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Abstract Nitrogen loading from anthropogenic sources,
including fertilizer, manure, and sewage effluents, has been
linked with declining water quality in coastal lagoons
worldwide. Freshwater inputs to mid-Atlantic coastal
lagoons of the USA are from terrestrially influenced
sources: groundwater and overland flow via streams and
agricultural ditches, with occasional precipitation events.
Stable nitrogen isotopes ratios (δ15N) in bioindicator
species combined with conventional water quality monitor-
ing were used to assess nitrogen sources and provide
insights into their origins. Water quality data revealed that
nutrients derived from terrestrial sources increased after
precipitation events. Tissues from two bioindicator species,
a macroalgae (Gracilaria sp.) and the eastern oyster
(Crassostrea virginica) were analyzed for δ15N to deter-
mine spatial and temporal patterns of nitrogen sources. A
broad-scale survey assessment of deployed macroalgae
(June 2004) detected regions of elevated δ15N. Macroalgal
δ15N (7.33±1.15‰ in May 2006 and 6.76±1.15‰ in July
2006) responded quickly to sustained June 2006 nutrient
pulse, but did not detect spatial patterns at the fine scale.
Oyster δ15N (8.51±0.89‰) responded slowly over longer

time periods and exhibited a slight gradient at the finer
spatial scale. Overall, elevated δ15N values in macroalgae
and oysters were used to infer that human and animal
wastes were important nitrogen sources in some areas of
Maryland’s coastal bays. Different nitrogen integration
periods across multiple organisms may be used to indicate
nitrogen sources at various spatial and temporal scales,
which will help focus nutrient management.
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Introduction

Physical, chemical, and biological indicators are routinely
used for monitoring the spatial and temporal extent of
eutrophication. However, monitoring eutrophication symp-
toms does not identify origins of the causative nutrients. In
addition, chemical indicators commonly used to measure
eutrophication (e.g., total nitrogen or total phosphorus;
Nixon 1995; Cloern 2001; Kemp et al. 2005; Bricker et al.
2008) do not detect biologically incorporated nitrogen
(Costanzo et al. 2001). Analyzing stable nitrogen isotopes
(δ15N) in bioindicator species can be used to address these
limitations, as the approach has been shown to identify
sources of human and animal wastes (Costanzo et al. 2001;
Cohen and Fong 2005). Standard water chemistry measure-
ments of eutrophic symptoms can be complemented with
δ15N in bioindicator species to increase understanding of
the location and potentially infer the sources of nitrogen.

Comparison of δ15N values in bioindicator species has
been used to distinguish between chemically synthesized
nitrogen fertilizer and human and animal waste sources
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(McClelland and Valiela 1998). Fertilizer production fixes
atmospheric N2 (defined as 0‰), and as a result, nitrogen
runoff from agricultural areas potentially has lower values
of δ15N. Human and animal wastes entering groundwater
have δ15N values that are elevated (e.g., Sweeny and
Kaplan 1980; Tucker et al. 1999) due to a combination of
volatilization of ammonia and denitrification, which leave
the remaining nitrogen pool enriched with 15N (McClelland
and Valiela 1998; Fry 2006). Many wastewater treatment
plants employ microbial processing to remove nitrogen at
rates higher than in natural ecosystems. Microbial nitrogen
removal processes, particularly denitrification, favor the
isotopically light 14N and enrich the remaining nitrate pool
with 15N (Cline and Kaplan 1975; Kendall 1998). Addi-
tionally, ammonia from human and animal waste frac-
tionates during volatilization, leaving the non-volatile
portion further enriched with 15N (McClelland and Valiela
1998, Fry 2006). Since multiple processes enrich δ15N
values in biological indicator species, interpretations need
to be balanced against a set of alternative hypotheses.
Measurements of δ15N in biological indicator species are
advantageous over direct measurements that can be made
on groundwater (Aravena et al. 1993), the water column, or
sediments (Tucker et al. 1999), as biota minimize temporal
and spatial variability. In particular, this study focused on
nitrogen incorporated into macroalgae and filter feeders.

Integration of nitrogen sources occurs over different
timescales in different organisms (Gartner et al. 2002;
Dattagupta et al. 2004). While δ15N integration in diets has
been examined across taxonomic groups (including mol-
lusks) and diets (Vanderklift and Ponsard 2003), the
temporal integration of δ15N over various timescales by
different organisms, due to species-specific turnover rates,
has not been fully explored. Macroalgae uptake nitrogen
directly from the water column and have rapid nitrogen
turnover rates and so can provide information about
available nitrogen over a period of days (Costanzo et al.
2001). Assuming nitrogen limitation, fractionation during
assimilation will be minimal (Fry 2006). Oysters are sessile,
euryhaline filter feeders that derive nitrogen from a variety
of sources, e.g., microorganisms, phytoplankton, detritus,
and inorganic particles (Langdon and Newell 1996), and
have tissue nitrogen turnover rates in the order of weeks to
months depending on the tissue type (Moore 2003).
Temporal integration of nitrogen suggested that δ15N in
zebra mussels was appropriate to monitor watershed
development and downstream effects despite seasonal
variations (Fry and Allen 2003). Feeding over multiple
trophic levels in field studies may complicate interpretation
of δ15N, which is enriched 3–4‰ over each trophic level
(Fry 2006). In certain cases, spatial gradients in δ15N could
reflect variability in available diets. Nevertheless, biological
indicators such as macroalgae and oysters allow an

assortment of questions to be addressed through manipu-
lative field experiments that provide long-term integration
on different timescales, which is missed by water chemistry
measurements alone.

Multiple sources of anthropogenic nitrogen affect mid-
Atlantic coastal bays. Collectively, agricultural fertilizers as
well as human and animal wastes have been directly linked
to downstream eutrophication (Kennish 2002; Kiddon et al.
2003; Bricker et al. 2008; Wazniak et al. 2007). Long-term
water quality monitoring reported recent degradation and
increases in total nitrogen despite historical improvements
and decreases in total nitrogen, signaling a need to better
understand the driving forces for trend shifts in this region
and identify sources of anthropogenic nitrogen (Wazniak et
al. 2007). Symptoms of degradation include an approximate
doubling of dissolved organic nitrogen, increasing frequency
of harmful algal blooms, e.g., brown tide (Glibert et al. 2007),
and adverse effects on seagrass distribution and density
(Harris et al. 2005; Wazniak et al. 2007). Human population
in Maryland’s coastal bays watersheds doubled between
1980 and 2000 to ~35,000 people and is expected to double
again by 2020 (Hager 1996). Septic and wastewater nitrogen
inputs have also increased during this period (MCBP 2005).
Identifying and differentiating sources of anthropogenic
nitrogen can help target management efforts to reduce inputs.

This paper develops a framework for interpreting δ15N
from macroalgae (Gracilaria sp.) and oyster (Crassostrea
virginica) tissue by addressing three questions: (1) What are
the relative capabilities of macroalgae and oysters to detect
nitrogen from human and animal wastes? (2) What are the
broad-scale spatial patterns of nitrogen from wastes
spanning these coastal bays (~600 km2)? (3) What are the
fine-scale spatial patterns of influence by nitrogen from
human and animal wastes within regions (ranging from ~10
to 50 km2) of Maryland’s coastal bays?

Methods

Study Location

This study was conducted in a series of coastal lagoons
located on the mid-Atlantic coast of the USA (Fig. 1).
These coastal lagoons, including Chincoteague Bay
(extending from 38°15′14″ N, 75°11′57″ W in the north to
37°54′14″ N, 75°24′38″ W in the south), cover the full
length of Maryland’s and some of Virginia’s Atlantic
coastline. The bays comprise a series of shallow (2-m
mean depth), well-mixed, lagoonal estuaries behind barrier
islands (Fenwick and Assateague Islands).

Due to small watershed areas (totaling 452 km2) of
Maryland’s coastal bays, freshwater inputs and activities
that result in anthropogenic nitrogen inputs generally occur
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within 6 km of shore as compared to larger ecosystems (e.g.,
Jordan et al. 1997; Brawley et al. 2000; Turner and Rabalais
2003). Freshwater base flow, transporting nitrate from
terrestrial recharge areas, enters Delmarva Peninsula’s
coastal lagoons via both groundwater (Andres 1992; Bratton
et al. 2004; Krantz et al. 2004; Manheim et al. 2004) and
overland sources that include riverine (Lung 1994; Schwartz
2003) and agricultural ditches (Schmidt et al. 2007).
Seasonal precipitation is variable across these coastal bays
(Fig. 2). Salinities range from fresh in some tributaries to
polyhaline (30–35‰) in the bays. There is oceanic flushing
through two small channels: one near Ocean City (38°19′
31″ N, 75°05′33″ W) toward the northern end of the bays
and the other south of Chincoteague Bay (37°52′36″ N, 75°
25′04″ W; Fig. 1). Flushing rates are around 12 days in St.
Martin River and 63 days in Chincoteague Bay (Pritchard
1960; Lung 1994). Land cover in the watersheds of these
coastal lagoons is dominated by forests (39.5%) and crop
agriculture (31.8%), although industrial poultry feeding
operations (1.1%) are also located within the watersheds
(Table 1). The region has a high occurrence of septic systems
for the residential towns of Berlin, MD and Chincoteague,
VA (Souza et al. 1993). Poor water quality has been reported
in the northern portion of Chincoteague Bay, which is the
receiving waters for the town of Berlin, MD (Boynton 1993;
Boynton et al. 1996).

Experimental Design

Macroalgae were used for both broad- and fine-scale
surveys. Macroalgae (Gracilaria sp.) were deployed at
248 randomly distributed sites throughout all regions of
Maryland’s coastal bays from 7 to 12 June 2004 (Fig. 1).
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Fig. 1 Geographical reference
of Maryland’s coastal bays
within the Delmarva peninsula.
In 2004, macroalgae was
deployed at 248 sites (triangles)
across Maryland’s coastal bays
(a). The 2006 deployment of
macroalgae and oyster (circles)
spanned 100 randomly distrib-
uted sites across four regions of
interest: b St. Martin River, c
Public Landing, d Johnson Bay,
and e southern Chincoteague
Bay

Fig. 2 Precipitation (mm) and air temperature (°C) between macro-
algae deployments and during oyster deployment
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Finer scale surveys were conducted from 22 to 27 May
2006 and again from 13 to 18 July 2006. Survey dates were
not selected a priori for association with precipitation
events, yet 12 precipitation events occurred between fine-
scale surveys in June 2006 (0.3–53.3 mm; Fig. 2). During
the finer scale surveys, macroalgae was deployed at 100
sites randomly distributed across these coastal bays in St.
Martin River (21 sites), Chincoteague Bay at Public
Landing (22 sites), Johnson Bay (28 sites), and southern
Chincoteague Bay (29 sites; see Fig. 1).

Macroalgae surveys followed the deployment methods
described by Costanzo et al. (2001). The macroalgae used
for deployment were initially collected in Greenbackville,
VA near southern Chincoteague Bay 1 day in advance of
deployment. Three subsamples (~1.0-g dry weight each)
provided an initial δ15N value (10.0±0.1‰ in June 2004,
5.2±0.2‰ in May 2006, and 9.5±0.6‰ in July 2006). The
remaining macroalgae were subsampled (~1.0-g dry
weight) for deployment and placed in transparent perforated
(35 holes of ~1.0-cm diameter distributed across the side
and bottom) containers (130 mL) to allow light, water, and
nutrient exchange. For each site, containers (one per site)
were attached to anchored surface buoys at a depth of 0.5 of
the Secchi depth (rounded to nearest 10 cm).

Oysters (C. virginica) were deployed in the fine-scale
survey (2006) in a similar manner as macroalgae. Oysters
were originally hatchery-reared without shell substrate
(cultchless) <1 year old (29.8- to 95.8-mm shell height)
and grown in two locations in St. Martin River (8.2±
0.3‰). Oysters were deployed in Johnson Bay and St.
Martin River from 21 May to 13 July 2006 and in southern
Chincoteague Bay and Public Landing from 22 May to 14
July 2006. Oyster deployments overlapped the June
precipitation events. Three oysters from a randomly
selected growth location were placed in a mesh (1.9-cm
holes) cage, anchored by bricks, and suspended 0.5 m
above bottom by surface buoys. The oysters were deployed
at the same 100 sites as the macroalgae (Fig. 1).

Data Collection and Analysis

After the deployment period, tissues from both macroalgae
and oysters were analyzed for stable isotope ratios (δ15N and
δ13C). Upon collection, samples were kept on ice in the field
and frozen at the laboratory (−20°C) until processing. Of the
surviving oysters from each site, one was selected at random
and dissected to recover the adductor muscle for δ15N
analysis. Tissues from both organisms were thawed, rinsed,
and oven-dried at 60°C for 48 h or until thoroughly dry.
Dried macroalgae tissue was finely ground using a grinding
mill (Crescent 3110B Wig-L-Bug), while a mortar and pestle
was used for oysters. Subsamples (2.0±0.2-mg dry weight of
macroalgae, 1.0±0.2-mg dry weight of oyster) were placed
in tin capsules (pressed, standard weight 8×5 mm, elemental
microanalysis). Nitrogen and carbon content (μg N and μg C)
and natural abundance of stable isotopes (δ15N and δ13C)
were analyzed at the University of California Davis Stable
Isotope Facility using a PDZ Europa ANCA-GSL elemental
analyzer interfaced to a PDZ Europa 20–20 isotope ratio
mass spectrometer (Sercon Ltd., Cheshire, UK). Molecular
%N and C/N ratio were calculated. Both δ15N and δ13C=
(Rsample/Rstandard−1)×103, where R was defined as either the
15N/14N or 13C/12C ratio. The standard reference was
atmospheric N2 (air), with 0.3663 at.% 15N, defined as 0‰
(e.g., Fry 2006), while PDB standard was used for δ13C.

Data on physical parameters and nutrient concentrations
were collected and analyzed in conjunction with biological
data. Physical (e.g., temperature and salinity) parameters were
measured with a WTW Multi 197i water quality probe, and
Secchi depth was also recorded. Water samples (20 mL) for
nutrient analyses (total nitrogen and total phosphorus) were
collected and kept on ice in the field 21 May 2006 (before
precipitation events) and 13 July 2006 (after precipitation
events) until freezing (−20°C) at the laboratory for analysis.
Total nutrients, rather than inorganic species, were analyzed
according to standard methods (D’Elia et al. 1977; Kerouel
and Aminot 1987). Long-term nitrogen increases and

Table 1 Percent of each sub-watershed of Maryland’s coastal bays devoted to various land uses

Land use Assawoman
Bay (%)

Chincoteague
Bay (%)

St. Martin River/ Isle
of Wight (%)

Newport
Bay (%)

Sinepuxent
Bay (%)

Residential 18.9 1.5 17.2 6.9 9.4

Urban 6.6 0.2 5.5 2.0 5.9

Crop Agriculture 22.5 32.5 34.1 34.4 11.4

Animal Agriculture 1.4 0.7 1.8 0.8 0.2

Forest 27.9 40.3 37.7 43.5 38.6

Wetlands 21.5 22.9 3.4 12.0 23.1

Bare/Other 1.2 1.9 0.3 0.4 11.4

Total (ha) 2,791 17,340 13,605 11,005 3,080

Data from Maryland Department of Planning, 2002
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recycling in these bays have been driven by the dominant
dissolved organic fraction (Glibert et al. 2001; Glibert et al.
2007) and locally are at least moderately bioavailable
(Seitzinger and Sanders 1999; Seitzinger et al. 2002;
Mulholland et al. 2004; Glibert et al. 2006; Wiegner et al.
2006). In culture, Gracilaria cornea efficiently grows on
organic (urea) or inorganic (NH4

+, NO3
−, or NO3NH4)

nitrogen (Navarro-Angulo and Robledo 1999). Therefore
total, rather than dissolved inorganic, nutrients were deemed
a better indicator of relative nutrient availability. Water
samples (60 mL) for chlorophyll a were filtered onto GF/F
filter paper (25-mm diameter) in the field and kept on ice
until freezing (−20°C) at the laboratory until spectrophoto-
metric analysis, which was conducted according to standard
methods (Arar 1997). Data from two statistical outliers
(defined as >±3σ from mean, verified by Grubb’s test) were
removed. Precipitation data were collected by National Park
Service, Assateague Island National Seashore. Spatial
patterns for all parameters were plotted with ArcMap 8.0
geographical information system. The Spatial Analyst func-
tionality of the ArcGIS package was used to Krige raster
interpolations for measured variables and their variances. If
spatial autocorrelation was not confirmed, the interpolation
was removed. Correlations were calculated for physical and
nutrient parameters for both months. Assumptions of normal-
ity and homogeneity of variances were verified with SAS
9.1.2 (Proc Univariate) and no data transformations were
required. Statistical analysis testing for differences between
means using two-way analyses of variance (ANOVAs; region,
month) was also performed with SAS 9.1.2 (Proc Mixed) for
all parameters, except for those involving oysters. Oyster data
were analyzed with one-way ANOVAs run on regions since
only one deployment was conducted, from May to July.

Physical (including nutrients) and biological (chlorophyll
a, macroalgae %N, macroalgae δ15N, macroalgae δ13C, and
macroalgae C/N) parameters were analyzed with non-metric
multidimensional scaling (non-metric MDS) to assess spatial
and temporal patterns. Separate analyses were conducted on
range standardized physical/nutrient metrics and on biolog-
ical metrics for each month. A Bray–Curtis similarity matrix
produced a distance matrix for each set of variables, which
was ordinated by non-metric MDS using PATN (Belbin
1993). Each analysis was conducted in two dimensions with
ten random starts. Ordinations had acceptable (0.14 and
0.17, respectively) stress levels (Clarke and Warwick 1994).

Results

Freshwater Inputs Pulsed Nutrients to the Shallow Lagoons

Freshwater inputs were variable across the study period and
altered salinity and nutrient concentrations. In 2004,

precipitation was consistently low (0.0–15.0 mm) in the
spring months (March to May) preceding the broad scale
survey. However, there were 12 precipitation events in June
2006 (0.3–53.3 mm; Fig. 2). While total nitrogen was
positively correlated with temperature, both total nitrogen
and total phosphorus were negatively correlated with salinity
(Table 2). Salinity decreased from May 2006 (30.1) to July
2006 (27.7), as precipitation induced a pulse of runoff and
diluted the bays. Salinity decreased towards shore at
Johnson Bay and upstream at St. Martin River, while
salinities at Public Landing and Chincoteague were more
homogenous (Fig. 3a–d). Higher concentrations of water
column total nitrogen and total phosphorus were found in
July 2006 (51.6±15.8 μM N, 4.42±1.04 μM P) than May
2006 (44.6±3.7 μM N, 2.59±0.77 μM P), except for total
nitrogen at Johnson Bay. Interpolation of total nitrogen
indicated a gradient decreasing offshore (Fig. 3e–h).

Both temporal and regional differences were found in
biological parameters in 2006. Chlorophyll a in Chinco-
teague and St. Martin River increased with total nitrogen
and total phosphorus temporally (Table 3). Yet all variables
had a significant interaction between region and month
(Table 4). Nutrients pulsed by precipitation events were
also incorporated into macroalgae. Macroalgae %N in-
creased from May (1.5%) to July (2.2%). Non-metric MDS
indicated biological parameters grouped temporally, but not
regionally (Fig. 4a). Chlorophyll a was inversely related to
macroalgae δ15N and δ13C values and was not related to
macroalgae %N or C/N (Fig. 4b). Macroalgae δ13C was
more enriched in July than in May in all regions (Table 3).

Broad Spatial Scale Comparisons (2004)

The broad survey in 2004 showed distinct spatial patterns
of total nitrogen concentrations across Maryland’s coastal
bays. Nutrient concentrations were highest in small creeks
and lowest closest to the channels, where bay water
exchanges with oceanic water (Fig. 5a). Concentrations of
total nitrogen were lowest (0.7 to 38.8 μM) in Isle of Wight
Bay, by the channel near Ocean City. Southern Chincoteague
Bay, near the other channel, also tended to have low
concentrations of total nitrogen (15.8 to 35.0 μM) compared
to Public Landing and Johnson Bay (41.2 to 68.8 μM). St.
Martin also exhibited moderate concentrations of total
nitrogen (42.7 to 72.2 μM). Highest values of total nitrogen
were found in Newport Bay (53.7 to 82.1 μM; Fig. 5a). Total
nitrogen and total phosphorus concentrations correlated
positively with temperature and salinity, but inversely with
macroalgal δ15N values (Table 2).

Macroalgal δ15N and %N values varied broadly in 2004
across Maryland’s coastal bays, and spatial patterns differed
from that of total nitrogen concentrations. Highest δ15N
values were found in southern Chincoteague Bay (10.8‰
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to 26.4‰) and then in St. Martin River (12.1‰ to 22.6‰),
but were moderate in Public Landing (12.4‰ to 13.2‰).
While macroalgal δ15N values in Johnson Bay were
moderate (9.5‰ to 17.8‰), the higher values tended to
lie to the west of islands in Chincoteague Bay (Fig. 5b).
Broad spatial patterns of macroalgae %N were similar to
that of δ15N. Macroalgae %N was high in Sinepuxent and
Newport Bays in addition to St. Martin River and Isle of
Wight Bay. Both macroalgae δ15N and %N were low in
Chincoteague Bay, though somewhat elevated around Chin-
coteague Island (Fig. 5c). Macroalgae %N negatively
correlated to total nitrogen (−0.15, p<0.03) and total
phosphorus (−0.35, p<0.01; Table 2). Spatial patterns of
total nitrogen concentrations, macroalgae δ15N, and macro-
algae %N did not match (Fig. 5a–c). In St. Martin River, total
nitrogen concentrations (55.6±3.0 μM), macroalgae δ15N
(15.9±1.2‰), and macroalgae %N (1.5±0.1%) were elevat-
ed, but in southern Chincoteague Bay, total nitrogen concen-
trations (24.1±1.3 μM) and macroalgae %N (1.2±0.1%)
were low, while macroalgae δ15N was elevated (17.3±1.3‰).

Fine Spatial Scale Comparisons (2006)

Regional variations in total nitrogen concentrations were
detectable in the finer spatial scale sampling data (Fig. 3e–h).
During both fine-scale samplings in 2006, St. Martin River
had the highest total nitrogen (54.6±1.2 μM N in May,
71.3±3.6 μM N in July) and Johnson Bay had the highest
total phosphorus (3.25±0.10 μM P in May, 5.14±0.17 μM
P in July), while southern Chincoteague Bay had the lowest
total nitrogen (24.8±1.2 μM N in May, 33.9±0.6 μM N in
July) and total phosphorus (1.62±0.05 μM P in May, 3.26±
0.05 μM P in July; Table 3). Non-metric MDS showed that
physical parameters grouped regionally and that total
nitrogen and total phosphorus were inversely correlated
with Secchi depth (Fig. 4c, d). Southern Chincoteague Bay

Table 2 Correlations between nutrients (total nitrogen and total
phosphorus) and physical parameters (temperature, salinity) or
biological parameters (chlorophyll a and macroalgal or oyster δ15N,
%N, δ13C, %C, C/N) for broad spatial scale (2004) and fine spatial
scale (2006) surveys

Nutrient Physical parameter n r p

June 2004

Total nitrogen Salinity 222 −0.75 <0.001

Temperature 224 0.59 <0.001

Chlorophyll a 237 0.72 <0.001

Macroalgae δ15N 231 −0.30 <0.001

Macroalgae %N 231 −0.15 0.025

Total phosphorus Salinity 222 −0.24 <0.001

Temperature 224 0.51 <0.001

Chlorophyll a 237 0.84 <0.001

Macroalgae δ15N 231 −0.19 0.003

Macroalgae %N 231 −0.35 <0.001

May 2006

Total nitrogen Salinity 98 −0.43 <0.001

Temperature 97 0.30 0.003

Chlorophyll a 93 0.19 0.067

Macroalgae δ15N 95 0.14 0.162

Macroalgae %N 95 −0.05 0.646

Macroalgae δ13C 94 0.15 0.146

Macroalgae %C 94 −0.10 0.336

Macroalgae C/N 94 0.04 0.718

Total phosphorus Salinity 98 0.03 0.763

Temperature 97 0.10 0.312

Chlorophyll a 93 0.08 0.433

Macroalgae δ15N 95 0.17 0.105

Macroalgae %N 95 −0.26 0.011

Macroalgae δ13C 94 0.24 0.020

Macroalgae %C 94 −0.16 0.116

Macroalgae C/N 94 0.22 0.035

July 2006

Total nitrogen Salinity 100 −0.81 <0.001

Temperature 100 0.41 <0.001

Chlorophyll a 100 0.55 <0.001

Macroalgae δ15N 99 −0.14 0.158

Macroalgae %N 99 0.63 <0.001

Macroalgae δ13C 99 −0.44 <0.001

Macroalgae %C 99 0.51 <0.001

Macroalgae C:N 99 −0.57 <0.001

Oyster δ15N 47 0.17 0.265

Oyster %N 47 0.50 <0.001

Oyster δ13C 47 0.19 0.206

Oyster %C 47 0.68 <0.001

Oyster C/N 47 0.17 0.249

Total phosphorus Salinity 100 −0.80 <0.001

Temperature 100 0.06 0.532

Chlorophyll a 100 0.39 <0.001

Table 2 (continued)

Nutrient Physical parameter n r p

Macroalgae δ15N 99 0.02 0.853

Macroalgae %N 99 0.56 <0.001

Macroalgae δ13C 99 −0.21 0.033

Macroalgae %C 99 0.52 <0.001

Macroalgae C/N 99 −0.48 <0.001

Oyster δ15N 47 0.27 0.068

Oyster %N 47 0.50 <0.001

Oyster δ13C 47 0.27 0.071

Oyster %C 47 0.71 <0.001

Oyster C/N 47 0.24 0.110

Number of measurements (n), correlation value (r), and significance
(p) are reported. Significant relationships are noted in bold
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tended to have low total nutrients and increased Secchi
depth, while St. Martin River and Public Landing exhibited
gradients of nutrients (Fig. 3e–h). While spatial patterns of
macroalgal δ15N were recognizable at the broad scale, they
were undetectable at the finer spatial scale within regions in
both May and July. The range of macroalgal δ15N values
was bigger at the broad spatial scale in 2004 (8.9‰ to
26.4‰) than at the finer spatial scale in 2006 (5.5‰ to
8.8‰ in May and 2.5‰ to 9.1‰ in July). A slight north–
south gradient of oyster δ15N emerged within these regions
(Fig. 6a, b), particularly at Johnson Bay (7.8‰ to 10.3‰)
and southern Chincoteague Bay (6.5‰ to 10.0‰).

Bioindicator Species Comparison

Macroalgae and oyster biological indicators both re-
sponded, but in different ways, to nutrient concentrations

and sources. At the broad scale (2004), macroalgae δ15N
values and total nutrients (total nitrogen and total phospho-
rus) were inversely related (Table 2). At the finer spatial
scale (2006), neither total nitrogen nor total phosphorus
significantly related to macroalgae δ15N (Table 2). Absolute
change in macroalgae δ15N from initial values were greatest
in June 2004 and were negative in July 2006, while changes
in oyster δ15N were much smaller than macroalgae, often <±
1.0‰ (Fig. 7a). Meanwhile, macroalgae %N decreased from
initial values in June 2004 and changed minimally from
initial values in either May or July 2006, while oyster %N
values exhibited the greatest absolute change in %N, often >
1.5% (Fig. 7b). Except in Chincoteague, macroalgae %N
was higher in July than May, while macroalgae δ15N
decreased from May to July (Table 3). Macroalgae δ15N
and %N were positively correlated in May (0.26, p<0.01,
n=95), but not in July (−0.14, p=0.17, n=99). Oyster %N

Fig. 3 Spatial patterns of freshwater and total nitrogen moving
offshore were observed between May and July 2006. Salinities are
reported for St. Martin River (a), Public Landing (b), Johnson Bay (c),

and southern Chincoteague Bay (d). Total nitrogen is reported for St.
Martin River (e), Public Landing (f), Johnson Bay (g), and southern
Chincoteague Bay (h)

Table 3 Means of physical, nutrient, and biological parameters measured during the fine-scale survey (2006)

Parameter Units St. Martin River Public Landing Johnson Bay Chincoteague Bay

May July May July May July May July
n=2 n=19 n=21 n=27 n=22 n=28 n=26 n=29

Salinity 26.9 (0.3) 25.8 (0.4) 30.4 (0.0)f 28.5 (0.0) 31.7 (0.1)i 26.6 (0.2) 31.3 (0.0)h 29.7 (0.0)

Temperature °C 22.5 (0.2) 31.8 (0.3) 23.1 (0.1) 29.8 (0.1) 20.3 (0.2)i 29.3 (0.2) 21.3 (0.3)h 30.6 (0.2)

Dissolved oxygen mg L−1 6.93 (0.31) 8.10 (0.06)f 4.47 (0.08) 5.04 (0.15) 8.17 (0.42)g 5.28 (0.07)

Secchi M 0.6 (0.0) 0.3 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0)i 0.4 (0.0) 0.9 (0.0) 0.5 (0.0)

Total nitrogen μM 54.6 (1.2) 71.3 (3.6) 51.0 (0.7) 58.7 (0.8) 51.2 (1.5) 50.7 (1.6) 24.8 (1.2)g 33.9 (0.6)

Total phosphorus μM 2.38 (0.07) 4.79 (0.25) 3.11 (0.04) 4.79 (0.08) 3.25 (0.10) 5.14 (0.17) 1.62 (0.05)g 3.26 (0.05)

Total chlorophyll a μg L−1 38.7 (2.9) 66.0 (7.6) 46.9 (4.7) 44.9 (2.0) 41.1 (2.7) 45.4 (3.1) 19.0 (3.0) 37.1 (2.0)

Macroalgae %N % 1.8 (0.1) 3.1 (0.1) 1.5 (0.0) 1.9 (0.1) 1.5 (0.1) 2.8 (0.1) 1.5 (0.1) 1.4 (0.0)

Macroalgae δ15N ‰ 7.4 (0.1) 6.5 (0.2) 7.0 (0.1) 6.8 (0.2) 7.5 (0.1) 6.8 (0.2) 7.0 (0.1) 7.0 (0.3)

Macroalgae δ13C ‰ −20.0 (1.2)d −17.1 (0.2) −18.8 (0.2) −16.3 (0.2) −19.5 (0.3) −16.1 (0.1) −19.9 (0.3) −15.7 (0.2)

Oyster %N % 13.0 (0.2)b 12.1 (0.3)a 12.7 (0.3)c 11.6 (0.2)e

Oyster δ15N ‰ 8.8 (0.2)b 8.4 (0.2)a 9.4 (0.3)b 8.1 (0.2)e

Oyster δ13C ‰ −21.2 (0.1)a −20.6 (0.1)a −21.0 (0.2)b −21.1 (0.1)e

Standard error is reported in parentheses. Sample size (n) is reported for each month in each region, except as noted by superscript
a n=8; b n=9; c n=10; d n=20; e n=21; f n=22; g n=25; h n=27; i n=28
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values varied only slightly regionally and exhibited the least
increase (1.4%) above initial values at southern Chinco-
teague Bay. Oyster tissue %N values were spatially
consistent with total nitrogen (Table 3). Initial values of
macroalgae δ15N (5.2‰ in May and 9.5‰ in July) and
oyster δ15N (8.2‰) were lower than final measurements
after deployment, except at southern Chincoteague Bay
(8.1±0.2‰). Spatially, oyster δ15N values more closely
resembled macroalgae δ15N in May 2006 (Johnson Bay > St.
Martin River > Public Landing > southern Chincoteague
Bay) than those of July 2006. Overall, both macroalgae and
oysters had high isotopic values inshore.

Discussion

Freshwater Inputs Pulsed Nutrients to the Shallow Lagoons

Freshwater inputs in June 2006 pulsed nutrients into the
coastal lagoons, resulting in changes to the macroalgae
nutrient status and phytoplankton abundance. Salinity and
nutrient gradients along St. Martin River (Fig. 3a, e) in
conjunction with salinity decreases and spatial patterns of
nutrients in Public Landing (Fig. 3b, f) and Johnson Bay
(Fig. 3c, g) which emanated from shore implicated
transport of total nitrogen from terrestrial sources, either
via groundwater or overland flow through streams or
agricultural ditches. Similar nutrient pulses (e.g., dissolved
nitrate) are common in other comparable coastal ecosys-

Fig. 4 Non-parametric multidimensional scaling plot for biological
parameters (total chlorophyll a (the sum of chlorophyll a and
phaeophytin), macroalgae %N, macroalgae C/N, macroalgae δ15N
values, and macroalgae δ13C values (a). Principal axis correlation plot
for biological parameters (b). Non-parametric multidimensional
scaling plot for physical parameters (Secchi depth, temperature,
salinity, total nitrogen, and total phosphorus) (c). Principal axis
correlation plot for physical parameters (d)

Table 4 ANOVAs run on nutrient and biological parameters (2006 data) identify regional and temporal differences and interactions

Parameter Variation n df MSE F p

Total nitrogen Region 192 3, 184 54.35 184.39 <0.001

Month 3, 184 58.86 <0.001

Region × Month 3, 184 10.84 <0.001

Total phosphorus Region 192 3, 184 0.32 98.61 <0.001

Month 3, 184 527.03 <0.001

Region × Month 3, 184 4.09 0.008

Chlorophyll a Region193 193 3, 185 305.76 17.03 <0.001

Month 1, 185 21.93 <0.001

Region × Month 3, 185 6.30 <0.001

Macroalgae %N Region 193 3, 185 0.10 94.02 <0.001

Month 1, 185 245.68 <0.001

Region × Month 3, 185 65.44 <0.001

Macroalgae δ15N Region 193 3, 185 0.72 1.25 0.292

Month 1, 185 13.01 <0.001

Region × Month 3, 185 3.09 0.029

Oyster muscle %N Region 48 3, 44 0.56 8.86 <0.001

Oyster muscle δ15N Region 48 3, 44 0.61 6.09 0.002

Number (n), degrees of freedom (df), mean square error (MSE), F value (F), and significance value (p) are displayed. Significant relationships are
reported in bold
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tems (Valiela et al. 1990; Ullman et al. 2002). Temporal
grouping of biological parameters (total chlorophyll a and
macroalgae %N, C/N, δ13C, and δ15N) in the non-metric
multidimensional scaling analysis indicated that the biolog-
ical response to nutrients was driven by precipitation
(Fig. 4a, b). For example, enrichment of macroalgae δ13C
occurred across all regions after June 2006 precipitation
events (Table 3). Typical of shallow coastal ecosystems,
nutrients increased primary production, which contributed
to reduced water clarity via elevated levels of phytoplank-
ton (Fig. 4c, d; Nixon et al. 2001). Macroalgae nitrogen
incorporation was inferred from increased %N after
freshwater inputs (Table 3).

Patterns at Broad Spatial Scale Identified by Macroalgae

Across these coastal lagoons, total nitrogen concentrations
and macroalgae δ15N values provided different information.
Spatial patterns of total nitrogen concentrations (Fig. 5a)
reflected physical ecosystem processes such as oceanic
exchange, as concentrations were low near the two inlets
near both ends of Assateague Island and higher in areas
with poor flushing, such as Johnson Bay. Elevated macro-
algae δ15N in St. Martin River and southern Chincoteague
Bay potentially indicated nitrogen sources, possibly from
human or animal wastes, even though the concentrations of
total nitrogen varied (Fig. 5a, b). This highlights the ability
to interpret measurements of δ15N in bioindicators as inputs
of human or animal wastes even when total nitrogen
concentrations are low. Experimental evidence, such as that
with the macroalgae Enteromorpha, suggests that δ15N

values are independent of total nitrogen concentration,
though the rate of 15N incorporation varies by the form of
inorganic nitrogen (Cohen and Fong 2005).

Isotopic values can provide evidence of nitrogen source,
particularly in conjunction with land use. Macroalgae were
enriched with δ15N in areas where land uses suggested a
possible presence of septic and manure sources of nitrogen.
Examples include St. Martin River (17.2% residentially
developed watershed largely reliant on septic systems) and
the adjacent Assawoman Bay (18.9% residentially developed
watershed, Table 1). These results align with quantitative
linkages that have been made between urban development
and enriched δ15N values in primary consumers (Vander
Zanden et al. 2005). Animal agriculture, with isotopically
enriched manure byproducts, was another comparatively
prominent land use feature of these regions (1.8% and 1.4%,
respectively, Table 1). St. Martin River, the region with the
highest total nitrogen, exhibited a gradient decreasing
downstream, suggesting terrestrial nitrogen inputs which
diluted upon mixing with higher salinity water from ocean
exchange. Yet macroalgae δ15N values in these regions were
elevated in the broad (June 2004) survey (Fig. 5b) and in the
fine-scale survey prior to rain events (May 2006). While a
total nitrogen concentration gradient suggested terrestrially
derived nitrogen inputs, septic and/or manure sources were
inferred to be important nitrogen sources for St. Martin River
and Isle of Wight based upon enriched macroalgae δ15N
values.

The town of Chincoteague, VA (population 4,317; 173.1
people per kilometer, US Census Bureau 2000) is situated
atop sandy soils and potentially contributes nitrogen via

Fig. 5 Measured total nitrogen (a), deployed macroalgae δ15N (b), and %N (c) values from the broad spatial survey (June 2004)
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septic systems, as evidenced by enriched δ15N values in
macroalgae in the surrounding estuarine waters. This town
comprises much of the residential development (1.5% of
the total watershed area) in the Chincoteague Bay water-
shed and relies entirely on septic systems. In addition to
elevated δ15N, increased concentrations of total nitrogen
would be expected from this potential nitrogen source;
however, southern Chincoteague Bay had the lowest total
nitrogen at both broad (Fig. 5a) and fine spatial scales
(Fig. 3h), likely due to small watershed size, expansive and
intact wetlands, and physical processes including dilution
and ocean flushing (Wazniak et al. 2007).

Fine Spatial Scale Potentially Indicates Sources
Despite Lack of Spatial Patterns

At the fine spatial scale, patterns emerged from oyster δ15N
values, but not from macroalgae δ15N values. North–south
gradient patterns in Johnson Bay (Fig. 6a) and southern
Chincoteague Bay (Fig. 6b) were detectable in oyster
muscle δ15N. These gradients agreed with broad patterns
from June 2004 macroalgae δ15N (Fig. 5b). Though oyster
muscle δ15N gradients were slight, homogeneously elevated
values implicated septic sources of nitrogen in southern
Chincoteague Bay, likely from the town of Chincoteague,
VA. In a similar study, spatial homogeneity of elevated
δ15N among hard clam tissues (Mercenaria mercenaria)
along a eutrophication gradient has been attributed to
anthropogenic sources, suggesting that elevated δ15N in
mollusks can still indicate nitrogen source despite a lack of
spatial pattern (Oczkowski et al. 2008). Furthermore, oyster
δ15N values in this study were similar, though somewhat

Fig. 6 Fine spatial scale survey (2006) of oyster δ15N values. Spatial
patterns within Johnson Bay (a) and southern Chincoteague Bay (b)
detected with oyster δ15N values

Fig. 7 Change in δ15N (a) and %N (b) of macroalgae and oyster from
mean initial values in June 2004 and May and July 2006
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lower (8.5±0.1‰), to muscle tissue (9.4±0.2‰ and 16.0±
2.3‰) of an Australian oyster species (Saccostrea glomer-
ata) influenced by wastewater treatment effluent within
50 m (Piola et al. 2006).

Bioindicator Species Comparison

The growing literature on biological indicators suggests that
δ15N in organisms sampled from natural communities
consisting of various taxonomic groups, including macro-
phytes (e.g., McClelland et al. 1997; Cole et al. 2004;
Cohen and Fong 2006), finfish (Lake et al. 2001), and
mollusks (Fila et al. 2001; McKinney et al. 2002; Vander
Zanden et al. 2005), or some combination (Gartner et al.
2002; Fry et al. 2003) can identify nitrogen sources.
Additionally, manipulative deployment of macroalgae has
been used to interpolate spatial patterns in anthropogenic
sources of nitrogen through experimental field work (e.g.,
Udy and Dennison 1997; Costanzo et al. 2001). The current
study combines the benefits of each technique, providing
direct comparison between taxonomic groups of primary
producers and consumers along with the ability to interpo-
late spatial patterns based on a manipulative field design in
areas where natural communities may not be currently or
readily available.

The presence or absence of spatial patterns in δ15N in
macroalgae and oysters at different spatial scales provides a
spatial context in which each can be usefully deployed as a
biological indicator. While clear spatial patterns in macro-
algae δ15N and %N emerged at the broad spatial scale in
June 2004 (Fig. 5b, c), spatial patterns in δ15 N or %N were
not obvious for macroalgae deployed at the fine spatial
scale (either May or July 2006). Macroalgae δ15N values
were homogenously <10‰ throughout Johnson Bay and
southern Chincoteague Bay in both May and July 2006.
Therefore, macroalgae may potentially be more usefully
deployed as biological indicators of nitrogen source at a
broad scale (100 s of km2) rather than at the fine spatial
scale (10 s of km2). The slight gradients in Johnson Bay
(Fig. 6a) and southern Chincoteague Bay (Fig. 6b) suggest
that oyster δ15N may indicate potential nitrogen source at
fine spatial scales (10 s of km2).

In this study, manipulative deployments of macroalgae
over multiple years in conjunction with deployment of
oysters provided a comparison of isotopic responses to
water chemistry factors (i.e., the nutrient pulse) in addition
to the comparison between species. Macroalgae δ15N and
%N exhibited smaller changes from initial values after
receiving more precipitation during 2006 in the fine-scale
survey than the drier 2004 broad-scale survey (Fig. 7a, b).
Decreased regional mean macroalgal δ15N values with
increased standard errors from May to July 2006 (Table 3)
and the undefined spatial patterns in Johnson Bay can be

explained by a relatively short nitrogen turnover rate. Quick
turnover rates in macroalgae result in rapid response by
δ15N to environmental conditions as compared to slower
tissue turnover rates in tissues of consumers such as oysters
(Moore 2003; Cohen and Fong 2005). Similar to other
studies (e.g., Gartner et al. 2002 and Fry et al. 2003),
responsiveness to nitrogen cycling, as reflected in changes
to δ15N and %N, was greater in macroalgae than in oysters
(Fig. 7a, b), likely due to relative physiological turnover
times, days for macroalgae and weeks for oysters. Between
regions of these coastal lagoons, patterns of oyster tissue
δ15N values (July 2006; Table 3) were more similar to
previous macroalgae δ15N values (May 2006; Table 3) than
to concurrent macroalgae δ15N values (July 2006; Table 3)
and did not reflect short-term nutrient pulses from the June
2006 precipitation events.

Interpretations of δ15N in macroalgae and oysters to
infer nitrogen source may be influenced by water chemistry
factors as well as the spatial scale of interest. Isotopic
signals can be influenced by physical conditions such as
salinity, temperature, or depth (Jennings and Warr 2003)
and are variable in strength. Water chemistry measurements
varied over time in these coastal bays, as evidenced by a
wide range of macroalgae δ15N values in 2004 (Fig. 5b)
and a smaller range of macroalgae δ15N values with no
clear finer scale spatial pattern in 2006. Since spatial
patterns were detectable in 2006 by oyster δ15N, perhaps
these tissues are less susceptible to variability in water
chemistry due to oyster physiology (Fig. 7a, b).

A combination of indicator species responsiveness and
ecosystem features may affect the success of indicating
nitrogen source. For example, oceanic mixing and short
residence times in deep waters offshore southwestern
Australia may have dispersed δ15N signals before trans-
mission from organic sources to filter feeders via food
sources, though more responsive macroalgae reflected
sewage effluent sources (Gartner et al. 2002). In another
study in the northeast Atlantic, Jennings and Warr (2003)
found that most spatial δ15N variability in scallops is
related to physical conditions (salinity, depth, and temper-
ature). Comparatively, the shallow coastal lagoons of the
present study are characterized by residence times on the
order of weeks (Pritchard 1960; Lung 1994); potentially
enough time for δ15N signals to persist and be incorporated
into oysters, provided a sufficient time period for oyster
uptake and assimilation.

Variation in responsiveness based on physiological
differences between primary producers and filter feeders
may potentially introduce a lag time in oyster δ15N values
compared those of macroalgae. The greater absolute
changes found in macroalgae δ15N compared to oyster
δ15N (Fig. 7a) suggest a more rapid response to nitrogen
source, likely due to relative physiological turnover times.
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For example, when comparing across regions, oyster δ15N
values (July 2006) more closely resemble macroalgae δ15N
values from May 2006 (Johnson Bay > St. Martin River >
Public Landing > southern Chincoteague Bay) than macro-
algae δ15N values from July 2006 (Table 3). This discrep-
ancy between macroalgal and oyster δ15N values may have
been magnified by a time lag due to different rates or
modes of nitrogen assimilation. Macroalgae assimilate
nitrogen directly from the water column (e.g., Cohen and
Fong 2006), while oysters receive their nitrogen indirectly
from the water column (via consumption of a variety of
nitrogen sources, for example microorganisms, phytoplank-
ton, detritus and inorganic particles) to reflect ambient δ15N
(Newell and Langdon 1996; Cohen and Fong 2005). Due to
the rate and timing of nitrogen assimilation, oysters
integrate nitrogen in the muscle over longer time periods
than macroalgae (Moore 2003). Future studies could
investigate the possibility of a lag time in oyster δ15N
response as compared to macroalgae due to variations in
length of nitrogen incorporation.

In addition to differences between macroalgae and
oysters, different species within a functional group may
provide different temporal integrations based on species-
specific turnover rates. Muscle tissues in different species of
filter feeding bivalves vary, e.g., ~2 months for the eastern
oyster (C. virginica), >3 months for Sydney rock oyster
(Saccostrea commericalis; Moore 2003), and >1 year for a
methanotrophic hydrocarbon seep mussel (Bathymodiolus
childressi; Dattagupta et al. 2004). Because the diet of filter
feeders includes multiple trophic levels (e.g., primary
producers, detritus, etc.), which are separated by 2–3‰
(Fry 2006), mixtures of trophic levels may confound
interpretation of δ15N. In certain cases, spatial gradients in
δ15N could reflect variability in available diets. Yet
identifying human and animal waste as potential nitrogen
source to these bays fits with recent degradation of water
quality and increases in total nitrogen identified by long-term
monitoring datasets (Wazniak et al. 2007). Multiple temporal
integrations among species allow different monitoring ques-
tions to be addressed by different biological indicators.
Macroalgae and oysters may be suited for different roles as
biological indicators, but they both may have the potential to
indicate nitrogen sources at various spatial and temporal
scales, which will help focus nutrient management.
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