] in the context of the

DGP model [7], while the full set of galileons have been found to describe the helicity-0

polarization of the graviton in dRGT theories of ghost-free massive gravity [8, 9].
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It has immediately been realized that (conformal) galileons can be implemented in

building a NEC-violating alternative scenario to inflation, referred to as galilean genesis

(GG) [10]. In this class of models, conformal transformations (or, sometimes, just the di-

latations [11]) are assumed to be a symmetry of the flat-space theory, nonlinearly realized

on a scalar field π, while couplings of π to gravity are assumed to weakly break that sym-

metry. A crucial difference from inflation is that gravity is largely irrelevant for the early

universe, described by GG: the cosmological phase of interest (during which the pertur-

bations relevant for the CMB are produced) effectively takes place on a quasi-Minkowski

spacetime, while scale-invariant density perturbations are naturally produced due to the

unbroken dilatation invariance of the (time-dependent) scalar background.1 Moreover,

flatness, homogeneity and horizon problems are automatically solved due to the quasi-

Minkowski nature of the background spacetime and the gradual shrinking of the comoving

Hubble horizon (aH)−1. It is thus fair to say that, as far as the standard problems of

the Big-Bang cosmology as well as density perturbations are concerned, galilean genesis is

degenerate in its predictions with inflation.

The differences come with the inclusion of tensor modes: irrelevance of gravity in gen-

esis cosmologies results in a strongly blue-tilted and a completely unobservable (at least

as far as the CMB experiments are concerned) spectrum of tensor perturbations [10]. For

that reason, it is commonly believed that any possible detection of primordial gravita-

tional waves (such as the one recently claimed by the BICEP2 collaboration [17]) would

strongly disfavor genesis models, as well as their many variations. Indeed, a detectable,

scale-invariant tensor spectrum requires that the background spacetime be (quasi-) de Sit-

ter (dS) at the time of freezeout of the relevant set of modes (see, e.g. [18] for a recent

discussion). In the case that the interpretation of detected B-modes as a primordial sig-

nal persists, this would mean that any scenario that aims at describing the early universe

should allow for a sufficiently extended period of de Sitter evolution. This apparently sin-

gles out the standard slow-roll inflation as the preferred paradigm for providing the flat

and homogeneous universe with the particle horizon way beyond the observable patch.

One motivation of the present work is to re-assess the latter observation, with a focus

on galilean genesis as an alternative to inflation. We will broadly define genesis as a phase

of the universe with a strongly NEC-violating (ε ≡ Ḣ/H2 ≥ 1) expansion that starts out

in a low-curvature, maximally symmetric (essentially Minkowski or de Sitter) spacetime.

Can such initial conditions result in a scale-invariant and unsuppressed tensor spectrum

in a sufficiently broad range of physical scales? As noted above (at least for scalar-tensor

theories we will be discussing below) generating scale-invariant tensor modes requires the

geometry to be close to de Sitter for a certain period of time during the system’s evolution.

The question therefore reduces to that of the possibility for the universe to consistently

evolve from a low/zero-curvature background in the far past to a much higher curvature

inflationary dS spacetime capable of generating observable tensor spectrum at intermediate

1Similar ideas lie behind other constructions, such as that of a complex scalar rolling down a negative

quartic potential [12, 13], the pseudo-conformal universe [14] and DBI genesis [15, 16]. The corresponding

NEC-violating backgrounds are characterized by the same symmetry-breaking pattern, albeit technically

realized in different ways.
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Figure 1. A sketch of the early universe’s expansion rate as a function of time for the standard

slow-roll inflation (black), as well as original (red) and extended (blue) genesis scenarios.

stages of its history. Because the system has to pass through a quasi de Sitter regime, one

should be able to keep good theoretical control over the dynamics beyond the point when

gravity starts playing a non-negligible role. Indeed, in the original GG, the moment of time

t0 at which gravity becomes order-one important is roughly the moment of the effective

field theory (EFT) breakdown and not too long after that the universe is assumed to reheat,

while all relevant cosmological perturbations are generated at times t� t0 (we will assume

time to flow from t = −∞ towards t = 0 throughout). This situation is sketched by the

red curve on figure 1. In terms of the model parameters,

t0 ∼ −
f

MPl

1

H0
(1.1)

where f is the decay constant of π, while H0 � f is a free parameter, setting the scale

for the expansion rate around t ∼ t0 (the natural value for the decay constant is f ∼MPl,

which we will assume for definiteness in this section). The ‘slow-roll’ parameter ε, starting

out formally infinite at t = −∞, decreases with time and is naively estimated to be of order

unity at t0. This means that the geometry can not be approximated by de Sitter space at

any time during the genesis phase.

While most of the qualitative features of GG directly follow from scale invariance of

the (flat-space) π-lagrangian, the latter symmetry is badly broken by gravity around t = t0.

The background field value can be estimated at that time as

φ ≡ eπ ' O(1) , (1.2)

whereas throughout the genesis phase φ � 1. One is then led to conclude that the loop-

generated symmetry-breaking terms in the effective action for π itself can start influencing

the dynamics for t ∼ t0 — even in the extreme case that these are down by the Planck

scale. Indeed, the canonically normalized field πc becomes of order πc(t0) ∼ f , making

e.g. the Planck-suppressed operator πc(∂πc)
2 of the same order as the kinetic term. These
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estimates motivate extending the π action by dilatation-breaking operators that, while

irrelevant throughout the genesis phase, could in principle strongly influence the dynamics

around the time when gravity becomes order-one important.

We will show below that at least for a well-defined subclass of the resulting exten-

sions, cosmological solutions do exist that, while resembling galilean genesis at early times,

smoothly extend beyond the time t = t0 as illustrated by the blue curve on figure 1. These

solutions asymptote, starting from some time ti, to an inflationary (quasi) de Sitter space

on which both the scalar and the tensor modes are generated with scale-invariant spec-

trum, just like in inflation. Nevertheless, the scenario at hand — referred to as extended

genesis (EG) below — crucially differs from inflation in that the universe’s evolution at

early times (t� ti) looks nothing like that of the standard NEC-satisfying slow-roll mod-

els. Most importantly, NEC violation provides a possibility to avoid the singularity in the

past, with the universe gradually relaxing to a low- (or even zero-) curvature space as it

is run backwards in time. Due to the latter property, extended genesis can be alterna-

tively viewed as a ‘UV’ (or, to be more precise, as an early-time) -complete realization

of inflation.

In the cases we consider below, the late-time dynamics of EG will be described by

NEC-violating versions of galileon inflation (also referred to as G-inflation) [19] — a model

that possesses a number of phenomenologically attractive properties. First, it can produce

a large tensor-to-scalar ratio within the regime of validity of the effective theory, unlike

the standard slow-roll inflation [20] (see also [21] for an earlier discussion of theories with

enhanced tensor-to-scalar ratio). Second, similar to ghost [22, 23] and DBI [24] mod-

els, galileon inflation can lead to a sizeable equilateral nongaussianity. Finally, since π

itself acquires a scale-invariant spectrum, it is in principle unnecessary to invoke spec-

tator fields (required in many alternatives to inflation) for generating the observed den-

sity perturbations.

The paper is organized as follows. We start in section 2 by spelling out general cri-

teria that a theory, capable of describing the genesis — de Sitter transition of figure 1,

should satisfy. In the same section we give a simple example of a solution with the given

feature. Sections 3 and 4 deal with an analytic construction of such theories, providing

explicit examples of completely stable cosmological solutions exhibiting extended genesis.

In section 5 we study possible effects of higher derivative operators in the effective theory

on the scalar spectrum of the backgrounds under consideration. Finally, in section 6 we

conclude. Technical details, that would overwhelm the main body of the text, are collected

in the two appendices.

The theories described in the rest of the paper are only intended as a starting point for

constructing realistic early universe cosmologies based on EG. While we do touch on this

in what follows, a fully realistic model-building is left for future work. Most importantly,

however, our examples serve as a proof of principle of the possibility to smoothly and stably

connect the inflationary quasi-de Sitter universe to a low or even zero-curvature, maximally

symmetric spacetime in the asymptotic past.
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2 Generalities

Before diving into a more detailed discussion, we briefly highlight the major properties

of theories allowing for the genesis — dS transition. We expect these properties to be

the defining ingredient of any other construction capable of achieving our goals. Most

importantly, the theories of interest enjoy an enhanced symmetry both for small as well

as for large values of the ‘sigma model’ field φ. In both limits eπ � 1 and eπ � 1, the

(flat-space) π-lagrangian will acquire invariance either under dilatations

π(x)→ π(eλx) + λ , (2.1)

describing a scale-invariant theory, such as the conformal galileon [5] (or a more general

class of scale-invariant theories considered in [25]), or under constant shifts

π(x)→ π(x) + λ , (2.2)

describing P (X) or ordinary galileon-type theories2 with ghost condensation, see e.g. [3, 22].

Apart from the two (asymptotically) exact symmetries, for eπ ∼> 1 the theories under

consideration will be approximately invariant under internal galilean transformations,

π → π + bµx
µ , (2.3)

with bµ a constant four-vector.3 The reason it is useful to think of galilean invariance as an

approximate symmetry is that the operator that breaks it has a parametrically suppressed

Wilson coefficient in the effective theory. Approximate invariance under (2.3) then makes

this suppression stable under loop corrections, see the discussion below. Galilean invariance

becomes more and more pronounced as π → 0. As we will see in section 4, in certain cases

the small-field regime will itself consist of two qualitatively different stages — the system

gradually evolving from ghost condensate (described by an effectively shift-symmetric the-

ory) in the asymptotic past, into galilean genesis with an enhanced scale invariance (2.1)

— all while φ� 1.

The asymptotically emergent symmetries are precisely what makes the existence of

NEC-violating cosmologies, interpolating between Minkowski and de Sitter spacetimes

possible. Let us e.g. consider the genesis-de Sitter transition of figure 1. The enhanced

conformal invariance at early times/small field values4 generically gives rise to galilean

genesis-like evolution of the universe, whereby conformal invariance, SO(4, 2), gets broken

down to the maximal de Sitter subgroup SO(4, 1) by a time-dependent π-background5 —

the Hubble rate and the sigma model field eπ growing as time flows from t = −∞ towards

2By ‘P (X) theories’ we mean theories, defined by their lagrangian being an arbitrary function P of the

combination X ≡ −(∂π)2. In the inflationary context these were first studied in [26].
3It is possible to generalize the flat space Galileon to a ghost-free system, non-minimally coupled to

gravity, as done in [27].
4To avoid confusion, we note again that ‘small field values’ refers to the expectation value of the sigma

model field eπ, while the goldstone π is characterized by large negative values in the given regime.
5We stress that while de Sitter group is the (linearly realized) symmetry group of the scalar action, the

geometry throughout the galilean genesis phase remains close to flat.
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t = 0. Whenever eπ starts exceeding unity on the other hand, the emergent shift symmetry

naturally leads to an attractor solution with de Sitter geometry on which the scalar ac-

quires a linear profile, π ∝ t [19, 22]. This qualitatively explains the gradual transformation

between genesis and de Sitter phases as illustrated by the blue curve in figure 1.

Last but not least, the enhanced symmetries for large and small field values lead to

the quantum robustness of the whole qualitative picture. Indeed, both symmetries (2.1)

and (2.2) are broken at order one when eπ ∼ 1, making it hard to argue in favor of quantum

stability of the detailed intermediate-time behaviour of our solutions. Nevertheless, the

scale and shift symmetries are fully intact asymptotically, determining radiative stability

of both the early- and the late-time dynamics. Backgrounds exhibiting the genesis-de Sitter

transition can thus be expected to exist generically, since both of the asymptotic solutions

arise solely from symmetry considerations. A similar discussion of quantum robustness

has been given in ref. [28] in the context of flat-space constructions interpolating between

NEC-satisfying and NEC-violating vacua (see also [25]).

For completeness, in the rest of the section we give a relatively detailed overview of

the two asymptotic regimes of the solutions we wish to study.

Galilean genesis. Conformal symmetry, SO(4, 2), can be generically broken down to its

maximal, de Sitter subgroup SO(4, 1) by a time-dependent scalar profile [5, 29, 30]. One

way to achieve such breaking is via the (simplest non-trivial) conformal galileon lagrangian

S1 =

∫
d4x
√
−g

[
f2e2π(∂π)2 +

f3

Λ3
(∂π)2�π +

f3

2Λ3
(∂π)4

]
. (2.4)

It can be straightforwardly checked that the theory possesses an exact rolling solution on

flat spacetime [10, 30]

eπ = − 1

H0t
, H2

0 =
2Λ3

3f
, (2.5)

leading precisely to the SO(4, 2) → SO(4, 1) breaking pattern. The dilatation invariance,

left unbroken by the background, leads to vanishing of its energy density,6 ρ = 0, while the

pressure p = −2f2/(H2
0 t

4) is negative — implying a strongly NEC-violating (Ḣ � H2)

expansion [10]. The universe described by GG starts out in flat spacetime, the Hubble

rate growing according to the second Friedmann equation 2M2
PlḢ = −(ρ+ p), which upon

integration yields

H ' −1

3

f2

M2
Pl

1

H2
0 t

3
. (2.6)

The time t0 at which gravity starts playing non-negligible role (H ∼ π̇), can be estimated

as in (1.1). It roughly coincides with the time of EFT breakdown/start of reheating.

Scalar perturbations, relevant for the CMB are instead produced at earlier times t ∼< t0,

via minimally coupling an additional, scaling dimension-0 field ϕ to the ‘fake de Sitter’

metric gdS
µν

= e2πηµν . This leads to a scale-invariant spectrum for the spectator ϕ (despite

6This immediately follows from scale invariance (ρ ∝ 1
t4

) plus the energy conservation (ρ̇ = 0).
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the background metric being practically flat), that can be later imprinted on the physical

curvature perturbation ζ through one of the standard mechanisms [31–33]. The near-to-

flat geometry on the other hand implies a strongly blue-tilted tensor spectrum Ph(k) ∼ k2,
largely irrelevant for CMB observations [10].

Galileon inflation. An immediate candidate for describing the late-time de Sitter

asymptotics of the solutions of interest is a cubic galileon theory with a small quartic

self-interaction, defined by the following action

S2 =

∫
d4x
√
−g

[
f2(∂π)2 + γ3

f3

Λ3
(∂π)2�π + γ4

f3

2Λ3
(∂π)4

]
, (2.7)

where γ3,4 are constant parameters. The form of the above action is dictated by the early-

time genesis asymptotics. Indeed, both of the interactions in (2.7) are also present in (2.4),

the only difference between the two theories being that the former lacks scale invariance.

Moreover, the galileon term will be crucial for the speed of sound in the inflationary regime

to be strictly positive.

Inflationary solutions in this theory have been studied in ref. [19], while a model of

dark energy in a related theory has been proposed in [34]. Here we will re-derive all of the

(qualitative) results of [19] using simple EFT considerations. In addition, we will provide

arguments in favor of the quantum robustness of these results — something that, to the

best of our knowledge, has not been pointed out before.

The Friedmann equation and the equation of motion for π take on the following form

on spatially flat FRW backgrounds

H2 =
f2

3M2
PlH

2
0

(
γ4π̇

4 + 4γ3Hπ̇
3 −H2

0 π̇
2
)
, (2.8)(

4γ4π̇
2 + 8γ3Hπ̇ − 2H2

0

)
π̈ + 4γ4Hπ̇

3 + 4γ3

(
3H2 + Ḣ

)
π̇2 − 6H2

0Hπ̇ = 0 , (2.9)

making existence of de Sitter vacua (H = const) with a linear π ∝ t profile explicit — a

direct consequence of shift-invariance (2.2) of the π-lagrangian. Furthermore, the expansion

rate and the scalar profile can be estimated as

H2 ∼ f2

M2
Pl

H2
0 , π̇ ∼ H0 . (2.10)

The simplest and the most straightforward way of studying the spectrum of scalar

perturbations is based on the effective theory of inflation [4, 35]. The formalism is reviewed

in great detail in appendix A and in section 5, so we will content ourselves with a brief

treatment here. The two operators in the effective theory that lead to non-trivial dynamics

at high energies are the δN2 and δNδEii terms in the notation of eq.(5.1). The coefficients

of these terms, given for a generalized theory of section 3 in eq.(A.6) (the present case

corresponds to simply setting F2 = 1 in the latter expressions), are of order

M4 ∼ f2H2
0 , M̂3

3 ∼ f2H0 . (2.11)

– 7 –
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A particularly useful regime of the system is the one corresponding to the short-distance,

decoupling limit, that allows to zoom onto the relevant high-energy degrees of freedom

present in the theory.7 In this limit the dynamics of the scalar is fully captured by the

Goldstone mode corresponding to the breaking of time translation-invariance, which we

will refer to as πg (we will rely on the reader to not confuse the Goldstone boson with the

fundamental galileon field π). The decoupling limit action for πg, assuming M2
PlḢ � f2H2

0 ,

reads [4, 35]

S =

∫
d4x
√
−ḡ
[
M4

0

(
π̇2g − c2s

(∇πg)2

a2

)
−M4

0 π̇g
(∇πg)2

a2
+
M̂3

3

2

∇2πg(∇πg)2

a4
+ . . .

]
, (2.12)

where ḡ is the unperturbed de Sitter metric, and we have made use of the following notation

M4
0 =

M4

2
− 3M̂3

3H ∼ f2H2
0 , c2s =

3M̂3
3H

M4
0

. (2.13)

Recalling that the physical curvature perturbation is related to πg by a gauge transforma-

tion, ζ = −Hπg, one can directly read off the expression for the power spectrum of scalar

perturbations from the Goldstone action (2.12)

〈ζ~k1ζ~k2〉 = (2π)3δ(~k1 + ~k2)
1

k31

H4

M4
0 c

3
s

, (2.14)

where all quantities on the right hand side are assumed to be evaluated at horizon crossing

k1 = aH, as usual. The tensor spectrum on the other hand is given by the universal

formula ∆2
γ ∼ H2/M2

Pl. Using eqs. (2.10) and (2.11), as well as eq.(2.13) for the speed of

sound, one finds the following expressions for the dimensionless power spectra

∆2
ζ ∼

f1/2H2
0

M
5/2
Pl

, ∆2
γ ∼

f2H2
0

M4
Pl

, r =
∆2
γ

∆2
ζ

∼
(

f

MPl

)3/2

, (2.15)

in agreement with the results of [19] (see the latter reference for the computation in the

full theory, including the precise numerical factors). Moreover, one can see from the above

that the tensor-to-scalar ratio can easily be made large enough to be detectable if f is

sufficiently close to MPl — all within the regime of validity of the underlying effective

field theory.

One can go further and estimate the amount of non-Gaussianity that the model under

consideration is expected to generate. The most relevant cubic interactions of πg, giving

the leading non-Gaussian effects have been explicitly written out in (2.12). The three-point

function is of the equilateral shape for both of these [36] (see also [37]). The amplitude on

the other hand can be estimated e.g. for the π̇g(∇πg)2 operator in the standard way [35]

(again, all terms on the r.h.s. should be understood as evaluated at horizon-crossing)

fNL ∼
1

ζ

Lπ̇g(∇πg)2
Lπ̇2

g

∼ 1

Hπ

H (k/a)2 π

H2
=

1

c2s
. (2.16)

7Although a ‘short distance’ limit, the decoupling limit is crucially valid at distances parametrically

greater than the inflationary Hubble scale at which the scalar spectrum is evaluated.
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This leads to the amount of non-Gaussianity similar to that in DBI models of inflation [24].

An analogous estimate shows that the second cubic self-interaction generates a comparable

contribution to fNL.

At this point one may be worried about the UV sensitivity of the obtained inflationary

solution, since the scales suppressing the two (canonically-normalized) interactions in (2.7),

Λ and Λ̃ ≡ (fΛ3)1/4, are parametrically separated8 (Λ̃ � Λ). In fact, this separation is

crucial if all three terms in the lagrangian are to play an equally important role on the

given background; indeed, for f ∼ MPl, one can estimate the magnitude of each operator

(including the kinetic term) to be of order ρdS ≡ f2H2
0 . Interpreting Λ — the smallest of

the two scales — as the quantum cutoff of the theory then, nothing apparently prevents

a loop-generated self-interaction e.g. of the form (∂π)4/Λ4, which would parametrically

dominate over the last term (and therefore over all terms) in (2.7). This would impair the

whole description of the obtained dS backgrounds. Fortunately, the latter reasoning turns

out to be too hasty and the background can in fact be trusted. This can be seen as follows.

Consider all loop diagrams, generating a term of the form (∂π)2n. What is the smallest

scale that can suppress such an operator? To answer this question, we note that whatever

the diagram responsible for this operator is, it can not have an external leg originating from

the cubic galileon vertex, since this would lead to at least two derivatives acting on the

corresponding asymptotic state (the reason for this lies in the non-renormalization theorem

that severely constrains the form of quantum corrections in galileon theories [6]). We thus

conclude that all external legs in the diagram originate from the quartic interaction, which

introduces a suppression of at least one factor of f per pair of fields in the corresponding

effective vertex. The least suppressed loop corrections of the given form thus correspond

to the diagram of figure 2. Assuming that all the rest of the vertices are those of the cubic

galileon (and therefore only introduce factors of Λ, but not of f) and that loop integrals

are cut-off at energies of order the strong-coupling scale of the theory Λ, one arrives at the

following conservative estimate for the magnitude of the operators of the given type

Lloop =
(∂π)2n

fnΛ3k
, k = n− 4

3
. (2.17)

Evaluating Lloop on the classical de Sitter background gives

Lloop = f4/3H
8/3
0 � ρds , (2.18)

independently of n. This leads one to conclude that quantum corrections of the form

(∂π)2n do not modify the background obtained from the lagrangian (2.7). Note that the

non-renormalization properties of the galileon play a crucial role in the latter conclusion.

Furthermore, the fact that π acquires a linear profile on de Sitter backgrounds makes oper-

ators with more than one derivative per field similarly irrelevant, since they are suppressed

by powers of the scale H0, parametrically smaller than f and Λ.

The π ∝ t solution describes a perfect de Sitter space, leading to exactly scale-invariant

perturbations; adding a small potential (or deforming the form of the action otherwise),

8The same is true for the conformally invariant theory (2.4), however there the hierarchy is not a problem,

as it is completely stabilized by conformal symmetry.
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Figure 2. The diagram, responsible for the dominant quantum correction to the background

solution in galileon inflation.

both the scalar and the tensor modes can be produced with slightly tilted spectra — just

as they are in the canonical inflationary case. In addition, to complete the picture one of

course has to specify a mechanism for exiting the de Sitter phase. There are known ways

of achieving this, and we refer the interested reader to works, dealing with similar issues

in various contexts [13, 22, 23, 38].

An explicit example. As a simple example of a theory with the above-described asymp-

totics, one can consider the deformed galilean genesis lagrangian

S =

∫
d4x
√
−g

[
1

2
M2

PlR+ f2
e2π

1 + βe2π
(∂π)2 +

f3

Λ3
(∂π)2�π +

f3

2Λ3
(∂π)4

]
, (2.19)

with β an arbitrary constant. For β = 0 the theory is just the conformal galileon and

when starting out in the GG phase, the expansion rate of the universe diverges and the

background exits the regime of validity of the EFT at some finite time (see the red curve

in figure 1) — the scalar profile growing as eπ ∼ 1/t throughout. For a nonzero β on the

other hand, the dynamics of the system is completely altered as soon as βe2π becomes

of order, or greater than one: the theory becomes effectively described by a P (X)-type

lagrangian with a cubic galileon self-interaction, resulting in transition into an inflationary

de Sitter phase. The corresponding solutions are studied in appendix B, where the existence

of extended genesis cosmologies is illustrated via numerical analysis: the system clearly

exhibits transition from genesis into a quasi-de Sitter regime precisely around the time t0
given in (1.1), see figure 4. Perhaps the only downside of this simple model is the short

temporal region with gradient instability at intermediate times: while completely free from

ghosts, the squared speed of sound of the scalar perturbation goes slightly negative on the

given background around t ∼ t0 for a period of roughly a Hubble time, as shown in figure 4

(we will track down the origin of the gradient instability analytically in section 4 ). While

certainly a problem in the classical theory, higher-order effects can in principle take care of

this issue — rendering the cosmological evolution free from instabilities, see the discussion

in section 5 and appendix B.
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We refer the reader to appendix B for a detailed discussion of numerical solutions to

the illustrative model (2.19), and turn to a systematic construction of theories leading to

early universe cosmology with the genesis — dS transition in the next section.

3 Generalized galileons

In the present and the next sections we will take on the task of obtaining (analytic) cos-

mological solutions exhibiting extended genesis. Rather than constructing solutions to

a particular theory obeying the asymptotic scale and shift symmetries described in sec-

tion 2, we will employ the trick used in ref. [28], where the appropriate theory itself is

inverse-engineered based on a postulated ansatz for the desired cosmological solution. The

asymptotic symmetries, as we will see, then follow automatically from the construction

which we describe in what follows.

Consider a (generally dilatation-breaking) deformation of the galilean genesis lagran-

gian

Sπ =

∫
d4x
√
−g

[
f2F1(π)(∂π)2 +

f3

Λ3
(∂π)2�π +

f3

2Λ3
F2(π)(∂π)4

]
(3.1)

where F1,2 are a priori arbitrary dimensionless functions of the galileon field π. We will

interchangeably use the two scales Λ andH0 (as defined in (2.5)) throughout. The dynamics

of the system is governed by the Einstein’s equations plus the scalar equation of motion.

These however are not independent: as a consequence of diffeomorphism invariance, the

scalar equation can be traded for the conservation of its stress-energy tensor via

∇µTµν = −δS
δπ
∂νπ . (3.2)

On homogeneous FRW backgrounds, it is the energy conservation, ρ̇ + 3H(ρ + p) = 0,

that yields the π equation of motion. Energy conservation on the other hand follows from

the temporal and space components of the Einstein’s equations — therefore we can choose

the latter two to make up a complete system determining background evolution. The

stress-energy tensor, sourced by π in (3.1) is

T π
µν

= − f2F1(π) [2∂µπ∂νπ − gµν (∂π)2]

− f3

Λ3
[2∂µπ∂νπ�π − ∂µπ∂ν(∂π)2 − ∂νπ∂µ(∂π)2 + gµν∂λπ∂

λ(∂π)2]

− f3

2Λ3
F2(π) [4(∂π)2∂µπ∂νπ − gµν (∂π)4] , (3.3)

leading to the following expressions for the energy density and pressure due to a homoge-

neous π-profile

ρ =
f2

H2
0

π̇2
[
F2(π)π̇2 + 4Hπ̇ −H2

0F1(π)
]
, (3.4)

p =
f2

3H2
0

π̇2
[
F2(π)π̇2 − 4π̈ − 3H2

0F1(π)

]
. (3.5)
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The two functions F1,2(π) can be solved for with the help of the temporal and spatial

components of Einstein’s equations, 3M2
PlH

2 = ρ and M2
Pl(3H

2 + 2Ḣ) = −p, which yields

F1 =
6M2

PlH
2
0H

2 + 3M2
PlH

2
0 Ḣ − 2f2Hπ̇3 − 2f2π̇2π̈

f2H2
0 π̇

2
(3.6)

F2 =
9M2

PlH
2
0H

2 + 3M2
PlH

2
0 Ḣ − 6f2Hπ̇3 − 2f2π̇2π̈

f2π̇4
. (3.7)

Now, for any postulated homogeneous profile of the scalar and the Hubble rate, one can

find the theory (i.e. find F1,2(π)) such that the desired background solves its equations of

motion. The recipe for constructing the relevant solutions is given as follows:

• Postulate background profiles π0(t) and H(t)

• For the chosen background solutions, find the time-dependent functions F1,2(t) with

the help of (3.6) and (3.7)

• Invert the expression for π0(t) to find t = t(π0)

• Using the previous steps, find F1,2 as functions of π0: F1,2 = F1,2 (t(π0)) .

That way one can formally construct theories admitting arbitrary cosmological profiles

for π and H. Although such an ad hoc construction might look uncomfortable, we will

see that at least for the solutions we will be interested in, it will lead to theories that

enjoy various types of asymptotic symmetry, making them highly non-generic in the sense

discussed in section 2.

Perturbations. As a next step, we check whether the cosmological solutions obtained

through the above procedure are stable. This can be done with the help of the analysis

spelled out in appendix A. In the unitary gauge, defined by the absence of π-fluctuations,

π(x, t) = π0(t), the only scalar degree of freedom present in the theory is captured by

the standard curvature perturbation of equal-density hypersurfaces ζ, that enters into the

perturbed spatial metric in the following way

gij = a(t)2(1 + 2ζ)δij . (3.8)

The curvature perturbation is an exactly massless field, which directly follows from the

fact that ζ = const should be a legitimate solution, since gij in this case is obtained from

the unperturbed FRW metric by a mere constant rescaling of spatial coordinates (this, of

course, is also the origin of conservation of ζ at super-horizon distances).

Having the background quantities at hand, one can readily derive the quadratic ζ

action following the standard procedure [39]

Sζ =

∫
d4x a3

[
A(t) ζ̇2 −B(t)

1

a2

(
~∇ζ
)2
− C(t)

1

a4

(
~∇2ζ

)2 ]
. (3.9)
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The kinetic coefficients A and B are found to be [4, 10]

A(t) =
M2

Pl(−4M4
PlḢ − 12M2

PlHM̂
3 + 3M̂6 + 2M2

PlM
4)

(2M2
PlH − M̂3)2

, (3.10)

B(t) =
M2

Pl

(
−4M4

PlḢ + 2M2
PlHM̂

3 − M̂6 + 2M2
Pl∂tM̂

3
)

(2M2
PlH − M̂3)2

, (3.11)

while C(t) = 0 for our ‘classical’ action (3.1) (it will be nonzero once we include higher-

order terms in the effective theory in section 5). Explicit expressions for the time-dependent

coefficients M̂3 and M4 are given in eq. (A.6). Apart from other background quantities,

these explicitly depend on the function F2(π0). Using the expression (3.7) for the latter,

one finds

A = 3M2
Pl

36M4
PlH

4
0H

2+9M4
PlH

4
0 Ḣ − 18M2

Plf
2H2

0Hπ̇
3 − 6M2

Plf
2H2

0 π̇
2π̈+4f4π̇6

(3M2
PlH

2
0H − 2f2π̇3)2

, (3.12)

B =
−9M6

PlH
4
0 Ḣ + 6M4

Plf
2H2

0Hπ̇
3 + 18M4

Plf
2H2

0 π̇
2π̈ − 4M2

Plf
4π̇6

(3M2
PlH

2
0H − 2f2π̇3)2

, (3.13)

while the speed of sound for short wavelength scalar perturbations is given by c2s = B/A.

Positive A and B throughout the entire course of cosmological evolution guarantee the

absence of ghost and gradient instabilities respectively.

As a quick check, one can apply the above piece of formalism to galilean genesis [10].

Plugging the scalar and Hubble profiles, (2.5) and (2.6) into the expressions for the curva-

ture perturbation’s kinetic coefficients (3.12) and (3.13), one obtains the following values

for the latter quantities to the leading order in MPl:

A(t) = B(t) =
9M4

PlH
2
0

f2
t2 . (3.14)

This precisely agrees with the expressions found in [10].

4 Extended genesis: analytic solutions

While the recipe, spelled out in the previous section formally allows to construct theories

admitting essentially arbitrary cosmological solutions, most of these fail to be physically

meaningful in one way or another. A generic such solution will lead to either ghost or

gradient instability at the level of small perturbations; moreover, most of the resulting

theories will be free from symmetries — even the asymptotic ones, casting shadow on

quantum robustness of the whole picture. Nevertheless, we will show in this section that a

class of theories exists, that admit completely stable cosmological solutions interpolating

between a low/zero curvature maximally symmetric spacetime in the far past and a larger

curvature inflationary dS spacetime in the future — with a strong/moderate violation of

the null energy condition in between. Importantly, we will see that asymptotically these

theories enjoy symmetries of the kind described in section 2.
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Let us work in a coordinate system such that time runs from t = −∞ towards t = 0

over the cosmological phase of interest. At (or shortly after) t = 0, the system is assumed

to reheat, or exit the given phase otherwise. Inspired by the early-time galilean genesis

asymptotics (2.5) and (2.6), we will adopt the following ansatz for the Hubble rate

H = λ+ β
f2

M2
PlH

2
0

π̇30 , (4.1)

where λ and β are free parameters (of mass dimension one and zero respectively) of the

theory, giving rise to the solution of interest. For the scalar, we will assume the ansatz of

the following form (which is again motivated by the genesis solution)

eπ0 =
1

H0

1

t∗ − t
. (4.2)

Here, t∗ > 0 is yet another free parameter with mass dimension minus one. While resem-

bling GG at early times (and for sufficiently small λ), (4.1) and (4.2) describe a cosmology

regularized towards t → 0−, so that none of the invariants in the theory grow unbounded

over the entire interval t ∈ [−∞, 0]. Galilean genesis is recovered at all times for the

particular values of the parameters λ = 0, β = 1/3 and t∗ = 0. For λ 6= 0 on the other

hand, there is a crucial difference: rather than from flat, Minkowski spacetime, the system

starts out evolving from de Sitter space with the curvature set by the parameter λ.

In order for the universe to be described by inflationary de Sitter geometry at t→ 0−,

the parameters of the theory should satisfy certain constraints. One such constraint arises

from requiring the Hubble rate not to vary considerably over a single e-fold at |t| � t∗.

The necessary condition for that is:

1� ε ≡ Ḣ

H2

∣∣∣∣
t→0

∼


M2

PlH
2
0

βf2
t2∗ , if λ� β f2

M2
PlH

2
0

1
t3∗

β
λ2

f2

M2
PlH

2
0

1
t4∗
, if λ� β f2

M2
PlH

2
0

1
t3∗
.

(4.3)

Not surprisingly, this condition is equivalent to the one constraining π̇ to be quasi-constant

at late times:

1

H

d

dt
ln π̇0 � 1 . (4.4)

This shows that π can indeed be approximated by a linear profile towards t→ 0−, leading

to galileon inflation discussed in section 2.

In the rest of this section we will study various interesting regions in the six-dimensional

space spanned by the free parameters (MPl, f,H0, λ, β, t∗) of the theory.

4.1 λ = 0

We begin with the case that, in the asymptotic past, the system starts out evolving from

flat spacetime. This happens for λ = 0. As a quick consistency check, one can derive

the conformally invariant GG lagrangian (2.4) from our ansatz for the extended genesis

cosmology, following the inverse construction of the previous section. Indeed, plugging (4.1)
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and (4.2) (with β = 1/3) into the expressions for F-functions, (3.6) and (3.7), we find at

the leading order in 1/M2
Pl (and at times |t| � t∗)

F1 =
1

H2
0 t

2
= e2π, F2 = 1 . (4.5)

This precisely corresponds to the conformal galileon. For values of β other than 1/3, on

the other hand, our ansatz describes subluminal versions of GG [11] at |t| � t∗.

Concentrating on the full solution, including times |t| ≤ t∗, stability of the system

requires that the kinetic coefficients in (3.9) are positive at all times. For λ = 0, they are

given as follows

3(2M2
PlH − M̂3)2H4

0

4M2
Pl

A = 2(4 + 15x+ 18x2)f4π̇6 + 3(4 + 9x)M2
Plf

2H2
0 π̇

2π̈ , (4.6)

3(2M2
PlH − M̂3)2H4

0

4M2
Pl

B =
(
2xf2π̇4 − 9xM2

PlH
2
0 π̈
)
f2π̇2 , (4.7)

where we have defined x = β − 2/3 for further convenience. As an immediate observation,

we note that A is manifestly positive for positive x (both π̇ and π̈ are positive at all

times for our ansatz), while B does not have a definite sign. For the special case that the

parameter x is small however, B can be made arbitrarily small, compared to A, implying

a vanishing speed of sound for ζ. This is similar to what happens in ghost condensation,

where the absence of gradient instability is determined by higher-order operators in the

effective theory.

It is straightforward to see that B cannot be positive over the entire temporal interval

of interest — at least for our ansatz (4.1). Indeed, we are interested in solutions, that start

in galilean genesis at t→ −∞ and end up in the inflationary phase at t→ 0−. As shown in

the previous section, the latter phase requires π̇ to be practically constant, meaning that

the second term in the parentheses on the r.h.s. of (4.7) should be negligible compared

to the first one at late times. Positivity of B at late times then requires x > 0. On the

other hand, galilean genesis corresponds to the second term prevailing at sufficiently early

times, since π̈ ∼ 1/t2 decreases parametrically slower than π̇4 ∼ 1/t4 at large and negative

t. For x > 0 however, this would lead to gradient instability at early times. In contrast, in

the opposite case of x < 0, one would recover gradient instability at late times, while the

early-time genesis phase would be completely stable. One is therefore led to conclude that

gradient instability is unavoidable for the given choice of the ansatz (4.1) in the λ = 0 case

— at least at the leading order in derivative expansion.

Concentrating on negative x (so that the genesis phase is stable), the time at which

gradient instability occurs (i.e. when B flips sign) is of order |τ | ∼ f/(MPlH0). The slow-

roll parameter at that time can be readily estimated, ε ∼ M2
PlH

2
0τ

2/f2 ∼ 1, see eq. (4.3).

This means that the gradient instability for λ = 0 solutions necessarily kicks in before the

onset of the de Sitter regime, explaining the pattern we have found via numerical analysis

in section 2 (see also appendix B).

We end the present subsection with a couple of consistency checks for our calculations.

First, we note that for x = −1/3 corresponding to galilean genesis, one recovers an exactly
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luminal scalar mode, c2s = B̃/Ã = 1 at early times. Moreover, as stressed several times

above, the late-time de Sitter phase should correspond to an enhanced shift symmetry on

π. That this is indeed the case is the result of quasi-constancy of the F functions

1

H

d

dt
lnF1,2 � 1 . (4.8)

which, as can be straightforwardly verified, directly follows from (the λ = 0 version of)

eq. (4.3) — the condition for the universe to be described by de Sitter geometry at |t| � t∗.

4.2 λ 6= 0

We now turn to the case that in the asymptotic past the universe starts out evolving from

de Sitter space, rather than Minkowski, λ 6= 0. The curvature of the initial state is of order

R ∼ λ2 and is a free parameter of the theory; if its value is strictly zero, we have seen that

the resultant cosmological solution suffers from a gradient instability before the onset of

de Sitter regime for much of the parameter space — at least if one ignores higher-order

operators in the effective theory. However, for non-zero λ, as we will now demonstrate,

gradient instabilities can be avoided even in the ‘classical’ theory, that is without invoking

higher-derivative terms in the EFT for perturbations.

The kinetic coefficients (3.12) and (3.13), evaluated on the given ansatz are:

A =
M2

Pl

3

36M4
PlH

4
0λ

2τ6+3M2
Plf

2H2
0 [(−(10+24x)λτ+4+9x)]τ2+f4(8+30x+36x2)

(f2x−M2
PlH

2
0λτ

3)2
,

B =
M2

Pl

3

M2
Plf

2H2
0 (−2λτ − 9x)τ2 + 2f4x

(f2x−M2
PlH

2
0λτ

3)2
,

where we have defined τ ≡ t−t∗ ≤ −t∗ . An important observation that we will use in what

follows is that for positive x, and for ε̄ ≡ λt∗ > 9x/2, both A and B are manifestly positive

(and finite) at all times, as can be readily verified by inspecting the above expressions.

Given that a strictly vanishing λ is not allowed by stability, how small can it be? The

smallness of the initial curvature can be conveniently characterized by

H(t = 0)

H(t = −∞)
=

(
λ
M2

PlH
2
0 t

3
∗

βf2

)−1
∼ 1

εε̄
. (4.9)

Note that, while ε � 1 is required by the late-time de Sitter space, ε̄ is in principle an

unconstrained parameter of the theory.

To summarize, choosing x < 2ε̄/9, one can arrange for a manifestly stable cosmological

solution, interpolating between two de Sitter spacetimes with an arbitrary ratio of the

corresponding asymptotic curvatures. Moreover, the larger is the separation between the

asymptotic Hubble rates (4.9), the smaller is the deviation of the late-time geometry from

perfect de Sitter space. The speed of sound of the curvature perturbation at t = 0 can be

readily evaluated from the above expressions for the kinetic coefficients

c2s(t = 0) =
x(2− 9ε) + 2εε̄

8 + 30x+ 36x2 +O(ε)
. (4.10)

– 16 –



J
H
E
P
1
2
(
2
0
1
4
)
1
5
1

Figure 3. The ‘slow-roll’ parameter ε (left) and the speed of sound of the curvature perturbation

c2s (right) as functions of time on the solution (4.1), (4.2). The scales f and MPl have been assumed

equal, while the rest of the parameters have been chosen to be: H0 = 1, λ = 10−3, t∗ = 10−2, x = 0.

The two colors correspond to ε < 10 (blue) and ε > 10 (red).

Note that the asymptotic c2s is finite. For ε = 0, its magnitude is bounded from above by

c2s < 0.031, which can be found by maximizing the expression (4.10) for the squared speed

of sound.9

Let us for simplicity set x = 0 from now on. One distinct property of our ansatz is that

the coefficient A, having a contribution constant in time, becomes parametrically greater

than B at |t| � t0, as B ∼ −1/t3 at large and negative t. This means that the speed of

sound of the curvature perturbation tends to zero at early times.

What is the theory describing the asymptotic past of the background solutions at

hand? To answer this question, we evaluate the F functions from our deformed galileon

action (3.1). At the leading order in 1/t, one finds

F1 = 6
M2

Plλ
2

f2H2
0

(H0t)
2 = 6

M2
Plλ

2

f2H2
0

e−2π ,

F2 = 9
M2

Plλ
2

f2H2
0

(H0t)
4 = 9

M2
Plλ

2

f2H2
0

e−4π ,

which implies the following form of the scalar action

Searlyπ =

∫
d4x
√
−g

[
6
M2

Plλ
2

H2
0

e−2π(∂π)2 +
2

3

f2

H2
0

(∂π)2�π + 3
M2

Plλ
2

H4
0

e−4π(∂π)4
]
.

In the regime of interest, eπ ∼ 1/t and the first and the third terms in the parentheses

are constant, while the second (the cubic galileon) goes as ∼ 1/t3 and is thus completely

irrelevant in the asymptotic past.10 Once the cubic galileon is neglected however, the

theory acquires a global symmetry. To see it, it is useful to define a new field χ = e−π,

in terms of which the two relevant operators are simply (∂χ)2 and (∂χ)4, and the new

symmetry is immediately identified as invariance under constant shifts χ→ χ+ c (while in

9Cf. the analytic bound on the scalar speed of sound c2s < 0.031 in galileon inflation, quotted in [19].
10The latter estimate comes from the Hπ̇3 piece, coming from the expansion of the covariant derivative

on a de Sitter background.
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terms of π this symmetry looks more complicated: π → − ln (e−π + c)). This shows, that

the early-time λ 6= 0 cosmology is effectively described by a ghost condensate-type theory,

albeit written in obscure variables (and hence the vanishing speed of sound)! Needless to

say, the emergent global symmetry comes hand-in-hand with all the attractive properties,

classical or quantum, characteristic of ghost condensation,11 see [3, 22].

To get a more quantitative perspective on the above discussion, let us consider the solu-

tions (4.1) and (4.2) for a specific set of available parameters. As an immediate observation,

we note that the Hubble rate does not depend on the magnitude of f and MPl separately

(as far as external matter or bare cosmological constant are not introduced into the system)

— physical quantities are only sensitive to the ratio of the two scales. As a result, one can

arbitrarily set the physical units for any one quantity at any one instant of time. For ex-

ample, the Hubble scale at time t = 0 can be freely chosen to be H(0) = 1014 GeV in some

putative system of units where H0 ≡ 1. With this in mind, we set f = MPl, and consider

the following values for the rest of the parameters: H0 = 1, λ = 10−3, t∗ = 10−2, x = 0,

satisfying (the first case of) the late-time dS condition, eq. (4.3).

The time-dependence of the ‘slow roll’ parameter ε = Ḣ/H2 (left) and the speed of

sound of the curvature perturbation c2s (right) for the above choice of the theory parameters

is shown in figure 3. From how ε depends on time, one can distinguish three stages of

evolution, according to whether the system violates the NEC strongly (red), or weakly

(blue). The universe starts out in de Sitter space (ε ' 0) with tiny curvature ∼ λ2, the

Hubble rate as well as the slow-roll parameter ε gradually increasing with time. When ε '
10, it enters into the galilean genesis phase with strong violation of the null energy condition.

Peaking at ε ∼ 102 at intermediate times, NEC-violation weakens down back to ε ' 10 at

t ' −1.5 (signalling the beginning of the third, galileon inflation stage), ε decreasing to

sub per-cent values shortly afterwards (the final phase of the system corresponds to the

blue ends of the curves near t→ 0 in figure 3).

While the concluding, inflationary de Sitter phase seems rather short in its extension

in time, the large magnitude (in units of H0) of the expansion rate at those times allows

it to accomodate a large number of e-folds. Indeed, from t = −0.1 (ε ' 5 · 10−2) up until

t = 0 (ε ' 5 · 10−4), the number of times the scale factor doubles can be easily estimated

Ne =

0∫
−0.1

Hdt ' 3300 , (4.11)

showing that the de Sitter phase towards the end of the temporal interval of interest is in

fact very extended. Furthermore, the Hubble parameter at t = 0 is H(0) ∼ 106, implying

a huge ratio of de Sitter expansion rates in the asymptotic future and the asymptotic past

H(0)

H(−∞)
∼ 109 . (4.12)

The right panel of figure 3 shows the evolution of the scalar speed of sound. As

remarked above, c2s starts evolving from nearly zero value at early times, as required by

11That the given solution indeed describes ghost condensation can also be seen from the fact that χ

acquires a linear profile, χ = −H0t, just as the ghost field does on self-accelerated backgrounds.
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ghost condensate-type cosmologies. Peaking at c2s ' 2 · 10−3 during the genesis stage, it

drops down again towards late-time galileon inflation.

While ghost condensation, described by a P (X)-type theory implies vanishing speed

of sound of the scalar perturbation at the leading order [3], galileon inflation (described

by a P (X) lagrangian plus one or more galileon terms) does not necessarily lead to c2s = 0

although, as discussed before, there is an upper bound c2s ≤ 0.031 in the latter class of

models with a single cubic galileon [19]. Our solutions however qualitatively (and crucially)

differ from ‘tilted’ ghost condensate with NEC violation considered in [4] in that the speed

of sound, although small, is strictly positive at all times. The latter is not true for pure

P (X) theories: violation of the null energy condition unambiguously implies either ghost

or gradient instabilities at the leading order in the ghost condensate [1, 2].

At early times, the tiny speed of sound of the scalar mode suggests that higher-order

operators in the effective theory for perturbations [4, 35] could be qualitatively affecting the

dynamics of the system. Moreover, depending on the nature of the UV completion, higher-

derivative terms could also play a role in the intermediate, galilean genesis phase. In order

to estimate these effects, we turn to exploring the structure of the next-to-leading-order

action in the EFT formalism in the following section.

5 Beyond the leading order

The tiny asymptotic scalar speed of sound found for the EG solutions motivates to go

beyond the leading order in the EFT for perturbations to assess the role of higher-derivative

operators in stability of the system. The generic action for metric fluctuations on a FRW

background driven by a single ‘clock’ has the following form (excluding the Einstein-Hilbert

part) [4, 35]

Sπ =

∫
d4x
√
g3N

[
−M2

PlḢ
1

N2
−M2

Pl(3H
2 + Ḣ)

+
1

2
M4(t)(δN)2 − M̂3

3 (t)δEiiδN −
M̄ ′(t)2

2
δEijδEij −

M̄(t)2

2
δEi 2

i + . . .

]
, (5.1)

where g3, N and Ni are the standard ADM variables [40], while Eij is related to the

extrinsic curvature of equal-time hypersurfaces, see appendix A for a detailed discussion.

Furthermore, δN and δEij denote perturbations of the corresponding quantities over their

background values. The ‘classical’ theory (3.1) generates only the first two terms on the

second line of (5.1), and all of the above analysis has assumed vanishing M̄ and M̄ ′ (as

well as yet higher-derivative operators, implied by the ellipses). In practice, the latter

coefficients are expected to be present, although suppressed in derivative expansion.

In what follows, we assume nonzero M̄2 and M̄ ′2 in computing the quadratic action for

ζ on extended genesis backgrounds.12 The results, given in (A.17)–(A.19) of appendix A,

are rather tedious and reluctant to simple analysis in their exact form. To simplify life,

we will expand all relevant quantities to linear order in M̄2 and M̄ ′2, assuming these are

12Both M̄2 and M̄ ′2 can in principle have either sign. The notation used for these coefficients only serves

to emphasize their mass dimension.
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small in the sense that higher order terms in the expansion give subleading corrections —

something we will justify a posteriori. The procedure yields the following expressions for

the kinetic coefficients13 A, B and C on backgrounds corresponding to the second, λ 6= 0

case of the previous section

A =
2

3M2
PlH

4
0λ

2τ6
(
18M4

PlH
4
0λ

2τ6 − 3M2
Plf

2H2
0 (5λτ − 2)τ2 + 4f4

)
+ p1M̄

2 + p2M̄
′2,

B = −2

3

f2

H2
0λ

1

τ3
+ p3M̄

2 + p4M̄
′2 + q3∂t(M̄

2) + q4∂t(M̄
′2),

C =
M̄2 + M̄ ′2

2λ2
,

where we have defined τ ≡ t− t∗ < 0 and introduced auxiliary coefficients pi and qi, given

as follows

p1 = − 1

18M8
PlH

8
0λ

4τ12
(
27M4

PlH
4
0λ

2τ6 − 6M2
Plf

2H2
0 (5λτ − 2)τ2 + 8f4

)2
,

p2 = − 1

18M8
PlH

8
0λ

4τ12

[
1107M8

PlH
8
0λ

4τ12 − 1980M6
Plf

2H6
0λ

3τ9 + 792M6
Plf

2H6
0λ

2τ8

+ 1428M4
Plf

4H4
0λ

2τ6 − 720M4
Plf

4H4
0λτ

5 + 144M4
Plf

4H4
0τ

4

− 480M2
Plf

6H2
0λτ

3 + 192M2
Plf

6H2
0τ

2 + 64f8
]
,

p3 = − 1

18M6
PlH

6
0λ

3τ9

[
81M6

PlH
6
0λ

3τ9 − 18M4
Plf

2H4
0 (8λ2τ2 − 17λτ + 8)τ4

+ 84M2
Plf

4H2
0 (λτ − 2)τ2 − 16f6

]
,

p4 = − 1

18M6
PlH

6
0λ

3τ9

[
99M6

PlH
6
0λ

3τ9 − 6M4
Plf

2H4
0 (26λ2τ2 − 51λτ + 24)τ4

+ 84M2
Plf

4H2
0 (λτ − 2)τ2 − 16f6

]
,

q3 = − 1

6M4
PlH

4
0λ

3τ6
[
27M4

PlH
4
0λ

2τ6 − 6M2
Plf

2H2
0 (5λτ − 2)τ2 + 8f4

]
,

q4 = − 1

6M4
PlH

4
0λ

3τ6
[
33M4

PlH
4
0λ

2τ6 − 6M2
Plf

2H2
0 (5λτ − 2)τ2 + 8f4

]
.

An immediate and important observation is that all of the coefficients pi and qi are sign-

definite (negative) at all times. Moreover, since different linear combinations of M̄2 and M̄ ′2

enter into B and C, nothing prevents us from choosing the former pair of EFT coefficients

such that both B and C are positive — thus avoiding any instability over the entire

cosmological period of interest!

Furthermore, we have found in the previous section that the speed of sound of the scalar

mode tends to zero (c2s → 0+) in the asymptotic past for the backgrounds corresponding to

EG. This suggests that t → −∞ is precisely the regime where higher-order corrections in

13The signs are defined so that all kinetic coefficients have to be positive for complete stability (stability

at all wavelengths) of the corresponding background.
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the EFT for perturbations could play an important role. In fact, in the case that M̄, M̄ ′ fall

off slower than 1/t3 at early times, higher-order effects give contributions that dominate

over the leading-order piece in the coefficient B at early times.14 Focusing on the t→ −∞
ghost condensate regime (and neglecting time derivatives of M̄, M̄ ′ for simplicity), we find

A = 12M2
Pl +O

(
M̄2, M̄ ′2

)
, (5.2)

B = −2

3

f2

H2
0λ

1

t3
− 9

2
M̄2 − 11

2
M̄ ′2 +O

(
M̄4

M2
Pl

,
M̄ ′4

M2
Pl

)
, (5.3)

C =
M̄2 + M̄ ′2

2λ2
+O

(
M̄4

M2
Plλ

2
,
M̄ ′4

M2
Plλ

2

)
. (5.4)

Again, since B and C involve different linear combinations of M̄2 and M̄ ′2, one can freely

choose the values for the latter two coefficients, such that the theory is free from any

instability.15

Moreover, in the case that M̄, M̄ ′ drop off slower than 1/t3 for large and negative

times, the asymptotic speed of sound of the scalar perturbation is set by the ratio

c2s =
|9M̄2 + 11M̄ ′2|

24M2
Pl

,

and is not necessarily infinitesimally close to zero if at least one of the two EFT coefficients

M̄ and M̄ ′ tends to a constant at early times.16

To summarize, we have found that beyond-the-leading-order structure of the effective

theory for perturbations does possess enough freedom to allow to cure (weak) classical

gradient instability. Whenever the speed of sound of the scalar mode vanishes at the

leading order on the other hand, higher-order effects can push the corresponding solution

into a completely stable direction.

6 Conclusions and future directions

Despite the extremely compelling picture of the early cosmology that standard slow-roll

inflation provides us with, it is still fair to say that it is not the only possible one. The ques-

tion of how far alternative scenarios can go in adequately describing the observed universe

has been a strong motivation for expanding the theory space in non-standard directions.

Perhaps the most dramatic departure from the inflationary paradigm corresponds to the-

ories that violate the null energy condition, thereby allowing for a qualitatively different

14This seemingly casts shadow on the very meaning of our expansion in small M̄, M̄ ′; fortunately, a

closer inspection of (A.17)–(A.19) shows that the expansion parameters at t → −∞ are in fact M̄2/M2
Pl

and M̄ ′2/M2
Pl — meaning that next-order corrections in the series indeed give subleading effects.

15Note that there is in fact even more freedom: one could always make the coefficient C positive by

adding a term of the form
√
g3NR

2
3 (which does not affect the quadratic action for tensor perturbations)

to (5.1), see the discussion in appendix B.
16Note, that the squared speed of sound also sets the magnitude for the expansion parameter

in (5.2)–(5.4).
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evolution of the early universe that, among other interesting features, is capable of smooth-

ing out the Big-Bang singularity. That this can happen without instabilities for a universe

starting out from the flat, Minkowski spacetime has been shown in refs. [4, 10, 15].

A common feature of alternatives to inflation based on NEC violation is that they

usually predict a strongly blue-tilted and unobservable (at least in the CMB experiments)

spectrum of tensor perturbations. The ultimate reason for this lies in the fact that the

phenomenologically interesting phase of cosmological evolution happens on quasi-flat back-

grounds. Would then a detection of primordial B modes in CMB polarization conclusively

rule out these theories?

In this paper we have argued that the answer to this question is negative. We have

constructed explicit theories that lead to an early universe cosmology interpolating between

a small/zero curvature maximally symmetric (dS or Minkowski) spacetime in the far past

and an inflationary de Sitter spacetime, capable of generating a scale-invariant tensor

spectrum of significant amplitude in the asymptotic future; this is possible because, at

intermediate times, the system can strongly violate the null energy condition (Ḣ � H2)

as it happens in genesis models — all without developing any kind of instability. The

corresponding backgrounds can be viewed as a regularized extension of galilean genesis —

one for which none of the physical quantities grow beyond the cutoff scale. Alternatively,

one can view them as a certain ‘UV’ (or, to be more precise, an early-time) -complete

realization of inflation, that leads to a (almost) flat pre-inflationary universe.

Being deformations of the conformal galileon, the theories constructed above enjoy non-

linearly realized emergent symmetries at both the early- and the late-time asymptotics. It

is in fact precisely the nature of the asymptotics that determines the qualitative picture of

the cosmological solutions of interest: these are described by quantum-mechanically stable,

robust theories based solely on symmetry principles. An alternative, and very interesting

realization of genesis cosmologies occurs in the context of the Dirac-Born-Infeld (DBI)

models [15, 16]. Needless to say, it would be interesting to see how our construction carries

over to theories enjoying asymptotic DBI-like symmetries.

At this stage, the presented models are not intended as fully realistic, however upon

slight adjustment they should become capable of facing observational challenges. While re-

alistic model-building is beyond the scope of this paper, we briefly list the phenomenological

questions that remain to be addressed. Above all, a mechanism for exiting the inflationary

de Sitter regime/reheating has to be specified.17 Another question is that of the observed

negative scalar tilt, which is not characteristic of NEC- violating inflationary theories with

the inflaton being the field responsible for adiabatic perturbations. The negative tilt of

density perturbations can arise from small shift-symmetry breaking effects (necessary to

end the de Sitter phase), or through the standard mechanisms such as curvaton [31, 32]

(see [41] for an early discussion of the idea) or inhomogeneous reheating [33]. Furthermore,

we have seen that on extended genesis backgrounds, the scalar perturbations are charac-

terized by a relatively small speed of sound. Quite generally, small scalar speed of sound

17This can be done e.g. by giving a step function-like potential to the scalar as in ghost inflation —

a mechanism that can be implemented in a technically natural way since the asymptotic shift symmetry

breaking becomes localized in field space in this case, see, e.g. [22].
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translates into large equilateral non-gaussianity [35] — a result that follows solely from

the requirement of nonlinearly realizing the broken time translation invariance.18 These,

among other phenomenological aspects, will be discussed elsewhere.

Putting aside phenomenology, our models serve as a proof of principle for the possibility

to smoothly and stably connect an inflationary quasi-de Sitter universe to a much lower, or

even zero-curvature, maximally symmetric spacetime in the asymptotic past — all without

exiting the regime of validity of the underlying EFT.

The fundamental status of NEC violation in quantum field theory is far from being

clear as of the time of writing. Possible issues with black hole thermodynamics [44] and

closed timelike curves [45] for general NEC-violating theories have been pointed out before.

Other potential issues have been recently discussed in [46]. It is however not clear whether

these represent consistency problems for concrete constructions, capable of violating the

NEC within a low-energy effective description, see a recent discussion on this point [47].

Pinning down the status of NEC violation in fundamental quantum field theory represents

a separate interesting direction of research on its own.
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A The EFT for cosmological perturbations

In this appendix we summarize some of the technical details on computing the two point

function of adiabatic perturbations on NEC-violating cosmological backgrounds. We closely

follow the discussion of [4, 10], generalizing the relevant expressions found in those refer-

ences whenever appropriate.

Galileons in ADM variables. It will prove convenient to work in the (3 + 1) form of

our generalized galileon action (3.1). The necessary expressions have been derived in [10],

and we just summarize their results, with a minimal amount of adjustment relevant to

our case. The (3 + 1) decomposition of spacetime [40] yields the following form for the

four-dimensional metric

ds2 = −N2dt2 + gij(N
idt+ dxi)(N jdt+ dxj) , (A.1)

18In addition, the small scalar speed of sound leads to an interesting effect, whereby the scalar perturba-

tions of a given comoving wavelength freeze out earlier than the tensor modes leading to an enhancement

of the tensor-to-scalar ratio, see e.g. the discussion of refs. [42, 43]. In our context, this could lead to a

striking possibility of scalars freezing out in the genesis phase, while the tensors — in the inflationary one.
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where N ≡ 1/
√
−g00 and N i are the standard lapse and shift variables, while gij is the

induced metric on equal-time hypersurfaces (its determinant denoted by g3 in what follows).

In the unitary gauge defined by the absence of π-perturbations, π(x, t) = π0(t), the full

action (3.1) can be written in terms of these variables in the following way (see [10] for

derivation in the case of galilean genesis, F1 = e2π0 and F2 = 1)

S = Sg + Sπ (A.2)

Sg =
1

2
M2

Pl

∫
d4x
√
g3N

[
R3 + (KijKij −Ki 2

i )
]

(A.3)

Sπ = f2
∫
d4x
√
g3N

[
−F1 (π0)

π̇20
N2

+
4π̇30
9H2

0

1

N3
Ki

i + F2 (π0)
π̇40

3H2
0

1

N4

]
, (A.4)

where Kij denotes the extrinsic curvature of equal-time hypersurfaces

Kij =
1

2N
[ġij −∇iNj −∇jNi] . (A.5)

Effective field theory. To study the scalar spectrum of (A.2), one can readily employ

the standard EFT of inflationary perturbations formalism [4, 35]. The lagrangian for

metric perturbations is largely constrained by the requirement of nonlinearly realizing

spontaneously broken time translations, while 3D rotations as well as time- and space-

dependent spatial diffs xi → xi + ξi(t, ~x) are realized linearly. The generic matter (non-

Einstein-Hilbert) action can then be written as in (5.1) where we have defined Eij ≡ NKij

and δEij = Eij − Hδij . The first line gives the only terms that start linearly in metric

perturbations, therefore their coefficients are completely fixed by the background equations.

On the other hand, the second line contains terms that are manifestly at least quadratic

in perturbations, their coefficients a priori unconstrained. We have written out four such

terms up to the quadratic order in derivatives. While only the first two are generated at

the ‘classical’ level by the action (3.1),

M4(t) =
4

3

f2

H2
0

(
2F2 (π0) π̇

4
0 + π̇20π̈0 + 9Hπ̇30

)
, M̂3

3 (t) =
4

3

f2

H2
0

π̇30 , (A.6)

the rest of the operators are expected to be present (M̄ ′, M̄ 6= 0), although suppressed by

whatever the quantum expansion parameter of the theory is.

The unbroken spatial diffs can always be fixed so as to put the 3D metric in the follwing

form [39]

gij = a2(t)[(1 + 2ζ)δij + γij ], ∂iγij = γii = 0 , (A.7)

where ζ and γ capture the physical scalar and tensor perturbations. Modes of different

helicity do not mix on the homogeneous and isotropic backgrounds considered here, so that

one can discard the helicity-1 part of the shift altogether, setting N i ≡ δij∂jβ.
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Generalized galileons. In the effective theory for perturbations (5.1), both the lapse

and the shift can be integrated out from their respective equations of motion19 (δN≡N−1):

M2
Pl

[
R3 −

1

N2
(EijEij − Ei 2

i ) +
2

N2
Ḣ − 2(3H2 + Ḣ)

]
+ 2M4δN − 2M̂3δEii = 0, (A.8)

∇i
[
M2

Pl

1

N

(
Eij − δijEkk

)
− δijM̂3

3NδN − M̄ ′2NδEij − δijM̄2NδEkk

]
= 0. (A.9)

Let us start with the case of M̄ ′ = M̄ = 0, relevant for the generalized galileon

lagrangian (3.1). Upon expanding to the linear order in perturbations, the above equations

can be algebraically solved for δN and β in terms of ζ

δN =
2M2

Pl

2M2
PlH − M̂3

ζ̇ (A.10)

∇2β = −
2M2

Pl

2M2
PlH − M̂3

1

a2
∇2ζ +

−4M4
PlḢ − 12M2

PlHM̂
3 + 3M̂6 + 2M2

PlM
4

(2M2
PlH − M̂3)2

ζ̇. (A.11)

Having obtained the lapse and shift, one can plug their expressions back into (5.1), that,

after a few integrations by parts finally yields the quadratic action for ζ

Sζ =

∫
d4x a3

[
A(t) ζ̇2 −B(t)

1

a2

(
~∇ζ
)2 ]

, (A.12)

where the kinetic coefficients are given by the following expressions

A(t) =
M2

Pl(−4M4
PlḢ − 12M2

PlHM̂
3 + 3M̂6 + 2M2

PlM
4)

(2M2
PlH − M̂3)2

(A.13)

B(t) =
M2

Pl

(
−4M4

PlḢ + 2M2
PlHM̂

3 − M̂6 + 2M2
Pl∂tM̂

3
)

(2M2
PlH − M̂3)2

. (A.14)

The speed of sound of the (short-wavelength) curvature perturbation ζ is

c2s(t) =
B(t)

A(t)
. (A.15)

These expressions have been used in section 4 and appendix B in testing for stability of

solutions with the genesis — dS transition.

Effects of higher (spatial) derivative operators. In order to assess the role of higher-

order operators, we generalize the previous calculation to the case of non-zero M̄ ′ and M̄ .

19For the purposes of deriving the quadratic action for ζ only the linearized version of these equations

matters. This is because the contribution of higher-order terms in δN and β to the free action for the

curvature perturbation vanishes on-shell.
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Linearizing and solving (A.8) and (A.9), one finds

δN =
2(M2

Pl−M̄ ′2)(2M2
PlH−M̂3)ζ̇+2M2

Pl(M̄
2+M̄ ′2)∇2ζ/a2

2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH)

,

∇2β =
(2M2

Pl+3M̄2+M̄ ′2)(M4−2M2
PlḢ)−6M2

PlH
2(3M̄2+M̄ ′2)+3M̂3(M̂3−4M2

PlH)

2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH)

ζ̇

−
2M2

Pl(2M
2
PlH−M̂3)

2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH)

∇2ζ

a2
.

Upon substitution back into (5.1), this yields the following quadratic action for the curva-

ture perturbation

Sζ =

∫
d4x a3

[
A(t) ζ̇2 −B(t)

1

a2

(
~∇ζ
)2
− C(t)

1

a4

(
~∇2ζ

)2 ]
, (A.16)

with the kinetic coefficients

A = (M2
Pl − M̄ ′2) ·X (A.17)

B = −M2
Pl −

1

a
∂tY , (A.18)

C =
2M4

Pl(M̄
2 + M̄ ′2)

Z
, (A.19)

where the three auxiliary functions X, Y and Z have been defined as follows

X =
(2M2

Pl+3M̄2+M̄ ′2)(M4−2M2
PlḢ)−6M2

PlH
2(3M̄2+M̄ ′2)+3M̂3(M̂3−4M2

PlH)

2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH)

,

Y = a ·
2M2

Pl(M
2
Pl−M̄ ′2)(M̂3−2M2

PlH)

2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH)

,

Z = 2M2
PlH

2(2M2
Pl−3M̄2−3M̄ ′2)+(M̄2+M̄ ′2)(M4−2M2

PlḢ)+M̂3(M̂3−4M2
PlH) .

B Extended genesis: numerical study

In this appendix we study an explicit illustrative model possessing cosmological solutions

with the genesis-dS transition. In principle, any theory described by S1,2 of section 2

for eπ � 1 and eπ � 1 is expected to do the job of reproducing the extended genesis

cosmologies. Perhaps the simplest example is provided by (2.19). For β = 0 the theory is

just the conformal galileon and when starting out in the GG phase, the expansion rate of

the universe diverges and the background exits the regime of validity of the EFT at some

finite time, the scalar profile gradually growing as eπ ∼ 1/t. For a nonzero β however, the

dynamics of the system is completely altered as soon as βe2π becomes of order, or greater

than unity: the theory becomes effectively described by a P (X)-type lagrangian with a

cubic galileon self-interaction — resulting, as we will show shortly, in transition into an

inflationary de Sitter phase.

Figure 4 illustrates a typical solution from our numerical study, obtained by integrating

expressions for Ḣ and π̈ with the initial conditions, relevant for galilean genesis. We have
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Figure 4. Numerical solutions to the theory (2.19), exhibiting the genesis — dS transition. Shown

are the time evolution of quantities π̇0, ε = Ḣ/H2, H and the squared speed of sound c2s of the

curvature perturbation ζ (for early enough times not displayed in the plots, c2s asymptotes to one

as required by galilean genesis [10]).

assumed β = 0.001 and MPl = f = 106 · H0, setting H0 (related to Λ as in (2.5)) as the

unit mass scale. Shown are the (time dependent) background quantities π̇0, ε = Ḣ/H2, H

and the squared speed of sound c2s of the curvature perturbation ζ. For early enough times

not displayed in the plots, c2s asymptotes to 1 due to the emergent conformal symmetry.

The graphs for the Hubble rate and the time derivative of π0 clearly show the genesis —

de Sitter transition, the scalar field acquiring a liear π ∝ t profile at late times.

An explicit computation of the quadratic ζ action for the theory (2.19) is carried out

in detail in appendix A. While complete stability and (sub)luminality of the given back-

grounds can be readily checked analytically at both asymptotics, the short transition region

between the two phases displays gradient instability, at least for the values of parameters

that we have been able to cover in numerical studies (we have checked explicitly that for

all considered solutions, the flip of sign of the c2s quantity stems from the gradient energy

becoming negative — not the kinetic one, that would lead to a more severe ghost insta-

bility). For all solutions displaying the genesis — de Sitter transition, the squared speed

of sound varies from unity at early times (as required by galilean genesis [10]) to a small

value c2s ∼< 0.03 in the asymptotic future,20 via a slight dip below zero in between that lasts

from a few Hubble times to a fraction thereof — depending on a solution. In principle,

gradient instability has a characteristic time scale of order at least the quantum cutoff of

the theory, therefore a background with this feature can not be considered fully legitimate.

20It can be shown completely analytically [19], that for the most general galileon theory of the form (2.7),

the speed of sound for the scalar perturbation on a de Sitter background is bounded from above, c2s ≤ 0.031

— precisely what we are finding numerically for the extended genesis’ future asymptotics.
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We present theories admitting fully stable cosmologies with the genesis-dS transition in

section 4, but note that even for the present simple theory the small (order per-cent) neg-

ative squared speed of sound corresponding to the gradient instability of figure 4 suggests

that it can be naturally cured by incorporating higher-order corrections in the effective

theory for perturbations [4, 35]. While we carry out a systematic study of higher-order

effects in section 5 (see also appendix A), let us give a quick argument here. The interplay

between higher (spatial) derivative operators contributing ∼ k4 terms to the IR disper-

sion relation for the scalar perturbation, and the presence of the cosmological horizon can

stabilize the system against potential gradient instabilitiy (see, e.g., ref. [4]). This can be

seen as follows. At the level of four derivatives, one can add to the effective theory for

perturbations on our background solution of figure 4 the following term21

∆S ∼
∫
d4x
√
−g κ(t) R 2

3 , (B.1)

where R3 is the scalar curvature of the three-dimensonal metric, induced on equal time

hypersurfaces and κ is an arbitrary dimensionless time-dependent coupling. This term

adds a higher-spatial derivative contribution to the (unitary gauge) quadratic action for

the curvature perturbation

∆Sζ ∼ −
∫
d4x κ

1

a
(~∇2ζ)2 . (B.2)

Since κ is an arbitrary function, it can always be chosen so as to render the instability scale

for the background solution of figure 4 smaller than the relevant instantaneous Hubble

rate. Indeed, at frequencies larger than Hubble, the canonically-normalized curvature

perturbation is described by the following action

Sζ =

∫
d4x a3

[
ζ̇2c − c2s

1

a2

(
~∇ζc
)2
− κ

A

1

a4
(~∇2ζc)

2

]
, (B.3)

where c2s is negative in the region with gradient instability. At large enough (physical)

momenta, k2 ∼> |c
2
s|A/κ, the system is stabilized by higher-order effects. Requiring the

corresponding frequency to be less than the instantaneous Hubble rate then yields the

condition on κ for a completely stable background solution

κ(t) ∼>
cs(t)

4A(t)

H(t)2
. (B.4)

Note the strong dependence (∝ c4s) on the scalar speed of sound of the lower bound on the

coefficient κ. In particular, for small c2s, one can expect higher-order effects to easily cure

the leading-order gradient instability.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

21There are other, more relevant terms beyond the leading order in the EFT, see section 5 for a systematic

study. However, for the illustrative purposes we are after, we neglect them here.

– 28 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
1
2
(
2
0
1
4
)
1
5
1

References

[1] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and

superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

[2] S.D.H. Hsu, A. Jenkins and M.B. Wise, Gradient instability for ω < −1, Phys. Lett. B 597

(2004) 270 [astro-ph/0406043] [INSPIRE].

[3] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a

consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].

[4] P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the Universe: Stable Violation

of the Null Energy Condition and Non-standard Cosmologies, JHEP 12 (2006) 080

[hep-th/0606090] [INSPIRE].

[5] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity,

Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

[6] M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model,

JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

[7] G.R. Dvali, G. Gabadadze and M. Porrati, 4-D gravity on a brane in 5-D Minkowski space,

Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

[8] C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82

(2010) 044020 [arXiv:1007.0443] [INSPIRE].

[9] C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev.

Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

[10] P. Creminelli, A. Nicolis and E. Trincherini, Galilean Genesis: An Alternative to inflation,

JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].

[11] P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis and E. Trincherini, Subluminal Galilean

Genesis, JHEP 02 (2013) 006 [arXiv:1209.3768] [INSPIRE].

[12] V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP 09 (2009)

030 [arXiv:0906.3693] [INSPIRE].

[13] M. Osipov and V. Rubakov, Scalar tilt from broken conformal invariance, JETP Lett. 93

(2011) 52 [arXiv:1007.3417] [INSPIRE].

[14] K. Hinterbichler and J. Khoury, The Pseudo-Conformal Universe: Scale Invariance from

Spontaneous Breaking of Conformal Symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428]

[INSPIRE].

[15] K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, DBI Realizations of the

Pseudo-Conformal Universe and Galilean Genesis Scenarios, JCAP 12 (2012) 030

[arXiv:1209.5742] [INSPIRE].

[16] K. Hinterbichler, A. Joyce, J. Khoury and G.E.J. Miller, Dirac-Born-Infeld Genesis: An

Improved Violation of the Null Energy Condition, Phys. Rev. Lett. 110 (2013) 241303

[arXiv:1212.3607] [INSPIRE].

[17] BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree

Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985]

[INSPIRE].

– 29 –

http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://arxiv.org/abs/hep-th/0512260
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512260
http://dx.doi.org/10.1016/j.physletb.2004.07.025
http://dx.doi.org/10.1016/j.physletb.2004.07.025
http://arxiv.org/abs/astro-ph/0406043
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0406043
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://arxiv.org/abs/hep-th/0312099
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312099
http://dx.doi.org/10.1088/1126-6708/2006/12/080
http://arxiv.org/abs/hep-th/0606090
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606090
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://arxiv.org/abs/0811.2197
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.2197
http://dx.doi.org/10.1088/1126-6708/2003/09/029
http://arxiv.org/abs/hep-th/0303116
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303116
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://arxiv.org/abs/hep-th/0005016
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005016
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://dx.doi.org/10.1103/PhysRevD.82.044020
http://arxiv.org/abs/1007.0443
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0443
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://dx.doi.org/10.1103/PhysRevLett.106.231101
http://arxiv.org/abs/1011.1232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1232
http://dx.doi.org/10.1088/1475-7516/2010/11/021
http://arxiv.org/abs/1007.0027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0027
http://dx.doi.org/10.1007/JHEP02(2013)006
http://arxiv.org/abs/1209.3768
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3768
http://dx.doi.org/10.1088/1475-7516/2009/09/030
http://dx.doi.org/10.1088/1475-7516/2009/09/030
http://arxiv.org/abs/0906.3693
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3693
http://dx.doi.org/10.1134/S002136401102010X
http://dx.doi.org/10.1134/S002136401102010X
http://arxiv.org/abs/1007.3417
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3417
http://dx.doi.org/10.1088/1475-7516/2012/04/023
http://arxiv.org/abs/1106.1428
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1428
http://dx.doi.org/10.1088/1475-7516/2012/12/030
http://arxiv.org/abs/1209.5742
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5742
http://dx.doi.org/10.1103/PhysRevLett.110.241303
http://arxiv.org/abs/1212.3607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3607
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://arxiv.org/abs/1403.3985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3985


J
H
E
P
1
2
(
2
0
1
4
)
1
5
1

[18] P. Creminelli, J. Gleyzes, J. Noreña and F. Vernizzi, Resilience of the standard predictions for

primordial tensor modes, Phys. Rev. Lett. 113 (2014) 231301 [arXiv:1407.8439] [INSPIRE].

[19] T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: Inflation driven by the Galileon

field, Phys. Rev. Lett. 105 (2010) 231302 [arXiv:1008.0603] [INSPIRE].

[20] D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic

microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387]

[INSPIRE].

[21] V.F. Mukhanov and A. Vikman, Enhancing the tensor-to-scalar ratio in simple inflation,

JCAP 02 (2006) 004 [astro-ph/0512066] [INSPIRE].

[22] N. Arkani-Hamed, P. Creminelli, S. Mukohyama and M. Zaldarriaga, Ghost inflation, JCAP

04 (2004) 001 [hep-th/0312100] [INSPIRE].

[23] L. Senatore, Tilted ghost inflation, Phys. Rev. D 71 (2005) 043512 [astro-ph/0406187]

[INSPIRE].

[24] M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505

[hep-th/0404084] [INSPIRE].

[25] V.A. Rubakov, Consistent null-energy-condition violation: Towards creating a universe in

the laboratory, Phys. Rev. D 88 (2013) 044015 [arXiv:1305.2614] [INSPIRE].

[26] C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999)

209 [hep-th/9904075] [INSPIRE].

[27] C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009)

084003 [arXiv:0901.1314] [INSPIRE].

[28] B. Elder, A. Joyce and J. Khoury, From Satisfying to Violating the Null Energy Condition,

Phys. Rev. D 89 (2014) 044027 [arXiv:1311.5889] [INSPIRE].

[29] S. Fubini, A New Approach to Conformal Invariant Field Theories, Nuovo Cim. A 34 (1976)

521 [INSPIRE].

[30] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP 05

(2010) 095 [Erratum ibid. 1111 (2011) 128] [arXiv:0912.4258] [INSPIRE].

[31] K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology,

Nucl. Phys. B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

[32] D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys.

Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

[33] G. Dvali, A. Gruzinov and M. Zaldarriaga, A new mechanism for generating density

perturbations from inflation, Phys. Rev. D 69 (2004) 023505 [astro-ph/0303591] [INSPIRE].
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