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Abstract A homogenizable structure M is a structure where we may add a finite
number of new relational symbols to represent some ∅−definable relations in order
to make the structure homogeneous. In this article we will divide the homogenizable
structures into different classes which categorize many known examples and show
what makes each class important. We will show that model completeness is vital for
the relation between a structure and the amalgamation bases of its age and give a
necessary and sufficient condition for an ω−categorical model-complete structure to
be homogenizable.
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1 Introduction

A structure M is called homogeneous (sometimes called ultrahomogeneous [10]) if
for each A ⊆ M and embedding f : A → M, f may be extended into an auto-
morphism of M i.e. there is an isomorphism g : M → M such that g � A = f . A
structure over a finite relational language is homogenizable if we can add new rela-
tional symbols to the structure’s signature representing a finite number of formulas,
such that the new expanded structure is homogeneous (see Definition 2.2 for details).
The homogenizable structures are found in a variety of areas of mathematics, espe-
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cially when studying random structures or structures with some excluded subgraphs,
also calledH−free structures [2–4,7,11,12]. In 1953 Fraïssé [8] studied homogeneous
structures and found that for each set of finite structures K satisfying the properties
HP, JEP and AP there is a unique infinite countable homogeneous structure M such
that K is exactly the set of finite substructures ofM (up to isomorphism). Covington
[6] extended Fraïssé’s result to setsK which instead of AP satisfy the so called “local
failure of amalgamation” property, and concluded that each of these sets induces a
unique homogenizable structure which is model-complete. This study of the homog-
enizable structures gives a sufficient yet not necessary condition for a set of structures
to generate a homogenizable structure. In a more recent study Hartman, Hubička and
Nešetřil [9] explores the concept of homogenizable structures by investigating how
high an arity is needed among the newly added relational symbols and call this number
the relational complexity. The article shows that if K is a set of structures which are
restricted by a finite minimal family of finite connected relational structures then K
generates a homogenizable structure. This is a sufficient, but not necessary condition
for a set of finite structures to induce an infinite homogenizable structure. In evenmore
generality relational complexity has been studied by Cherlin [5] among others, who
focus on properties of the automorphism group. The concept of relational complexity
and the results in the current article are easy to merge, as we work closely to the
homogenizing formulas. However, the question whether all the structures studied by
[5,6,9] are boundedly homogenizable (see Definition 2.9) or not remains open.

In this paper we use a finite relational vocabulary and study countably infinite
homogenizable structures, what the formulas which homogenize them look like, how
their set of finite substructures behave and how the types of the structure affect the
homogenization. In Sect. 2 we introduce the subject and give some basic definitions,
but wewill also providemany instructive examples pointing out how different kinds of
homogenizable structures relate to each other. Themain result is the following theorem
which gives a necessary and sufficient condition for ω−categorical model-complete
structures to be homogenizable (see Definition 2.17 for the meaning of SEAP).

Theorem 1.1 Let M be a countably infinite structure which is model-complete and
ω−categorical. Age(M) satisfies SEAP if and only if M is homogenizable.

Section 3 studies the boundedly homogenizable structures. We prove that they are
model-complete and hence conclude with the following theorem, which is an inter-
esting extension of Fraïssé’s theorem.

Theorem 1.2 LetK be a set of structures closed under isomorphismand satisfyingHP
and AP. Then there is a unique countably infinite structureM such that Age(M) = K
and M is boundedly homogenizable.

In other words, the theorem states that the unique homogeneous structure having
age equal to K , also called the Fraïssé-limit, is the unique boundedly homogeneous
structure.

In Sect. 4 we study the uniformly homogenizable structures, and prove that these
are the structures where we may find a universal witness which witnesses all the
homogenizing formulas.Wewill also see that the uniformly homogenizable structures
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Homogenizable structures and model completeness 979

contain many homogenizable structures which are “easy” to homogenize. In Sect. 5
we do a quick study of the unavoidably homogenizable structures, the set of structures
which are as close to being homogeneous as it gets. In all three of the Sects. 3, 4 and
5 we prove that the homogenizable structures have certain conditions associated to
the amalgamation bases of their ages and that we may extend certain self-embeddings
into automorphisms.

Unary relation symbols are often considered with special care, and so we devote
Sect. 6 to the study of the structures we may homogenize by only adding new unary
relational symbols. The epicenter of this is Theorem 6.1 which connects unary bound-
edly homogenizable structures with the uniformly homogenizable structures.

2 Homogenizable structures

We will consider a finite relational vocabulary V which is a finite set of relational
symbols of finite arities, so in particular has no constant or function symbols. In
this paper we will only consider first order formulas over such a vocabulary. The
formulas which are of the form ∃x1 . . . ∃xnϕ where ϕ is quantifier free are called
�1−formulas. We will denote V−structures by calligraphic lettersA,B,M,N , . . .

and their respective universes with roman letters A, B, M, N , . . .. Ordered tuples
ā, b̄, x̄, . . .may at times be (notationally) identified with the set of their elements. The
meaning will be made obvious from what operations are applied. The set {1, . . . , n}
may be written with the abbreviation [n]. IfM is a structure and A ⊆ M , thenM � A
is the substructure of M with universe A. If V ⊆ V ′ are both vocabularies and M is
a V ′−structure, then the reduct ofM to V , writtenM � V is the V−structure which
we get when we remove all relations in V ′ − V fromM. If f : A → B is a function
and C ⊆ A then f � C is the function f restricted to the domain C . Although we use
� for many things, the context should always make the intention clear. If ā ∈ M then
tpM(ā/b̄) is the set of all formulas (with parameters from b̄) which ā satisfies, also
called the complete type of ā over b̄. If ϕ(x̄) ∈ tp(ā) is such that for every formula
ψ ∈ tp(ā),M |� ∀x̄(ϕ(x̄) → ψ(x̄)) we say that ϕ isolates tp(ā). A model M
is model-complete if Th(M) (the theory of all true sentences in M) is such that
every embedding between models of Th(M) is elementary. It is a known fact ([10],
Theorem 8.3.1) that M is model-complete if and only if each formula is equivalent
to a �1−formula over Th(M).

IfM is a relational structure then Age(M) is the class of all finite structures which
are embeddable in M. Let K be any set of finite structures. We say that K satisfies
the hereditary property, written HP, if for each A ∈ K, if B ⊆ A then B ∈ K.
If, for each B, C ∈ K, there exists a structure D ∈ K in which both B and C are
embeddable thenK have the joint embedding property, written JEP. A structureA
is an amalgamation base for K (or just an amalgamation base if K is clear from the
context), if for any structures B, C ∈ K and any embeddings f : A → B, g : A → C
there is a structure D ∈ K, called an amalgam for f and g, and embeddings f0 :
B → D, g0 : C → D such that for each x ∈ A, f0( f (x)) = g0(g(x)). In the special
case when f0, g0 can be chosen so that f0(B) ∩ g0(C) = g0(A) = f0(A) we call
A a disjoint amalgamation base. If each A ∈ K is an (disjoint) amalgamation base
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980 O. Ahlman

for K then K satisfies the (disjoint) amalgamation property, in short written AP. We
note that for setsK containing only relational structures and satisfying HP and AP the
property JEP follows, since the empty structure is an amalgamation base.

Theorem 2.1 (Fraïssé [8]) If K is a class of relational structures closed under iso-
morphism which satisfies HP and AP, then there is a unique countably infinite
homogeneous structure M such that Age(M) = K. The structure M is called the
Fraïssé limit of K.

Following the concept of being homogeneous we will in this article study structures
which are so close to homogeneous that it is only a matter of adding finitely many
symbols to already existing definable relations. Recall from the beginning of this
section that we only consider finite vocabularies.

Definition 2.2 A V−structure M is homogenizable if there exists a finite amount
of formulas ϕ1(x̄0), . . . , ϕn(x̄n), called the homogenizing formulas, such that if we,
for each i ∈ {1, . . . , n}, create a new relational symbol Ri of the same arity as ϕi
and put V ′ = V ∪ {R1, . . . , Rn}, then there is a homogeneous V ′−structure N such
that N � V = M and for each ā ∈ N and i ∈ {1, . . . , n}N |� Ri (ā) ↔ ϕi (ā). If
all homogenizing formulas are �1, then we say that M is �1−homogenizable. A
homogenizable structure is unary homogenizable if all homogenizing formulas have
only one free variable.

A structureM is called ω−categorical if Th(M) has a single countable model up to
isomorphism. The following well known fact about ω−categorical structures will be
used without mention throughout this article.

Fact 2.3 IfM is a structure then the following are equivalent.

– M is ω−categorical.
– For each n there exists only a finite number of n−types over ∅.
– Each type over ∅ is isolated.

Over a finite vocabulary it is clear that a structure which is homogenizable or homo-
geneous is also ω−categorical. For an ω−categorical structure M over a finite
vocabulary, all types being isolated by quantifier free formulas (called quantifier elim-
ination) is equivalent to M being homogeneous. Weakening the assumptions to M
only being homogenizable it hence becomes natural to ask how the types now are being
isolated. The amalgamation property still holds in homogenizable structures over real-
izations of types which are isolated by quantifier-free formulas. The converse of the
following lemma is not even true for �1−homogenizable structures - see Example
2.14.

Lemma 2.4 IfM is a structure and ā ∈ M is such that tp(ā) is isolated by a quantifier
free formula then A = M � ā is an amalgamation base for Age(M).

Proof Assume that f : A → B and g : A → C for someB, C ∈ Age(M). As tpM(ā)

is isolated by the atomic diagram χA of A we see that tpM(ā) = tpM( f (ā)) =
tpM(g(ā)). Hence M |� χA(ā) → ∃ȳχB(ā, ȳ) and M |� χA(ā) → ∃ȳχC(ā, ȳ).
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Homogenizable structures and model completeness 981

Let b̄ and c̄ be such thatM |� χA(ā) → χB(ā, b̄)∧χC(ā, c̄) and putD = M � āb̄c̄,
so D ∈ Age(M). If h0 : B → D according to χB and h1 : C → D according to χC ,
then h0( f (x)) = h1(g(x)) for each x ∈ A. We conclude that D is an amalgam for f
and g, thus A is an amalgamation base. ��
Adding some more assumptions we may prove the converse of the previous lemma.

Lemma 2.5 LetM be ω−categorical, model-complete and for ā ∈ M letA = M �
ā. If A is an amalgamation base for Age(M) then tp(ā) is isolated by a quantifier
free formula.

Proof If ā′ has the same atomic diagram as ā letϕ,ψ be the�1−formulas isolating the
types of each respective tuple. Let b̄, c̄ be tuples witnessing the existential quantifiers
isolating formulas of ā respectively ā′ and put B = M � b̄ā and C = M � c̄ā′. Since
A is an amalgamation base the embeddings f : A → B, g : A → C should have
an amalgam D ⊆ M with embeddings f0 : B → D and g0 : C → D. However
the atomic diagram of f0(āb̄) and g0(c̄ā′) implies that tp( f0( f (ā))) = tp(ā) and
tp(g0(g(ā))) = tp(ā′) respectively. As D is an amalgam of f and g it thus follows
that tp(ā) = tp( f0( f (ā))) = tp(g0(g(ā))) = tp(ā′). ��
Lemma 2.6 Let M be a saturated countably infinite structure with ā ∈ M and put
A = M � ā. Each embedding f : A → M may be extended into an automorphism
of M if and only if tp(ā) is isolated by a quantifier free formula.

Proof If f : A → M is an embedding then by the saturation ofM, tp(ā) = tp( f (ā))

if and only if f may be extended into an automorphism. But f is an embedding if and
only if ā and f (ā) satisfies the same atomic diagram. ��
The previous lemma hints that having a type isolated by a quantifier free formula
implies that the specific tuple does its part in trying tomake the structure homogeneous.
Following from this we introduce three new concepts of homogenizable structures,
assuming different levels of how easy it is to find a typewhich is isolated by a quantifier
free formula.

Definition 2.7 Let M be a structure and k ∈ N. We say that M is k−unavoidably
homogenizable if, for each n ∈ {k, k + 1, . . .}, each n−type is isolated by quantifier
free formula. M is unavoidably homogenizable if it is k−unavoidably homogeniz-
able for some k ∈ N.

The unavoidably homogenizable structures are as close to being homogeneous as it
gets, yet they do not seem easy to classify completely as we will see in Sect. 5.

Definition 2.8 A homogenizable structureM is called uniformly homogenizable if
there is a tuple ā ∈ M such that for any b̄ ∈ M, tp(āb̄) is isolated by a quantifier free
formula.

Aswill bemade clear in Sect. 4, the uniformly homogenizable structures containmany
trivial kinds of homogenizable structures yet are also quite central among homoge-
nizable structures as Proposition 4.5 and Theorem 6.1 show.
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982 O. Ahlman

Definition 2.9 A homogenizable structure M is boundedly homogenizable if for
each ā ∈ M there exists a b̄ such that tp(āb̄) is isolated by a quantifier free formula.

The boundedly homogenizable structures form a very broad class of structures and it
seems like most examples found in the literature fall in here, as we see in the examples
bellow.

Remark 2.10 We note the following implications. Examples showing that these are
all strict are provided below and in later sections we will explore some of the classes
more. The second implication follows using Lemma 5.1 while the fourth implication
uses Lemma 3.2.

Homogeneous ⇒ Unavoidably homogenizable ⇒
Uni f ormly homogenizable ⇒ Boundedly homogenizable ⇒
�1 − homogenizable ⇒ Homogenizable.

Example 2.11 (Kolaitis et al. [11]) For some l ∈ N letKn be all l−partite graphs with
universe {1, . . . , n}, edge relation E and let μn be the probability measure onKn such
that for each M ∈ Kn, μn(M) = 1

|Kn | . Put TK to be the theory (called the almost
sure theory) consisting of all sentences ϕ such that

lim
n→∞ μn({M ∈ Kn : M |� ϕ}) = 1

TK is ω−categorical and the unique countable model N |� TK, called the random
l−partite graph has following property: For each a, b ∈ N , a and b belong to the same
part if and only if N satisfies

∃x2 . . . ∃xl
l∧

i=2

∧

i �= j

(aExi ∧ bExi ∧ xi Ex j ).

If we let ξ(a, b) be the formula above, then it is easy to prove ξ is a homogenizing
formula, thusN is homogenizable. Using a generalization of ξ we may, for any tuple
ā ∈ N , find l elements b1, . . . , bl ∈ N such that the tuple āb1 . . . bl is a connected
graph and of diameter 3 inN . It is easy to see that any such tuple āb1 . . . bl inN has
a type which is isolated by a quantifier free formula, and hence we have found that
N is boundedly homogenizable. The structure is not uniformly homogenizable since
for any tuple b̄ we can find an element c which is not adjacent to any elements in b̄,
which clearly means that the tuple cb̄ may be mapped such that c is in the wrong part
compared to the tuples in b̄.

As we will see in Sect. 4 and especially Proposition 4.6, it is easy to create a uniformly
homogenizable structure. We may just take the infinite complete graph and remove a
single edge. The following example however shows that they may not be at all trivial
even though the homogenization still is.

123



Homogenizable structures and model completeness 983

Example 2.12 Let M be the random l−partite graph obtained from Example 2.11,
but where we add new elements a1, a2 to the universe, and add two new relations
P and R to the vocabulary. Let P be unary and PM = {a1, a2}. Let R be a 3−ary
relation such that M |� R(b, c, a1) if and only if b and c are in the same part. If b
and c are not in the same part then M |� R(b, c, a2). This is the construction from
Proposition 4.5 and M is hence a uniformly homogenizable structure. For any tuple
c̄, the type tp(c̄a1a2)will be isolated by a quantifier free formula as a1, a2 will be able
to point out which elements in c̄ belong to the same part. Age(M) does not satisfy
the local failure of amalgamation property (LFA) discussed by Covington [6]. This
follows quickly since the random l−partite graph does not satisfy LFA (Covington
points this out for bipartite graphs, and a similar reasoning works for l−partite graphs)
and the same argument can be extended to Age(M).

In the next example we see that the strict order property may appear and thus there
are boundedly homogenizable non-homogeneous structures which are not simple (see
[14] for detailed definitions of these concepts).

Example 2.13 (Bodirsky et. al. [4]) Let M be the countable, binary downwards-
branching, dense, unbounded, semi-linear order without joins. This structure is
boundedly homogenizable with a single homogenizing formula C(x, y, z) saying,
for incomparable vertices x, y and z that there is an element c which is larger than x
and y but still incomparable with z, i.e. in some sense x and y are closer to each other
than to z. For any tuple b̄, and triple b0, b1, b2 ∈ b̄ such that M |� C(b0, b1, b2) let
c0 be an element witnessing this and let c̄ be a tuple containing such witnesses for any
triple in b̄ satisfying C . If this process is continued for b̄c̄ we will, in a finite amount
of steps, reach a tuple b̄d̄ which is a finite binary tree. Thus this tuple has a type which
is isolated by a quantifier free formula.

The boundedly homogenizable structures are very common in examples of homoge-
nizable structures in the literature. There are however homogenizable structures which
are not boundedly homogenizable.

Example 2.14 LetM = (Q+∪ {0},<) be the countable dense linear orderingwithout
upper bound but with a lower endpoint. This structure is not homogeneous since the
smallest element may never be mapped by an automorphism to anything but itself.
However the formula ∃y(y < x) creates a �1−homogenization for M. No type in
M is isolated by a quantifier free formula, since the least element in any tuple can
not be determined (without quantifiers) to be the endpoint 0 or not. Hence M is
�1−homogenizable but not boundedly homogenizable and not model-complete. We
have that Age(M) = Age((Q,<)).

All examples up until now have been �1−homogenizable. However there are non
�1−homogenizable structures, as the following example shows. This article does not
further explore these structures, and the following question remains open.

Question 2.15 Does there exists a �n− but not �n−1−homogenizable structure for
each n ∈ N?
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984 O. Ahlman

Example 2.16 Let M be the structure with universe (Q+ ∪ {0})∪̇(Q− ∪ {0}), and
with a binary relation < interpreted as the strict linear order on each part of the
disjoint union, yet < does not compare elements from different parts of the disjoint
union. This structure is homogenizable by the formulas ∃y(x < y), ∃y(y < x) and
∃y∀z(¬z < y ∧ y < x). The first two formulas makes the two endpoints stand out
and the third formula makes it impossible to mix together the elements of Q

− and
Q

+. It is thus clear that M is unary homogenizable. We may also notice that the
structure M is not model-complete, since the structure with universe Q∪̇Q together
with the expected order relation on each of the two disjoint sets, has the same age and
is homogeneous.

Let f : M → M be such thatQ+ ∪{0} is mapped to the half-open interval [−1, 0)
and Q

− ∪ {0} is mapped to (0, 1], both in an order-preserving way. This function is a
self-embedding ofM and hence it preserves the�1−formulas. We may conclude that
any element a ∈ Q

− and b ∈ Q
+ satisfy the same �1−formulas inM. We conclude

that, sinceM is unary homogenizable, it is not possible to homogenizeM using only
�1−formulas.

By Theorem 2.1 it is sufficient for a set of finite structures to satisfy HP andAP in order
to generate a homogeneous structure, and one might ask if there is a similar condition
which guarantees the existence of a homogenizable structure. The following property
solves this problem for ages of ω−categorical structures.

Definition 2.17 LetK be a class of finite structures and k,m ∈ N. Define the (k,m)-
subextension amalgamation failure property (SEAPk,m) to be the following. For
any A,B, C ∈ K with embeddings f : A → B, g : A → C without an amalgam,
there exist A0 ⊆ A,B0 ⊇ B and C0 ⊇ C with |A0| < k, |B0| − |B| < m and
|C0| − |C | < m such that f0 : A0 → B0 and g0 : A0 → C0 with f0 = f � A0 and
g0 = g � A0 do not have an amalgam. We say that K satisfies SEAP if it satisfies
SEAPk,m for some k,m ∈ N.

It is clear that any set of structures which satisfies AP will satisfy SEAP since SEAP
only speaks about how failing amalgamations should behave. Aswe have all necessary
definitions we may now start with the lemmas necessary to prove Theorem 1.1. The
proof of the first lemma is done by assigning relations on all small enough types and
then showing, using SEAP, that this creates a homogeneous structure.

Lemma 2.18 LetN be a model-completeω−categorical countably infinite structure.
If Age(N ) satisfies SEAP then N is homogenizable.

Proof Let m and k be numbers such that Age(N ) satisfies SEAPk,m . As N is
ω−categorical there are only a finite amount of types of the tuples of size less than k.
Let V ′ ⊇ V be the extended vocabulary where, for each i < k, and i−type over ∅ there
is an i−ary new relational symbol. LetN be the V ′−structure such thatN = N � V
and for each relational symbol R in V ′ −V there is a distinct complete type p(x̄) over
∅ in N such that for each ā ∈ N ,N |� p(ā) if and only if N |� R(ā) and all inter-
pretations of the relations V ′ − V inN are disjoint. Thus the new relational symbols
isolate the i−types inN for each i < k and asN is ω−categorical these relations are
∅−definable. We claim that N is homogeneous, and thus N was homogenizable.
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Homogenizable structures and model completeness 985

In search for a contradiction, assume that N is not homogeneous, so there exist

tuples ā1, ā2 ∈ N with the same atomic diagram such that tpN (ā1) �= tpN (ā2). As
N is just an expansion by ∅−definable relations, it follows that tpN (ā1) �= tpN (ā2).
The model-completeness and ω−categoricity of N implies that all types are isolated
by �1−formulas. Let c̄ ⊇ ā1 and b̄ ⊇ ā2 be tuples such that the existential quantifiers
of the formulas isolating tpN (ā1) and tpN (ā2) respectively are witnessed by some
subtuple. Let A = N � ā1,B = N � b̄, C = N � c̄, and note that since tpN (ā1) �=
tpN (ā2) is witnessed in B and C, the functions f : A → B and g : A → C, where
f maps ā1 to ā1 and g maps ā1 to ā2, can not have an amalgam in Age(N ). As
Age(N ) satisfies SEAPk,m there exists A0 ⊆ A,B0 ⊇ B and C0 ⊇ C such that
|A0| < k, |B0| − |B| < m, |C0| − |C| < m and the induced functions f � A0 and
g � A0 do not have an amalgam. This in turn implies that there are embeddings
f0 : B0 → N , g0 : C0 → N such that tpN ( f0(A0)) �= tpN (g0(A0)). Let ā′

1, ā
′
2

be the subtuples of ā1 and ā2 which are represented in A0. Both ā1 and ā2 had the
same atomic diagram inN thus tpN (ā′

1) = tpN (ā′
2). As B0 and C0 contain witnesses

for the isolating formulas of tpN (ā1) and tpN (ā2) respectively these witnesses also
isolate tp(ā′

1) and tp(ā′
2). Thus we conclude that tp

N ( f0(A0)) = tpN (g0(A0)) has
to hold, which is a contradiction to what we previously showed. ��
If we do not have the amalgamation property in the age of a �1−homogenizable
structure, then for each diagram f : A → B, g : A → C which does not have an
amalgam there should be a homogenizing formula such that for some tuple ā ∈ A,
this tuple satisfies the homogenizing formula in B but does not satisfy this formula in
C. This is the core reasoning behind the following lemma.

Lemma 2.19 If M is a homogenizable model-complete structure then M is
�1−homogenizable, with all types isolated by a conjunction of the homogenizing
formulas and quantifier free formulas, and Age(M) satisfies SEAP.

Proof Model-completeness is equivalent to the condition that each formula is equiv-
alent to a �1−formula, thus we may assume that the homogenizing formulas are
�1−formulas. The type of a tuple may then be isolated by a conjunction of homoge-
nizing formulas and quantifier free formulas, since the structure is homogenizable.

In order to prove that Age(M) satisfies SEAP assume that Age(M) does not
satisfy AP. We will show that SEAPk,m is satisfied where k is the maximum among
the number of free variables among homogenizing formulas and m is the maximum
among the number of bound variables among the homogenizing formulas. Assume
A,B, C ⊆ M with embeddings f : A → B, g : A → C be without an amalgam.
We conclude that tpM( f (A)) �= tpM(g(A)), however since they have the same
atomic diagram there have to exist homogenizing formulas ∃ȳϕ(x̄, ȳ), ∃ȳψ(x̄, ȳ),
where ϕ and ψ are quantifier free, such that for some ā0 ∈ A,M |� ∃ȳϕ( f (ā0), ȳ)∧
¬∃ȳϕ(g(ā0), ȳ) ∧ ¬∃ȳψ( f (ā0), ȳ) ∧ ∃ȳψ(g(ā0), ȳ). Note that we may assume

M |� ∀x̄
((∃ȳϕ(x̄, ȳ) → ¬∃ȳψ(x̄, ȳ)

) ∧ (∃ȳψ(x̄, ȳ) → ¬∃ȳϕ(x̄, ȳ)
))

. (1)

Let A0 = A � ā0, let B0 be B extended with a tuple witnessing the existential
quantifier in ∃ȳϕ( f (ā0), ȳ) and let C0 be C extended with a tuple witnessing the
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986 O. Ahlman

existential quantifier in ∃ȳϕ(g(ā0), ȳ). Then f0 : A0 → B0, f0 = f � A0 and
g0 : A0 → C0, g0 = g � A0 can not have an amalgam since (1) hold and M |�
∃ȳϕ( f0(ā0), ȳ) ∧ ∃ȳψ(g0(ā0), ȳ). ��
Combining the previous two lemmas we now have a proof for Theorem 1.1. In [6]
Covington asks whether all homogenizable classes have a homogenizable model
companion. In the notation of [6], the previous theorem implies that we can find a
homogenizable class without a homogenizable model companion if and only if there
is a homogenizable class not satisfying SEAP. The author does not knowwhether such
a class exists and hence the question remains open.

3 Boundedly homogenizable structures

In this section we characterize the boundedly homogenizable structures. We try to find
out whether all model-complete homogenizable structures are boundedly homogeniz-
able, but only find that this is the case for homogenizable structures with certain model
theoretic properties. The following proposition give us a good understanding of the
basic properties of boundedly homogenizable structures.

Proposition 3.1 If M is a homogenizable countably infinite structure then the fol-
lowing are equivalent.

(i) M is a boundedly homogenizable structure.
(ii) For each finite A ⊆ M there is a finite B with A ⊆ B ⊆ M such that each

embedding f : B → M may be extended to an automorphism.
(iii) M is model-complete and for each A ⊆ M there is an amalgamation base B

for Age(M) such that A ⊆ B ⊆ M.

Proof (i) and (i i) are equivalent by Lemma 2.6 and the definition of being bound-
edly homogenizable. We prove (i i i) implies (i) by Lemma 2.5 and to show that (i)
implies (i i i) we use Lemma 3.2 to get model-completeness and Lemma 2.4 to get the
amalgamation bases. ��
As model-completeness is a very important property for homogenizable structures it
is interesting to see that all boundedly homogenizable structures are model-complete.

Lemma 3.2 If a structureM is boundedly homogenizable then it is �1− homogeni-
zable and T h(M) is model-complete.

Proof Among the formulas which homogenize M, assume that the largest number
of free variables is r . Let ā1, . . . , ān be realizations of all the different types on
1, . . . , r−tuples in M. For each i = 1, . . . , n let b̄i ∈ M be such that tp(āi b̄i ) is
isolated by a quantifier free formula and let χi be the atomic diagram of āi b̄i . It is
clear that ∃x̄χi (ȳ, x̄) isolates tp(āi ). For each i ∈ {1, . . . , n}, adding a relation symbol
Ri representing the formula ∃x̄χi (ȳ, x̄)will hence be a refinement of the homogeniza-
tion, since it implies the old homogenizing formula. Hence this new homogenization
is of the form �1 and all types are isolated by a conjunction of �1−formulas, thus the
theory is model-complete. ��
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We now have the tools needed in order to prove Theorem 1.2.

Proof (Proof of Theorem 1.2) The existence of such a structure is clear since the
Fraïssé limit is homogeneous and hence boundedly homogenizable. IfM is boundedly
homogenizable and Age(M) = KLemma3.2 then implies thatM ismodel-complete,
but Saracino [13] has shown that there is always a unique model-complete countably
infinite structure such that Age(M) = K, henceMmust be this structure. Since every
homogeneous structure is model-complete,Mmust be isomorphic to the Fraïssé limit
of K. ��
If M is not homogeneous yet homogenizable with an age satisfying the amalgama-
tion property we have two choices for our favorite related model-complete structure.
One choice is the Fraïssé limit, which coincides with the model companion, however
the second choice is the homogeneous structure which is gotten when adding new
relational symbols. These two structures are not the same and do not even need to be
reducts of one another.

The converse of Lemma 3.2 can be formulated in the following question, to which
the author does not know the answer.

Question 3.3 Does there exist a model-complete homogenizable structure which is
not boundedly homogenizable?

We will continue this section by showing that this question has a negative answer in
the case of ω−stable structures. Recall that a homogenizable structureM is ω−stable
if for each A ⊆ M such that |A| ≤ ℵ0 there are at most ℵ0 different complete types
over A.

Proposition 3.4 If M is ω−stable, model-complete and homogenizable then M is
boundedly homogenizable.

Proof Assume that M is not boundedly homogenizable. Then there exists a tuple b̄
such that tp(b̄) is not isolated by a quantifier free formula, and for each ā ∈ M, tp(b̄ā)

is not isolatedby aquantifier free formula.Wewill create a binary tree of tuples {āI , b̄I :
I ∈ {0, 1}<ω} with root node ā∅ = ∅, b̄∅ = b̄, and such that if I is incomparable to
J in the ordered tree then there exists ā′

I ⊆ āI , ā′
J ⊆ āJ such that b̄I ā′

I and b̄J ā′
J

have the same atomic diagram yet tp(b̄I ā′
I ) �= tp(b̄J ā′

J ). We note that this property
will imply that over

⋃
I∈{0,1}<ω āI there are more than a countable amount of types,

as each infinite branch will induce a sequence of tuples whose union correspond to
a distinct type compared to any other infinite branch, whose consistency follow by
compactness. This is a contradiction against the stability assumption.

Assume that āI has been determined and we want to choose āI∪{0} and āI∪{1}, with
0 or 1 added last in the sequence. SinceM is not boundedly homogenizable, tp(b̄I āI )
is not isolated by a quantifier free formula and hence tp(b̄I /āI ) is not isolated by
a quantifier free formula. This follows since if tp(b̄I /āI ) would be isolated by the
quantifier free formula ϕ(x̄, āI ), then tp(b̄I āI ) would be isolated by ϕ(x̄, ȳ). As
tp(b̄I /āI ) is not isolated by a quantifier free formula there exist an element b̄′ such
that tp(b̄′/āI ) �= tp(b̄I /āI ) but b̄′āI and b̄I āI have the same atomic diagram. We
conclude that tp(b̄I āI ) �= tp(b̄′āI ). By model-completeness both of tp(b̄I āI ) and
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tp(b̄′āI ) are isolated by existential formulas, so put b̄I∪{0} = b̄I , b̄I∪{1} = b̄′ and
put āI∪{0} and āI∪{1} as the tuple āI extended with a tuple witnessing the existential
quantifier in the isolating formula of tp(b̄I∪{0}āI ) and tp(b̄I∪{1}āI ) respectively. ��
It is worth noticing in the above proof that the assumption onM being homogenizable
is only there since it is required in order to be boundedly homogenizable. Hence this
proof may also be used to show that each ω−categorical, ω−stable, model-complete
structure satisfies the type property in the definition of boundedly homogenizable.

4 Uniformly homogenizable structures

The uniformly homogenizable structure have some tuple (or tuples) which determines
the types of all other tuples in the structure. This notionmakes us believe that if we have
a �1−homogenizable structure then it should be possible to witness the existential
quantifiers of the homogenizing formulas for all tuples with a single uniform tuple.

Definition 4.1 A �1−homogenizable structure M with homogenizing formulas
∃x̄ϕi (ȳ, x̄) for i = 1, . . . , n (ϕi is quantifier free) has uniformly homogenizing
formulas if for each i = 1, . . . , n

M |� ∃x̄∀ȳ(∃x̄0ϕi (ȳ, x̄0) → ϕi (ȳ, x̄)
)

We will prove that having uniformly homogenizing formulas is equivalent with being
uniformly homogenizable, among some other characterizing properties in the spirit of
Proposition 3.1.

Proposition 4.2 If M is a homogenizable countably infinite structure then the fol-
lowing are equivalent:

(i) M is uniformly homogenizable.
(ii) M has uniformly homogenizing formulas.
(iii) There is a finite structure N ⊆ M such that for each finite structure A such

that N ⊆ A ⊆ M and embedding f : A → M, f may be extended into an
automorphism.

(iv) M is model-complete and there exists a finite structure N ⊆ M such that each
finite A ⊆ M such that N is embeddable in A is an amalgamation base.

Proof (i) is equivalent to (i i) is shown in Lemmas 4.3 and 4.4. To show that (i) is
equivalent to (i i i) we use Lemma 2.6. The uniformly homogenizable structures are
boundedly homogenizable so (i) implies (iv) follows from Lemma 3.2 and Lemma
2.4. By Lemma 2.5 the converse follows. ��
We prove that a structure having uniformly homogenizing formulas implies that the
structure is uniformly homogenizable by collecting the uniform witnesses for the
homogenizing formulas together, and then show that these actually form a tuple whose
type, and its extensions, are isolated by quantifier free formulas.

Lemma 4.3 If M is homogenizable with uniformly homogenizing formulas then M
is uniformly homogenizable.
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Proof Assume that ∃x̄ϕ1(ȳ, x̄), . . . , ∃x̄ϕn(ȳ, x̄) are the �1−homogenizing formulas.
Since we assume that these formulas are uniformly homogenizing there exist tuples
ā1, . . . , ān such that for each i = 1, . . . , n

M |� ∀ȳ(∃x̄0ϕi (ȳ, x̄0) → ϕi (ȳ, āi )
)
. (2)

We will now show that ā = ā1 . . . ān is a tuple witnessing that M is uniformly
homogenizable. For any b̄ ∈ M , we will show that tp(āb̄) is isolated by a quantifier
free formula we will do downwards induction on the number of subtuples of āb̄ which
satisfy some homogenizing formulas.

As a base case of the induction assume that for any b̄′ ∈ M such that M �
b̄ ∼= M � b̄′, b̄ has the highest number of subtuples satisfying the formulas in
{∃x̄ϕi (ȳ, x̄)}i∈[n]. As Eq. (2) hold for the subtuples of ā, for each tuple c̄d̄ such
that there is an isomorphism f : M � āb̄ → M � c̄d̄ and for any subtuple ē0 of
āb̄ and i = 1, . . . , n if M |� ∃x̄ϕi (ē0, x̄) then M |� ∃x̄ϕi ( f (ē0), x̄). However the
maximality of b̄ proves that this implication is an equivalence, thusM |� ∃x̄ϕi (ē0, x̄)
iffM |� ∃x̄ϕi ( f (ē0), x̄). As āb̄ and c̄d̄ satisfy the same atomic diagram and homog-
enizing formulas on respective subtuples, it is clear that tp(āb̄) = tp(c̄d̄) hence the
type is isolated by its atomic diagram.

As induction hypothesis we have that for each tuple c̄0d̄0 such that there is an
isomorphism f : M � āb̄ → M � c̄0d̄0, if c̄0d̄0 has more subtuples satisfying
∃xϕi (ȳ, x̄) for i = 1, . . . , n then it has quantifier free isolation and hence we can not
have an isomorphism toM � āb̄, as tp(āb̄) �= tp(c̄0d̄0). If on the other hand c̄0d̄0 have
the same amount of subtuples satisfying homogenizing formulas, the same reasoning
as previously in this proof (when we had maximal amount of subtuples) implies that
tp(c̄0d̄0) = tp(āb̄). Since c̄0d̄0 is an arbitrary tuple with the same atomic diagram as
āb̄ we conclude that the type tp(āb̄) is isolated by a quantifier free formula. ��
To get the converse of the previous lemma we may need to change the homogenizing
formulas so that they depend on tuples inducing types isolated by quantifier free
formulas, and then show that the newly created formulas are uniformly homogenizing
formulas.

Lemma 4.4 If M is a uniformly homogenizable structure, then M may be homoge-
nized using only uniformly homogenizing formulas.

Proof Let ā ∈ M be such that for each b̄ ∈ M, tp(āb̄) is isolated by a quantifier
free formula. Assume that the highest arity among homogenizing formulas is r . For
any k ∈ [r ], let b̄1, . . . , b̄m ∈ M be an as large set as possible of k−tuples such
that tp(b̄1) = . . . = tp(b̄m) yet if Bk

i = M � āb̄i then Bk
i0

� Bk
i1
for any distinct

i0, i1 ∈ [m]. Let χk,i be the atomic diagram of Bk
i . Since the types of the tuples

b̄1, . . . , b̄m are the same M |� ∃x̄χk,i (x̄, b̄ j ) for each i, j ∈ [m]. Since the atomic
diagram of Bk

i isolates tp(b̄i ) the disjunction
∨m

i=1 ∃x̄χk,i (x̄, ȳ) thus isolates tp(b̄1).
Note that

∨m
i=1 ∃x̄χk,i (x̄, ȳ) is equivalent to ∃x̄ ∨m

i=1 χk,i (x̄, ȳ). Thus we may in this
way create, for each k ∈ [r ] and k−type p, a�1−formula which isolates p and whose
existential quantifier is witnessed by ā. As all homogenizing formulas have arity at
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most r , these new formulas will work as homogenizing formulas forM and they are
clearly uniformly homogenizing. ��
As Proposition 4.2 is now proven, wewill finish this sectionwith some results showing
both how important the uniformly homogenizable structures are for the homogenizable
structures, but also how trivial they might be. In the following proposition we work
with Meq . This structure is obtained from M by adding a new element for each
equivalence class of each ∅−definable equivalence relation on each power Mn ofM
and expanding the language correspondingly, to indicate which tuples lie in which
equivalence classes. This construction is very useful especially in the classification
theory part of model theory, but as we will not use it in further detail we refer the
reader to Chapter 4.3 in [10] for a complete definition. Note that a finite expansion
N of the V−structure M is a V ′−structure of a finite vocabulary V ′ ⊇ V such that
M ⊆ N � V and |N | − |M | is finite.
Proposition 4.5 For each homogenizable structureM there exists a finite expansion
N ⊆ Meq such that N is uniformly homogenizable.

Proof Let the homogenizing formulas of M be ϕ1(x̄1), . . . , ϕn(x̄n). These are by
definition without parameters, and hence the formula

ξi (x̄, ȳ) ⇔ ϕi (x̄) ↔ ϕi (ȳ)

defines an equivalence relation. Let V ′ = V ∪ {Pi (y) : i = 1, . . . n} ∪ {Ri (y, x̄i ) i =
1, . . . , n} ⊆ V eq and N ′ ⊆ Meq be such that N ′ contains all of M and only the
equivalence classes of all the formulas ξi . Note that for each i, Pi in Meq is the
relationwhich holds for elements representing equivalence classes for ξi and Ri relates
equivalence classes of ξi to tuples in that equivalence class. LetN = N ′ � V ′, it is now
easy to show that this structure is uniformly homogenizable with the uniform witness
being the tuple containing all 2n elements representing the equivalence classes. ��
Algebraic formulas are formulas which are only satisfied by a finite number of tuples.
If we want an easy example of a homogenizable structure we may take any homoge-
neous structure and add a finite number of elements which are ∅−definable and with
the same atomic diagram as something in the rest of the structure, but with a differ-
ent type. The following proposition ensures that any such structure will be uniformly
homogenizable. It is interesting to compare the assumptions of the proposition with
Example 2.14 which is both �1−homogenizable and homogenizable using only alge-
braic formulas, yet we may not find a homogenization of the structure which satisfies
both of these properties at the same time.

Proposition 4.6 If M is �1−homogenizable such that the homogenizing formulas
are algebraic then M is uniformly homogenizable.

Proof Let ∃x̄1ϕ1(x̄1, ȳ), . . . , ∃x̄nϕn(x̄n, ȳ) be the homogenizing algebraic formulas,
and assume that ā1, . . . , ām are the tuples satisfying these formulas with existential
quantifiers witnessed by b̄1, . . . , b̄m respectively. Let b̄ = b̄1 . . . b̄m and let x̄ =
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x̄1 . . . x̄m be a variable tuple of the same length. For each formula ϕi (x̄i , ȳ) create a
formula ϕ′

i (x̄, ȳ) which is equivalent with

ϕi (x̄i , ȳ) ∧
∧

j �=i

x̄ j = x̄ j .

It is clear that ∃x̄ϕ′
1, . . . , ∃x̄ϕ′

n also work as homogenizing formulas, and the element
b̄ can be chosen to witness x̄ in all of the formulas. It follows that ∃x̄ϕ′

1, . . . , ∃x̄ϕ′
n are

uniformly homogenizing formulas for M and thus M is uniformly homogenizable
by Proposition 4.2. ��

5 Unavoidably homogenizable structures

In Sect. 2 we defined the unavoidably homogenizable structures. However nowhere
in the definition of unavoidably homogenizable structures do we demand that such a
structure has to be homogenizable or even ω−categorical. This follows though from
the very tight restriction we keep on the complete types.

Lemma 5.1 IfM is unavoidably homogenizable, then M is �1−homogenizable.

Proof Assume k ∈ N is such that M is k−unavoidably homogenizable and let
ā1, . . . , ān ∈ Mk be such that all different atomic diagrams are represented. Note
that this is finite since the vocabulary is finite relational and it thus becomes clear that
M is ω−categorical. Let χi be the atomic diagram of the tuple āi . It is now clear that
all the formulas of the form ∃x̄χi (ȳ, x̄) together form �1−homogenizing formulas,
as each tuple of size less than k has its type isolated by such a formula. ��
As the properties of unavoidably homogenizable structures are very close to the uni-
form and boundedly homogenizable structures, we may prove a proposition which is
similar to Proposition 3.1.

Proposition 5.2 Assume thatM is anω−categorical countably infinite structure and
k ∈ N, then the following are equivalent.

(i) M is k−unavoidably homogenizable.
(ii) For each A ⊆ M with |A| ≥ k and each embedding f : A → M, f may be

extended into an automorphism.
(iii) M is model-complete and each finite A ⊆ M such that |A| ≥ k is an amalga-

mation base for Age(M).

Proof (i) is equivalent to (i i) follows from Lemma 2.6. If we assume (i), Lemma 5.1
implies that M is homogenizable and thus the definition of unavoidably homogeniz-
able implies that M is boundedly homogenizable. Thus Lemma 3.2 and Lemma 2.4
implies (i i i). That (i i i) implies (i) follows from Lemma 2.5. ��
Remark 5.3 The author classified the unavoidably homogenizable graphs in [1]. How-
ever we have no real hope of classifying the unavoidably homogenizable structures
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properly without first classifying the homogeneous structures, since from homoge-
neous structures we may easily create similar unavoidably homogenizable structures
in the following way. LetM0,M1 be two homogeneous structures over a vocabulary
V and let R0, R1 be k−ary relational symbolswhich are not inV . LetN be the structure
over V ∪{R0, R1}with universe M0∪̇M1 such that for i ∈ {0, 1} (N � Mi ) � V = Mi

and no relations from V hold between elements in M0 and M1 in N . Furthermore,
create N such that N |� Ri (ā) for every k−tuple ā ∈ Mi of distinct elements.

The structure N is unavoidably homogenizable since for any A ⊆ N such that
|A| ≥ 2k − 1 there will be a tuple which satisfies R0 or R1, but then ifA is embedded
in N the parts belonging to M0 and M1 have to be mapped to the correct side, and
sinceM0 andM1 are homogeneous, this may be extended to an automorphism. This
proves that N is unavoidably homogenizable by Proposition 5.2.

It seems that we may at least assume that all elements are of the same atomic diagram
in an unavoidably homogenizable structure, as the following proposition shows.

Proposition 5.4 Let ξ(x, y) be the equivalence relation which holds if two elements
satisfy the same atomic diagram. If M is k−unavoidably homogenizable then each
infinite equivalence class A of ξ is such thatM � A is a k−unavoidably homogenizable
structure.

Proof Let A = M � A and choose B ⊆ A such that |B| ≥ k. If f : A � B → A
is an embedding then it is also an embedding into M, and hence by Proposition 5.2
there is an automorphism g ofM extending f . However the elements in A are exactly
those who have the same atomic diagram, hence g must map A to A, so g � A is an
automorphism of A which extends the embedding f , so again by Proposition 5.2, it
follows that A is k−unavoidably homogenizable. ��

6 Unary homogenizable structures

The structures which we may homogenize by only adding new unary relational sym-
bols are quite special and we call these structures unary homogenizable. We quickly
see that, unless it is homogeneous, such a structure is non-transitive i.e. there are ele-
ments a, b such that a can not be mapped to b by an automorphism. In this section
we explore these structures further, exposing a quite close relation between unary
homogenizable and uniformly homogenizable structures in Theorem 6.1.

In a structure M, the algebraic closure of a set X ⊆ M is the set of all elements
a ∈ M such that tp(a/X) is only realized by a finite number of elements in M .
If for each X ⊆ M the algebraic closure of X equals to X then we say that the
algebraic closure is degenerate. Any homogeneous structure M such that Age(M)

satisfies the disjoint amalgamation property has degenerate algebraic closure, so the
restriction in the following theorem is not as large as it might seem. Note that if
M1 = (D1; RM1

1 , . . . , RM1
n ),M2 = (D2; RM2

1 , . . . , RM2
n ) are structures of the

same signature then we define the union structure in the following wayM1 ∪M2 =
(D1 ∪ D2; RM1

1 ∪ RM2
1 , . . . , RM1

n ∪ RM2
n ).
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Theorem 6.1 IfM is a countably infinite unary boundedly homogenizable structure
with degenerate algebraic closure then there are infinite uniformly homogenizable
structures {Ni }i∈I with only finitely many different isomorphism types such that

M =
⋃

i∈I
Ni

As a first step to prove the above theorem we show the following Lemma.

Lemma 6.2 Let M be unary homogenizable and ā, b̄ ∈ M. If both tp(ā) and tp(b̄)
are isolated by quantifier free formulas then tp(āb̄) is isolated by quantifier free
formulas.

Proof Assume that c̄d̄ ∈ M are such that there is an isomorphism f : M � āb̄ →
M � c̄d̄ andϕ(x) is a homogenizing formula such that for some a0 ∈ āb̄,M |� ϕ(a0).
Either a0 ∈ ā or a0 ∈ b̄ and since both of the tuples have types isolated by quantifier
free formulasM |� ϕ(a0) if and only ifM |� ϕ( f (a0)). If we homogenizeMwe add
relations for ϕ on the same elements in āb̄ and c̄d̄, i.e. f will still be an isomorphism,
when extended to the new vocabulary. Thus āb̄ and c̄d̄ satisfy the same homogenizing
formulas, hence f may be extended to an automorphism and hence tp(āb̄) = tp(c̄d̄).

��
The type condition in the previous lemma does not imply unary homogenizability,
however we can at least show that M must have at least one unary homogenizing
formula.

Corollary 6.3 LetM be a non-homogeneous homogenizable V−structure such that
for any ā, b̄ ∈ M with tp(ā) and tp(b̄) isolated by quantifier free formulas, tp(āb̄)
is isolated by a quantifier free formula. Then there is a vocabulary V ′ ⊇ V and
a V ′−structure N which is non-homogeneous and unary homogenizable such that
N � V = M and Aut (M) = Aut (N ).

Proof If no unary homogenizing formulas exist, then for each a, b ∈ M, tp(a) and
tp(b) are isolated byquantifier free formulas. Thus by the assumption tp(ab) is isolated
by a quantifier free formula. It follows by induction that for any tuple c̄ ∈ M, tp(c̄)
is isolated by a quantifier free formula hence M has quantifier elimination which is
equivalent with being homogeneous, a contradiction. ��
Another corollary from the previous Lemma shows that the boundedly homogenizable
structures are quite easy to reach from the unary homogenizable.

Corollary 6.4 If M is a unary homogenizable structure such that for each a ∈ M
there is b̄ ∈ M such that tp(ab̄) is isolated by a quantifier free formula then M is
boundedly homogenizable.

Proof If c̄ = (c1, . . . , cn) ∈ M let b̄1, . . . , b̄n ∈ M be such that for each i =
1, . . . , n, tp(ci b̄i ) is isolated by a quantifier free formula. Lemma 6.2 now gives us
(through an obvious use of induction on n) that tp(c1 . . . cnb̄1 . . . b̄n) = tp(c̄b̄1 . . . b̄n)
is isolated by a quantifier free formula. ��
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We continue towards the goal of proving Theorem 6.1 by introducing a substructure
consisting of all elements which behave nicely with respect to a certain tuple.

Definition 6.5 Let M be a structure with ā ∈ M and define the set

Xā = {b ∈ M : tp(bā) is isolated by a quantifier free formula}.

Define the structure Nā = M � Xā ∪ ā

The structureNā is focused around ā and indeed this tuple is so special that it becomes
the element witnessing that Nā is uniformly homogenizable.

Lemma 6.6 IfM is a countably infinite unary homogenizable structure with ā ∈ M,
then the following hold:

– If b̄ ∈ Xā then Xā ⊆ Xāb̄.
– If b̄ ∈ M and tpM(ā) = tpM(b̄) then Nā ∼= Nb̄
– Nā is uniformly homogenizable.

Proof In order to prove the first statement we may assume without loss of generality
that the tuple b̄ ∈ Xā consists of a single element b. If c ∈ Xā then, since b ∈ Xā ,
Lemma 6.2 implies that tp(cbā) is isolated by a quantifier free formula, and hence
c ∈ Xbā .

For the second part, assume that b̄ ∈ M and tpM(ā) = tpM(b̄). This implies that
there is an automorphism ofMmapping ā to b̄. The restriction of this automorphism
to Xā is then an isomorphism between Nā and Nb̄.

For the third part first note that if Xā is finite, then the structure Nā is uniformly
homogenizable, by taking as uniform witness the whole structure, hence we assume
Xā is infinite. Choose any α ∈ Xā , we will show that āα is a witness for the uniform
homogenization. Assume that for some b̄, c̄ ∈ Xā there is an isomorphism f : Nā �
b̄āα → Nā � c̄āα. By Lemma 6.2 tpM(b̄āα) is isolated by a quantifier free formula
thus tpM(b̄āα) = tpM(c̄āα). However as M is saturated, this means that f may
be extended into an automorphism ofM. The restriction of this automorphism toNā

implies that tpNā (b̄āα) = tpNā (c̄āα). ��
Proof (Proof of Theorem 6.1) Assume that the highest arity among relational symbols
in V equals toρ and let {āi }i∈I enumerate allρ−tuples for some index set I . If there is a
tuple āi such that for each tuple b̄ ∈ M, tp(āi b̄) is isolated by a quantifier free formula,
then M is uniformly homogenizable, and hence we are trivially done. Without loss
of generality, we may thus assume that each tuple in {āi }i∈I does not have a type
isolated by quantifier free formulas, since if āi would be isolated by a quantifier free
formula we can extend it to a tuple which is not hence all ρ−tuples are accounted for.
Since M is boundedly homogenizable, for each āi let b̄i be a tuple such that there
is an element c such that tp(āi b̄i c) is isolated by a quantifier free formula. But the
algebraic closure being degenerate implies that there is an infinite number of such
elements c hence Nāi b̄i

is an infinite uniformly homogenizable structure by Lemma
6.6. AsM is ω−categorical there are only a finite amount of different types of tuples
āi b̄i . Hence by Lemma 6.6 there are only a finite number of isomorphism classes on
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{Nāi b̄i
}i∈I . Since each ρ−tuple is contained in at least one of the structures we get

M = ⋃
i∈I Nāi b̄i

. ��
The randombipartite graph is a non-unary homogenizable structurewhich is a union of
uniformly homogenizable infinite structure. This follows as we may for each element
a let N (a) be the structure consisting of a and all elements adjacent to a, thus no
more edges than those to a exist inN (a) and it is hence clear thatN (a) is uniformly
homogenizable (even unavoidably homogenizable by [1]). The random bipartite graph
is the union of all such structuresN (a) for all elements a and by the properties of the
random bipartite graph all N (a) ∼= N (b) for all elements a and b.

However this property does not hold for all boundedly homogenizable structures
as we can see in examples such as 2.13.
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