
Journal of Cloud Computing:
Advances, Systems and Applications

Endo et al. Journal of Cloud Computing: Advances, Systems
and Applications (2016) 5:16
DOI 10.1186/s13677-016-0066-8

REVIEW Open Access

High availability in clouds: systematic
review and research challenges
Patricia T. Endo1,2*, Moisés Rodrigues2, Glauco E. Gonçalves2,3, Judith Kelner2, Djamel H. Sadok2

and Calin Curescu4

Abstract

Cloud Computing has been used by different types of clients because it has many advantages, including the
minimization of infrastructure resources costs, and its elasticity property, which allows services to be scaled up or
down according to the current demand. From the Cloud provider point-of-view, there are many challenges to be
overcome in order to deliver Cloud services that meet all requirements defined in Service Level Agreements (SLAs).
High availability has been one of the biggest challenges for providers, and many services can be used to improve the
availability of a service, such as checkpointing, load balancing, and redundancy. Beyond services, we can also find
infrastructure and middleware solutions. This systematic review has as its main goal to present and discuss high
available (HA) solutions for Cloud Computing, and to introduce some research challenges in this area. We hope this
work can be used as a starting point to understanding and coping with HA problems in Cloud.

Keywords: Cloud computing, High availability, Systematic review, Research challenges

Introduction
Cloud Computing emerged as a novel technology at the
end of the last decade, and it has been a trending topic ever
since. The Cloud can be seen as a conceptual layer on the
Internet, which makes all available software and hardware
resources transparent, rendering them accessible through
a well-defined interface. Concepts like on-demand self-
service, broad network access, resource pooling [1] and
other trademarks of Cloud Computing services are the
key components of its current popularity. Cloud Com-
puting attracts users by minimizing infrastructure invest-
ments and resource management costs while presenting a
flexible and elastic service. Managing such infrastructure
remains a great challenge, considering clients’ require-
ments for zero outage [2, 3].
Service downtime not only negatively effects in user

experience but directly translates into revenue loss. A
report [4] from the International Working Group on
Cloud Computing Resiliency (IWGCR)1 gathers informa-
tion regarding services downtime and associated revenue
losses. It points out that Cloud Foundry2 downtime results

*Correspondence: patricia.endo@upe.br
1University of Pernambuco (UPE), BR 104 S/N, Caruaru, Brazil
Full list of author information is available at the end of the article

in $336,000 less revenue per hour. Paypal, the online pay-
ment system, experiences in a revenue loss of $225,000
per hour. To mitigate the outages, Cloud providers have
been focusing on ways to enhance their infrastructure
and management strategies to achieve high available (HA)
services.
According to [5] availability is calculated as the percent-

age of time an application and its services are available,
given a specific time interval. One achieves high avail-
ability (HA) when the service in question is unavailable
less than 5.25 minutes per year, meaning at least 99.999 %
availability ("five nines"). In [5], authors define that HA
systems are fault tolerant systems with no single point of
failure; in other words, when a system component fails, it
does not necessarily cause the termination of the service
provided by that component.
Delivering a higher level of availability has been one

of the biggest challenges for Cloud providers. The pri-
mary goal of this work is to present a systematic review
and discuss the state-of-the-art HA solutions for Cloud
Computing. The authors hope that the observation of
such solutions could be used as a good starting point to
addressing with some of the problems present in the HA
Cloud Computing area.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-016-0066-8-x&domain=pdf
mailto: patricia.endo@upe.br
http://creativecommons.org/licenses/by/4.0/

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 2 of 15

This work is structured as follows: “Cloud outages”
section describes some Cloud outages that occurred
in 2014 and 2015, and how administrators overcame
these problems; “Systematic review” section presents
the methodology used to guide our systematic review;
“Overview of high availability in Clouds” section
presents an overview regarding HA Cloud solutions;
“Results description” section describes works about
HA services based on our systematic review result;
“Discussions” section discusses some research challenges
in this area; and “Final considerations” section delineates
final considerations.

Cloud outages
Cloud Computing has become increasingly essential to
the live services offered and maintained by many com-
panies. Its infrastructure should attend to unpredictable
demand and should always be available (as long as possi-
ble) to end-clients. However, assuring high availability has
been a major challenge for Cloud providers. To illustrate
this issue, we describe four (certainly among many) exam-
ples of Cloud services outages that occurred in 2014 and
2015:

Dropbox
Dropbox’s Head of Infrastructure, Akhil Gupta, explained
that their databases have one master and two replica
machines for redundancy, and full and incremen-
tal data backups are performed regularly. However,
on January 10th, 20143, during a planned mainte-
nance scheduled intended to upgrade the Operat-
ing System on some machines, a bug in the script
caused the command to reinstall a small number of
active machines. Unfortunately, somemaster-replica pairs
were impacted which resulted in the service going
down.
To restore it, they performed the recovery from backups

within three hours, but the large size of some databases
delayed the recovery. The lesson learned from this episode
was the need to add a layer to perform distributed state
verification and speed up data recovery.

Google services
Some Google services, such as Gmail, Google Calendar,
Google Docs, and Google+, were unavailable on Jan-
uary 24th, 2014, for about 1 hour. According to Google
Engineer, Ben Treynor, “an internal system that gener-
ates configurations - essentially, information that tells
other systems how to behave - encountered a software
bug and generated an incorrect configuration. The incor-
rect configuration was sent to live services over the
next 15 minutes, caused users’ requests for their data
to be ignored, and those services, in turn, generated
errors”.

Consequently, they decided to add validation checks for
configurations, improve detection, and diagnose service
failure.

Google Apps
The Google Apps Team schedules maintenance on data
center systems regularly and some procedures involve
upgrading groups of servers and redirecting the traffic
to other available servers. Typically, these maintenance
procedures occur in the background with no impact on
users. However, due to a miscalculation of memory usage,
on March 17th, 2014 the new set of backend servers
lacked of sufficient capacity to process the redirected
traffic. These backend servers could not process the vol-
ume of incoming requests and returned errors for about
three hours.
The Google Engineering team said that they will “con-

tinue work in progress to improve the resilience of Hangouts
service during high load conditions”.

Verizon Cloud
Verizon Cloud4 is a Cloud provider that offers backup
and synchronization data to its clients. On January
10th, 2015 Verizon provider suffered a long outage
of approximately 40 hours over a weekend. The out-
age occurred due to a system maintenance procedure
which, ironically, had been planned to prevent future
outages.
So, as we can see, Cloud outages can occur from dif-

ferent causes and can be fixed using different strate-
gies. However, in most cases, in addition to the loss
of revenue, such service disruptions pushed Cloud
providers to rethink their management strategies and
sometimes to re-design their Cloud infrastructure design
altogether.
Financial losses due to Cloud outages foment studies

about HA solutions, in order to minimize outages for
Cloud providers. In the next Section, we describe the
systematic review approach that we used to undertake
research about HA solutions.

Systematic review
In this work, we adapted the systematic review proposed
by [6], in order to find strategies that address HA Clouds.
Next, we describe each activity (see Fig. 1) in detail and
describe how we address it.

Activity 1: identify the need for the review
As stated previously, high availability in Clouds remains
a big challenge for providers since Cloud infrastructure
systems are very complex and must address different ser-
vices with different requirements. In order to reach a
certain level of high availability, a Cloud provider should
monitor its resources and deployed services continuously.

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 3 of 15

Fig. 1 Systematic review process

With information about resources and service behaviors
available, a Cloud provider could make good management
decisions in order to avoid outages or failures.

Activity 2: define research questions
In this activity, we need to define which questions we want
to answer. The main goal of this work is to answer the
following research questions (RQ):

• RQ.1: What is the current state-of-the-art in HA
Clouds?

• RQ.2: What is the most common definition of HA?
• RQ.3: What are the HA services implemented by HA

Cloud solutions?
• RQ.4: What are the most common approaches used

to evaluate HA Cloud solutions?
• RQ.5: What are the research challenges in HA

Clouds?

Activity 3: define search string
In this activity, we need to define which keywords we
will use in selected search tools. For this work, we used
the following expressions: “cloud computing” AND “high
availability” AND “middleware”.

Activity 4: define sources of research
For this work, we chose the following databases: IEEE
Xplore5, Science Direct6, and ACM Digital Library7.

Activity 5: define criteria for inclusion and exclusion
In order to limit the scope of this analysis, we considered
only journals and conferences articles published between
2010 and 2015. The keywords “cloud computing” and
“middleware” or “framework” were required to be in the
article.

Activity 6: define data extraction procedure
Data extraction is based on a set of items to be filled for
each article: keywords, proposal, and future works.

Activity 7: identify primary studies
The search returned 9, 63, and 145 articles in IEEE Xplore,
Science Direct, and ACM Digital Library, respectively,
totaling 217 works.
By reading all abstracts and using the criteria for inclu-

sion or exclusion, we selected 19 papers for data extraction
and quality evaluation. This number is justified because

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 4 of 15

the keyword “high availability” is very common in Cloud
Computing, especially in its own definition, and so most
of articles had this keyword in them. However, in most
cases high availability was not their research focus.

Activity 8: evaluate quality of studies
The quality evaluation was based on checking if the paper
is related to some HA Cloud proposal for middleware or
framework.

Activity 9: extract relevant information
This activity involves applying the data extraction proce-
dure defined in Activity 6 to the primary studies selected
in Activity 7.

Activity 10: present an overview of the studies
In this activity, we present an overview of all articles
we selected in Activity 8, in order to classify and clar-
ify them according to the research questions presented
in Activity 2. The result of this activity is presented in
“Overview of high availability in Clouds” section.

Activity 11: present the results of the research questions
After an overview about studies in HA Clouds, we had
a discussion in order to answer the research questions
stated in Activity 2. The results of this activity are
presented in “Overview of high availability in Clouds”
section.

Overview of high availability in Clouds
In this Section, we present an overview about Activity
10, presenting some characteristics of the selected arti-
cles in HA Cloud. Figure 2 shows the number of articles
published per year from 2010 to 2015.
Concerning research source (Fig. 3), we can see that

ACM has more articles published in HA Cloud area.
Some articles define the term "high availability". For

instance, authors in [7] say “the services provided by the

Fig. 2 Number of articles per year

Fig. 3 Number of articles per research source

applications are considered highly available if they are
accessible 99.999 % of the time (also known as five 9’s)”.
The Table 1 outlines the various definitions of “high avail-
ability” we identified through our research, as well as the
source of each definition.
We also observed that many services are implemented

in conjunction in order to offer a HA Cloud. Figure 4
shows monitoring, replication, and failure detection are
the most implemented services, identified in 50 % of
studies in the research. Please, note that there are more
services than published works because it is common to
implement more than one service in a proposal.
Figure 5 shows how solutions were evaluated in the

studies we analyzed. We can see experimentation is the
most popular technique used. These results indicate that
research about this topic is working to derive proposals
with fast application to the cloud computing industry.

Table 1 High availability definitions

Reference Definition

Achieving High Availability at the
Application Level in the Cloud [7]

The services provided by the
applications are considered highly
available if they are accessible
99.999 % of the time (also known as
five 9’s)

Managing Application Level
Elasticity and Availability [25]

High availability is achieved when
the outage is less than 5.25 minutes
per year

Scheduling highly available
applications on cloud
environments [35]

High availability systems are
characterized by fewer failures and
faster repair times

Are clouds ready for large
distributed applications? [36]

High availability is defined in terms
of downtime that is the total
number of minutes the site is
unavailable for events lasting
longer than 5 minutes over a 1-year
period

Software aging in the
eucalyptus cloud computing
infrastructure: Characterization
and rejuvenation [37]

Availability is defined as the ability
of a system to perform its slated
function at a specic instant of time.

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 5 of 15

Fig. 4 HA services implemented by solutions

The analysis should be performed based on comparison
metrics. Work presented in [8] defines some metrics used
to evaluate HA solutions, as shown in Table 2.

Results description
As we found in this systematic review, Cloud providers
can make use of several technologies and mechanisms
to offer HA services. Authors in [9] classify HA
solutions into two categories: middleware approaches
and virtualization-based approaches. They propose a
framework to evaluate VM availability against three
types of failures: a) application failure, b) VM fail-
ure, and c) host failure. Authors use OpenStack,
Pacemaker, OpenSAF, and VMware to apply their
framework, which considers stateful and stateless-HA
applications.
However, in our research, we organize solutions into

three layers (underlying technologies, services, and mid-
dlewares), and keep in mind that layers can be composed
of (one or many) solutions from bottom layers to perform
their goals (Fig. 6).

Our classification is a simplified view of the frame-
work proposed by Service Availability Forum (SAForum)
(Fig. 7). SAForum is focused on producing open specifica-
tions to address the requirements of availability, reliability
and dependability for a broad range of applications (not
only Clouds).
There are three types of services in its Application Inter-

face Specification (AIS): Management Services, Platform
Services, and Utility Services. According to [10], Man-
agement Services provide the basic standard management
interfaces that should be used for the implementation of
all services and applications. Platform Services provide
a higher-level abstraction of the hardware platform and
operating systems to the other services and applications.
Utility Services provide some of the common interfaces
required in highly available distributed systems, such as
checkpoint and message.
SAF also proposes two frameworks: Software Manage-

ment Framework (SMF), which is used for managing mid-
dleware and application software during upgrades while
taking service availability into account; and Availability
Management Framework (AMF), which provides func-
tions (e.g. a set of APIs) for availability management of
applications andmiddleware [10], such as component reg-
istration and life cycle management, error reporting and
health monitoring.
We understand our 3-layer classification covers the SAF

framework, because SAF specifications can be allocated
between our layers. The next sub-sections will present
solutions found in our systematic review focusing on
services layer.

Underlying technologies
The bottom layer is a set of underlying technologies that
enable a Cloud provider offering a plethora of possibilities
to provide high availability using commodity systems.
Virtualization is not a new concept but Cloud providers

use it as key technology for enabling infrastructure

Fig. 5 Approaches used to evaluate HA solutions

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 6 of 15

Table 2 Metrics for HA evaluation from [8]

Metric Definition

Reaction time Delay between the occurrence of the failure and the
first reaction of the availability management solution.

Repair time Duration from the first reaction until the faulty entity
is repaired.

Recovery time Duration from the first reaction until the service is
provided again

Outage time Time between the failure happening and the service
recovery. In other words, outage time is the amount
of time the service is not provided and it is the sum of
the reaction and recovery times.

operation and easy management. According to [11],
the main factor that increased the adoption of server
virtualization within Cloud Computing is the flexibil-
ity regarding reallocation of workloads across the phys-
ical resources offered by virtualization. Such flexibility
allows, for instance, for Cloud providers to execute main-
tenance without stopping developers’ applications (that
are running on VMs) and to implement strategies for bet-
ter resource usage through the migration of VMs. Also,
server virtualization is adapted for the fast provision-
ing of new VMs through the use of templates, which
enables providers to offer elasticity services for application
developers [12].
Virtualization can also be used to implement HAmech-

anisms at the VM level, such as failure and attack isolation,
checkpoint and rollback as recovery mechanisms. Beyond
that, virtualization can also be used at the network level
with the same objectives by virtualizing network func-
tions (see about Network Function Virtualization (NFV)
in [13]).
There are several hypervisor options, such as from the

open-source community, Xen8 and Kernel-based Virtual

Machine (KVM)9. As well, there are those from pro-
prietary solutions, including VMWare10 and Microsoft’s
HyperV11.

Services
The second layer is composed ofmany services that can be
implemented and configured according to Cloud provider
requirements or management decisions. For instance, if
a provider has a checkpoint mechanism implemented in
its infrastructure, it should configure the checkpoint ser-
vice, which could mean setting it as an active or a passive
checkpoint, and configuring the update frequency, for
instance. The next subsections describe the main services
and report how related studies used them.

Redundancy
The redundancy service can offer different levels of avail-
ability depending on the redundancy model, the redun-
dancy strategy, and the redundancy scope (Fig. 8).
The redundancy model refers to the many different

ways HA systems can combine active and standby replicas
of hosted applications. AMF describes four models: 2N,
N+M, Nway, and Nway active [14]. The 2N ensures one
standby replica for each active application.
The N+M model is an extension of the 2N model and

ensures that more than two system units (meaning a vir-
tual machine, for instance) can handle taking active or
standby assignments from an application. N represents
the number of units able to handle active assignments and
M represents those with standby assignments. It is impor-
tant to notice that, considering the N+M model, a unit
that handles active assignments will never handle standby
assignments.
Furthermore, the N-way is similar to the N+M model

with the difference that it allows in the N-way model

Fig. 6 3-layer classification for HA Cloud solutions

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 7 of 15

Fig. 7 Overview of SAF framework [10]

unit to handle both active and standby assignments from
diverse applications instances.
Lastly, the N-way Active redundancy model compre-

hends only active assignments from unit applications; it
does not allow standby assignments, but permits an appli-
cation instance to be allocated as active into various units.
Due to its simplicity, the 2Nmodel is preferred in terms of
implementation [15, 16].
The redundancy strategy is divided in two classes: active

and passive redundancy [17]. In active strategy, there are
no standby replicas and all application replicas work in

Fig. 8 Redundancy classification

parallel. When one node fails, tasks executing at the failed
node can be resumed in any remaining node. In passive
redundancy, there is one working replica whereas remain-
ing replicas are standby. When the main node fails, any
standby replica can resume failed node tasks. Please note
that this active strategy helps to provide load balancing
to applications. However, maintaining consistency in the
passive model is simpler, and so this strategy is used in
different proposals [15].
In respect to scope, one can replicate the application

itself, the VM that hosts the application, or the com-
plete physical server hosting the application. Authors in
[15] propose to use all these approaches in a model-
based framework to select and configure High Availability
mechanisms for a cloud application. The framework con-
structs a model of the running system and selects the
proper HA services according to the benefits and costs of
each service, as well as the required availability level. In
contrast, the proposal described in [16] focuses on the VM
scope only.

Data replication
Data replication is used to maintain state consistency
between replicas. The main problem associated with this
service is the question of how to govern the trade-off
between consistency and resource usage [18]. In Clouds,
the replication may be achieved either by copying the
state of a system (checkpoint) or by replaying input to all
replicas (lock-step based) [16] (see Fig. 9).
The lock-step strategy is also called “State Machine

Replication” and its main goal is to send the same oper-
ations to be executed by all replicas of an application in
a coordinated way, thus guaranteeing message order and

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 8 of 15

Fig. 9 Data replication classification

state. This strategy can be found in the TClouds plataform
[19], which is applied to the state maintenance of appli-
cation replicas and is also applied to maintain the consis-
tency of objects stored in a set of cloud storage services.
The same strategy is applied in the Cloud-Niagaramiddle-
ware [20] in order to offer a monitoring service to check
resource usage and send failure notifications with min-
imal delay. Following this same strategy, Perez-Sorrosal
et al. [21] propose a multi-version database cache frame-
work to support elastic replication of multi-tier stateless
and statefull applications. In this framework, application
and database tiers are installed at each replica and a mul-
ticast protocol maintains data consistency between repli-
cas. The main focus of this proposal is elasticity, but the
solution can also cope with failures since the replication
protocol uses virtual synchrony to guarantee the reliable
execution of the replicas.
Checkpoint-based replication involves propagating fre-

quent updates of an active application to its standby
replicas. It is desirable that an application have some
checkpoint replicas distributed over different entities
to increase reliability, guarding it against failures [10].
Checkpoint service can be implemented in a centralized
fashion, when all checkpoint replicas are allocated to the
same entity, and in a distributed one, where replicas are
located in different entities of a cluster.
Remus is a production level solution implemented at

Xen to offer High Availability following this strategy [22].
Authors of that solution point out that lock-step replica-
tion results in an unacceptable resource usage overhead
because communication between applications must be
accurately tracked and propagated to all replicas. In con-
trast, checkpoints between active and standby replicas
occurs periodically, in intervals of milliseconds, provid-
ing better tradeoff between resource usage overhead and
updates. Taking a similar approach, Chan and Chieu [23]
introduce a cost effective solution which utilizes VM
snapshots coupled with a smart, on-demand snapshot col-
lection mechanism to provide an HA in the virtualization
environment. The main idea behind this proposal is to
extend the snapshot service (a common service offered by
virtualized infrastructures) to include checkpoint data of
a VM.
While Remus and similar approaches fit well to IaaS

Clouds because they provide an application-agnostic VM-
based checkpoint, Kanso and Lemieux [7] argue that

in a PaaS Cloud the checkpoint service must be per-
formed at the application level in order to cope with
internal application failures that may remain unno-
ticed in a VM-based HA system. Therefore, the authors
propose that each application send its current state
to the HA system through a well-defined checkpoint
interface.
In [24], authors propose BlobCR, a checkpoint frame-

work for High Performance Computing (HPC) appli-
cations on IaaS. Their approach is directed at both
application and process checkpoint levels through a dis-
tributed checkpoint repository.
In [16] authors present a solution focusing on HA

for real-time applications. The middleware proposed is
derived from others technologies, such as Remus, Xen
andOpenNebula. For instance, continuous-checkpoint, in
which asynchronous checkpoints are made in a security
VM to provide HA in case of failures, was inherited from
Remus.

Monitoring
Monitoring is a crucial service in an HA Cloud. Through
this service, applications’ health is continuously observed
to support others services. The primary goal of this service
is to detect when a replica is down, but robust imple-
mentations can also follow the health indicators of an
application (CPU and memory utilization, disk, and net-
work I/O, time to respond requests) which will help to
detect when a replica is malfunctioning [17]. It can also be
done at virtual and physical machine level (Fig. 10).
Papers surveyed showed there are two basic types of

monitoring: push-based monitoring and polling-based
monitoring. The latter is the most common type of moni-
toring and involves a set of measuring controllers period-
ically sending an echo-signal to the hosted applications.
This check can be sent to the operating system that hosts
the application (through standard network protocols like
ICMP or SNMP) or directly to the application through a
communication protocol, e.g., HTTP in the case of web
applications [17].

Fig. 10Monitoring classification

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 9 of 15

Polling-based monitoring can also be sent from a
backup replica to an active replica in order to check its
status and to automatically convert it from backup to
active when necessary [15] and [20]. This type of moni-
toring can be made by a monitoring agent that is exter-
nal to the application or an agent can be implemented
directly in the application by a standardized API that
handles messages sent by the Cloud. Through this intru-
sive approach the internal state of the applications can be
monitored, enabling the earlier detection of adverse con-
ditions and making it possible to offer services such as
checkpointing [7].
Push-based monitoring consists of the application (or

a cloud monitoring agent deployed with the appli-
cation) being the one responsible for sending mes-
sages to the measuring controller, when necessary. In
this case, the controller is informed when a meaning-
ful change occurs in the monitored application [25].
Push-based monitoring can also be implemented fol-
lowing a publish/subscribe communication model. This
type of monitoring is employed by Behl et al. [26] to
provide fault-tolerance to web service workflows. The
fault monitoring is implemented through ZooKeeper’s
Watches, which are registered to check if a Zookeper’s
ephemeral node (an application in this case) is active.
In the case of failure, the monitoring controller is noti-
fied about the crash. An et al. [16] point out that
the highly dynamic environment of cloud computing
requires timely decisions that can be achieved by pub-
lish/subscribe monitoring. In this case, the monitoring
controllers are subscribers and the monitoring agents are
publishers.
One important aspect to observe is that both

approaches (push and poll) can be implemented in a
Cloud environment. The high availability platform pro-
posed by Chan and Chieu [23] uses polling to check
periodically for host failures, and monitoring agents
running in the hosts push notifications to the moni-
toring controller. An et al. [16] propose a hierarchical
monitoring strategy combining the publish/subscribe
communication model for global-level monitoring with
polling at the local level.

Failure detection
Failure detection is an important service contained in
most HA solutions, which aims to identify systems’ faults
(application, virtual or physical machine level) and pro-
vide needed information for services capable of treating
problems to maintain service continuity (Fig. 11).
In [17] the authors list some mechanisms used to

detect faults like ping, heartbeat and exceptions. From
this perspective, failure detection can be classified in two
categories according to detection mechanisms: reactive
[23, 26]) and proactive [20]. The first approach waits for

Fig. 11 Failure detection classification

KEEP ALIVE messages, but it identifies a failure after a
period of time waiting without any KEEP ALIVE mes-
sage. The second approach is more robust and is capable
of identifying abnormal behaviors in the environment,
checking the monitoring service and interpreting col-
lected data to verify whether there are failures or not.
For simplicity, the reactive type is implemented more

often. The work presented in [26] proposes a fault-tolerant
service through replication processes with BPEL imple-
mentation, which means that Zookeeper is responsible
for detecting crashed replicas using a callback mechanism
called watches. As well [23], authors treat failure detec-
tion through heartbeats hosted in each node, and so the
absence of heartbeats after a period of time has passed
indicates a failure and hence the recovery process begins.
Authors in [20] propose an intelligent system that

depends on a proactive mechanism of monitoring and
notification, as well as a mathematical model which is
responsible for identifying the system faults.
Others studies lack many details about the failure detec-

tion process. For instance, in [27], failure detection is
implemented together with failure mitigation (recovery)
in a process called Fault Injection. This process aims to
evaluate the framework capacity to handle failover pos-
sibilities. Also, in [7], authors proposed a HA middle-
ware inside VMs for monitoring and restarting in case of
failures.
In [16], authors proposed an architecture with an entity

called LFM (Local Fault Manager), located in all physical
host. It is responsible for collecting resource information
such as memory, processes, etc. and transferring it to the
next layer, which is responsible for decision making, sim-
ilar to a monitoring service. Moreover, LFM also runs
HAS (High-Availability Service) that keeps synchroniza-
tion between primary and backup VMs, and is responsible
for making backup VM active when a failure is detected in
the primary VM.

Recovery
The recovery service is responsible for ensuring fault-
tolerant performance through some services like redun-
dancy [17], which means preserving HA even during

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 10 of 15

crashes at application, virtual or physical machine level.
It can be classified into smart [15, 16, 20] and simple
[23, 28] (Fig. 12). The smart recovery uses other services
and mechanisms (such as monitoring and checkpoint) to
provide an efficient restoration with minimum losses for
the application. Meanwhile, considering simple recovery,
the broken application is just rebooted in a healthy node,
so that the service continues to be provided, but all state
data are lost.
The smart recovery proposed in [15] is guaranteed

through a fault tolerant mechanism that keeps an appli-
cation backup synchronized with active applications but
deployed in a different VM. Authors in [16] work in a
similar way, starting with the Remus project as base and
applying a technique for VM failover using two VMs (pri-
mary and backup) that periodically synchronize states and
are able to change from primary VM to backup, when
needed. In [20], recovery is reached using an active repli-
cation technique, where a controller manages a priority
list through Backup-ID from resources. Therefore, after
a failure, broadcast communication is made and other
nodes at the top of the list must assume the execution.
Furthermore, authors in [23] decided to use the sim-

ple recovery after a failure by using merged snapshots, in
which faulty agent requires the manager any of snapshot
available. In addition, work in [28] also uses simple recov-
ery, in which the VMS are monitored by a VM wrapper
that identifies unavailability and makes reboots.

Middleware
At the upper layer, we have middleware that uses services
to provide HA to applications. The main goal is to manage
how these services will operate, configure them, and take
decisions according to information acquired.
OpenSAF [10] is an open source project that offers some

services that implement the SAForum Application Inter-
face Specification (AIS). For instance, OpenSAF imple-
ments the Availability Management Framework (AMF),

which is the middleware responsible for maintaining ser-
vice availability. Is also implements the checkpoint service
(CPSv) that provides a means for processes to store check-
point data incrementally, which can be used to protect
applications against failures. For a detailed description
of all SAF services implemented by OpenSAF, please
see [10].
Since OpenSAF is used for general purpose, some stud-

ies use it to implement their Cloud solutions. For instance,
authors in [7] propose an HA middleware for achieving
HA at application level by using an SAF redundancy strat-
egy. The middleware is responsible for monitoring physi-
cal and virtual resources, and repairing them or restarting
VMs in case of failure. They also propose an HA inte-
gration. Basically, there is an integration-agent, which a
Cloud user interacts with in order to provide informa-
tion about its application and its availability requirements
(such as number of replicas and redundancy model); and
there is an HA-agent, which is responsible for manag-
ing the state of state-aware applications, and abstracting
the complexity of APIs needed to execute the checkpoint
service.
OpenStack12 is an open source platform for public and

private Clouds used to control large pools of computation,
storage and networking resources. OpenStack has several
components, and each component is responsible for a spe-
cific aspect of the Cloud environment. For instance, the
component named Nova is responsible for handling VMs,
and providing different flavors and images that describe
details about the CPU, memory and storage of a VM.
Another component is Neutron, which responsible for
network management functions, such as the creation of
networks, ports, routers and VMs connections. Consider-
ing the HA scope, we highlight the component called Heat
that is OpenStack’s orchestration tool. Using Heat, one
can deploy multiple composite Cloud applications into
OpenStack’s infrastructure, using both the AWS Cloud-
Formation template and the Heat Orchestration Template

Fig. 12 Recovery classification

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 11 of 15

(HOT). In terms of HA, with Heat it is possible to mon-
itor resources and applications from three basic levels13:
1) application level; 2) instance level; and 3) stack level
(group of VMs). In case of failure, Heat tries to solve
the problem in the current level. If the problem per-
sists, it will try to solve it in a higher level. However,
restarting resources can take up to a minute. Heat can
also automatically increase or decrease the number of
VMs, in conjunction with Celiometer (which is another
OpenStack service) [25].
The paper [28] presents an OS-like virtualization cloud

platform. They offers a dual stack API in the shell. One
is called "Kumoi" and is used to manipulate data centers
directly, while the other is called "Kali" and is used to build
up the stack of cloud computing. With this cloud platform
authors provide several HA services, such as checkpoint,
monitoring, failure detection, recovery and elasticity. One
should notice that services are provided at the VM level.
They also present a qualitative evaluation between their
tool and several others, such as Openstack, Nimbus, and
OpenNebula.
The proposed solution in [20] is a high availability

and fault tolerance middleware through the checkpoint,
watchdog and log services for applications in a cloud envi-
ronment. The authors claim that two issues are responsi-
ble for reachingmiddleware objectives: notifications with-
out delay and monitoring of resources, which is achieved
through an analytic model that identifies the fault nature.
The Cloud-Niagara algorithm is shown and performs
adjustments at nodes through resources calculation. The
mean time to recover of the proposed solution is com-
pared to other systems and evaluated on OpenStack,
where Cloud-Niagara operates, by executing processes
from real applications (PostgreSQL Database (DB), File
Transfer Protocol (FTP), etc). This evaluation shows the
CPU usage variation through different loads from the
execution of applications processes execution, present-
ing the importance of monitoring the effective replica
instantiation.

Discussions
In the previous sections, we presented a 3-layer classifica-
tion for HA Cloud solutions that use many techniques to
apply HA requirements at the infrastructure level. Since
these technologies are key-enablers for Cloud operation
and management, it is crucial that we go beyond the
advantages to understand their specific challenges.
Regarding the underlying technologies, despite the

fact that we presented virtualization as a good alterna-
tive for providing HA, some authors do not completely
agree that this technology is a good solution for this
purpose. In [7], the authors state that virtualization can
hide some failures at the software level and that failures

at the operating system level can affect both active and
standby VMs if running in a lock-step way. Beyond that,
virtualization introduces additional software layers
imposing additional delays to network datagrams [29].
Consequently, performance measurements can also be
affected by virtualization; authors in [29] show that clock-
related measurements are affected by CPU load in the
host as well as in the network load.
Regarding the offered services - the main focus of this

work -, we can find several proposals in the literature for
improving them, such as ([5, 30, 31]). Here, we highlight
the issues surrounding automatic configuration and test
of these services. As it was observed in “Cloud outages”
section , Cloud outages can occur due to the misconfig-
uration of management services. Commonly, enterprises
add validation checks for automatic configurations and
improvemechanisms for detection and recovery of service
failures.
Another important aspect is the feasibility of the service

implementation. For instance, authors in [7] implemented
their proposal; their algorithms run in polynomial time
and the middleware consumes approximately 15MB of
RAM and a moderated amount of CPU. On the other
hand, Always On solution [32] proposes an HA architec-
ture but does not provides insights on the feasibility of
its implementation, nor does it treats how to deploy it.
Beyond that, in this solution, applications need to imple-
ment their own HA mechanisms because they do not use
a modular approach.
In terms of the middleware layer, its main shortcomings

are its lack of compatibility to a standard specification and
its dependency on a specific technology platform. These
characteristics make these solutions inflexible, since once
an application is developed to comply with such a middle-
ware, the application cannot be migrated to other alter-
native solutions without major modifications. In this way,
these solutions do not represent the desired interoperabil-
ity (portability) requirement. The middleware presented
in [7] overcomes this problem by offering HA at the appli-
cation level by using an open-source and standardized
implementation, named OpenSAF, which is a flexible and
platform-independent solution.
Security is also an essential aspect for HA Clouds; how-

ever, none of the presented solutions deals with security
mechanisms, such as those protecting against malicious
attacks at the VMor application level. This occurs because
detection and treatment of security breaches depends on
different mechanisms. Even when an attack leads to a
failure condition, dealing with this issue can propagate
the consequences of the attack to the standby units. For
example, in the case of a Denial-of-Service (DoS) attack,
the middleware can proactively detect the active unit is
out of service, failover to the standby unit, and trans-
fer all requests to the standby unit. This strategy would

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 12 of 15

propagate the denial of service to the standby unit. There-
fore, the integration of HA and security services is an
essential requirement when implementing a cloud mid-
dleware.
The advancement of standardization and improvement

of HA strategies in a cloud computing system leads to
the concept of HA-on-demand. Authors in [7] discuss this
idea. They point out that not all applications need HA
requirements during all the time. Thus, users can request
HA services for their applications according to their cur-
rent real needs. An online store can, for example, program
different HA levels according to the chronogram of an
announced promotion (e.g. Black Friday), changing the
robustness of the system in respect to its calendar, clients
demand, and allocated budget. In this way, authors state
that it is feasible to have HA-as-a-service per applications
in the Cloud.

NoPaas: proposal of a high available cloud for PaaS
provisioning
Considering all of this related work, we have defined a set
of requirements for implementing a high available frame-
work to provide PaaS, which we named NoPaaS (Novel
PaaS).
We grouped these requirements into two categories:

a) application requirements, and b) framework require-
ments. Application requirements represent mandatory
characteristics that all applications require in order to
work properly within the NoPaaS framework (Table 3).
In turn, framework requirements are a set of services
and characteristics that the NoPaaS framework itself must
provide for applications and/or developers (Table 4).
The application requirements are necessary to provide

a unique interface to developers. In this way, the pro-
posal provides strategies to allow developers to handle
some HA resources provided by the NoPaaS. At the same
time, applications need to be adapted in order to com-
ply with all these requirements, as stated in REQ A.1,
in which developers should use NoPaaS API to imple-
ment their applications. Despite application requirements
making application development a little bit hard, this is
a very common requirement in PaaS environments, such
as Google App Engine14. Those PaaS cloud environments
provide user APIs for building scalable web applications
and mobile backends. Furthermore, REQ A.2 was defined
in order to guarantee the multi-tier and stateful applica-
tions handling by the NoPaaS, and REQ A.3 was stated

Table 3 Application requirements

REQ A.1 Must implement the API as described by the framework

REQ A.2 Must always include the session ID in messages exchanged
between tiers of the application

REQ A.3 RESTful communications between tiers

Table 4 Framework requirements

REQ F.1 Must define the API for north bound communicationwith
applications

REQ F.2 Must support different profile configurations

REQ F.3 Must plan resource allocation based on different profile
configurations

REQ F.4 Must support multi-tier applications

REQ F.5 Must support stateful applications

REQ F.6 Must deal with sticky sessions

REQ F.7 Must assure HA

REQ F.8 Must provide scaling

REQ F.9 Must provide resource management

REQ F.10 Must rely on Cloud infrastructure compatible with current
standards

to facilitate and standardize the communication between
application’ tiers.
The framework requirements were defined in order to

achieve high availability focused on provisioning multi-
tier stateful applications. REQ F.1 allows an unique form of
communication with different types of applications, mak-
ing this process simple for the developer. REQ F.2 and F.3
are related to profile configurations (economy, business,
and custom) in order to incoporate different available
budgets and requirements into response time and avail-
ability levels. These requirements facilitate the resource
management from the PaaS provider perspective. From
REQ F.4 to F.6, we have determined that the framework
must deal with a specific type of application: multi-tier
and stateful. It is our big distinction, since we did not
find other studies considering such an application type.
From REQ F.7 to F.9, we state the main services in order
to ensure high availability. These are the big challenges
for us, since we are considering multi-tier and stateful
applications. The REQ F.10 guarantees compatibility with
existing Cloud IaaS providers.
Considering all of these requirements, we propose our

NoPaaS framework for high available clouds, shown in
Fig. 13. The NoPaaS was designed to support the deploy-
ment of multi-tier and stateful applications deployment,
providing services that include checkpoint, session migra-
tion, and failure recovery.

App deployment module
The App Deployment module is responsible for the inter-
face between the application developer and our NoPaaS
framework. NoPaaS proposes a set of modules, in which
each module must act as a gateway between the PaaS ser-
vice and NoPaaS internal services. Applications which will
be deployed within NoPaaS must accomplish REQs A.1,
A.2, and A.3 regarding the application requirements, and
REQ F.1 regarding the framework requirements.

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 13 of 15

Fig. 13 NoPaaS framework

For the developers, it is mandatory to provide a con-
figuration file specifying all information needed to deploy
their applications in NoPaaS. Such a configuration file is
very similar to what is usually provided to traditional PaaS
in order to deploy a new application (e.g., git repository
address and multi-tier architecture).

Profiles module
NoPaas makes use of profiles to represent and map the
available budget provided by the developer and appli-
cation requirements into response time and availability
levels. The NoPaaS defines and provides, but it is not lim-
ited to, three different profiles: a) economy; b) business;
and c) custom. For each profile, there is a specific config-
uration of load balance, scaling, checkpoint mechanism,
and redundancy model based on the Service Availability
Forum (SAForum or just SAF) model. REQs F.2 and F.3
are obeyed by this module.
NoPaaS uses the SAF reference because it produces

open specifications to address the requirements of avail-
ability, reliability and dependability for a broad range
of applications. In the SAF specification, there are five
redundancymodels: no redundancy, 2N, N+M, Nway, and

Nway active. These redundancy models differ from each
other in the number of active and standby assignments
each service has [33], and consequently in terms of the
availability level that each model is able to reach.

Planning module
The set of information provided by the developers regard-
ing their applications’ configurations and profiles is sent
to the App + Services Configurations Translation in the
Planning module, which is responsible for translating this
information so it can be used by the Planner. The Plan-
ner analyses all requirements and available resources on
the Cloud infrastructure and plans the resource alloca-
tion, choosing the SAF redundancy model in order to
satisfy REQs F.4, F.5, and F.6. The Planner also commu-
nicates with the Resource Management (in the Operation
module) in order to ensure information about resource
availability is always updated.
The Planner is responsible for executing twomain activ-

ities: calculating the availability estimation based on SAF
redundancy models, and defining the application alloca-
tion by trying to minimize the total cost while reaching a
minimum availability level defined by the developer.

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 14 of 15

Each tier of an application is named as Service Instance
(SI), and each SI is assigned into a Service Unit (SU). We
modeled the solution for mapping SI into SU as an inte-
ger program and solved it using algorithms to find the
best SAF model (with minimum cost). The Planner uses
an analytic worst-case models to estimate the availability
of each SAF redundancymodel. For a detailed explanation
about the analyticmodels and some simulation results and
analysis, please see [34].

Operation module
The Operation module provides many services to deal
with the Cloud infrastructure. Resource Management
is responsible for supervising the infrastructure, report-
ing on application failures and generating scaling in/out
triggers. The Checkpoint stores backups of deployed
applications, recovering their states in case of failure,
and also deals with session migrations. The Alloca-
tion enforces the reservation of resources designed by
the Planner. The Monitoring keeps track of applica-
tions and physical resources, maintaining a map of
resource usage. The Load Balance is used to distribute
the load among multiple tiers of an application, deal-
ing with session stickiness, server failure, and session
migration. We define the Message Bus entity for com-
munication purposes, and it is responsible for receiv-
ing and delivering messages for all entities. REQs F.7,
F.8, and F.9 should be attended by services of this
module.
For instance, we have the resource management that

handles application failures and is also responsible for
issuing alerts regarding scaling needs. Monitoring is a
basic service responsible for monitoring all applications
and (virtual and/or physical) resources. Data generated by
the monitor entity is stored and used a posteriori to mea-
sure which resources are available and to calculate the
ideal configuration needed to deploy a new application (or
if scaling is needed).

Cloud infrastructure module
The Cloud Infrastructure services comprise the IaaS
services that NoPaaS uses to allocate the developers’
applications. The main idea is to use Cloud facili-
ties in order to avoid unnecessary work. For that,
NoPaaS needs to contract some IaaS provider or con-
figure our own private IaaS. With this, we comply with
REQ F.10.

Final considerations
Cloud outages, no matter how long, are responsible for
large financial losses. Cloud providers look for solutions
that provide high availability even in failure cases. In this
paper, we proposed a classification for HA Cloud solu-
tions based on 3 layers. We also described and discussed

some existing commercial and non-commercial solutions
focused on middlewares.
High availability is a great challenge for Cloud providers

due to its complexity (from the infrastructure to the
application level). There are many issues to study in
order to minimize Clouds outages, such as portabil-
ity, feasibility, and security. A next step could be the
implementation of HA-as-a-service, highlighting even
more the importance of this research area for Cloud
providers.

Endnotes
1 http://iwgcr.org/
2 https://www.cloudfoundry.org
3 https://blogs.dropbox.com/tech/2014/01/outage-

post-mortem/
4 http://www.verizonwireless.com/solutions-and-

services/verizon-cloud/
5 http://ieeexplore.ieee.org/Xplore/home.jsp
6 http://www.sciencedirect.com/
7 http://dl.acm.org/
8 https://www.xenproject.org/
9 http://www.linux-kvm.org/page/Main_Page
10 http://www.vmware.com/
11 https://www.microsoft.com/en-us/cloud-platform/

virtualization
12 http://docs.openstack.org/developer/heat/
13 https://wiki.openstack.org/wiki/Heat/HA
14 https://cloud.google.com/appengine/

Acknowledgements
This work was supported by the RLAM Innovation Center, Ericsson
Telecomunicaçõs S.A., Brazil.

Authors’ contributions
Our contribution is a systematic review regarding existing high availability
solutions for Cloud Computing. We considered studies done from 2010 to
2016; and we provided an overview and description about them based on 3-
layer classification. Furthermore, we proposed a framework for providing high
availability services, and also presented requirements to deal with multi-tier
and stateful applications. All authors read and approved the final manuscript.

Competing interests
Cloud computing, high availability, resource management.

Author details
1University of Pernambuco (UPE), BR 104 S/N, Caruaru, Brazil. 2Federal
University of Pernambuco, GPRT, Recife, Brazil. 3Rural Federal University of
Pernambuco, Recife, Brazil. 4Ericsson Research, Kista, Sweden.

Received: 1 June 2016 Accepted: 4 October 2016

References
1. Dillon T, Wu C, Chang E (2010) Cloud computing: issues and challenges.

In: Advanced Information Networking and Applications (AINA), 2010 24th
IEEE International Conference On. IEEE. pp 27–33. http://ieeexplore.ieee.
org/document/5474674/?arnumber=5474674&tag=1

http://iwgcr.org/
https://www.cloudfoundry.org
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem/
https://blogs.dropbox.com/tech/2014/01/outage-post-mortem/
http://www.verizonwireless.com/solutions-and-services/verizon-cloud/
http://www.verizonwireless.com/solutions-and-services/verizon-cloud/
http://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
http://dl.acm.org/
https://www.xenproject.org/
http://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/
https://www.microsoft.com/en-us/cloud-platform/virtualization
https://www.microsoft.com/en-us/cloud-platform/virtualization
http://docs.openstack.org/developer/heat/
https://wiki.openstack.org/wiki/Heat/HA
https://cloud.google.com/appengine/
http://ieeexplore.ieee.org/document/5474674/?arnumber=5474674&tag=1
http://ieeexplore.ieee.org/document/5474674/?arnumber=5474674&tag=1

Endo et al. Journal of Cloud Computing: Advances, Systems and Applications (2016) 5:16 Page 15 of 15

2. Puthal D, Sahoo B, Mishra S, Swain S (2015) Cloud computing features,
issues, and challenges: a big picture. In: Computational Intelligence and
Networks (CINE), 2015 International Conference On. IEEE. pp 116–123.
http://ieeexplore.ieee.org/document/7053814/?arnumber=7053814

3. da Fonseca NL, Boutaba R (2015) Cloud Architectures, Networks, Services,
and Management. In: Cloud Services, Networking, and Management.
Wiley-IEEE Press. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=7090261

4. Cérin C, Coti C, Delort P, Diaz F, Gagnaire M, Gaumer Q, Guillaume N, Lous
J, Lubiarz S, Raffaelli J, et al. (2013) Downtime statistics of current cloud
solutions. International Working Group on Cloud Computing Resiliency,
Tech. Rep. http://iwgcr.org/wp-content/uploads/2013/06/IWGCR-Paris.
Ranking-003.2-en.pdf. Accessed Oct 2016

5. Toeroe M, Tam F (2012) Service Availability: Principles and Practice. John
Wiley & Sons. http://www.wiley.com/WileyCDA/WileyTitle/productCd-
1119954088.html

6. Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN
(2015) Elasticity in cloud computing: a survey. Ann.
Telecommunications-annales des télécommunications 70(7–8):289–309

7. Kanso A, Lemieux Y (2013) Achieving high availability at the application
level in the cloud. In: Cloud Computing (CLOUD), 2013 IEEE Sixth
International Conference On. IEEE. pp 778–785. http://ieeexplore.ieee.
org/document/6740222/?arnumber=6740222

8. Heidari P, Hormati M, Toeroe M, Al Ahmad Y, Khendek F (2015)
Integrating open saf high availability solution with open stack. In: Services
(SERVICES), 2015 IEEE World Congress On. IEEE. pp 229–236. http://
ieeexplore.ieee.org/document/7196529/?arnumber=7196529

9. Hormati M, Khendek F, Toeroe M (2014) Towards an evaluation framework
for availability solutions in the cloud. In: Software Reliability Engineering
Workshops (ISSREW), 2014 IEEE International Symposium On. IEEE. pp 43–
46. http://ieeexplore.ieee.org/document/6983798/?arnumber=6983798

10. OpenSAF Overview Release 4.4 Programmer’s Reference. http://
sourceforge.net/projects/opensaf/files/docs/opensaf-documentation-4.
4.1.tar.gz/download. Accessed Oct 2016

11. Gonçalves GE, Endo PT, Cordeiro T, Palhares A, Sadok D, Kelner J,
Melander B, Mangs J (2011) Resource allocation in clouds: concepts, tools
and research challenges. XXIX SBRC-Gramado-RS. http://sbrc2011.facom.
ufms.br/files/anais/shortcourses-12.html. http://sbrc2011.facom.ufms.br/
files/anais/files/mc/mc5.pdf

12. Marshall P, Keahey K, Freeman T (2010) Elastic site: Using clouds to
elastically extend site resources. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. IEEE Computer Society. pp 43–52. http://dl.acm.org/citation.
cfm?id=1845214

13. Cui C, Xie Y, Gao G, Telekom D, Martiny K, Carapinha J, Telecom S, Lee D,
Argela TT, Ergen M Network functions virtualisation (nfv). White paper,
available at: https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/
NFV_White_Paper3.pdf. Accessed Oct 2016

14. Availability Management Framework. http://devel.opensaf.org/SAI-AIS-
AMF-B.04.01.AL.pdf. Accessed Oct 2016

15. Wu Y, Huang G (2013) Model-based high availability configuration
framework for cloud. In: Proceedings of the 2013 Middleware Doctoral
Symposium. ACM. p 6. http://dl.acm.org/citation.cfm?id=2541595

16. An K, Shekhar S, Caglar F, Gokhale A, Sastry S (2014) A cloud middleware
for assuring performance and high availability of soft real-time
applications. J Syst Arch 60(9):757–769

17. Alexandrov T, Dimov A (2013) Software availability in the cloud. In:
Proceedings of the 14th International Conference on Computer Systems
and Technologies. ACM. pp 193–200. http://dl.acm.org/citation.cfm?id=
2516814

18. Chen T, Bahsoon R, Tawil A-RH (2014) Scalable service-oriented replication
with flexible consistency guarantee in the cloud. Inform Sci 264:349–370

19. Bessani A, Cutillo LA, Ramunno G, Schirmer N, Smiraglia P (2013) The
tclouds platform: concept, architecture and instantiations. In: Proceedings
of the 2nd International Workshop on Dependability Issues in Cloud
Computing. ACM. p 1. http://dl.acm.org/citation.cfm?id=2506156

20. Imran A, Ul Gias A, Rahman R, Seal A, Rahman T, Ishraque F, Sakib K (2014)
Cloud-niagara: A high availability and low overhead fault tolerance
middleware for the cloud. In: Computer and Information Technology
(ICCIT), 2013 16th International Conference On. IEEE. pp 271–276. http://
ieeexplore.ieee.org/document/6997344/?arnumber=6997344

21. Perez-Sorrosal F, Patiño-Martinez M, Jimenez-Peris R, Kemme B (2011)
Elastic si-cache: consistent and scalable caching in multi-tier
architectures. VLDB J Int J Very Large Data Bases 20(6):841–865

22. Cully B, Lefebvre G, Meyer D, Feeley M, Hutchinson N, Warfield A (2008)
Remus: High availability via asynchronous virtual machine replication. In:
Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, San Francisco. pp 161–174

23. Chan H, Chieu T (2012) An approach to high availability for cloud servers
with snapshot mechanism. In: Proceedings of the Industrial Track of the
13th ACM/IFIP/USENIX International Middleware Conference. ACM. p 6.
http://dl.acm.org/citation.cfm?id=2405152

24. Nicolae B, Cappello F (2013) Blobcr: Virtual disk based checkpoint-restart
for hpc applications on iaas clouds. J Parallel Distrib Comput
73(5):698–711

25. Toeroe M, Pawar N, Khendek F (2014) Managing application level
elasticity and availability. In: Network and Service Management (CNSM),
2014 10th International Conference On. IEEE. pp 348–351. http://
ieeexplore.ieee.org/document/7014191/?arnumber=7014191

26. Behl J, Distler T, Heisig F, Kapitza R, Schunter M (2012) Providing
fault-tolerant execution of web-service-based workflows within clouds.
In: Proceedings of the 2nd International Workshop on Cloud Computing
Platforms. ACM. p 7. http://dl.acm.org/citation.cfm?id=2168704

27. Ooi BY, Chan HY, Cheah YN (2012) Dynamic service placement and
replication framework to enhance service availability using team
formation algorithm. J Syst Softw 85(9):2048–2062

28. Sugiki A, Kato K (2011) An extensible cloud platform inspired by operating
systems. In: Utility and Cloud Computing (UCC), 2011 Fourth IEEE
International Conference On. IEEE. pp 306–311. http://ieeexplore.ieee.
org/document/6123513/?arnumber=6123513

29. Dantas R, Sadok D, Flinta C, Johnsson A (2015) Kvm virtualization impact
on active round-trip time measurements. In: Integrated Network
Management (IM), 2015 IFIP/IEEE International Symposium On. IEEE.
pp 810–813. http://ieeexplore.ieee.org/document/7140382/?arnumber=
7140382

30. Patel P, Bansal D, Yuan L, Murthy A, Greenberg A, Maltz DA, Kern R, Kumar
H, Zikos M, Wu H, et al. (2013) Ananta: cloud scale load balancing. ACM
SIGCOMM Comput Commun Rev 43(4):207–218

31. Singh D, Singh J, Chhabra A (2012) High availability of clouds: Failover
strategies for cloud computing using integrated checkpointing
algorithms. In: Communication Systems and Network Technologies
(CSNT), 2012 International Conference On. IEEE. pp 698–703. http://
ieeexplore.ieee.org/document/6200714/?arnumber=6200714

32. Anand M (2012) Always on: Architecture for high availability cloud
applications. In: Cloud Computing in Emerging Markets (CCEM), 2012 IEEE
International Conference On. IEEE. pp 1–5. http://ieeexplore.ieee.org/
document/6354593/?arnumber=6354593

33. Availability Management Framework - Application Interface Specification
SAI-AIS-AMF-B.04.01. Available at: http://devel.opensaf.org/SAI-AIS-AMF-
B.04.01.AL.pdf. Accessed Oct 2016

34. Gonçalves G, Endo P, Rodrigues M, Sadok D, Curesco C Risk-based model
for availability estimation of saf redundancy models. http://ieeexplore.
ieee.org/stamp/stamp.jsp?tp=&arnumber=7543848

35. Frîncu ME (2014) Scheduling highly available applications on cloud
environments. Future Generation Comput Syst 32:138–153

36. Sripanidkulchai K, Sahu S, Ruan Y, Shaikh A, Dorai C (2010) Are clouds ready
for large distributed applications? ACM SIGOPS Oper Syst Rev 44(2):18–23

37. Araujo J, Matos R, Alves V, Maciel P, Souza F, Trivedi KS, et al. (2014)
Software aging in the eucalyptus cloud computing infrastructure:
characterization and rejuvenation. ACM J Emerg Technol Comput Syst
(JETC) 10(1):11

http://ieeexplore.ieee.org/document/7053814/?arnumber=7053814
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7090261
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7090261
http://iwgcr.org/wp-content/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf
http://iwgcr.org/wp-content/uploads/2013/06/IWGCR-Paris.Ranking-003.2-en.pdf
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119954088.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-1119954088.html
http://ieeexplore.ieee.org/document/6740222/?arnumber=6740222
http://ieeexplore.ieee.org/document/6740222/?arnumber=6740222
http://ieeexplore.ieee.org/document/7196529/?arnumber=7196529
http://ieeexplore.ieee.org/document/7196529/?arnumber=7196529
http://ieeexplore.ieee.org/document/6983798/?arnumber=6983798
http://sourceforge.net/projects/opensaf/files/docs/opensaf-documentation-4.4.1.tar.gz/download
http://sourceforge.net/projects/opensaf/files/docs/opensaf-documentation-4.4.1.tar.gz/download
http://sourceforge.net/projects/opensaf/files/docs/opensaf-documentation-4.4.1.tar.gz/download
http://sbrc2011.facom.ufms.br/files/anais/shortcourses-12.html
http://sbrc2011.facom.ufms.br/files/anais/shortcourses-12.html
http://sbrc2011.facom.ufms.br/files/anais/files/mc/mc5.pdf
http://sbrc2011.facom.ufms.br/files/anais/files/mc/mc5.pdf
http://dl.acm.org/citation.cfm?id=1845214
http://dl.acm.org/citation.cfm?id=1845214
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper3.pdf
http://devel.opensaf.org/SAI-AIS-AMF-B.04.01.AL.pdf
http://devel.opensaf.org/SAI-AIS-AMF-B.04.01.AL.pdf
http://dl.acm.org/citation.cfm?id=2541595
http://dl.acm.org/citation.cfm?id=2516814
http://dl.acm.org/citation.cfm?id=2516814
http://dl.acm.org/citation.cfm?id=2506156
http://ieeexplore.ieee.org/document/6997344/?arnumber=6997344
http://ieeexplore.ieee.org/document/6997344/?arnumber=6997344
http://dl.acm.org/citation.cfm?id=2405152
http://ieeexplore.ieee.org/document/7014191/?arnumber=7014191
http://ieeexplore.ieee.org/document/7014191/?arnumber=7014191
http://dl.acm.org/citation.cfm?id=2168704
http://ieeexplore.ieee.org/document/6123513/?arnumber=6123513
http://ieeexplore.ieee.org/document/6123513/?arnumber=6123513
http://ieeexplore.ieee.org/document/7140382/?arnumber=7140382
http://ieeexplore.ieee.org/document/7140382/?arnumber=7140382
http://ieeexplore.ieee.org/document/6200714/?arnumber=6200714
http://ieeexplore.ieee.org/document/6200714/?arnumber=6200714
http://ieeexplore.ieee.org/document/6354593/?arnumber=6354593
http://ieeexplore.ieee.org/document/6354593/?arnumber=6354593
http://devel.opensaf.org/SAI-AIS-AMF-B.04.01.AL.pdf
http://devel.opensaf.org/SAI-AIS-AMF-B.04.01.AL.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7543848
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7543848

	Abstract
	Keywords

	Introduction
	Cloud outages
	Dropbox
	Google services
	Google Apps
	Verizon Cloud

	Systematic review
	Activity 1: identify the need for the review
	Activity 2: define research questions
	Activity 3: define search string
	Activity 4: define sources of research
	Activity 5: define criteria for inclusion and exclusion
	Activity 6: define data extraction procedure
	Activity 7: identify primary studies
	Activity 8: evaluate quality of studies
	Activity 9: extract relevant information
	Activity 10: present an overview of the studies
	Activity 11: present the results of the research questions

	Overview of high availability in Clouds
	Results description
	Underlying technologies
	Services
	Redundancy
	Data replication
	Monitoring
	Failure detection
	Recovery

	Middleware

	Discussions
	NoPaas: proposal of a high available cloud for PaaS provisioning
	App deployment module
	Profiles module
	Planning module
	Operation module
	Cloud infrastructure module

	Final considerations
	Acknowledgements
	Authors' contributions
	Competing interests
	Author details
	References

