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Abstract
The paper deals with a system of nonlinear differential equations under the influence
of white noise. This system can be used as a mathematical model of various real
problems in finance, mathematical biology, climatology, signal theory and others.
Necessary and sufficient conditions for the asymptotic mean square stability of the
zero solution of this system are derived in the paper. The paper introduces a new
approach to studying such problems - construction of a suitable deterministic system
with the use of Lyapunov function.
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1 Introduction
We can come across stochastic behavior while examining many important problems of a
global character in various fields of research, for example, in the theory of climate change.
Detailed understanding of extreme events in climate, of phenomena that are beyond our
normal expectations, is a very important topic in climatology, meteorology and related
fields. Common methods of studying extreme events, such as the statistical approach, the
empirical-physical approach or the numerical modeling approach, have some limitations,
and study of them has been largely empirical.

The idea of replacing the whole deterministic system with a stochastic differential equa-
tion was introduced by Hasselmann in his work [] on stochastic climate models that ap-
peared in . There he proposed to improve deterministic models for the ‘climate’ (slow
variables) by incorporating the influence of the ‘weather’ (fast variables) in the form of
random noise. The univariate linear systems that appear in the work have been successful
in describing various modes of climate variability. Success of these models has inspired
researchers to consider the stochastic forcing as a possible source of more complex dy-
namics, for example, in []. The direction of stochastic parametrizations in which the de-
velopment of the climate models will be possible in the coming years is formulated, for
example, in [].

Hasselmann’s works can be seen as the beginning of describing extreme events in cli-
mate by a stochastic system of differential equations in which random weather changes
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are expressed by a nonlinear stochastic perturbation in the form of white noise. Stochas-
tic characteristics of white noise in the system are either known or are determined by the
climate’s median value.

Many works, dedicated to the study of evolution models, use white noise to express
the amount of ice surface of the Arctic Ocean and then estimate the likelihood that it
would spread on the entire surface of the Earth. Part of the mystery of the Earth’s peri-
odic ice ages was uncovered in connection with the so-called stochastic resonance that
was first discovered while studying the periodic recurrence of Earth’s ice ages, see [, ].
Since its discovery, the stochastic resonance has been used in various experimental and
theoretical studies. For example, it occurs in bi-stable systems, where the input-output
relationship is nonlinear, the periodic input signal is weak and there is random, uncorre-
lated variation added to the signal of interest. In climatic models, the stochastic resonance
manifests at its best when regular ‘weak’ weather changes are in certain proportion to the
random weather fluctuations. By the term ‘weak’ we mean changes, that are not capable
of causing climate changes on their own, but the presence of random weather changes
causes disturbances in periodicity of the system, which then transforms into a different
mode.

Our work deals with a stochastic model with nonlinear member. Some related prob-
lems regarding such systems were studied in []. In this paper we focus on the deter-
mination of conditions that are necessary and sufficient for stable behavior of the above
mentioned processes. The present paper contains sufficient conditions for the asymptotic
mean square stability of the zero solution of systems with white noise. Further, sufficient
conditions for instability of the zero solution of this system and sufficient conditions for
a more general system are derived in the paper. The results are followed by several exam-
ples. We construct Lyapunov functions as a tool to study stability of a stochastic system
that works under the influence of white noise.

Let (�,F , F ,P) be a filtered probability space, or stochastic basis, consisting of a prob-
ability space (�,F ,P) and a filtration F = {Ft ,∀t ≥ } contained in F . On the proba-
bility space we consider the stochastic system of nonlinear differential equations of the
form

dxi(t) = fi(x) dt + hi(x) dwi(t), i = , , . . . , m, t ≥ , ()

where the state function x(t) = (x, . . . , xm)T (the operation T denotes transposition) is
a continuously differentiable m-dimensional column vector-function, f = (f, . . . , fm)T ,
h = (h, . . . , hm)T are also continuously differentiable m-dimensional column vector-
functions such that f (o) = o, h(o) = o, o = (, , . . . , )T ∈ R

m hold. The function f repre-
sents a slow deterministic process, the products hi(x) dwi(t), i = , , . . . , m, are the stochas-
tic approximations to a fast phenomenon. The m-dimensional column vector-function
w = (w, . . . , wm)T indicates a standard Wiener process. The m-dimensional Wiener pro-
cess is said to be standard Wiener process if

w() = o,

E(){dw(t)
}

= o, ()

E(){dw(t) dwT (t)
}

= I dt
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hold for t ≥ , I is the identity matrix. Any realization of the Wiener process w(t) is con-
tinuous but not differentiable at each point. Moreover, because E(){w(t)wT (t)} = It, the
process w(t) is a non-stationary stochastic process.

For simplicity, we denote h(x) dw(t) = (h dw, . . . , hm dwm)T in our consideration. So, the
product h(x) dw(t) means neither a scalar product nor a vector product, but it is a column
vector with components hi(x) dwi(t), i = , , . . . , m. Using this, system () can be rewritten
into the vector form

dx(t) = f (x) dt + h(x) dw(t), t ≥ . ()

We are interested in stability of solutions of the system. There are several various def-
initions of stability that can be used. Here we recall the mean square stability and the
asymptotic mean square stability of the zero solution.

Definition  The trivial solution of system () is said to be mean square stable on the
interval [,∞) if, for each ε > , there exists δ >  such that any solution x(t) corresponding
to the initial data x() exists for all t ≥  and the mathematical expectation

E(){∥∥x(t)
∥∥} < ε whenever t ≥  and

∥∥x()
∥∥ < δ.

The mean stability of the zero solution of system () is defined in a very similar way, with
only ‖x(t)‖ being replaced by ‖x(t)‖.

Definition  The trivial solution of system () is said to be asymptotically mean square
stable on the interval [,∞) if it is stable and, moreover,

lim
t→∞ E(){∥∥x(t)

∥∥} =  ()

is satisfied for each solution of ().

Remark  It is easy to see that () is satisfied if and only if the matrix E(){x(t)} converges
to zero matrix �,

lim
t→∞ E(){x(t)

}
= lim

t→∞ E(){x(t)xT (t)
}

= �.

Denote a neighborhood of the point o ∈R
m as O(o).

Definition  The function g(t, x(t)) is said to be positive definite on O(o) if g(t, x) is con-
tinuous with respect to t, t ≥ , ‖x(t)‖ < ∞ on O(o), g(t, o) = , and there exists a positive
definite quadratic form V (x) such that

g(t, x) ≥ V (x) whenever t ≥ , x ∈O(o) and
∥∥x(t)

∥∥ < ∞.

Recall, if a function g(t, x(t)) is positive definite on O(o), then the function –g(t, x(t)) is
negative definite on this neighborhood.
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Remark  The previous definition is equivalent to the following one:
The function g(t, x(t)) is said to be positive definite on O(o) if g(t, x) is continuous with

respect to t, t ≥ , ‖x(t)‖ < ∞ on O(o), g(t, o) = , and there exists a constant k >  such
that for any positive definite quadratic form V (x),

g(t, x) ≥ kV (x) whenever t ≥ , x ∈O(o) and
∥∥x(t)

∥∥ < ∞.

2 Main results
We define a Lyapunov function v in the form

v
(
x(t)

)
= xT (t)Cx(t), ()

where C is an m × m positive definite symmetric matrix. We also use the diagonal matrix
Cd which has the same elements on the diagonal as C.

Theorem  Let there exist a neighborhood O(o), in which the function

δ(x) = xT Cf (x) + hT (x)Cdh(x) ()

is negative definite with respect to system ().
Then the trivial solution of () is asymptotically mean square stable on the interval

[,∞).

Proof First we calculate the differential of Lyapunov function () with respect to trajecto-
ries of system (). We have

dv(x) = v(x + dx) – v(x) =
(
xT + dxT)

C(x + dx) – xT Cx

=
(
xT + f T (x) dt +

(
h(x) dw(t)

)T)
C

(
x + f (x) dt +

(
h(x) dw(t)

))
– xT Cx

= xT Cx – xT Cx + xT Cf (x) dt + xT C
(
h(x) dw(t)

)
+ f T (x) dt Cx

+ f T (x) dt Cf (x) dt + f T (x) dt C
(
h(x) dw(t)

)
+

(
h(x) dw(t)

)T Cx

+
(
h(x) dw(t)

)T Cf (x) dt +
(
h(x) dw(t)

)T C
(
h(x) dw(t)

)
.

After modifying the obtained equation, applying operation mathematical expectation
E(){dv(t)}, in regard to assumptions (), and leaving aside the member with dt, we get
the equation

E(){dv(x)
}

= xT Cf (x) dt + f T (x)Cx dt + hT (x)Cdh(x) dt, ()

or, in view of (), it can be written in the more simple form

E(){dv(x)
}

= δ(x) dt. ()

Because δ(x) is a negative definite deterministic function, the equalities

E(){δ(x)
}

= δ(x),

δ(x) ≤ –kv(x), k = const,
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are true (see Remark ). By using them and equation (), we get

d
dt

E(){v(x)
} ≤ –kE(){v(x)

}
,

so

E(){v(x)
} ≤ e–kt .

Therefore,

lim
t→∞ E(){x(t)

}
= lim

t→∞ E(){x(t)xT (t)
}

= �,

which implies asymptotic mean square stability of a trivial solution of the considered sys-
tem. �

Remark  Analogous result about instability can be derived in the same way as the result
of Theorem .

Namely, if there exists a neighborhood O(o), in which the function

δ(x) = xT Cf (x) + hT (x)Cdh(x)

is positive definite with respect to system (), then the trivial solution of () is unstable on
the interval [,∞).

Further we will discuss the stability of a system in the more general form

dx(t) = f (t, x) dt +
n∑

k=

hk(t, x) dwk(t), t ≥ , ()

where f , hk , k = , . . . , n, are m-dimensional column vector-functions continuously differ-
entiable in both variables, such that f (t, o) = o, hk(t, o) = o hold. Expressions hk(t, x) dwk(t),
k = , . . . , n, are again column vectors with components hik(t, x) dwik(t), i = , , . . . , m,
k = , , . . . , n. Functions wk = (wk , . . . , wmk)T , k = , , . . . , n, are also m-dimensional col-
umn vector-functions indicating standard Wiener processes, such that each of them sat-
isfies the following relationships:

wk() = o,

E(){dwk(t)
}

= o, ()

E(){dwk(t) dwT
k (t)

}
= I dt, k = , , . . . , n

for t ≥ .
The following theorem can be proved in the same way as Theorem .

Theorem  Let there exist a neighborhood O(o), in which the function

δ(t, x) = xT Cf (t, x) +
n∑

k=

hT
k (t, x)Cdhk(t, x) ()

is negative definite with respect to system ().
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Then the trivial solution of () is asymptotically mean square stable on the interval
[,∞).

Remark  A similar remark as Remark  can be formulated in this case. Namely, if there
exists a neighborhood O(o), in which the function

δ(t, x) = xT Cf (t, x) +
n∑

k=

hT
k (t, x)Cdhk(t, x)

is positive definite with respect to system (), then the trivial solution of () is unstable on
the interval [,∞).

In the last part of this section, let us consider one special case of a stochastic system of
differential equations, namely the linear system

dx(t) = Ax(t) dt + Hx(t) dw(t), t ≥ , ()

where A, H are m × m constant matrices and w is a standard Wiener process that satis-
fies ().

Corollary  Let there exist a neighborhood O(o), in which the function

δ(x) = xT AT Cx + xT CAx + xT HT CdHx ()

is negative definite with respect to system ().
Then the trivial solution of () is asymptotically mean square stable on the interval

[,∞).

Proof The proof of this theorem follows immediately from Theorem  if f (x) = Ax, h(x) =
Hx. �

Remark  If there exists a neighborhood O(o), in which the function

δ(x) = xT AT Cx + xT CAx + xT HT CdHx

is positive definite with respect to system (), then the trivial solution of () is unstable
on the interval [,∞).

Remark  Stability of the trivial solution of a stochastic system of linear differential equa-
tions in the form () was studied in the works by Korenevskii in []. The following stabil-
ity criterion was obtained there by different methods: The trivial solution of system ()
is asymptotically mean square stable on the interval [,∞) if and only if there exists a
positive definite matrix C satisfying the matrix equation

AT C + CA + HT CH = –G,

where matrix G is positive definite.
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3 Examples
In the following examples, we illustrate application of Theorem  and Remark . In these
examples, we also construct the corresponding Lyapunov function; however, it is not nec-
essary for verifying the stability or instability condition.

Example  We consider stochastic functional differential equation in the form

dx(t) = –x(t) dt – x(t) dw(t), ()

where f , h are scalar functions, f = –x(t), h = –x(t), x is a scalar state function and w is a
standard Wiener process. Stability of the zero solution of this equation can be determined
on the basis of Theorem .

We define Lyapunov function in the form (), with C = ,

v(x) = x. ()

Then equation () is in the form

E(){dv(t)
}

=
(
–xT x – xT x +

(
x)T x)dt =

(
–x + x)dt.

To apply Theorem , we have to prove that there exists a neighborhood of the zero point ,
where the function δ = –x + x is negative definite. This holds if and only if the following
inequality is satisfied:

x – x <  ⇔  < x < 

or

– √ < x < √, x �= .

That is, δ is the function of negative values at each point of (– √, √) except zero, and
δ() = . Therefore, we have the conclusion that there exists a neighborhood O() =
(– √, √) in which the function δ = –x + x is negative definite. So, the trivial solution
x =  of considered equation is asymptotically mean square stable on the interval [,∞).

Example  We consider stochastic differential equation in the form

dx(t) = ax(t) dt + bx(t) dw(t),

where a, b ∈R, a �=  and x is a scalar state function.
We again define Lyapunov function in the form () with C = . The function δ, in view

of Theorem , has the form

δ(x) =
(
a + b)x.

Hence, if a + b < , the function δ is negative definite, in the opposite case it is positive
definite. Therefore, in accordance with Theorem  and Remark , if a + b < , then the
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trivial solution of considered equation is asymptotically mean square stable on the interval
[,∞). In the opposite case, that is, if a + b > , then the trivial solution of considered
equation is unstable.

Example  We consider stochastic functional differential equation in the form

dx(t) = –x(t) dt + a sin x(t) dw(t), ()

where f , g are scalar functions, f = –x(t), g = a sin x(t), a ∈ R, a �=  and x is a scalar state
function.

We again define Lyapunov function in the form () with C = . Therefore, a function δ

from () has the form

δ(t, x) = –xT x +
(
a sin x(t)

)T a sin x(t)

= –x + a sin x.

Because

–x + a sin x >  ⇔ x

sin x
<

a


,

in the case a >
√

, there exists a neighborhood of the zero point , where the function
δ is positive definite. In the case a ≤ √

, the function δ is negative definite. So, the zero
solution of considered equation is unstable for any a >

√
 and it is asymptotically mean

square stable for any a ≤ √
.

Example  Now we consider two-dimensional stochastic functional differential equation
in the form

dx(t) = x(t) dt + h(x, x) dw(t),

dx(t) = –x(t) dt + h(x, x) dw(t),
()

where x = (x, x)T is a two-dimensional vector state function, f , h are two-dimensional
vector functions, f = (x(t), –x(t))T , h = (h(x, x), h(x, x))T , h �= (, ) on a neighbor-
hood O(, ) with the exception of the zero point (, ), and w is a standard Wiener pro-
cess.

We again define Lyapunov function in the form () with C = I ,

v(x) = x
 + x

.

Then the function δ = hT h and it is positive definite on the neighborhood O(, ). Thus,
by Theorem , the trivial zero solution of this equation is unstable on the interval [,∞).

Remark  If we take h =  in system (), then it represents the stochastic second order
differential equation

dx(t) = –x(t) dt + h
(
x′, x

)
dw(t),
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and the previous example implies that its solution is unstable for any nontrivial h. But a
function can be added to the right-hand side of this equation such that the trivial solution
of the new equation will be asymptotically mean square stable. The following result holds:

If

lim
(x,x)→(,)

g(x, x) · x

h
(x, x)

= L >



()

for a continuously differentiable function g(x, x), then the trivial solution of the system

dx(t) = x(t) dt,

dx(t) = –x(t) dt – g(x, x) dt + h(x, x) dw(t)
()

is asymptotically mean square stable.
Condition () holds, for example, for g(x, x) = h(x, x) = x. Then system () is the

following:

dx(t) = x(t) dt,

dx(t) = –x(t) dt – x(t) dt + x(t) dw(t).
()

Behavior of solutions x(t) of this system compared to that of solutions of the unstable
system

dx(t) = x(t) dt,

dx(t) = –x(t) dt + x(t) dw(t)
()

Figure 1 Behavior of solutions of stable
system (20).
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Figure 2 Behavior of solutions of instable
system (21).

is illustrated in Figures  and . In both of these figures, there are displayed  solutions
of the systems (), () with initial conditions x() = , x() = , respectively. These
solutions were computed numerically with the Milstein method on the interval [, ].

4 Conclusion
Our concept of studying asymptotic mean square stability of the zero solution of stochas-
tic differential equations is more effective in comparison with previously known methods,
and it can also be used in various application problems. For example, by stochastic equa-
tion of the type

dx(t) =
[
ax(t) – ax(t) ln x(t)

]
dt + σx(t) dw(t)

we can describe a tumor growth, where the expected size of the tumor is contaminated
with white noise []. Such type of equations can be used also in biomedical research [,
], epidemic modeling [], in describing animal motion [], receiving signals [, ]
and many others. However, the approach to the study of these models in the cited works
is different compared to our method. They use numerical or statistical methods and esti-
mation methods in there.
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