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Abstract We analytically find an approximate Bloch–
Messiah reduction of a noncollinear parametric amplifier
pumped with a focused monochromatic beam. We consider
type I phase matching. The results are obtained using a per-
turbative expansion and scaled to the high-gain regime. They
allow for a straightforward maximization of the signal gain
and minimization of the parametric fluorescence noise. We
find the fundamental mode of the amplifier, which is an el-
liptic Gaussian defining the optimal seed beam shape. We
conclude that the output of the amplifier should be stripped
of higher-order modes, which are approximately Hermite–
Gaussian beams. Alternatively, the pump waist can be ad-
justed such that the amount of noise produced in the higher-
order modes is minimized.

1 Introduction

Parametric down-conversion is an important and versatile
source of light. Its applications span from amplification of
laser pulses to creation of strictly quantum states in the form
of entangled photon pairs and squeezed vacuum. As opti-
cal parametric amplifiers rely on nonresonant nonlinear in-
teraction, they can be utilized to amplify extremely wide
bandwidth pulses. One of the most appealing applications
of this phenomenon is the Optical Parametric Chirped Pulse
Amplifier (OPCPA) [1, 2] in which ultrashort pulses are
stretched, amplified and then compressed again. The gain
medium is typically pumped by a nanosecond second har-
monic pulse from a Q-switched laser. Such amplifiers can
provide a few femtosecond long multi-terawatt pulses [3, 4].
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One of the most important and fundamental problems
with this type of amplifiers is the presence of spontaneous
parametric fluorescence, which unavoidably accompanies
useful gain and compromises the pulse contrast ratio. This
issue is central in many applications and has been exten-
sively studied [5–7]. Although the numerical results pro-
vided in [7] are very accurate, they are based on Langevin
noise equations [8] developed for a cavity parametric am-
plifier. Consequently, the noise parameter has to rely on an
experimental calibration. Furthermore, their numerical char-
acter does not give direct guidelines for noise reduction.

In this paper, we develop a simple analytical model of
a 3D Noncollinear Optical Parametric Amplifier (NOPA).
We assume type-I noncollinear phase matching in a second-
order nonlinear crystal pumped with a monochromatic
Gaussian beam. As a consequence, we are able to calcu-
late the intensity of parametric fluorescence for any given
signal gain, as well as its spatial and spectral distributions.
Moreover, we find the optimal seed mode and pump waist
for which spontaneous fluorescence is minimal.

Our model is built around the Bloch–Messiah reduction
[9] of an optical parametric amplifier operated without pump
depletion. It is a theorem which allows us to find a set of or-
thogonal, characteristic modes (or eigenmodes) of the am-
plifier and their respective gains. In the case of monochro-
matic pumping, the modes are the input and output beam
shapes of the signal and idler fields at any pair of frequencies
matching up to the pump. The main feature of the reduction
is that if the amplifier is seeded with a beam matching its
characteristic input mode, then this beam is amplified by the
associated gain factor and assumes the output characteristic
shape on the other end of the amplifier. In addition, sponta-
neous parametric fluorescence is produced in all of the char-
acteristic output modes and the number of photons scattered
into each of those modes is equal to the gain of that mode.
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In particular, the immediate conclusion from the reduction is
that the optimal signal to parametric noise ratio is obtained
when the seed beam has the shape of the fundamental input
mode. The output of the amplifier may be spatially filtered
to reject as many of the higher other modes as possible.

The paper is organized as follows. Section 2 presents gen-
eral theory of parametric down-conversion, with emphasis
on the 3D crystal pumped by a monochromatic wave. We
introduce the Bloch–Messiah reduction theorem and discuss
its general consequences. In Sect. 3 we derive the charac-
teristic modes and their gains for two particular settings—
noncollinear with no walk-off and noncollinear with a sig-
nificant walk-off. Section 4 summarizes the results of the
analytical reduction. In Sect. 5 we compare analytical results
with precise numerical calculations and discuss the accuracy
of the approximations assumed. Section 6 describes behav-
ior of the parametric gain in the intense pumping regime,
provides estimation of the fluorescence noise in practical sit-
uations and gives solutions for the noise reduction. Finally,
Sect. 7 concludes the paper and gives insight into possible
applications and extensions.

2 Bloch–Messiah reduction

We aim at investigating the properties of a 3D parametric
amplifier pumped by a strong, monochromatic laser beam
of frequency ωp and diameter 2wp . We assume that the
signal and the spontaneous fluorescence fields are always
so weak that they cannot influence the evolution of the
pump. Within this approximation, the nonlinear interaction
with the pump field couples pairs of conjugate frequencies,
commonly called signal ωs and idler ωi = ωp − ωs . Let
us note that any two adjacent frequencies ωs �= ω′

s evolve
completely independently thanks to narrowband pumping.
Therefore, amplification of a broadband seed pulse can be
calculated separately for each of its monochromatic compo-
nents, which may enter the crystal at different angles [10].
Throughout the paper, we will analyze the interaction of a
particular pair of frequencies ωs and ωi with the pump.

We choose a coordinate system where the z axis lies
along the central k-vector of the pump kp and the crystal
faces are perpendicular to this axis. Then, it is most conve-
nient to follow the convention of describing the evolution of
the system as a function of z. We expand the electric field of
each of the interacting waves in the basis of monochromatic
plane waves parameterized by frequency ω and perpendicu-
lar components of the wave vector kx and ky

E(t, x, y, z)

= i

∫
dωdkx dky

√
�ω

4πε0c
√

n(ω)

× e−iωt+ixkx+iyky A(ω, kx, ky, z) + c.c., (1)

where A(ω,kx, ky, z) is the z-dependent frequency-space
amplitude of the wave. With the above normalization
|A(ω,kx, ky, z)|2 is the photon density.

2.1 1-D amplifier

Before analyzing a bulk amplifier let us briefly recall the
basic concepts for a waveguide amplifier which can be re-
duced into a 2-mode amplifier for a defined signal frequency.
This simple system will help in the comprehension of a full-
fledged 3-D amplifier. Later on, the Bloch–Messiah decom-
position will allow us to simplify the 3-D amplifier to a set
of independent 2-mode amplifiers.

The pump field undergoes only dispersive evolution and
its amplitude along the z axis is Ap(z) = Peikp,zz, where
kp,z is the pump wavenumber and P is the initial amplitude.
The evolution of the signal amplitude As(z) and the idler
amplitude Ai(z) is described by the equations of motion [11]

∂

∂z
As(z) = iks,zAs(z) + χP eikp,zzA∗

i (z),

∂

∂z
Ai(z) = iki,zAi(z) + χP eikp,zzA∗

s (z).

(2)

The wave vectors for the signal and the idler are ks,z and
ki,z, respectively. The first term on the right hand side is re-
sponsible for linear propagation. The second one describes
the nonlinear interaction with the coupling constant χ .

For a waveguide which starts at −L/2 and ends at L/2
one can obtain the following input–output relations:
(
eiδ3Aout

s

) = cosh(ξ)
(
eiδ1Ain

s

) + sinh(ξ)
(
eiδ2Ain

i

)∗
,

(
eiδ4Aout

i

) = cosh(ξ)
(
eiδ2Ain

i

) + sinh(ξ)
(
eiδ1Ain

s

)∗
.

(3)

The upper indices in and out denote positions z = −L/2 and
z = L/2, respectively. Phase terms with δ1, δ2, δ3 and δ4 de-
pend on wave vector matching and we skip their explicit
form for brevity. The intensity gain of the amplifier equals
cosh2 ξ , where the gain parameter ξ is proportional to the
pump amplitude P . In addition to the amplified signal, the
interaction produces spontaneous fluorescence. Quantum-
mechanical considerations [12] show that the average num-
ber of photons generated this way equals sinh2 ξ . This sys-
tem is called a 2-mode or nondegenerate parametric ampli-
fier [13]. If one needs to calculate the amplification of a real-
istic laser pulse, the pulse has to be decomposed into mono-
chromatic waves via Fourier transform, amplified as in (3)
and composed back.

2.2 Bulk amplifier

Let us now switch to a bulk crystal with the length L in
the z direction and infinite in the x and y directions. The
pump Ap(�kp,⊥), the signal As(�ks,⊥) and the idler Ai(�ki,⊥)
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amplitudes have spatial freedom which is encoded in their
dependence on the spatial wave vector �k⊥ = (kx, ky). The
infinite transversal size of the crystal allows interaction only
of those signal and idler components for which transverse
wave vectors sum up to the pump’s. Therefore in each slice
of the crystal with given z only those interactions can take
place, which preserve both the energy ωp = ωs +ωi and the
perpendicular components of the momentum

�kp,⊥ = �ks,⊥ + �ki,⊥. (4)

Using these principles, an equation of motion for the
waveguide amplifier (2) can be extended as follows

∂

∂z
As(�ks,⊥, z)

= iks,zAs(�ks,⊥, z)

+ χ

∫
d�ki,⊥Ap(�ks,⊥ + �ki,⊥)eikp,zzA∗

i (
�ki,⊥, z),

∂

∂z
Ai(�ki,⊥, z)

= iki,zAi(�ki,⊥, z)

+ χ

∫
d�ks,⊥Ap(�ks,⊥ + �ki,⊥)eikp,zzA∗

s (
�ks,⊥, z).

(5)

As in the waveguide (2), the first term on the right hand
side represent the dispersive propagation. The second term
is responsible for nonlinear interactions involving all the
possible plane-wave components fulfilling (4). The above
equations are linear in the signal and idler amplitudes, and
so are the input–output relations for the amplifier. For-
mally, they can be written down using input–output relations
with integral kernels (or Green functions) Css(�ks,⊥, �ks,⊥),
Ssi(�ks,⊥, �ki,⊥), Cii(�ki,⊥, �ki,⊥), Sis(�ki,⊥, �ks,⊥)

Aout
s (�ks,⊥)=

∫
d�k′

s,⊥Css(�ks,⊥, �k′
s,⊥)Ain

s (�k′
s,⊥)

+
∫

d�ki,⊥Ssi(�ks,⊥, �ki,⊥)Ain∗
i (�ki,⊥),

Aout
i (�ki,⊥)=

∫
d�k′

i,⊥Cii(�ki,⊥, �k′
i,⊥)Ain

i (�k′
i,⊥)

+
∫

d�ks,⊥Sis(�ki,⊥, �ks,⊥)Ain∗
s (�ki,⊥).

(6)

Since the integral kernels describe a reversible process, they
turn out to be interdependent. The Bloch–Messiah theorem
[9] relates their singular value decompositions (SVD): they

have common modes and gain parameters, that is

Css(�ks,⊥, �k′
s,⊥) =

∞∑
n=0

ψout
n (�ks,⊥) cosh(ξn)ψ

in∗
n (�k′

s,⊥),

Cii(�ki,⊥, �k′
i,⊥) =

∞∑
n=0

φout
n (�ki,⊥) cosh(ξn)φ

in∗
n (�k′

i,⊥),

Ssi(�ks,⊥, �ki,⊥) =
∞∑

n=0

ψout
n (�ks,⊥) sinh(ξn)φ

in
n (�ki,⊥),

Sis(�ki,⊥, �ks,⊥) =
∞∑

n=0

φout
n (�ki,⊥) sinh(ξn)ψ

in
n (�ks,⊥).

(7)

Above, ψ in
n (�ks,⊥), ψout

n (�ks,⊥), φin
n (�ki,⊥) and φout

n (�ki,⊥) rep-
resent the input signal modes, the output signal modes,
the input idler modes and the output idler modes, respec-
tively, while ξn are their gain parameters. Mathematically,
ψ in

n (�ks,⊥), ψout
n (�ks,⊥), φin

n (�ki,⊥) and φout
n (�ki,⊥) are four dif-

ferent sets of orthonormal functions. Physically, they repre-
sent characteristic beam shapes in the far field. Modes with
different n indices do not couple. More precisely, the input–
output relations given by (6) can be brought to the canonical
Bloch–Messiah form if we decompose the signal and the
idler amplitudes in the bases of their characteristic modes,

Ain
s (�ks,⊥) =

∞∑
n=0

Ain
s,nψ

in
n (�ks,⊥),

Aout
s (�ks,⊥) =

∞∑
n=0

Aout
s,nψ

out
n (�ks,⊥),

Ain
i (�ki,⊥) =

∞∑
n=0

Ain
i,nφ

in
n (�ki,⊥),

Aout
i (�ki,⊥) =

∞∑
n=0

Aout
i,nφout

n (�ki,⊥).

(8)

Substituting the above into (6) and using (7) we find that the
whole OPA can be decomposed into a set of independent
2-mode amplifiers,

Aout
s,n = cosh(ξn)A

in
s,n + sinh(ξn)A

in∗
i,n ,

Aout
i,n = cosh(ξn)A

in
i,n + sinh(ξn)A

in∗
s,n,

(9)

where n is an index for the subsequent independent modes,
conventionally sorted by their gains. Note that the above
equations have the same form as the input–output relation
for the waveguide 2-mode amplifier given in (3). Similarly,
the intensity gain of the n-th mode equals cosh2 ξn and the
average number of the photons spontaneously scattered into
that mode equals sinh2 ξn. Therefore, we are interested in
finding the characteristic beam shapes ψ in

n (�ks,⊥), ψout
n (�ks,⊥)
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Fig. 1 Schematic of a NOPA pumped with a focused monochromatic
beam. When an incident signal beam is in the ψ in

n (�ks,⊥) mode, it pro-
duces the signal ψout

n (�ks,⊥) at the output with the amplitude amplifica-
tion of cosh(ξn) and the idler φout

n (�ki,⊥) with the amplitude sinh(ξn)

and gain parameters ξn, as this will provide the complete in-
formation. In particular, seeding the amplifier with its fun-
damental mode ψ in

0 (�ks,⊥) would give us an advantage of
obtaining maximal possible gain cosh2 ξ0. The idea of the
decomposition is illustrated in Fig. 1.

Let us make a nontrivial observation. For the special
case of the crystal surfaces being equally separated from
the z = 0 plane and with the real pump amplitude in z = 0,
we get the symmetry Ssi(�ks,⊥, �ki,⊥) = S∗

is(
�ki,⊥, �ks,⊥) [14].

When every gain parameter is unique, ξn �= ξm, the input
and output signal modes are mirror reflections of each other,
as are the input and output idler modes,

ψout
n (�ks,⊥) = ψ in∗

n (�ks,⊥), φout
n (�ki,⊥) = φin∗

n (�ki,⊥). (10)

This observation significantly simplifies the Bloch–Messiah
reduction given in (7). In particular it allows us to de-
duce all the characteristic mode functions from the SVD of
Sis(�ki,⊥, �ks,⊥).

Even though in and out modes are similar (10), the behav-
ior inside the crystal may be complex. Our description says
nothing about what happens between the surfaces—we have
only the input–output relations. The shape of the modes and
their amplification vary in a number of parameters, includ-
ing the crystal length L.

2.3 Perturbative expansion

In general the integral kernels defined in (6) cannot be found
analytically. However, one can obtain closed form expres-
sions in the low-gain regime, χ → 0. This is accomplished
in two steps. First we assume zero nonlinearity χ = 0. The
(5) can be immediately integrated as follows:

As(�ks,⊥, z) = As(�ks,⊥, z = 0) exp
[
iks,z(�ks,⊥)z

]
,

Ai(�ki,⊥, z) = Ai(�ki,⊥, z = 0) exp
[
iki,z(�ki,⊥)z

]
,

(11)

which describes the linear propagation. To obtain the first-
order approximation with respect to χ , we need to integrate

(5) over −L/2 < z < L/2 with the zero-order approxima-
tion (11) substituted on the right hand side. Comparing the
result to the definition of the integral kernels (6), we obtain

Css(�ks,⊥, �ks,⊥) = exp(iks,zz)δ(k
′
s,z − ks,z),

Cii(�ki,⊥, �ki,⊥) = exp(iki,zz)δ(k
′
i,z − ki,z).

(12)

In the first-order approximation the above functions describe
only linear propagation. However, the remaining two ker-
nels,

Ssi(�ks,⊥, �ki,⊥)=χLe−i(ki,z−ks,z)L/2

× Ap(�ki,⊥ + �ks,⊥) sinc(�kL/2),

Sis(�ki,⊥, �ks,⊥)=χLei(ki,z−ks,z)L/2

× Ap(�ki,⊥ + �ks,⊥) sinc(�kL/2),

(13)

describe down-conversion and give us insight into the char-
acteristic modes of the Bloch–Messiah reduction (7). We
call Sis the scattering kernel, as it describes amplitudes with
which the incident signal creates the ‘scattered’ idler beam.
The �k is the wave vector mismatch along the z axis in this
process,

�k = ks,z + ki,z − kp,z. (14)

The z components of the wave vectors are functions of their
transverse wave vector ks,z = ks,z(�ks,⊥), ki,z = ki,z(�ki,⊥)

and kp,z = kp,z(�ki,⊥ + �ks,⊥).
Once we perform SVD of the scattering kernel Sis (13)

we find all the characteristic modes and gain parameters of
the Bloch–Messiah reduction (7) with the help of the iden-
tity (10). Obtaining an approximate analytical SVD of the
scattering kernel Sis is described in the next section. It re-
quires several nontrivial steps. However, we will always sep-
arate the variables in cylindrical coordinates, as follows:

Sis(ki,⊥, ϕi; ks,⊥, ϕs)

= K(ki,⊥, ks,⊥)Φ(ϕi, ϕs)

=
[∑

n

φK,out
n (ki,⊥) · ξK

n · ψK,in
n (ks,⊥)

]

×
[∑

m

φΦ,out
m (ϕi) · ξΦ

m · ψΦ,in
m (ϕs)

]

=
∑
n

∑
m

[φK,out
n (ki,⊥)φΦ,out

m (ϕi)]︸ ︷︷ ︸
φout

n,m(ki,⊥,ϕi )

ξK
n ξΦ

m︸ ︷︷ ︸
ξn,m

× [ψK,in
n (ks,⊥)ψΦ,in

m (ϕs)]︸ ︷︷ ︸
ψout

n,m(ks,⊥,ϕs )

, (15)

where functions and singular values with upper indices K

and Φ are singular value decompositions of K(ki,⊥, ks,⊥)
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and Φ(ϕi,ϕs), respectively. Above we express the SVD of
Sis as a product of SVDs of its radial and angular parts,
K(ki,⊥, ks,⊥) and Φ(ϕi,ϕs). Note that this is also an ap-
proximation which relies on the fact that the radial mode
functions φ

K,out
n (ki,⊥) and ψ

K,in
n (ks,⊥) are centered around

certain k⊥ 
 k0 and do not extend towards the origin k⊥ 
 0.

3 Analytical approximation

Our task is to find the SVD of the scattering kernel
Sis(�ki,⊥, �ks,⊥) given in (13) for a Gaussian pump beam. We
will accurately find a mode with the highest amplification.
To obtain the result we go through several approximations
as illustrated in Fig. 2. They include replacing sinc with a
Gaussian, Taylor expansion of the phase mismatch �kL/2
and the separation of variables. We will consider two differ-
ent physical settings—noncollinear without pump walk-off
and noncollinear with a significant pump walk-off. For each
of them, we obtain closed form Bloch–Messiah reduction, as
summarized in Sect. 4. We restrict ourselves to type I down-
conversion, although we conjecture that similar approach
may work also for type II process.

We choose Gaussian pump beam profile with waist wp

and the wavefront parallel to the crystal surface. The pump
amplitude in spatial frequency domain is

Ap(kp,x, kp,y) = P
wp√

π
exp

[
−w2

p

2

(
k2
p,x + k2

p,y

)]
, (16)

where P is an amplitude factor.
In the first step we approximate sinc(�k/L) with a

Gaussian. This erases the oscillating tails but enables further
calculations [15]. We write

sinc

(
�kL

2

)
≈ exp

[
− (�kL)2

20

]
, (17)

bearing in mind we chose arbitrarily the width of Gaussian
fit as illustrated in Fig. 3. Note that the length of the crys-
tal L appears only in the argument of sinc in (13). Conse-
quently, the uncertainty in the numerical factor in the above
approximation can be understood as a ≈10% uncertainty of
the crystal length L.

Further steps involve the Gaussian approximation of the
scattering kernel. The task is simple but not straightforward.
We need to choose the suitable variables as well as the right
Taylor series approximation.

Since the amplifier discussed has nearly cylindrical sym-
metry, it is convenient to introduce cylindrical coordinates
in the following form:

�ks,⊥ = [
ks,⊥ cos(ϕs), ks,⊥ sin(ϕs)

]
,

�ki,⊥ = [−ki,⊥ cos(ϕi),−ki,⊥ sin(ϕi)
]
.

(18)

Note that angles on the parametric down-conversion cone ϕs

and ϕi are measured from 0◦ and 180◦, respectively (Fig. 4).
Then the phase matching is achieved for ϕs ≈ ϕi . In cylin-
drical coordinates with the approximation (17) the scattering

Fig. 2 Schematic of the procedures applied in Sect. 3 along with parts of Sects. 2 and 4. Solid lines stand for equalities, while dashed lines for
approximations. Final results are summarized and discussed in Sect. 4
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Fig. 3 Plot of sinc(x) (solid line) and exp(−x2/5) (dashed line). In
the approximation of sinc with exp(−x2/κ), reasonable values of the
Gaussian width coefficient κ spread from 4.16 to 6.28. One may use
the closest Gaussian in the norm distance (κ = 4.16), set the same

FWHM (κ = 5.18), compare Taylor series up to the second order
(κ = 6) or guarantee the same volume (κ = 6.28). In various papers
[14–18] different κ values were used. We arbitrarily adopt κ = 5

kernel (13) reads

Sis(ki,⊥, ϕi; ks,⊥, ϕs)

= χPL
wp√

π
ei(ki,z−ks,z)L/2

× exp

[
−k2

s,⊥ + k2
i,⊥ − 2ks,⊥ki,⊥ cos(ϕs − ϕi)

2/w2
p

− 1

20
�k2L2

]
. (19)

The scattering kernel achieves its maximal absolute value
when �ks,⊥ + �ki,⊥ = 0 and there is no mismatch �k = 0.
We will linearize �k around this point, which physically
corresponds to the cone of ideal phase matching.

To calculate the phase mismatch �k given in (14) we
need expressions for the z components of the wave vec-
tors of the interacting waves. We consider type I down-
conversion with the signal and the idler propagating as ordi-
nary waves and the pump as extraordinary. The optical axis
lies in the xz plane, at the angle θ to the z axis. We find that

ks,z =
√

ω2
s n2

o(ωs)

c2
− k2

s,⊥,

ki,z =
√

(ωp − ωs)2n2
o(ωp − ωs)

c2
− k2

i,⊥,

kp,z = (ks,x + ki,x)
sin(2θ)[n2

o(ωp) − n2
e(ωp)]

2[n2
o(ωp) sin2(θ) + n2

e(ωp) cos2(θ)] + no(ωp)ne(ωp)

n2
o(ωp) sin2(θ) + n2

e(ωp) cos2(θ)

×
√[

ω2

c2
− (ks,y + ki,y)2

n2
o(ωp)

][
n2

o(ωp) sin2(θ) + n2
e(ωp) cos2(θ)

] − (ks,x + ki,x)2,

(20)

where c is the speed of light, no(ω) and ne(ω) are ordi-
nary and extraordinary refractive indices, respectively. The
lengths of the wave vectors of the interacting waves are ks,0,
ki,0 and kp,0 and ρ is the tangent of the pump walk-off as
illustrated in Fig. 5,

ks,0 = ωs

c
no(ωs),

ki,0 = ωp − ωs

c
no(ωp − ωs),

(21)

kp,0 = ωp

c

no(ωp)ne(ωp)√
n2

o(ωp) sin2(θ) + n2
e(ωp) cos2(θ)

,

ρ = sin(2θ)[n2
o(ωp) − n2

e(ωp)]
2[n2

o(ωp) sin2(θ) + n2
e(ωp) cos2(θ)] .

The phase mismatch vanishes, �k = 0, when ϕs = ϕi

and the perpendicular wave vectors components of the signal
and the idler are equal, ks,⊥ = ki,⊥ = k0, with

k0 = 1

2kp,0

×
√

2
(
k2
s,0k

2
i,0+ k2

p,0k
2
s,0+ k2

p,0k
2
i,0

)− k4
s,0− k4

i,0− k4
p,0.

(22)
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Fig. 4 The crystal in a coordinate system. In both x and y direction
the crystal is infinite, while in z its length is L. The optical axis lies in
the xz plane, at the angle θ to the z axis

Fig. 5 Schematic of ideal phase matching. The signal and the idler
interact with the pump central component. Their respective wavenum-
bers are ks,0, ki,0 and kp,0. The perpendicular wave vector component
of both the signal and the idler is k0. Inside the crystal, the signal travels
at the angle arctan(as) ≈ as and the idler at arctan(ai) ≈ ai

The linearization of the �k given in (14) around its zero
with respect to ks,⊥, ki,⊥ and (ϕs − ϕi) using (20) gives us

�k ≈
[
as − ρ cos

(
ϕs + ϕi

2

)]
(ks,⊥ − k0)

+
[
ai + ρ cos

(
ϕs + ϕi

2

)]
(ki,⊥ − k0)

− k0ρ sin

(
ϕs + ϕi

2

)
(ϕs − ϕi). (23)

Both as = k0/

√
k2
s,0 − k2

0 and ai = k0/

√
k2
i,0 − k2

0 have

an easy interpretation. Each of them is a tangent of the angle
at which the signal or the idler travels inside the crystal in
an ideal phase matching setting. Since ρ (21) is the tangent
of the pump walk-off angle, the sum and difference of as or
ai and ρ reflect how the signal or the idler diverge form the
pump.

The Gaussian pump (16) may be approximated by a
Gaussian function also in cylindrical coordinates (18). For
the exponent we obtain

k2
s,⊥ + k2

i,⊥ − 2ks,⊥ki,⊥ cos(ϕs − ϕi)

≈ k2
0(ϕs − ϕi)

2 + (ks,⊥ − ki,⊥)2, (24)
which is valid as long as 1/wp  k0, that is, the down-
conversion cone opening angle is much bigger than the
pump beam divergence.

Consequently, the scattering kernel Sis given in (19) sub-
stituted with (23) and (24) becomes a Gaussian function in
ks,⊥, ki,⊥ and (ϕs − ϕi), that is

Sis(ki,⊥, ϕi; ks,⊥, ϕs)

= χPL
wp√

π
ei(ki,z−ks,z)L/2 exp

(−xT Ax
)
, (25)

where x = [(ϕs − ϕi), (ks,⊥ − k0), (ki,⊥ − k0)] is the devia-
tion from ideal phase matching. The quadratic form coeffi-
cients are

A =
⎡
⎣Aϕϕ Aϕs Aϕi

Asϕ Ass Asi

Aiϕ Ais Aii

⎤
⎦

=
⎡
⎢⎣

k2
0w2

p

2 + L2

20 k2
0ρ2 sin2(

ϕs+ϕi

2 ) 0 0
0 0 0
0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
the angular part

+
⎡
⎢⎣

0 0 0

0
w2

p

2 + L2

20 [as − ρ cos(ϕs+ϕi

2 )]2 −w2
p

2 + L2

20 [as − ρ cos(ϕs+ϕi

2 )][ai + ρ cos(ϕs+ϕi

2 )]
0 −w2

p

2 + L2

20 [as − ρ cos(ϕs+ϕi

2 )][ai + ρ cos(ϕs+ϕi

2 )] w2
p

2 + L2

20 [ai + ρ cos(ϕs+ϕi

2 )]2

⎤
⎥⎦

︸ ︷︷ ︸
the radial part

+ L2

20
k0ρ sin

(
ϕs + ϕi

2

)⎡
⎣ 0 −[as − ρ cos(ϕs+ϕi

2 )] −[ai + ρ cos(ϕs+ϕi

2 )]
−[as − ρ cos(ϕs+ϕi

2 )] 0 0
−[ai + ρ cos(ϕs+ϕi

2 )] 0 0

⎤
⎦

︸ ︷︷ ︸
the mixed part

(26)
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The matrix A is presented as a sum of different parts to facil-
itate the separation of variables. We call those components
the angular part, the radial part and the mixed part. Once the
mixed part is zero, the scattering kernel Sis may be written
as a product of two kernels, as outlined in (15). We will de-
velop two different approximations: one for no pump walk-
off ρ = 0 and the other one for a significant pump walk-off.
The aim of further steps is to neglect the mixed terms and
get rid of trigonometric functions.

3.1 No walk-off

In some special situations there may be no walk-off (ρ = 0).
This is particularly easy to solve, as the quadratic form ma-
trix (25) can be factorized into the angular and the radial part
(as the mixed part vanishes)

A =

⎡
⎢⎢⎢⎣

k2
0w2

p

2 0 0

0
w2

p

2 + L2

20 a2
s −w2

p

2 + L2

20 asai

0 −w2
p

2 + L2

20 asai
w2

p

2 + L2

20 a2
i

⎤
⎥⎥⎥⎦ . (27)

As the scattering kernel may be factorized Sis =
K(ki,⊥, ks,⊥)Φ(ϕi, ϕs) as in (15), we need to find the SVDs
of two separate parts. To deal with the angular part we write

Φ(ϕi,ϕs)

= exp

[
−k2

0w2
p

2
(ϕs − ϕi)

2
]

= 1√
2π

1

k0wp

∫ ∞

−∞
dm exp

[
− m2

2k2
0w2

p

+ im(ϕs − ϕi)

]

≈ 1√
2π

1

k0wp

∞∑
m=−∞

exp(−imϕi) exp

(
− m2

2k2
0w2

p

)

× exp(+imϕs). (28)

We applied the Fourier representation of a Gaussian func-
tion and then we approximated the integration by summa-
tion. The second step required a moderately slowly chang-
ing function, which is guaranteed by 1/wp  k0, already
required in the previous step (24).

The remaining radial part of the kernel K(ki,⊥, ks,⊥) is a
quadratic form of (ks,⊥ − k0) and (ki,⊥ − k0). It can be di-
rectly decomposed with Mehler’s Hermite polynomial for-
mula [19], which reads

exp

[
− 1 + μ2

2(1 − μ2)

(
x2 + y2) + 2μxy

1 − μ2

]

= √
π

√
1 − μ2

∞∑
n=0

μnun(x)un(y), (29)

un(x) = (2nn!)− 1
2 Hn(x) exp(−x2/2),

where x, y and μ are real numbers, while un(x) are the
Hermite–Gaussian modes. Comparing the coefficient of the
radial part K(ki,⊥, ks,⊥) found in the lower-right part of (27)
with the general Mehler’s formula, we get

K(ki,⊥, ks,⊥)

= χPL
wp√

π
ei(ki,z−ks,z)L/2

× exp
[−Ass(ks,⊥ − k0)

2 − 2Asi(ks,⊥ − k0)(ki,⊥ − k0)

− Aii(ki,⊥ − k0)
2]

=
∞∑

n=0

{
eiks,zL/2 un[wi,r (ki,⊥ − k0)]√

1/wi,r

}

× χPL
wp√

ws,rwi,r

√
1 − μ2μn

×
{

e−iks,zL/2 un[ws,r (ks,⊥ − k0)]√
1/ws,r

}
(30)

where μ is a singular value scaling factor while ws and wi

are width parameters for the signal and the idler, respec-
tively,

|μ| =
√

AssAii

|Asi | −
√

AssAii

A2
si

− 1,

ws,r = √
2Ass

(
1 − A2

si

AssAii

)1/4

, (31)

wi,r = √
2Aii

(
1 − A2

si

AssAii

)1/4

.

The coefficients of the quadratic form matrix A are to be
taken from (27). As outlined in (15), once we have the SVDs
of both K(ki,⊥, ks,⊥) in (30) and Φ(ϕi,ϕs) in (28), we get
the resulting Sis decomposition for the no walk-off ρ = 0
case,

Sis(ki,⊥, ϕi; ks,⊥, ϕs)

=
∞∑

n=0

∞∑
m=−∞

{
eiki,zL/2 un[wi,r (ki,⊥ − k0)]√

1/wi,r

exp(−imϕi)√
2π

}

× χPL

√
2π

√
1 − μ2

k0
√

ws,rwi,r

μn exp

(
− m2

2k2
0w2

p

)

×
{

e−iks,zL/2 un[ws,r (ks,⊥ − k0)]√
1/ws,r

exp(imϕs)√
2π

}
. (32)

The resulting modes in a no walk-off setting are optical
vortices. We discuss this result in Sect. 4.
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3.2 Significant walk-off

The next case of our interest is the setting with a significant
walk-off, i.e. when the total walk-off at the end of the crystal
is of the order of the pump diameter Lρ ≈ wp . Again, we
take the scattering kernel Sis given in (25). The quadratic
form A has nonzero mixed part, which prevents us from the
separation of variables. In addition, it contains trigonometric
functions of the sum of angles ϕs + ϕi .

Let us first consider the physical picture of the significant
walk-off setting. An efficient amplification of a beam may

be obtained when it travels along the pump. It happens when
ϕs +ϕi = 0 or ϕs +ϕi = 2π which corresponds to either sig-
nal or idler propagating along the pump. As the distinction
between the signal and the idler is illusory, we may assume
that the signal is propagating along the pump’s walk-off, ap-
proximating all expressions containing ϕs +ϕi around 0. We
will hold the quadratic term in Aϕϕ and only the constant
term everywhere else in A. Consequently, terms Aϕs = Asϕ

and Aϕi = Aiϕ disappear. Thus the quadratic form reads

A =

⎡
⎢⎢⎣

k2
0w2

p

2 + L2

20 k2
0ρ2(

ϕs+ϕi

2 )2 0 0

0
w2

p

2 + L2

20 (as − ρ)2 −w2
p

2 + L2

20 (as − ρ)(ai + ρ)

0 −w2
p

2 + L2

20 (as − ρ)(ai + ρ)
w2

p

2 + L2

20 (ai + ρ)2

⎤
⎥⎥⎦ . (33)

Again, we have separated the variables Sis =
K(ki,⊥, ks,⊥)Φ(ϕi, ϕs) according to the scheme given in
(15). The radial part K(ki,⊥, ks,⊥) decomposes with the
Mehler’s formula (29) as it did for the no-walk-off case. All
the coefficients are the same as those given in (31), with the
quadratic form coefficient matrix A taken from a significant
walk-off approximation matrix (33).

The angular part Φ(ϕi,ϕs) contains not only (ϕs + ϕi)
2

but also (ϕs +ϕi)
2(ϕs −ϕi)

2 terms. They are difficult to han-
dle, so we try the following approximation, with real vari-
ables p, q , x, and y

exp
[−p2(1 + q2y2)x2] ≈ exp

(−p2x2 − p2q2〈x2〉y2)

= exp

(
−p2x2 − 1

2
q2y2

)
. (34)

That is, instead of the x2y2 term, we took y2 times mean x2,
averaged over the exp(−p2x2) distribution. The rough ap-
proximation (34) is numerically checked to produce similar
characteristic modes and gain parameters as long as q2  1.
In our case q2 = L2ρ2/(40w2

p), so the total walk-off cannot

be much larger than the pump width Lρ  √
40wp . With the

approximation (34) the angular part Φ(ϕi,ϕs) is a quadratic
form of ϕs and ϕi . Utilizing once again Mehler’s formula
(29) we decompose Φ(ϕi,ϕs) in the basis of Hermite–
Gaussian modes:

Φ(ϕi,ϕs) = exp

[
−k2

0w2
p

2
(ϕs − ϕi)

2 − L2ρ2

20w2
p

(
ϕs + ϕi

2

)2]

=
∞∑

m=0

[
um(k0wϕϕi)√

1/(k0wϕ)

]
1

k0wϕ

√
π

√
1 − μ2

ϕμm
ϕ

×
[
um(k0wϕϕs)√

1/(k0wϕ)

]
, (35)

where μϕ is the singular value scaling factor, while k0wϕ is
the angular width parameter for both the signal and the idler

μϕ =
(

1 − 1

2
√

10

Lρ

k0w2
p

) / (
1 + 1

2
√

10

Lρ

k0w2
p

)
,

k0wϕ = 1
4
√

10

√
Lk0ρ. (36)

Hence, we obtain the SVD of the scattering kernel Sis in
the significant walk-off approximation (33) with separated
variables (15), which reads

Sis(ki,⊥, ϕi; ks,⊥, ϕs)

=
∞∑

n=0

∞∑
m=0

{
eiki,zL/2 un[wi,r (ki,⊥ − k0)]√

1/wi,r

um(k0wϕϕi)√
1/(k0wϕ)

}

× χPL
wp

√
π

√
1 − μ2

√
1 − μ2

ϕ

k0wϕ
√

ws,rwi,r

μnμm
ϕ

×
{

e−iks,zL/2 un[ws,r (ks,⊥ − k0)]√
1/ws,r

um(k0wϕϕs)√
1/(k0wϕ)

}
. (37)

Further discussion of the modes is given in Sect. 4.

4 Characteristic modes of the amplifier

In Sect. 3, we applied a series of approximations to ob-
tain the singular value decomposition of the scattering ker-
nel Sis (13). The SVDs for the no walk-off (32) and sig-
nificant walk-off (37) settings were compared with the gen-
eral Bloch–Messiah reduction (7). We identified the signal
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ψout
n,m(ks,⊥, ϕs) = ψ in∗

n,m(ks,⊥, ϕs) and the idler φout
n,m(ki,⊥, ϕi)

= φin∗
n,m(ki,⊥, ϕi) modes—see (7) and Fig. 1. In particular,

the highest achievable amplitude amplification ξ0,0 is ob-
tained with the seed ψ in

0,0(ks,⊥, ϕs) on the input, which pro-

duces ψ in∗
0,0 (ks,⊥, ϕs) on the output. It needs to be remem-

bered that the amplitudes in the spatial frequency domain
are effectively the far-field image.

4.1 No walk-off

In the setting with no walk-off ρ = 0 the modes resulting
from the solution (32) are optical vortices

ψout∗
n,m (ks,⊥,−ϕs)

= ψ in
n,m(ks,⊥, ϕs)

= e−iks,zL/2 un[ws,r (ks,⊥ − k0)]√
1/ws,r

exp(imϕs)√
2π

,

φout∗
n,m (ki,⊥,−ϕi)

= φin
n,m(ki,⊥, ϕi)

= e−iki,zL/2 un[wi,r (ki,⊥ − k0)]√
1/wi,r

exp(−imϕi)√
2π

.

(38)

The minus sign at the ϕs and ϕi angles is a nontrivial conse-
quence of twofold degeneracy of the singular values, which
changes relations (10). The above modes are trigonometric
functions on the down-conversion cone as plotted in Fig. 6.
Their shape in the radial direction is that of a Hermite–
Gaussian function with the width parameter

ws,r = 4
√

1 − ν−1

√
w2

p + L2

10
a2
s ,

wi,r = 4
√

1 − ν−1

√
w2

p + L2

10
a2
i ,

(39)

for the signal and the idler, respectively, where ν = (w2
p +

L2

10 a2
s )(w

2
p + L2

10 a2
i )/(−w2

p + L2

10 asai)
2. The gain parameters

are

ξn,m = χPL

√
2π

√
1 − μ2

k0
√

ws,rwi,r

μn exp

(
− m2

2k2
0w2

p

)
,

|μ| = √
ν − √

ν − 1. (40)

The characteristic modes are optical vortices [20], thanks
to the exp(imϕs) factor. Each of them carries orbital angu-
lar momentum, �m per photon. As the spontaneous down-
conversion creates entangled photon pairs with the oppo-
site angular momenta [21], they may be used in the field of
quantum cryptography [22]. The advantages of using entan-
gled vortex states as media for quantum information include
easy measurement [23] and the possibility to create a Hilbert
space of arbitrary dimension [24].

To obtain the above decomposition we assumed that
1/wp  k0, 1/ws,r  k0 and 1/wi,r  k0. This is approx-
imately equivalent to the requirement that beam diffraction
angles are much smaller than the angle between signal or
idler and the pump.

4.2 Significant walk-off

In the setting with a significant walk-off ρ > 0 the modes
resulting from (37) are elliptic Hermite–Gaussian beams,

ψout∗
n,m (ks,⊥, ϕs)

= ψ in
n,m(ks,⊥, ϕs)

= e−iks,zL/2 un[ws,r (ks,⊥ − k0)]√
1/ws,r

um(k0wϕϕs)√
1/(k0wϕ)

,

φout∗
n,m (ki,⊥, ϕi)

= φin
n,m(ki,⊥, ϕi)

= e−iki,zL/2 un[wi,r (ki,⊥ − k0)]√
1/wi,r

um(k0wϕϕi)√
1/(k0wϕ)

,

(41)

as plotted in Fig. 7. That is, the characteristic modes
are 2D Hermite–Gaussian functions, curved on the down-

Fig. 6 Three different modes for the no walk-off case: ψ in
0,0(ks,⊥, ϕs), ψ in

0,3(ks,⊥, ϕs) and ψ in
1,4(ks,⊥, ϕs). The phase e−iks,zL/2 is not shown. The

figure represents the real part of the modes which, due to degeneracy, are also proper characteristic modes
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Fig. 7 First three modes for the significant walk-off case:
ψ in

0,0(ks,⊥, ϕs), ψ in
0,1(ks,⊥, ϕs) and ψ in

0,3(ks,⊥, ϕs). The phase e−iks,zL/2

is not shown. The modes are bent elliptic Gaussian–Hermite beams.

When angular width is sufficiently small, the mode with the highest
amplification ψ in

0,0(ks,⊥, ϕs) is just an elliptic Gaussian

conversion cone. Their width parameters are

ws,r = 4
√

1 − ν−1

√
w2

p + L2

10
(as − ρ)2,

wi,r = 4
√

1 − ν−1

√
w2

p + L2

10
(ai + ρ)2,

k0wϕ = 1
4
√

10

√
Lk0ρ,

ν = [w2
p + L2

10 (as − ρ)2][w2
p + L2

10 (ai + ρ)2]
[−w2

p + L2

10 (as − ρ)(ai + ρ)]2
.

(42)

The respective gain parameters are

ξn,m = χPL
wp

√
π

√
1 − μ2

√
1 − μ2

ϕ

k0wϕ
√

ws,rwi,r

μnμm
ϕ ,

|μ| = √
ν − √

ν − 1, μϕ =
1 − 1

2
√

10
Lρ

k0w
2
p

1 + 1
2
√

10
Lρ

k0w
2
p

. (43)

To obtain the above decomposition we assumed that 1/wp 
k0, 1/ws,r  k0, 1/wi,r  k0, 1/k0wϕ  π and Lρ/

√
40 

wp . In other words, beam diffraction angles need to be much

smaller than the phase matching angles, the total walk-off

cannot be much larger than the pump waist and the mode

arc width has to be smaller than π .

When angular width is relatively small, the modes are just

elliptic Hermite–Gaussian functions [25] in spatial frequen-

cies. The explicit condition is ws,r  k0w
2
ϕ for the signal

and wi,r  k0w
2
ϕ for the idler. Then the Fourier transform

of (41) yields in the spatial mode functions in the near field,

ψout∗
n,m (−x,−y)=ψ in

n,m(x, y)

= e−ik0x
un(

x+asL/2
ws,r

)
√

ws,r

um(
y

wϕ
)

√
wϕ

,

φout∗
n,m (−x,−y)=φin

n,m(x, y)

= eik0x
un(

x−aiL/2
wi,r

)
√

wi,r

um(
y

wϕ
)

√
wϕ

.

(44)

In particular the ψ in
0,0(x, y) is an elliptical Gaussian beam,

traveling along the ideal phase matching cone, that is, at
the angle arctan(as) and passing through the center of the
crystal. Its widths are ws,r in the radial direction and wϕ in
the angular direction. The mode is optimal in the terms of
maximal achievable gain, as well as the signal-to-noise ra-
tio.

5 Numerical simulations

Above, we have derived the singular value decompositions
(32) and (37) from the low-gain regime scattering kernel
Sis given in (13). However, along with mathematically well
justified approximations we have taken a few less rigorous
steps, especially (17) and (34). Furthermore, the separation
of variables (15) needs to be verified, as well as the Taylor
series approximation around ϕs + ϕi = 0 (33). To confirm
the validity of the derivation of the characteristic modes, we
performed a numerical simulation.

For each crucial step in the approximation of the scat-
tering kernel Sis , we performed its numerical SVD. Tech-
nically, we calculated a discretized kernel in a cylindrical
coordinate system (18), corrected with the proper Jacobian.
It was too memory consuming to calculate Sis over the en-
tire rectangular sector of the coordinate grid, so we calcu-
lated its values only in those regions which have a potential
to contribute significantly, and we employed sparse arrays.
Since Sis (13) has the pump amplitude (16) as a factor, we
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Fig. 8 Comparison of (i) the gain parameters ξ0,m and (ii)–(iv) sec-
tions though mode functions obtained for four different approxima-
tions of the scattering kernel Sis: (a) the original with sinc (13), (b) the
kernel with exp (19), (b′) the quadratic form approximation (25),
(c) the kernel with the mixed term removed (33) and (d) the final re-
sult (37). As (b) and (b′) were indistinguishable, they are represented

only by (b). Calculations were carried out for a β-BBO crystal with
L = 1 mm, θ = 30◦, wp = 20 µm, λp = 0.4 µm, λs = 0.6 µm. This
corresponds to significant walk-off, ρL/wp ≈ 2.4. The kernels have
been calculated on a grid of 61 × 161 points, covering the range of
[0.6 µm−1,1.2 µm−1] × [− π

2 , π
2 ]

took into account only those regions in (�ki,⊥, �ks,⊥) space
for which the values of Ap(�ks,⊥ + �ki,⊥) are significant. In
cylindrical coordinates this happens when

|ks,⊥ − ki,⊥| < 2.5

wp

and |ϕs − ϕi | < 2.5

k0wp

. (45)

We chose the constant 2.5 as it covers over 0.999 of the
pump intensity. Moreover, we restricted ourselves to values
close to the ideal phase matching setting ks,⊥, ki,⊥ 
 k0 and
ϕs , ϕi 
 0. The extent of the grid must be much greater than
the zeroth mode, while the mesh must be much smaller than
the peak sizes. The requirement is especially important for
the sinc peak, as a too low resolution may spoil its oscil-
lating shape. To check if the simulation works properly, we
compared results for the same physical data but plotted over
a twice finer grid or at a twice broader range.

After verifying the reliability of numerical SVD, we have
compared results from different scattering kernel Sis ap-
proximations for a significant walk-off setting. The results
are illustrated in Fig. 8. For this data the zeroth singular
value ξ0,0 was preserved by the approximation, within a 2%
margin of error. However, other gain parameters changed
visibly with every approximation. The radial shape of the

zeroth mode was altered only by the sinc-exp approxima-
tion (17). Even though the consecutive approximations mod-
ified the angular width ws,ϕ , the modes were still quali-
tatively Hermite–Gaussians. Ten first characteristic modes
were verified to be indeed well separable. They could be re-
produced by the product of radial and angular functions in
over 98% of their intensity.

6 Practical signal optimization and noise reduction

In the previous chapters we worked in the perturbative
regime, that is, we assumed that the gain parameters are
small ξn,m  1. In particular, we found that the gain para-
meters are proportional to the pump amplitude ξn,m ∝ P and
that the characteristic modes do not change with the pump
amplitude P . However, a useful amplifier requires gain pa-
rameters much higher than 1. Hence, we need to extrapo-
late the results. We conjecture that the proportionality rela-
tion ξn,m ∝ P holds also for higher gains, while the mode
functions remain unchanged. This is strictly true for the 1-D
parametric amplifier we considered in Sect. 2 and was nu-
merically verified for a waveguide amplifier pumped with
ultrashort pulses [14].
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In a seeded OPA, two processes occur in parallel: ampli-
fication of the seed beam and generation of the spontaneous
parametric fluorescence. They do not influence one another
as long as the saturation effects can be neglected. Both of
these processes can be described within the framework of
the developed model. The latter process typically sets the
noise level of the amplifier. Since the total amount of fluo-
rescence depends only on the pump parameters and not on
the seed, it is best to choose the seed beam size which pro-
vides maximum possible amplification. This is exactly the
beam described by the fundamental input mode ψ in

0,0(
�ks,⊥)

given in (41) and (44). In a typical situation, this is an el-
liptic Gaussian beam of size ws,r × wϕ propagating at an
angle arctan(as) inside a nonlinear crystal. In the interac-
tion with the pump light the seed beam is amplified by a
factor G = exp(2ξ0,0) and a beam in a mode ψout

0,0(�ks,⊥) is
produced at the output.

An elliptical Gaussian beam can be easily converted to a
Gaussian beam with the help of astigmatic optics. If astig-
matic shaping of the input beam is unfeasible, one can use
round Gaussian beam of the waist ws = √

ws,rwϕ . In such

case many input modes ψ in
2n,2m(�ks,⊥) will be excited, each

of them will be amplified by a factor exp(2ξ2n,2m) and a dis-
torted beam will be produced on the output. Typically we
may neglect higher-order modes, since they both have lower
gains and are only slightly excited. The most important ef-
fect of using a round input beam is reduced coupling of the
seed light to the fundamental mode. This is described by the
factor

η = 4ws,rws,ϕ

(ws,r + ws,ϕ)2
(46)

which effectively reduces gain to ηG.
Let us now proceed with the calculation of the intensity

of the fluorescence noise emitted per unit time in a certain
direction. From basic quantum-mechanical considerations
we know that the number of photons scattered into mode
ψout

n,m(�ks,⊥) at a frequency of ωs is equal to sinh2 ξn,m 

exp(2ξn,m). When we observe the output of the amplifier
through an aperture, the contributions of distinct modes
should be added incoherently. Thus, the spectral density of
the number of photons is equal to the sum

〈
ñ(ωs)

〉 = ∑
n,m

exp(2ξn,m)Tn,m, (47)

where Tn,m is the transmission of the output mode ψout
n,m(�ks,⊥)

through the observation aperture.
To calculate the number of fluorescence photons emitted

per unit time d〈n〉/dt we add contributions from all the fre-
quencies

d〈n〉
dt

=
∫

dωs

〈
ñ(ωs)

〉
, (48)

Fig. 9 Plot of intensity transmittance T0,m of the first 15 Her-
mite–Gaussian modes trough a slit set to transmit 70% (squares) or
90% (dots) of the zeroth mode

where the integral should be performed over the observation
bandwidth. With such a formulation, the pump intensity and
the number of fluorescence photons emitted per unit time
d〈n〉/dt can become slowly varying time dependent quanti-
ties. However, let us focus on the simplest way of minimiz-
ing the total noise represented by the integral (48), that is
minimizing the noise power at each frequency ñ(ωs) inde-
pendently. We consider achieving this goal by spatial filter-
ing of the output of the amplifier with an aperture.

As one may find in (43) the gain parameters ξn,m form
geometric series with respect to both n and m as ξn,m ∝
μnμm

ϕ . For typical data, μ is small and modes with n > 0 can
be neglected. On the other hand, μϕ is often close to 1 and
spatial filtering in the angular direction can become neces-
sary. This can be accomplished by imaging the crystal onto
a suitably oriented slit. One may then achieve high trans-
mission for the fundamental mode T0,0 carrying the useful
signal, and significant suppression for the higher-order mode
T0,m, as plotted in Fig. 9. Results for arbitrary slit width can
be checked with a script we provide online [26]. The ex-
plicit expression for the intensity transmission of ψout

n,m(�ks,⊥)

mode through the slit of width h is given by the integral

Tn,m =
∫ h/2

−h/2
dyu2

m

(
y

wϕ

)
, (49)

where um(y/wϕ) are the angular components of the mode
functions (44). For an aperture transmitting 70% of the ze-
roth mode, the signal-to-noise ratio may be elevated up to
3.3 times.

Another approach to reducing fluorescence contained in
high-order modes is reducing angular gain decrement μϕ .
Our simplified model predicts that it would approach zero
when the following relation holds between the crystal length
and the pump beam waist:

wp = 1√
2
√

10

√
Lρ

k0
. (50)

Naturally the above relation should be considered approxi-
mate, because it relies on the numerical factor used in sinc
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approximation (17). Fortunately, even a rough fit to the (50)
should suffice.

7 Conclusion

We have developed a simple analytical model of a non-
collinear parametric amplifier pumped with a focused mono-
chromatic beam and utilizing type I phase matching. We
found an approximate Bloch–Messiah reduction for a low-
gain parametric amplifier for an arbitrary pair of signal and
idler frequencies. The final result was expressed in a closed
form in two special cases: zero walk-off of the pump beam
or total walk-off of the order of the beam size. Characteristic
modes of the first setting are optical vortices. The latter case
corresponds to the typical experimental situation and we find
that the characteristic modes are elliptic Hermite–Gaussian
beams. We checked the validity of the approximations as-
sumed during the derivation by comparing the analytical re-
sult to the numerical calculations for a typical range of para-
meters. Finally, we scaled the results of the reduction to the
high-gain regime using the results of our previous work [14]
and we discussed how to calculate the gain and fluorescence
intensity.

In particular, we have calculated the fundamental mode
of the amplifier, which has turned out to be elliptic Gaussian.
Seeding the amplifier with a beam matching this mode
yields the highest possible amplification. The output of
the parametric amplifier contains both the amplified seed
beam and optical noise due to parametric fluorescence. The
Bloch–Messiah reduction allows us to directly calculate the
amount of parametric fluorescence emitted by the amplifier.
Further analysis shows that it can be reduced by either suit-
able spatial filtering of high-order modes or adjusting the
pump beam diameter so that those modes are suppressed.

The results of our approximated model will never be as
accurate as numerical simulations based on tracing the evo-
lution of quasi-probability distributions [18], but they can
be instantly calculated for various configurations of para-
metric amplifiers using the Mathematica 6 script we provide
online [26], and thus may provide valuable insight in the ap-
plications.

Our results may be also used as a starting point for nu-
merical code modeling OPCPA with pump depletion. This
would be accomplished by dividing the amplifier longitudi-
nally into two parts: the front one, in which a gain of 103–
106 is reached without depleting the pump, and the rear one,
where saturation occurs. In the first part, quantum phenom-
ena play a role, while in the second part spontaneous fluo-
rescence can be treated as classical noise. The front part can
be treated with our model. This way the optimal input seed
beam shape, and spatially resolved intensity of the paramet-
ric fluorescence can be obtained. The latter can serve as an

initial condition for the numerical code solving the classical
evolution of the fields in the rear part of the amplifier.

The model developed in this paper may be also helpful
for optimizing photon pair sources, since it represents an al-
ternative approach to the problem of finding spatial modes of
the parametric fluorescence and optimal fiber coupling [16].
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