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Abstract

We revisit Huber’s theory of continuous valuations, which give rise to the adic spectra
used in his theory of adic spaces. We instead consider valuations which have been
reified, i.e., whose value groups have been forced to contain the real numbers. This
yields reified adic spectra which provide a framework for an analogue of Huber’s theory
compatible with Berkovich’s construction of nonarchimedean analytic spaces. As an
example, we extend the theory of perfectoid spaces to this setting.

There are several frameworks for analytic geometry over nonarchimedean fields,
which can be classified into roughly three types:

• rigid analytic geometry (Tate), which can also be obtained via formal geometry
with admissible blowups (Raynaud);

• nonarchimedean analytic geometry (Berkovich), which can also be obtained via
tropical geometry (Payne et al.);

• adic geometry (Huber), which can also be obtained via formal geometry (Abbes,
Fujiwara-Kato).

For a comparative discussion (primarily between the first two viewpoints), see [6].
Here, we limit ourselves to an instructive analogy: the three frameworks give results
analogous to those of the following three constructions.

• Consider the rational numbers with the Grothendieck topology of finite unions of
closed intervals with rational endpoints. Let T1 be the resulting topos.

• Consider the real numbers. The Grothendieck topology of finite unions of closed
intervals with rational endpoints recovers T1. The natural topology defines a new
topos T2. The Grothendieck topology of finite unions of all closed intervals defines
a new topos T3.

• Consider the real numbers plus some additional points r ± ε for each rational
number r. The natural topology recovers the topos T1.

In this paper, we introduce a construction playing the role of the real numbers plus
points r ± ε for each real number r, whose natural topology recovers the topos T3.
This makes it possible to overcome a mismatch between the theories of Berkovich
and Huber: while Huber’s theory is based on the classical theory of Krull valua-
tions, Berkovich’s theory is based on real-valued seminorms. The link comes via the
fact that any rank 1 Krull valuation can be interpreted as a real valuation; how-
ever, one can rescale a real valuation without changing the equivalence class of the
underlying Krull valuation. To correct this, we consider reified valuations, for which
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we fix the comparisons between real numbers and elements of the value group. These
also appear in upcoming work of Ducros and Thuillier on the relationship between
monomial valuations and skeleta of Berkovich spaces [7].
Using reified valuations, one can simulate much of the analysis of continuous val-

uations from [16] and the comparison of rigid and adic spaces by Huber ([16] §4)
and van der Put and Schneider [27]. In fact, in some ways the reified version of
the analysis is somewhat simpler. For example, when working with Banach algebras
over an ultrametric field, the case of a trivially valued field can be handled more uni-
formly using reified valuations; this is consistent with the corresponding uniformity in
Berkovich’s theory. Roughly speaking, reification provides an alternative to the use of
topologically nilpotent units, such as in Tate’s fundamental theorem on the acyclicity
of the structure sheaf.
We also describe the structure presheaf on a reified adic spectrum and carry out

some of the local preliminary work to a theory of reified adic spaces. As in Huber’s
construction of adic spaces, the construction of reified adic spaces involves topo-
logical rings plus some auxiliary data. In Huber’s construction, the auxiliary datum
associated to a topological ring is a certain subring of integral elements; the analogous
datum in our setting is defined in terms of the graded ring associated to a nonar-
chimedean Banach space. (The graded ring first appeared prominently in work of
Temkin extending some key properties of rigid analytic spaces to Berkovich spaces
[26], so its appearance here is perhaps not surprising.)
For the reified adic space associated to a single ring, we establish a Tate-style

acyclicity theorem for the structure sheaf and a Kiehl-style glueing theorem for vector
bundles (and for coherent sheaves under a suitable noetherian hypothesis), following
[21], §2. One important point is that in the context of Berkovich spaces, these results
apply to coverings for the full G-topology, as shown in [2]; by contrast, by passing
from Berkovich spaces to adic spaces, one only obtains acyclicity and glueing with
respects to coverings for the strictly analytic G-topology. For an explicit example, pick
0 < ρ2 ≤ ρ1 and consider the disc |T | ≤ ρ1: in the full G-topology this disc admits an
admissible covering by the disc |T | ≤ ρ2 and the annulus ρ2 ≤ |T | ≤ ρ1; in the strictly
analytic G-topology, this only occurs if ρ1 belongs to the divisible closure of the norm
group of the base field.
As an illustration, we describe the spaces associated to perfectoid algebras; this

amounts to a fairly faithful translation of certain sections of [21]. In fact, this paper
was borne out of the author’s frustration with the status quo during the writing
of [21]: while in many respects it is natural to study perfectoid algebras via their
Gel’fand transforms, these cannot be easily glued without promoting them to some-
thing like adic spaces, and at the time no such construction was available in the
literature.
To conclude this introduction, we mention two related constructions. Instead of

fixing comparisons between elements of the value group and arbitrary positive real
numbers, one may only fix these comparisons for real numbers in some multiplica-
tive subgroup H; this yields the concept of H–reified valuations, which interpolates
between ordinary valuations and our reified valuations. One can easily modify our
arguments to produce statements about such valuations, but we have not done so
(despite such valuations making an appearance in [7]). In a different direction,
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Foster and Ranganathan [8] have described an analogue of tropicalization in which
the real numbers are replaced by the value group of a valuation of possibly higher
rank; reified valuations provide a natural context for comparing this construction to
ordinary tropicalization.

1 Spectral and prespectral spaces
We first generalize Hochster’s formalism of spectral spaces [14] to G-topological
spaces. This links the spaces considered by Huber with other types of analytic spaces;
see for example [16], §4.

Definition 1.1. A bounded distributive lattice is a partially ordered set D satisfying
the following conditions.
(a) The set D has a least element 0 and a greatest element 1.
(b) For any x, y ∈ D, the set of z ∈ D for which z ≤ x, z ≤ y has a greatest element

x ∧ y (the meet of x and y).
(c) For any x, y ∈ D, the set of z ∈ D for which z ≥ x, z ≥ y has a unique least element

x ∨ y (the join of x and y).
(d) The meet and join operations are distributive over each other.
Let DLat denote the category whose objects are bounded distributive lattices and
whose morphisms are maps of sets preserving ≤, 0, 1,∧,∨.

Definition 1.2. A filter on D ∈ DLat is a subset F of D satisfying the following
conditions.
(a) We have 1 ∈ F and 0 /∈ F .
(b) For any S1, S2 ∈ F , we have S1 ∧ S2 ∈ F .
(c) For any S ∈ F , any T ∈ D with T ≥ S is also in F .
A filter F on D is prime if it satisfies the following additional condition.

(d) For any S1, . . . , Sn ∈ D with S1 ∨ · · · ∨ Sn ∈ F , there exists i ∈ {1, . . . , n} for which
Si ∈ F .

Let Spec(D) be the set of prime filters on D equipped with the topology generated by
the sets S̃ := {F ∈ Spec(D) : S ∈ F} for S ∈ D.

We now recall some relevant properties of G-topological spaces.

Definition 1.3. Let X be a G-topological space in the sense of [3] Definition 9.1.1/1,
i.e., a Grothendieck topology whose underlying category is a family of subsets of X
closed under pairwise intersections. (In practice, it is harmless to assume that the
family is closed under finite intersections, as this only adds the condition that X itself
is an open subset.) We say X is T0 if for any x �= y ∈ X, there exists an open subset of
X containing exactly one of x, y.
A nonempty closed subspace Z of X is irreducible if for any two open subsets U ,V

such that U ∩Z and V ∩Z are nonempty, U ∩V ∩Z is also nonempty; it is enough to
check this for U ,V running through a basis.
The closure Z of a point x ∈ X is irreducible: an open set meets Z if and only if it

contains x. We say X is sober if conversely any irreducible closed subset of X is the
closure of a unique point of X; any sober space is T0.
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We now introduce the concepts of spectral and prespectral spaces.

Definition 1.4. Let X be a G-topological space. A basis of X is a family B of open
sets such that every (admissible) open subset of X admits an admissible covering by
elements of B.
We say that X is quasiseparated (or semispectral in the language of [14]) if the

intersection of any two quasicompact open subsets of X is again quasicompact. We
write qcqs as shorthand for quasicompact and quasiseparated.
We say that X is prespectral if X is qcqs, any finite union of quasicompact open sets

is open, and the quasicompact open sets form a basis. In particular, the quasicompact
open subsets of X form a bounded distributive lattice with 0 = ∅, 1 = X, ∧ = ∩,
∨ = ∪.
We say that X is spectral if the G-topology on X is an ordinary topology (that is, any

union of open sets is open) and X is both prespectral and sober. Spectral spaces are
called coherent spaces in some sources, such as [19].
A map f : X → Y between prespectral spaces is spectral if the preimage of any

quasicompact open subset is a quasicompact open. If X is a topological space, this
forces f to be continuous. Let Prespec (resp. Spec) be the category of prespectral
(resp. spectral) spaces and spectral morphisms.

The key property of spectral spaces is the following result of topos theory.

Theorem 1.5 (Stone duality). There is an equivalence of categories

DLatop ∼ Spec

which in one direction takes D ∈ DLatop to Spec(D) and in the other takes X ∈ Spec to
the lattice D(X) of quasicompact open subsets of X.

Proof. The functor DLatop → Spec acts on morphisms via pullback: for f : D1 → D2
a morphism in DLat and F ∈ Spec(D2), the set {S ∈ D1 : f (S) ∈ D2} is a prime filter
on D1. For more, see [19] Corollary II.3.4.

Corollary 1.6. The forgetful functor Spec → Prespec admits a left adjoint taking
X ∈ Prespec to Spec(D(X)) for D(X) the lattice of quasicompact open subsets of X.

Proof. For X ∈ Prespec, the adjunction map X → Spec(D(X)) takes x ∈ X to the
prime filter {S ∈ D(X) : x ∈ S}. (Note that this map is spectral, but not necessarily
continuous if X is not an ordinary topological space.) On the other side, for Y ∈
Spec, Theorem 1.5 provides a natural isomorphism Spec(D(Y )) ∼= Y for which the
composition Y → Spec(D(Y )) → Y is the identity map.

Definition 1.7. For X a topological space, the patch topology (or constructible topol-
ogy) on X is the new topology generated by the open sets and complements of
quasicompact open sets of the original topology. If X is a spectral space, we some-
times call its original topology the spectral topology to distinguish it from the patch
topology.
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The key property of the patch topology is the following [14], Theorem 1.

Theorem 1.8. Any spectral space is compact under the patch topology.

Proof. It is clear that the patch topology is Hausdorff. To check quasicompactness,
it suffices to check that any family of closed and quasicompact open sets for the
spectral topology which is maximal for the finite intersection property has nonempty
intersection. But the intersection of the closed members of such a family is irreducible
(by maximality) and so has a generic point, which belongs to the full intersection.

Corollary 1.9. An open subset of a spectral space is quasicompact for the spectral
topology if and only if it is closed-open for the patch topology.

Corollary 1.10. A continuous map of spectral spaces is spectral if and only if it is
continuous for the patch topologies.

Corollary 1.11. A topological space which is T0 and prespectral is spectral if and only
if its patch topology is quasicompact.

Proof. For any irreducible closed subspace Z, any point in the intersection of the
quasicompact open subsets of Z is a generic point.

Remark 1.12. We collect some additional observations about the adjunction map
X → Spec(D(X)) associated to X ∈ Prespec via Corollary 1.6.

(a) This map is the unique (up to unique isomorphism) morphism f : X → Y in
Prespec with Y ∈ Spec such that the image of f is dense under the patch topology
and X admits a basis consisting of inverse images of quasicompact open subsets
of Y. (Namely, Corollary 1.6 produces a morphism Spec(D(X)) → Y in Spec. For
the patch topologies, we have a continuous map between compact spaces which
is injective with dense image, hence a homeomorphism).

(b) This map is the unique (up to unique isomorphism) morphism f : X → Y in
Prespec with Y ∈ Spec defining an isomorphism of topoi. (This reduces easily to
(a)).

(c) This map is injective if and only if X is T0. Consequently, Corollary 1.6 is a
refinement of [14], Theorem 8, which asserts that an ordinary topological space
is spectralifiable (prespectral and T0) if and only if it can be spectrally embedded
into some spectral space.

Lemma 1.13. Let (X,T) be a compact topological space. Let F ⊆ T be a family of
closed-open subsets of X. Suppose that the topology T ′ on X generated by F is T0. Then
(X,T ′) is a spectral space in which the elements of F are quasicompact open.

Proof. See [14], Proposition 7.

Corollary 1.14. Any subspace of a spectral space which is closed under the patch
topology is a spectral space.
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Remark 1.15. Although we will not use this fact, it is worth noting that a topo-
logical space is spectral if and only if it is isomorphic to the prime spectrum of a
commutative ring [14], Theorem 6.

2 Spaces of valuations
Throughout §2, fix a (commutative unital) ring A. We recall the construction and
basic properties of the space of valuations on A, following [16]. Given our goals, it is
natural to write valuations and semivaluations multiplicatively rather than additively;
this is inconsistent with classical literature on valuation theory, but it is consistent
with Huber’s papers.

Definition 2.1. By a value group, we will mean a totally ordered abelian group
written multiplicatively (so that 1 is its identity element). For � a value group, let �0
denote the pointed commutative monoid � ∪ {0} ordered so that 0 < γ for all γ ∈ �.

Definition 2.2. A semivaluation on the ring A is a function v : A → �0 for some
value group � satisfying the following conditions.
(a) We have v(0) = 0 and v(1) = 1.
(b) For all x, y ∈ A, we have v(x + y) ≤ max{v(x), v(y)}.
(c) For all x, y ∈ A, we have v(xy) = v(x)v(y).
For v a semivaluation, the kernel of v is the prime ideal v−1(0); note that v induces

a Krull valuation on Frac(A/v−1(0)).
For v a semivaluation, let �v,0 be the image of v and put �v := �v,0 \ {0}. Two

semivaluations v1, v2 on A are equivalent if there exists an isomorphism i : �v1
∼= �v2

of value groups (which we also view as an isomorphism i : �v1,0
∼= �v2,0) such that

i ◦ v1 = v2. The equivalence classes of semivaluations on A then correspond to pairs
(p, o) in which p is a prime ideal of A and o is a valuation ring of Frac(A/p).

Definition 2.3. The valuative spectrum of A is the set Spv(A) of equivalence classes
of semivaluations on A, equipped with the topology generated by sets of the form

{v ∈ Spv(A) : v(a) ≤ v(b) �= 0} (a, b ∈ A). (2.4)

Let B be the Boolean algebra generated by sets of the form (2.4); note that B is also
generated by the sets

{v ∈ Spv(A) : v(a) ≤ v(b)} (a, b ∈ A). (2.5)

Lemma 2.6. The space Spv(A) is spectral and the elements of B are compact for
the patch topology. In particular, any finite intersection of subspaces as in (2.4) is
quasicompact and open.

Proof. We follow the proof of [16], Proposition 2.20. We first observe that distinct
elements of Spv(A) can be distinguished by sets of the form (2.5), hence also by any
collection of generators of B. In particular, Spv(A) is T0. Next, define a map from
Spv(A) to {0, 1}A×A by the formula
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v �→ (va,b), va,b =
{
1 if v(a) ≥ v(b),
0 if v(a) < v(b);

it is injective with image defined by closed conditions (see [16], Proposition 2.2 and
Lemma 5.8). Equip {0, 1} with the discrete topology and {0, 1}A×A with the product
topology. By Tikhonov’s theorem, the subspace topology on Spv(A) is compact and
the elements of B form a basis of closed-open subsets. Since the given topology on
Spv(A) is T0 and is generated by a set of generators of B, the claim follows from
Lemma 1.13. (It also follows that the subspace topology on Spv(A) coincides with the
patch topology).

Lemma 2.7. For any finite normal extension �/k of fields, the fibers of the map
Spv(�) → Spv(k) are nonempty, finite, and permuted transitively by Aut(�/k).

Proof. See [4], Propositions VI.8.9–12.

Lemma 2.8. Let k1/k, k2/k be extensions of fields.
(a) The maps Spv(k1) → Spv(k), Spv(k2) → Spv(k) are surjective.
(b) The map Spv(k1 ⊗k k2) → Spv(k1) ×Spv(k) Spv(k2) is surjective (but typically

not injective; see Remark 2.10).

Proof. To prove (a), see [28], §5. To prove (b), we follow [4], Exercice VI.2.2. Let
ov, ov1 , ov2 be the valuation rings of v, v1, v2; let pv, pv1 , pv2 be the maximal ideals of
v, v1, v2; and put R = ov1⊗ovov2 . By a standard argument ([25], Tag 0495), there exists
a prime ideal p of R lying over pv1 and pv2 . Now recall that a module over a valuation
ring is flat if and only if it is torsion-free ([25], Tag 0539); by base extension, the
morphisms ov1 → R, ov2 → R are flat and thus satisfy the going-down theorem [25],
Tag 00HS. That is, we may construct first a prime ideal p1 ⊆ p lying over (0) ⊂ ov1
and then a prime ideal q ⊆ p1 lying over (0) ⊂ ov2 . Any valuation ring dominating
(R/q)p/q then corresponds to a semivaluation on k1 ⊗k k2 restricting to v1 on k1 and
to v2 on k2.

Remark 2.9. Lemma 2.8(b) is implicitly invoked several times in Huber’s work
(see [17], Lemma 3.9(i), [18] (1.1.14)(e)); the argument given above was suggested
by Huber (private communication). One can also give a proof in the style of [16],
Theorem 4.1 using the model theory of algebraically closed valued fields (ACVF), as
follows. (See Remark 9.9 for a related discussion.)
Fix v1 ∈ Spv(k1), v2 ∈ Spv(k2) which both restrict to v ∈ Spv(k); we must exhibit

a common overfield k3 of k1 and k2 and an element v3 ∈ Spv(k3) mapping to
v1 ∈ Spv(k1) and to v2 ∈ Spv(k2). Suppose first that k1/k is a finite extension. By
Lemma 2.7, we are free to first replace k1 and k2 by suitable algebraic extensions; we
may thus ensure that k1 is normal over k and that k2 contains a subfield k′

1 isomor-
phic to k1. In this case, Lemma 2.7 implies the existence of an isomorphism k1 ∼= k′

1
compatible with valuations, proving the claim.
To check the general case, by Zorn’s lemma, we may assume that k2 = k(x). By

Lemma 2.7 and the previous paragraph, we may further assume that both k and
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k1 are algebraically closed; by adjoining an extra transcendental, we may further
assume that the valuations on k, k1, k2 are all nontrivial. By quantifier elimination in
ACVF (e.g., see [12]), for any rational functions f1, . . . , fn ∈ k(T), there exist a field
extension k3 of k1, a Krull extension v3 on k3 restricting to v1 on k1, and an element
y ∈ k3 such that for i = 1, . . . , n, we have v2(fi(x)) ≤ 1 if and only if v3(fi(y)) ≤ 1.
By Lemma 2.6, Spv(k1(x)) is a spectral space and hence is compact for the patch

topology. By the previous paragraph and the finite intersection property, there exists
v3 ∈ Spv(k1(x)) restricting to v1 on k1 and to v2 on k(x) ∼= k2. This proves the claim.

Remark 2.10. As one may infer from the analogy with schemes, the map in
Lemma 2.8(b) is not injective. For example, if k1 = k(x), k2 = k(y) with x, y transcen-
dental over k, then the set Spv(k1 ⊗k k2) contains the trivial valuation on k1 ⊗k k2,
but it also contains many nontrivial semivaluations which restrict trivially to k1, k2.
One of these may be constructed by restricting the trivial valuation along the map
k1 ⊗k k2 → k1 which acts on k1 as the identity map and on k2 as the k-linear
identification k2 ∼= k1 mapping y to x.

3 Ordinary adic spectra
We next recall Huber’s construction of adic spectra and definition of adic spaces.

Definition 3.1. A linearly topologized ring (or LT ring for short) is a topological ring
A admitting a neighborhood basis of 0 consisting of additive subgroups. For A an LT
ring, a subset B of A is bounded if for each neighborhood U of 0 in A, there exists a
neighborhood V of 0 in A with V · B ⊆ U. An element a ∈ A is power-bounded (resp.
topologically nilpotent) if the sequence a, a2, . . . is bounded (resp. converges to 0).
The set A◦ of power-bounded elements is a subring of A; the set A◦◦ of topologically
nilpotent elements is an ideal of A◦.

Definition 3.2. For A → B,A → C two continuous homomorphisms of LT rings, the
tensor product B ⊗A C may be topologized in such a way that subgroups of the form
U ⊗ V , in which U ,V are additive subgroups which are neighborhoods of 0 in B,C,
form a neighborhood basis of 0. Note that even if A,B,C are all Hausdorff, B ⊗A C
need not be.

Definition 3.3. Let A be an LT ring. A rational subspace of Spv(A) is a subset of the
form

{v ∈ Spv(A) : v(fi) ≤ v(f0) �= 0 (i = 1, . . . , n)} (3.4)

for some f0, . . . , fn ∈ A such that f1, . . . , fn generate an open ideal of A. By Lemma 2.6,
any rational subspace is quasicompact and open. Note that any pairwise intersection
of rational subspaces is again a rational subspace:

{v ∈ Spv(A) : v(fi) ≤ v(f0) �= 0 (i = 0, . . . , n)}⋂
{v ∈ Spv(A) : v(gj) ≤ v(g0) �= 0 (j = 0, . . . ,m)}

= {v ∈ Spv(A) : v(figj) ≤ v(f0g0) �= 0 (i = 0, . . . , n; j = 0, . . . ,m)}.
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One does not change the definition of a rational subspace if one requires only that
f0, f1, . . . , fn generate an open ideal: if n > 0, one may add the condition v(f0) ≤ v(f0) �=
0 for free; if n = 0, we have the space Spv(A) itself, and so we may as well take f0 = 1.

Remark 3.5. The definition of a rational subspace of Spv(A) we are using is the
one from [18]. The definition in [17] is formally different, but again can be shown to
lead to the same class of subspaces.

Definition 3.6. An adic ring is a topological ring A admitting an ideal I whose pow-
ers form a fundamental system of neighborhoods of 0. Any ideal with this property is
called an ideal of definition of A.
An f-adic ring is a topological ring A admitting an open subring A0 which is adic

with a finitely generated ideal of definition. Any such subring A0 is called a ring of
definition of A. Note that any f-adic ring is LT, and the tensor product of f-adic rings
(in the sense of Definition 3.2) is again f-adic.

Definition 3.7. An f-adic ring A is Tate if it contains a topologically nilpotent unit.
In this case, any open ideal is trivial; that is, if f1, . . . , fn generate an open ideal of
A, then for any v ∈ Spv(A), the quantities v(f1), . . . , v(fn) cannot all vanish (e.g., see
Corollary 4.13 below). One consequence of this is that (3.4) can be rewritten as

{v ∈ Spv(A) : v(fi) ≤ v(f0) (i = 1, . . . , n)}.

This modification is needed to compare the concept of a rational subspace of Spv(A)

with analogous concepts, such as that of a rational subspace of an affinoid space in
rigid analytic geometry (as in [3]).

Definition 3.8. Let A be an f-adic ring. A semivaluation v ∈ Spv(A) is continuous if
for every γ ∈ �v, there exists a neighborhood U of 0 in A such that v(u) < γ for all u ∈
U. Let Cont(A) be the subspace of Spv(A) consisting of continuous semivaluations.

The space Cont(A) does not naturally embed as a closed subspace for the patch
topology in a known spectral space like Spv(A). Nonetheless, using the finite
generation of an ideal of definition, one can prove the following.

Theorem 3.9. For any f-adic ring A, Cont(A) is a spectral space.

Proof. See [16], Corollary 3.2.

Definition 3.10. For A an f-adic ring, a ring of integral elements of A is a subring
B of A◦ which is open in A and integrally closed in A. An affinoid f-adic ring is a
pair (A�,A+) in which A� is an f-adic ring and A+ is a ring of integral elements of
A�. A morphism (A�,A+) → (B�,B+) of affinoid f-adic rings consists of a morphism
A� → B� of topological rings carrying A+ into B+.
For (A�,A+) → (B�,B+), (A�,A+) → (C�,C+) two morphisms of affinoid f-adic

rings, we define the tensor product (B�,B+)⊗(A�,A+) (C�,C+) to be the pair (D�,D+)
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in which D� = B� ⊗A� C� (in the sense of Definition 3.2) and D+ is the integral
closure of the image of B+ ⊗A+ C+ in D�.

Definition 3.11. Let (A�,A+) be an affinoid f-adic ring. The adic spectrum of
(A�,A+) is the subspace Spa(A�,A+) of Cont(A�) consisting of those v for which
v(a) ≤ 1 for all a ∈ A+. A rational subspace of Spa(A�,A+) is the intersection of
Spa(A�,A+) with a rational subspace of Spv(A�). Any morphism ϕ : (A�,A+) →
(B�,B+) defines a continuous map ϕ∗ : Spa(B�,B+) → Spa(A�,A+) by restriction.

Theorem 3.12. For any affinoid f-adic ring (A�,A+), the space Spa(A�,A+) is spec-
tral. Moreover, the rational subspaces form a basis of the topology of Spa(A�,A+)

consisting of quasicompact open subsets.

Proof. See [16], Theorem 3.5(i,ii). The first assertion can also be deduced from
Theorem 3.9 using Corollary 1.14.

Lemma 3.13. For A = (A�,A+) an affinoid f-adic ring, Spa(A) is empty if and only
if 0 is dense in A�. (In particular, this condition does not depend on A+).

Proof. See [16], Proposition 3.6 or Theorem 4.12 below.

Theorem 3.14. For (A�,A+) → (B�,B+), (A�,A+) → (C�,C+) two morphisms of
affinoid f-adic rings and (D�,D+) = (B�,B+) ⊗(A�,A+) (C�,C+), the map

Spa(D�,D+) → Spa(B�,B+) ×Spa(A�,A+) Spa(C�,C+)

is surjective.

Proof. Given v1 ∈ Spa(B�,B+), v2 ∈ Spa(C�,C+) restricting to v ∈ Spa(A�,A+),
Lemma 2.8 produces v3 ∈ Spv(D�) restricting to v1 on B� and to v2 on C�. It is
immediate that v3(x) ≤ 1 for all x ∈ D�, but not that v3 is continuous. However, as in
the proof of [17], Lemma 3.9(i), we may modify v3 to obtain a continuous valuation
by identifying certain infinitesimals with 0 (or see Definition 5.17 below).

Definition 3.15. Let A be an f-adic ring. Choose a ring of definition A0 of A and
an ideal of definition I of A0. We may view A[T1, . . . ,Tn] as an f-adic ring with
A0[T1, . . . ,Tn] as a ring of definition and IA0[T1, . . . ,Tn] as an ideal of definition; this
does not depend on the choices of A0 and I. Taking the completion yields another
f-adic ring denoted A{T1, . . . ,Tn} and called the Tate algebra over A in the variables
T1, . . . ,Tn.

Definition 3.16. Let (A�,A+) be an affinoid f-adic ring. Consider a rational sub-
space U of Spv(A�) defined by parameters f0, . . . , fn ∈ A� as in (3.4). Let B� be the
quotient of A�{T1, . . . ,Tn} by the completion of the ideal (f0T1 − f1, . . . , f0Tn − fn). Let
B+ be the completion of the integral closure of the image of A+[T1, . . . ,Tn] in B�. We
now have a morphism (A�,A+) → (B�,B+) of affinoid f-adic rings; by Lemma 3.17
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below, this construction depends only on the original rational subspace U and not on
the defining parameters.

Lemma 3.17. Retain notation as in Definition 3.16.
(a) The morphism (A�,A+) → (B�,B+) is initial among morphisms (A�,A+) →

(C�,C+) for which C� is complete and the image of Spa(C�,C+) in
Spa(A�,A+) is contained in U.

(b) The induced map Spa(B�,B+) → U is a homeomorphism. More precisely,
the rational subspaces of Spa(B�,B+) correspond to the rational subspaces of
Spa(A�,A+) contained in U.

Proof. See [17], Lemma 1.5.

Definition 3.18. A locally valuation-ringed space, or locally v-ringed space for short,
is a locally ringed space (X,OX) equipped with the additional data of, for each x ∈ X,
a valuation vx on the local ring OX,x. A morphism of locally v-ringed spaces f : X → Y
is a morphism of locally ringed spaces with the property that for each x ∈ X mapping
to y ∈ Y , the restriction of vx along the map OY ,y → OX,x is equal to vy.

Definition 3.19. Let (A�,A+) be an affinoid f-adic ring. The structure presheaf
on X = Spa(A�,A+) is the presheaf O assigning to each open subset U the
inverse limit of B� as (A�,A+) → (B�,B+) runs over all morphisms represent-
ing rational subspaces of X contained in U. The stalks of O are local rings ([17],
Proposition 1.6).
We say that (A�,A+) is sheafy if the presheaf O is in fact a sheaf; in particular, A�

must be complete. In this case, (X,O) is a locally ringed space, which we promote to
a locally v-ringed space as follows: for x ∈ X corresponding to v ∈ Spv(A), let vx be
the continuous extension of v to OX,x. Any locally v-ringed space of this form is called
an affinoid adic space. A locally v-ringed space which is covered by open subspaces
which are affinoid adic spaces is called an adic space.

Unfortunately, the sheafy condition is not always satisfied; see [5, 22] for
counterexamples. Two important classes where it is satisfied are described by the
following results of Huber (in case (a)) and Buzzard–Verberkmoes (in case (b)).

Theorem 3.20. Suppose that A� is Tate and that at least one of the following
conditions holds.

(a) The ring A� is strongly noetherian: for each nonnegative integer n, the ring
A�{T1, . . . ,Tn} is noetherian. (This case includes classical affinoid algebras; see
Example 8.5.)

(b) The pair (A�,A+) is stably uniform: for every morphism (A�,A+) → (B�,B+)

representing a rational subspace of Spa(A�,A+), B�,◦ is open in B�.

Then (A�,A+) is sheafy.

Proof. For (a), see [17], Theorem 2.2(b). For (b), see [5], Theorem 7.
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Remark 3.21. There is a process to attach “spaces” to affinoid f-adic rings which
are not sheafy, but this requires a more abstract approach as originally described by
Scholze and Weinstein [24]. See also [21], §8.2.

Remark 3.22. Huber declares an adic space to be analytic if it is covered by the
adic spectra of affinoid f-adic rings which are not only sheafy, but also Tate. This
extra restriction fails in some natural classes of examples (e.g., adic spaces associated
to ordinary schemes or formal schemes), but is needed in order to make many clas-
sical arguments of rigid analytic geometry carry over to the setting of adic spaces.
One pleasant feature of reified adic spaces is that there admit no analogue of the
analytic condition; the role played by topologically nilpotent units is taken over
by reifications.

4 Gel’fand spectra
We next introduce the class of normed rings and describe Berkovich’s construction of
the Gel’fand spectrum of a normed ring.

Definition 4.1. A seminormed ring (resp. a normed ring) is a ring A equipped with
a seminorm (resp. norm), i.e., a function |•| : A →[ 0,+∞) satisfying the following
conditions.

(a) We have |0| = 0 (resp. for all x ∈ A, x = 0 if and only if |x| = 0).
(b) For all x, y ∈ A, we have |x + y| ≤ |x| + |y|.
(c) For all x, y ∈ A, we have |xy| ≤ |x||y|.
We say that a (semi)normed ring A is nonarchimedean if the upper bound in (b) can
be improved to max{|x|, |y|}. The trivial norm on A is the norm for which |x| = 1 for
all nonzero x ∈ A.
The (semi)norm topology on a nonarchimedean (semi)normed ring A is the metric

topology induced by the seminorm. For this topology, A is an LT ring.

Definition 4.2. A morphism f : A → B of nonarchimedean seminormed rings is
bounded if there exists c > 0 such that for all a ∈ A, we have

∣∣f (a)∣∣ ≤ c |a|. Any such
morphism is continuous (but not conversely).

Definition 4.3. A (nonarchimedean commutative) Banach ring is a nonarchimedean
normed ring which is separated and complete for the norm topology. For A a
Banach ring, a Banach algebra over A is a Banach ring B equipped with a bounded
homomorphism A → B.

Definition 4.4. A ultrametric field is a Banach ring F such that the underlying ring
F is a field and the norm is a Krull valuation (i.e., the inequality in (c) is an equality).
Unless otherwise specified, we allow this definition to include the case of a trivial
norm.

Remark 4.5. In Definition 4.4, the second condition is needed because one can
modify the norm on F without changing the norm topology, in such a way that the
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resulting norm is not itself a Krull valuation, e.g., by taking the supremum of the
norms corresponding to two different reifications of the same underlying valuation.
(Compare [20], Remark 8.7).

Remark 4.6. Any f-adic ring A can be viewed as a nonarchimedean seminormed
ring (topologized using the seminorm topology). For example, let A0 be a ring of
definition, let I be a finitely generated ideal of definition of A0, pick c ∈ (0, 1), and
define |•| : A →[ 0,+∞) as follows.

• For a ∈ A0, set |a| = c−n for n the smallest nonnegative integer such that a /∈ In+1

if such an integer exists; otherwise, set |a| = 0.
• For a /∈ A0, set |a| = cn for n the smallest positive integer such that aIn ⊆ A0.
Such an integer must exist because A0 is open in A.

Beware that the equivalence class of this norm is not uniquely determined by the
topology of A (because of the possibility of varying c and I); in particular, this con-
struction does not define a functor from f-adic rings to nonarchimedean seminormed
rings.
In the other direction, for A a nonarchimedean seminormed ring viewed as an LT

ring using the seminorm topology, it is not immediate that A is an f-adic ring; the
difficulty is to find an ideal of definition which is finitely generated. One case where
this is possible is when A contains a topologically nilpotent unit x (i.e., A is Tate),
by taking A0 to be the subring of x ∈ A for which |x| ≤ 1 and I to be the ideal (xn)
for n large enough so that xn ∈ A0; consequently, any such A is a Tate f-adic ring. In
particular, if A is a nonzero Banach algebra over an ultrametric field F with nontrivial
norm, any x ∈ F with 0 < |x| < 1 is a topologically nilpotent unit.

As remarked above, an f-adic ring cannot be viewed as a nonarchimedean semi-
normed ring in a canonical way. However, we have the following result.

Lemma 4.7. Let R be a Banach ring which is Tate. Then the forgetful functor from
Banach rings over R to complete f-adic rings A equipped with continuous maps R → A is
an equivalence of categories.

Proof. By Remark 4.6, the functor is essentially surjective; full faithfulness is a
consequence of the Banach open mapping theorem (see [13]).

Definition 4.8. For A → B,A → C two bounded homomorphisms of nonar-
chimedean seminormed rings, we view the tensor product B ⊗A C as a nonar-
chimedean seminormed ring by equipping it with the tensor product seminorm: the
value of the seminorm on x ∈ B ⊗A C is the infimum of maxi{

∣∣yi∣∣ |zi|} over all
presentations x = ∑

i yi ⊗ zi.

Lemma 4.9. Let F → E be a bounded homomorphism of ultrametric fields. Then for
any nonzero Banach algebra A over F, A ⊗E F is nonzero and Hausdorff.

Proof. See [21], Lemma 2.2.9.
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Definition 4.10. Let α be an R-valued semivaluation on A. We may then extend
α to an R-valued Krull valuation on Frac(A/ ker(α)). Completing with respect to this
extension yields an ultrametric field, denoted H(α). Note that α can be recovered as
the restriction along the natural map A → H(α) of the valuation on H(α).

For the remainder of §4, let A be a nonarchimedean normed ring.

Definition 4.11. The Gel’fand spectrum of A is the set M(A) of R-valued semivalu-
ations on A which are bounded above by |•|, equipped with the evaluation topology.
The inclusion M(A) ↪→ RA is a homeomorphism of M(A) onto a compact subspace
of RA ([2], Theorem 1.2.1).

Theorem 4.12. The space M(A) is nonempty if {0} is not dense in A. Moreover,

|a|sp := lim
n→∞ |an|1/n = sup{α(a) : α ∈ M(A)} (a ∈ A);

that is, the spectral seminorm equals the supremum seminorm.

Proof. See [2], Theorem 1.2.1, Theorem 1.3.1.

Corollary 4.13. An ideal I of A contains 1 in its closure if and only if for each α ∈
M(A), there exists a ∈ I with α(a) > 0.

Proof. If I does not contain 1 in its closure, then the quotient seminorm on A/I is
nonzero, so Theorem 4.12 applies to produce α ∈ M(A) whose restriction to I is
zero.

Definition 4.14. A rational subspace of M(A) is one of the form

U = {α ∈ M(A) : α(fi) ≤ qiα(f0) �= 0 (i = 1, . . . , n)} (4.15)

for some f0, . . . , fn ∈ A such that f1, . . . , fn generate the unit ideal and some q1, . . . , qn >

0. If it is possible to take q1 = · · · = qn = 1, we call the resulting set a strictly rational
subspace of M(A).
As in Definition 3.3, the intersection of two (strictly) rational subspaces is (strictly)

rational: taking q0 = r0 = 1, we have

{α ∈ M(A) : α(fi) ≤ qiα(f0) �= 0 (i = 0, . . . , n)}⋂
{α ∈ M(A) : α(gj) ≤ rjα(g0) �= 0 (j = 0, . . . ,m)}

= {α ∈ M(A) : α(figj) ≤ qirjα(f0g0) �= 0 (i = 0, . . . , n; j = 0, . . . ,m)}.
As in Definition 3.7, by Corollary 4.13 the space (4.15) can also be written as

{α ∈ M(A) : α(fi) ≤ qiα(f0) (i = 1, . . . , n)}.
Hence any rational subspace of M(A) is closed.

Remark 4.16. Note that in Definition 4.14, we require that f1, . . . , fn generate the
unit ideal, not merely an open ideal. This means that in case A is f-adic (which is itself
not automatic; see Remark 4.6), there is a natural map M(A) → Spv(A) mapping
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each R-valued semivaluation to its equivalence class, but the preimage of a rational
subspace of Spv(A) is not necessarily a rational subspace of M(A) unless A is Tate
(see Definition 3.7).

Remark 4.17. With notation as in Definition 4.14, note that by compactness,

c = inf{α(f0) : α ∈ U} > 0.

Choose h1, . . . , hn ∈ A such that f1h1 + · · · + fnhn = 1. Then for any f ′
0, . . . , f ′

n such that∣∣f ′
0 − f0

∣∣ < c,
∣∣f ′
i − fi

∣∣ < min{qic, |hi|−1} (i = 1, . . . , n),

we have |f ′
1h1 + · · · + f ′

nhn − 1| < 1, so f ′
1, . . . , f ′

n again generate the unit ideal in A, and

U = {α ∈ M(A) : α(f ′
i ) ≤ qiα(f ′

0) �= 0 (i = 1, . . . , n)}.
(Compare [16], Lemma 3.10 and [21], Remark 2.4.7.)

5 Reified valuations
In order to bring the valuation-theoretic and norm-theoretic viewpoints into align-
ment, and to give an explicit relationship between the two in the case of affinoid
algebras (Theorems 9.5 and 9.6), we describe a variation on the theory of valuations
in which scaling ambiguities are eliminated. Much of the resulting analysis runs par-
allel to the analysis in [16] cited above, although with some key differences due to
the change in the definition of rational subspaces (see Remark 4.16).

Definition 5.1. Let R+ denote the multiplicative monoid of positive real num-
bers. A reified value group is a value group � equipped with an order-preserving
homomorphism r : R+ → �.
Let A be a ring. A reified semivaluation on A is a semivaluation v : A → �0 for � a

reified value group. Given a semivaluation v : A → �0, we will refer to the extra data
of an order-preserving homomorphism r : R+ → � as a reification of v.
For v a reified semivaluation, let �v be the subgroup of � generated by R+ and

the nonzero images of A, viewed as a reified value group. Two reified semivaluations
v1, v2 on A are equivalent if there exists an isomorphism i : �v1

∼= �v2 of reified value
groups (which we also view as an isomorphism i : �v1,0

∼= �v2,0) such that i ◦ v1 = v2.

Definition 5.2. Let A be a ring. The reified valuative spectrum of A, denoted Sprv(A),
is the set of equivalence classes of reified semivaluations on A, equipped with the
topology generated by sets of the form

{v ∈ Sprv(A) : v(a) ≤ qv(b) �= 0} (a, b ∈ A; q ∈ R+). (5.3)

Again, if we let B be the Boolean algebra generated by the basic open sets as in
(5.3), then B is also generated by the sets of the form

{v ∈ Sprv(A) : v(a) ≤ qv(b)} (a, b ∈ A; q ∈ R+). (5.4)

Remark 5.5. There is a natural projection Sprv(A) → Spv(A) forgetting reifica-
tions, which is surjective for trivial reasons: given any semivaluation v : A → �0, we
may form an equivalent semivaluation by enlarging the value group to � × R+ (or
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R+ ×�) ordered lexicographically. For a more refined statement along the same lines,
see Lemma 5.9.

The analogue of the fact that the equivalence class of a valuation is determined by
its order relation is the following.

Lemma 5.6. Let A be a ring. Define a map from Sprv(A) to {0, 1}A×A×R
+

by the
formula

v �→ (va,b,q), va,b,q =
{
1 if v(a) ≥ qv(b),
0 if v(a) < qv(b).

Then this map is injective and its image is cut out by the following closed conditions
(writing a, b, c, d for arbitrary elements of A and q, r for arbitrary elements of R+):

(i) va,a,1 = 1;
(ii) if va,b,q = 0, then vb,a,1/q = 1;
(iii) if va,b,q = vb,c,r = 1, then va,c,qr = 1;
(iv) if va,b,q = vc,d,r = 1, then vac,bd,qr = 1;
(v) v0,1,q = 0;
(vi) if q > 1, then v1,1,q = 0;
(vii) if va,b,q = va,c,q = 1, then va,b+c,q = 1;
(viii) if vac,bc,q = 1 and v0,c,1 = 0, then va,b,q = 1;
(ix) va,0,q = 1. (This is a consequence of (i), (ii), (iv), (v)).

Proof. Each condition is evidently closed and satisfied on the image of Sprv(A).
Conversely, suppose that the tuple (va,b,q) belongs to the image. We reconstruct the
corresponding reified valuation v as follows.
We first reconstruct the kernel of v. Put pv := {a ∈ A : v0,a,1 = 1}; this is an ideal (by

(i), (iv), (vii)) which is proper (by (v)) and prime (by (viii)).
We next reconstruct the reified divisibility relation. Put S := A × (A \ pv) × R+. We

define a binary relation ≤ on S by declaring that

(a, b, q) ≤ (c, d, r) ⇔ vbc,ad,q/r = 1.

By (i), the relation ≤ is reflexive. We next check that for (a, b, q) ∈ S,

a ∈ pv ⇔ (a, b, q) ≤ (c, d, r) for all (c, d, r) ∈ S (5.7)

⇔ (a, b) ≤ (c, d, r) for some (c, d, r) ∈ S with c ∈ pv.

On one hand, if a ∈ pv, then ad ∈ pv and so v0,ad,1 = 1; by (ix), vbc,0,q/r = 1; by (iii),
we have (a, b, q) ≤ (c, d, r). On the other hand, if (a, b, q) ≤ (c, d, r) and c ∈ pv, then
vbc,ad,q/r = 1 and bc ∈ pv, so by (iii), v0,ad,q/r = 1. By (ix), v0,1,r/q = 1; by (iv), ad ∈ pv.
Since pv is prime, a ∈ pv.
To check that ≤ is transitive, we assume (a, b, q) ≤ (c, d, r) ≤ (e, f , s) and distinguish

two cases. If c ∈ pv, then a ∈ pv by (5.7) and so (a, b, q) ≤ (e, f , s). If c /∈ pv, then
vbc,ad,q/r = 1 and vde,cf ,r/s = 1, so by (iv), vbcde,acdf ,q/s = 1. Since cd /∈ pv, by (viii) we
have (a, b, q) ≤ (e, f , s).
We next reconstruct the underlying reified value group. Define an equivalence rela-

tion equating (a, b, q), (c, d, r) ∈ S whenever (a, b, q) ≤ (c, d, r) and (c, d, r) ≤ (a, b, q).
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Let �v,0 be the set of equivalence classes. Let 0 ∈ �v,0 be the class of (0, 1, 1); by (5.7),
this consists of those (a, b, q) with a ∈ pv. Equip S with the binary operation · given by

(a, b, q) · (c, d, r) �→ (ac, bd, qr);

for this operation, S is a commutative monoid with identity element (1, 1, 1). By (iv), ·
is monotonic with respect to ≤; it thus induces a monoid structure on S. For (a, b, q) ∈
S with a /∈ pv, we have ab /∈ pv and so (b, a, 1/q) ∈ S; by (i), (a, b, q) and (b, a, 1/q)
define inverse classes in �v,0. If we set �v = �v,0 \ {0} and define the map r : R+ → �v
taking q to the class of (1, 1, q), it follows that �v is a reified value group with identity
element the class of (1, 1, 1) and associated pointed commutative monoid �v,0.
To conclude, let v : A → �v,0 be the function taking a to the class of (a, 1, 1). By (vii)

and (iv), v is a reified semivaluation whose image in A × A × R+ is the tuple (va,b,q);
by (vi), v is unique for this property.

This gives rise to the following analogue of Lemma 2.6, with a similar proof.

Lemma 5.8. For any ring A, the space Sprv(A) is spectral, and sets of the form (5.3)
are quasicompact and open.

Proof. Since sets of the form (5.4) clearly separate points, the space Sprv(A) is T0.
On the other hand, by Lemma 5.6, we may identify Sprv(A) with a closed subspace
of the compact space {0, 1}A×A×R

+
(for the discrete topology on {0, 1}) in such a way

that spaces of the form (5.3) are closed-open. By Lemma 1.13, Sprv(A) is spectral
and subsets of the form (5.3) are quasicompact and open.

Lemma 5.9. Let �/k be an extension of fields. Then the map

Sprv(�) → Spv(�) ×Spv(k) Sprv(k)

is surjective (but typically not injective).

Proof. We may reduce to the case where � = k(x) for some x ∈ �. Let v1 be a
valuation on � restricting to the valuation v on k. If the inclusion �v → �v1 induces
an isomorphism �v ⊗Z Q → �v1 ⊗Z Q, then any reification of v induces a unique
reification of v1. This already suffices to treat the case where x is algebraic over k.
If x is transcendental over k, using the previous paragraph we may reduce to the

case where k is itself algebraically closed and �v1 �= �v (the latter group being
divisible). Since k is algebraically closed, there must exist c ∈ k, d ∈ k× for which
v1(cx − d) < 1 and v1(cx − d) /∈ �v. For any P = ∑

n≥0 PnTn ∈ k[T], we have

v1(P(cx − d)) = max
n

{
v(Pn)v1(cx − d)n

}
since the nonzero terms in the maximum are pairwise distinct. It follows that as
abstract groups we have �v1 = �v ⊕ v1(cx − d)Z.
If v is trivial, then the claim is equally trivial, so we may assume hereafter that v is

nontrivial. Let ṽ be a reification of v. Let S− (resp. S+) be the set of t ∈ R for which
there exists y ∈ k such that v1(cx − d) > v1(y) and ṽ(y) ≥ t (resp. v1(cx − d) < v1(y)
and ṽ(y) ≤ t). These sets have the following properties.
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• The set S− is down-closed and contains 0.
• The set S+ is up-closed and contains 1.
• The sets S−, S+ are disjoint.
• The supremum of S− equals the infimum of S+. We denote the common value by

s.
Note that it is possible to choose ε ∈ {−1, 0, 1} subject to the following conditions.

• If s ∈ S−, then ε �= −1.
• If s ∈ S+, then ε �= +1.
• If s ∈ {0, 1}, then ε �= 0.

Let � be the lexicographic product �ṽ × R+ viewed as a reified value group via the
reification on the first factor. We then obtain an embedding of �v1 into � taking
v1(cx − d) to (s, eε), yielding a reification of v1 as desired.

We have the following analogue of Lemma 2.8.

Lemma 5.10. Let k1/k, k2/k be extensions of fields.
(a) The maps Sprv(k1) → Sprv(k), Sprv(k2) → Sprv(k) are surjective.
(b) The map Sprv(k1 ⊗k k2) → Sprv(k1) ×Sprv(k) Sprv(k2) is surjective.

Proof. This is immediate from Lemma 2.8 and Lemma 5.9.

For the remainder of §5, fix a nonarchimedean normed ring A. We first cut down
the space Sprv(A) by imposing some interaction between the seminorm on A and the
reifications.

Definition 5.11. For r ∈ R+, let A◦,r (resp. A◦◦,r) be the set of a ∈ A such that the
sequence {r−n |an|}∞n=1 is bounded (resp. converges to 0). Note that A◦,1 = A◦ and
A◦◦,1 = A◦◦; more generally, if a ∈ A◦,r, then |a|sp ≤ r, but not conversely. By contrast,
if a ∈ A◦◦,r then |a|sp < r and conversely: if |a|sp < r, then there exist a positive integer
m and a value c ∈ (0, 1) such that |am| ≤ cmrm, so for all n ≥ 0 we have

r−n ∣∣an∣∣ ≤ c�n/m� max
{
r−i ∣∣ai∣∣ : i = 0, . . . ,m − 1

}
and so a ∈ A◦◦,r. Following Temkin [26], we define the graded ring

GrA =
⊕
r>0

GrrA, GrrA = A◦,r/A◦◦,r .

Definition 5.12. A reified semivaluation v : A → �0 on A is bounded if for all r ∈ R+

and a ∈ A◦◦,r, we have v(a) ≤ r. Let Sprb(A) be the subspace of Sprv(A) consisting of
the equivalence classes of bounded reified semivaluations.

The analogue of continuity for reified valuations is the following condition.

Definition 5.13. A reified semivaluation v : A → �0 on A is commensurable if it
bounded and for all γ ∈ �v, there exists r ∈ R+ such that r ≤ γ . Let Comm(A) be the
subspace of Sprb(A) consisting of the equivalence classes of commensurable reified



Kedlaya Research in Number Theory  (2015) 1:20 Page 19 of 42

semivaluations. In case the underlying topological ring of A is an f-adic ring, the map
Sprv(A) → Spv(A) forgetting reifications induces a map Comm(A) → Cont(A).

This construction is designed to eliminate certain infinitesimals.

Example 5.14. Put A = Qp[T]. Put � = uZ × R+ with the lexicographic ordering
and define the valuation v : A → �0 by setting

v
(∑

i
aiTi

)
= max

i

{(
u−i, p−vp(ai)

)}
.

Then v ∈ Sprv(A, |•|) but v /∈ Comm(A).

Definition 5.15. Since every R-valued semivaluation is commensurable, there is a
natural inclusion M(A) → Comm(A). There is also a natural map Sprb(A) → M(A)

taking v ∈ Sprb(A) to the map α defined as follows: for a ∈ A, α(a) is the infimum of
all r ∈ R+ for which α(a) ≤ r. The composition M(A) → Comm(A) → Sprb(A) →
M(A) is the identity map.

Definition 5.16. For v ∈ Sprb(A) mapping to α ∈ M(A) as in Definition 5.15, put
H(v) = H(α). We may then extend v by continuity to a Krull valuation on H(v), from
which we may recover v by pullback along A → H(v).

Definition 5.17. For � a reified value group, let � be the subgroup of � consisting
of those γ ∈ � such that r ≤ γ ≤ r−1 for some r ∈ R+. (The lower bound on r is the
one we will need in the construction; the upper bound is there to ensure that we get
a subgroup.) For v ∈ Sprb(A), the function r(v) : A → �0 defined by

r(v)(a) =
{
v(a) if a ∈ �,
0 if a /∈ �,

is a commensurable reified semivaluation. We thus obtain a map r : Sprb(A) →
Comm(A) of which the inclusion Comm(A) → Sprb(A) is a section.

Definition 5.18. By analogy with M(A) (but not with Spv(A); see Remark 4.16),
we define a rational subspace of Sprv(A) to be a subset of the form

{v ∈ Sprv(A) : v(fi) ≤ qiv(f0) �= 0 (i = 1, . . . , n)} (5.19)

for some f0, . . . , fn ∈ A such that f1, . . . , fn generate the unit ideal and some q1, . . . , qn >

0. As in Definition 4.14, we can rewrite (5.19) as

{v ∈ Sprv(A) : v(fi) ≤ qiv(f0) (i = 1, . . . , n)}. (5.20)

Any rational subspace is quasicompact (by Lemma 5.8) and open. A rational subspace
of Sprb(A) or Comm(A) is the intersection of said space with a rational subspace of
Sprv(A).
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Lemma 5.21. The rational subspaces of Comm(A) form a basis for the topology.

Proof. Choose any v ∈ Comm(A). For any a, b ∈ A and q > 0, if the set

U = {w ∈ Comm(A) : w(a) ≤ qw(b) �= 0}
contains v, then there exists r ∈ R+ such that r ≤ v(b), so

{w ∈ Comm(A) : w(a) ≤ qw(b) �= 0,w(1) ≤ (1/r)w(b) �= 0}
is a rational subspace of Comm(A) containing v and contained in U. Since the set of
rational subspaces is closed under finite intersections, this proves the claim.

Lemma 5.22. For r : Sprb(A) → Comm(A) as in Definition 5.17, for U a rational
subspace of Sprb(A), we have r−1(U ∩ Comm(A)) = U.

Proof. Note that r preserves order relations: if v(a) ≤ v(b), then r(v)(a) ≤ r(v)(b).
By expressing U in the form (5.20), we see that r(U) ⊆ U ∩ Comm(A), so U ⊆
r−1(U ∩ Comm(A)). On the other hand, if v ∈ Sprb(A) satisfies r(v) ∈ U ∩ Comm(A),
then r(v)(f0) �= 0, so v(f0) = r(v)(f0). For i > 0, if there exists s ∈ R+ such that
s ≤ v(fi), then r(v)(fi) = v(fi) ≤ qir(v)(f0) = qiv(f0); otherwise, for any s ∈ R+ such
that s ≤ r(v)(f0), we have v(fi) < qis ≤ qir(v)(f0) = qiv(f0). It follows that v ∈ U, so
r−1(U ∩ Comm(A)) ⊆ U.

The following result is analogous to [16], Proposition 2.6, although the proof is
somewhat different.

Lemma 5.23. The spaces Sprb(A) and Comm(A) are spectral and the map r :
Sprb(A) → Comm(A) is spectral.

Proof. By Lemma 5.8, Sprv(A) is spectral. Since Sprb(A) is closed in Sprv(A) for the
patch topology, it is also spectral by Corollary 1.14. By the same reasoning, rational
subspaces of Sprb(A) are quasicompact.
By Lemma 5.21 plus Lemma 5.22, r : Sprb(A) → Comm(A) is a continuous retrac-

tion and the inverse image of any rational subspace is a rational subspace. Since
rational subspaces of Sprb(A) are quasicompact, the same is true for Comm(A), so
Comm(A) is prespectral. It is also T0, being a subspace of the T0 space Sprb(A).
Since rational subspaces of Comm(A) are quasicompact, by Lemma 5.21 the patch

topology on Comm(A) is generated by rational subspaces and their complements.
By this remark plus Lemma 5.22, r is continuous for the patch topologies, so
Comm(A) is compact for the patch topology. By Corollary 1.11, Comm(A) is spec-
tral. Since r is continuous for the patch topologies, Corollary 1.10 implies that r
is spectral.

Remark 5.24. In Huber’s theory, including valuations which are not continuous
would give rise to spaces which detect nontrivial blowups, i.e., analogues of the
Riemann-Zariski spaces associated to schemes. For instance, for any two f , g ∈ A,
some points at which both f and g vanish would be separated by assigning a nonzero
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but infinitesimal value to f /g. A similar effect would be achieved here by including
reified valuations which are not commensurable; this point of view is taken in [7].

6 Reified adic spectra
We now define an intermediate construction between adic spectra and Gel’fand
spectra, starting with an analogue of the definition of an affinoid f-adic ring.

Definition 6.1. By an affinoid seminormed ring, we will mean a pair (A�,AGr) in
which A� is a nonarchimedean seminormed ring and AGr is an integrally closed
graded subring of GrA�. If A� is separated and complete for its seminorm, we also
call such a pair an affinoid Banach ring. For r ∈ R+, write A+,r for the subring of A�,◦,r

whose image in GrrA� belongs to AGr,r.
A morphism (A�,AGr) → (B�,BGr) of affinoid seminormed rings is a bounded

homomorphism A� → B� of nonarchimedean seminormed rings which induces a
map AGr → BGr.
For (A�,AGr) → (B�,BGr), (A�,AGr) → (C�,CGr) two morphisms of affinoid

seminormed rings, define the tensor product (B�,BGr) ⊗(A�,AGr) (C�,CGr) as the affi-
noid seminormed ring (D�,DGr) with D� = B� ⊗A� C� (with the tensor product
seminorm) and DGr equal to the integral closure of the image of BGr⊗AGrCGr in GrD�.

Definition 6.2. For (A�,AGr) an affinoid seminormed ring, define the reified adic
spectrum (or for short the readic spectrum) of (A�,AGr), denoted Spra(A�,AGr), as
the subspace of Comm(A�) consisting of those reified valuations v such that for
all r ∈ R+ and a ∈ A+,r, we have v(a) ≤ r. (Without this condition, we would
only have v(a) ≤ r + ε for all ε > 0). A rational subspace of Spra(A�,AGr) is the
intersection with a rational subspace of Comm(A�). Restriction along a morphism
f : (A�,AGr) → (B�,BGr) of affinoid seminormed rings defines a continuous map
f ∗ : Spra(B�,BGr) → Spra(A�,AGr).

Theorem 6.3. For any affinoid seminormed ring (A�,AGr), Spra(A�,AGr) is spectral
with a basis of quasicompact open subsets given by rational subspaces.

Proof. By Lemma 5.23, Comm(A�) is spectral with a basis of quasicompact open
subsets given by rational subspaces. Since Spra(A�,AGr) is closed in Comm(A�) for
the patch topology, by Corollary 1.14 it is also spectral.

Note that the map M(A�) → Sprv(A�) factors through Spra(A�,AGr). This has
the following consequence.

Lemma 6.4. For any affinoid seminormed ring (A�,AGr), the set Spra(A�, AGr) is
empty if and only if 0 is dense in A�. (In particular, this condition does not depend on
AGr.)

Proof. Immediate from Theorem 4.12.

We have the following analogue of Theorem 3.14.
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Theorem 6.5. For (A�,AGr) → (B�,BGr), (A�,AGr) → (C�,CGr) morphisms of
affinoid seminormed rings and (D�,DGr) = (B�,BGr) ⊗(A�,AGr) (C�,CGr), the map

Spra(D�,DGr) → Spra(B�,BGr) ×Spra(A�,AGr) Spra(C�,CGr)

is surjective.

Proof. Given v1 ∈ Spra(B�,BGr), v2 ∈ Spra(C�,CGr) mapping to v ∈ Spra(A�,AGr),
Lemma 5.10 produces v ∈ Sprv(D�) restricting to v1 ∈ Spra(B�) and to v2 ∈
Sprv(C�). By the construction of DGr, it is automatic that for any r ∈ R+ and any
a ∈ D+,r, we have v(a) ≤ r. In particular, we have v ∈ Sprb(D�). By contrast, it is not
automatic that v is commensurable, but we may enforce this by applying the map r
of Definition 5.17.

Recall that Definition 5.15 gives rise to a projection map Spra(A�,AGr) → M(A�).
The fibers of this map may be described as follows.

Definition 6.6. For F an ultrametric field, a graded valuation ring of F is a graded
subring R of Gr F with the property that for each r > 0 and each nonzero a ∈ GrrF,
either a or a−1 (or both) belongs to R. In particular, the graded piece R1 of R is a
valuation ring in the residue field Gr1F of F.

Lemma 6.7. Let (F�, FGr) be an affinoid seminormed ring such that F� is an ultra-
metric field. Then there is a natural bijection between Spra(F�, FGr) and the set of
graded valuation rings of F� containing FGr.

Proof. Given v ∈ Spra(F�, FGr), we may construct a graded valuation ring Rv of F�

containing FGr as follows: for a ∈ F with |a| ≤ r, the class of a in GrrF� belongs to
Rr
v if and only if v(a) ≤ r. (To see that Rv is indeed a graded valuation ring, note that

if a ∈ F satisfies |a| ≤ r but the class of a does not belong to Rr
v, then |a| = r and

v(a) > r, so
∣∣a−1∣∣ = r−1 and v(a−1) < r−1.)

In the other direction, given a graded valuation ring R of F� containing FGr, for
a, b ∈ F� and q > 0, put

va,b,q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if b = 0;
1 if |b| > 0, |a| > q |b|;
1 if |b| > 0, |a| = q |b|, and b/a ∈ R1/q;
0 otherwise.

By Lemma 5.6, there exists a unique reified semivaluation v such that va,b,q = 1 if and
only if v(a) ≥ qv(b).

Corollary 6.8. For A = (A�,AGr) an affinoid seminormed ring and α ∈ M(A�), the
construction of Lemma 6.7 defines a bijection between the fiber of α under the projection
Spra(A) → M(A�) of Definition 5.15 and the set of graded valuation rings of H(α)

containing the image of AGr.
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Definition 6.9. For A = (A�,AGr) an affinoid seminormed ring and v ∈ Spra(A)

restricting to α ∈ M(A�), let (H(v),H(v)Gr) be the affinoid seminormed ring in which
H(v) = H(α) and H(v)Gr is the graded valuation ring of H(α) corresponding to v via
Corollary 6.8.

Remark 6.10. Let (A�,AGr) be an affinoid seminormed ring such that A� is an f-
adic ring (this is not automatic; see Remark 4.6), and identify Gr1A� with A◦/A◦◦.
We may then form an affinoid f-adic ring (A�,A+) by taking A+ = A+,1. For this
convention, there is a natural projection Spra(A�,AGr) → Spa(A�,A+), but unless
A� is Tate, this map is not spectral or even continuous because the inverse image of
a rational subspace need not be a rational subspace (see Remark 4.16).

Remark 6.11. Conversely, let (A�,A+) be an affinoid f-adic ring for which A� has
been equipped with the structure of a nonarchimedean seminormed ring (this is
always possible but not canonical; see Remark 4.6). We may then form an affinoid
seminormed ring by viewing A+/A◦◦ as a graded subring of GrA� concentrated in
Gr1A�. Note that applying Remark 6.10 then recovers A+.

Remark 6.12. In Remark 6.11, we may apply Lemma 5.9 to see that the projec-
tion map Spra(A�,A+) → Spa(A�,A+) is surjective; however, this map does not in
general admits a distinguished section. One case where this does occur is when A�

is a Banach algebra over an ultrametric field F with norm group R+: the canonical
reification of the norm on F fixes a reification on every semivaluation. For a related
argument, see the proof of Lemma 7.2.

7 The structure presheaf on a readic spectrum
With Huber’s adic spaces as a model, we now introduce the structure presheaf on a
reified adic spectrum and build the reified analogues of adic spaces. This development
parallels the corresponding foundations in Huber’s theory, for which we follow [21],
§2.4 and sources cited therein. However, as indicated in Remark 3.22, the role of the
Tate condition is largely eliminated by the presence of reifications.
Throughout §7, let (A�,AGr) be an affinoid Banach ring, and unless otherwise spec-

ified put X = Spra(A�,AGr). We begin with the construction of homomorphisms
corresponding to rational subspaces, as in Definition 3.16 and Lemma 3.17.

Definition 7.1. For n a nonnegative integer, the standard Tate algebra
A�{T1, . . . ,Tn} in the variables T1, . . . ,Tn is the completion of A�[T1, . . . ,Tn] for the
Gauss norm

∞∑
i1,...,in=0

ai1,...,inT
i1
1 · · ·Tin

n �→ max
{∣∣ai1,...,in ∣∣} ;

note that this definition is compatible with Definition 3.16. More generally, for
r1, . . . , rn > 0, the weighted Tate algebra A�{T1/r1, . . . ,Tn/rn} in the variables
T1, . . . ,Tn is the completion of A�[T1, . . . ,Tn] for the weighted Gauss norm
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∞∑
i1,...,in=0

ai1,...,inT
i1
1 · · ·Tin

n �→ max
{∣∣ai1,...,in ∣∣ ri11 · · · rinn

}
.

Lemma 7.2. For x ∈ A�, and r > 0, x ∈ A+,r if and only if v(x) ≤ r for all v ∈
Spra(A�,AGr).

Proof. It is clear that if x ∈ A+,r, then v(x) ≤ r for all v ∈ Spra(A�,AGr). Conversely,
suppose that x /∈ A+,r. Let B� be the completion of the group ring A�[R+] for the
norm taking

∑
r∈R+ ar[ r] to max{|ar|r}. Extend B� to an affinoid f-adic ring (B�,B+)

with B+ = ⊕s∈R+A+,s[ s−1]. By construction, x[ r−1] /∈ B+, so we may apply [16],
Lemma 3.3 to produce w ∈ Spa(B�,B+) such that w(x[ r−1] ) > 1. Let v : A� → �w,0
be the restriction of w, viewed as a reified valuation for the map s �→ w([ s] ); then
v ∈ Spra(A�,AGr) and v(x) > r, as desired.

Definition 7.3. Consider a rational subspace U of X defined by parameters
f0, . . . , fn ∈ A� and scale factors q1, . . . , qn > 0 as in (5.19). Let B� be the quotient of
A�{T1/q1, . . . ,Tn/qn} by the closure of the ideal (f0T1 − f1, . . . , f0Tn − fn). Let BGr be
the integral closure of the image of AGr[T1, . . . ,Tn] in GrB� (placing Ti in degree qi).
We now have a morphism (A�,AGr) → (B�,BGr) of affinoid seminormed rings; by
Lemma 7.4 below, this construction depends only on the original rational subspace U
and not on the defining parameters.

We have the following analogue of Lemma 3.17.

Lemma 7.4. Retain notation as in Definition 7.3.
(a) The morphism (A�,AGr) → (B�,BGr) is initial among morphisms

(A�,AGr) → (C�,CGr) for which C� is complete and the image of
Spra(C�,CGr) in X is contained in U. (We will say for short that this morphism
represents U; we also characterize such a morphism as a rational localization.)

(b) The induced map Spra(B�,BGr) → U is a homeomorphism. More precisely, the
rational subspaces of Spra(B�,BGr) correspond to the rational subspaces of X
contained in U.

Proof. We follow the proofs of [17], Proposition 1.3, Lemma 1.5. Let h :
(A�,AGr) → (C�,CGr) be a morphism as in (a). Then v(h(f0)) > 0 for all v ∈
Spra(C�,CGr). By Corollary 4.13, we have h(f0) ∈ (C�)×. For i = 1, . . . , n, we have
v(h(fi)/h(f0)) ≤ qi for v ∈ Spra(C�,CGr). By Lemma 7.2, we have fi/f0 ∈ C+,qi ; we
thus deduce (a).

To check (b), note the map Spra(B�,BGr) → U is injective because any v ∈
Spra(B�,BGr) is uniquely determined by its restriction to the image of A�[T1, . . . ,Tn];
it is surjective by (a) applied to the map (A�,AGr) → (H(v),H(v)Gr) for each v ∈ U.
It is clear that every rational subspace of X contained in U pulls back to a rational
subspace of Spra(B�,BGr). Conversely, given a rational subspace V of Spra(B�,BGr)

defined by some parameters g0, . . . , gm ∈ B� and some scale factors r1, . . . , rm > 0,
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by Remark 4.17 we may choose the gi to be in the image of A�[T1, . . . ,Tn]. By
multiplying through by a suitable power of f0, we obtain parameters in A� itself, but
these parameters need not generate the unit ideal in A�. However, since α(g0) �= 0
for all α ∈ M(B�), by compactness we can find c > 0 such that α(g0) ≥ c for all
α ∈ M(B�). Put gm+1 = 1 and rm+1 = c−1; then the parameters g0, . . . , gm+1 and
scale factors r1, . . . , rm+1 define a rational subspace of X whose intersection with U
corresponds to V. Since the intersection of two rational subspaces is again a rational
subspace, this completes the proof of (b).

Lemma 7.5. Let {(A�,AGr) → (B�
i ,BGr

i )}i be the morphisms representing a finite
cover U = {Ui}i of X by rational subspaces. Then the image of Spec(⊕iB�

i ) → Spec(A�)

contains Maxspec(A�).

Proof. For each m ∈ Maxspec(A), apply Corollary 4.13 to construct some α ∈ M(A)

for which m = ker(A → H(α)). For some i, α extends to β ∈ M(Bi), and ker(β) is a
prime ideal of Bi lifting m.

Definition 7.6. The structure presheaf O on X assigns to each open subset U the
inverse limit of B� over all homomorphisms (A�,AGr) → (B�,BGr) representing
rational subspaces of X contained in U. We say that (A�,AGr) is sheafy if O is a sheaf;
in this case, X is a locally ringed space by Lemma 7.7 below.

Lemma 7.7. For v ∈ X, the stalk Ov is a henselian local ring whose residue field is
dense in H(v).

Proof. The local property follows from [21], Corollary 2.3.7. The henselian property
follows from [21], SLemma 2.2.3(a).

As in classical rigid geometry, most of our arguments about the structure presheaf
involve a reduction to certain special types of coverings.

Definition 7.8. For f1, . . . , fn ∈ A� generating the unit ideal and q1, . . . , qn > 0, the
standard rational covering of X generated by f1, . . . , fn with scale factors q1, . . . , qn is
the covering of X by the rational subspaces

Ui = {v ∈ X : qjv(fj) ≤ qiv(fi) (j = 1, . . . , n)} (i = 1, . . . , n).

For f1, . . . , fn ∈ A arbitrary and q1, . . . , qn > 0, the standard Laurent covering generated
by f1, . . . , fn with scale factors q1, . . . , qn is the covering by the rational subspaces

Se =
n⋂

i=1
Si,ei

(
e = (e1, . . . , en) ∈ {−,+}n) ,

where

Si,− = {v ∈ X : v(fi) ≤ qi}, Si,+ = {v ∈ X : v(fi) ≥ qi}.

A standard Laurent covering with n = 1 is also called a simple Laurent covering.
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Lemma 7.9. The following statements hold.
(a) Any finite covering of X by rational subspaces can be refined by a standard

rational covering.
(b) For any standard rational covering U of X, there exists a standard Laurent

covering V of X such that for each V = Spra(B�,BGr) ∈ V, the restriction of
U to V (omitting empty intersections) is a standard rational covering generated
by units in B�.

(c) Any standard rational covering of X generated by units can be refined by a
standard Laurent covering generated by units.

Proof. To prove (a), we follow [3], Lemma 8.2.2/2. We start with a finite covering
of X by rational subspaces U1, . . . ,Un, where Ui is generated by the parameter set
Si = {fi0, fi1, . . . , fini} with corresponding scale factors qi1, . . . , qini . Let S be the set of
products of the form s1 · · · sn where si ∈ Si for all i. Let S′ be the subset of S consisting
of products s1 · · · sn for which si = fi0 for at least one i. Note that S′ generates the
unit ideal: for any v ∈ X, for each i we can find si ∈ Si not vanishing at v, taking
si = fi0 for any i for which v ∈ Ui. Thus the parameter set S′ can be used to define a
standard rational covering; we do so by taking the scale factor associated to f1j1 · · · fnjn
to be q1j1 · · · qnjn . To see that this refines the original covering, note that the rational
subspace with first parameter s1 · · · sn does not change if we add S \ S′ to the set of
parameters (again because the Ui form a covering), which makes it clear that this
subspace is contained in Ui for any index i for which si = fi0 (because we now have
parameters obtained from s1, . . . , sn by replacing si with each of the other elements
of Si).
To prove (b), we follow [3], Lemma 8.2.2/3. Let U be the standard rational cov-

ering defined by the parameters f1, . . . , fn with scale factors q1, . . . , qn. Since f1, . . . , fn
generate the unit ideal, by Corollary 4.13 the quantity

c = inf{max
i

{qiα(fi)} : α ∈ M(A�)}

is positive. In this case, the standard Laurent covering V defined by f1, . . . , fn with
scale factors c/2, . . . , c/2 has the desired property: on the subspace where qj

∣∣fj∣∣ ≤ c/2
for j = 1, . . . , s and qi

∣∣fi∣∣ ≥ c/2 for i = s + 1, . . . , n, the restriction of U is the standard
rational covering generated by fs+1, . . . , fn with scale factors qs+1, . . . , qn plus some
empty intersections.
To prove (c), we follow [3], Lemma 8.2.2/4. Consider the standard rational cover-

ing generated by the units f1, . . . , fn with scale factors q1, . . . , qn. This cover is refined
by the standard Laurent covering generated by fif −1

j with scale factors qi/qj for
1 ≤ i < j ≤ n, by an elementary combinatorics argument (any total ordering on a
finite set has a maximal element).

This yields the following reduction argument, analogous to [21], Lemma 2.4.19.

Lemma 7.10. Let P be a property of finite coverings of rational subspaces of X by
rational subspaces. Suppose that P satisfies the following condition.

(a) The property P is local: if it holds for a refinement of a given covering, it also
holds for the original covering.
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(b) The property P is transitive: if it holds for a covering {Vi}i of U and for some
coverings {Wij}j of Vi, then it holds for the composite covering {Wij}i,j of U.

(c) The property P holds for any simple Laurent covering.
Then the property P holds for any finite covering of a rational subspace of X by rational
subspaces.

Proof. This follows from Lemma 7.9 as in [21], Proposition 2.4.20.

This yields the following criterion for sheafiness and acyclicity.

Lemma 7.11. Let F be a presheaf of abelian groups on X such that for every rational
subspace U of X and every simple Laurent covering V1,V2 of U, we have

Ȟi(U ,F ; {V1,V2}) =
{
F(U) if i = 0,
0 if i = 1.

(7.12)

Then for every rational subspace U of X and every finite covering V of U by rational
subspaces,

Hi(U ,F) = Ȟi(U ,F ;V) =
{
F(U) if i = 0,
0 if i > 0.

Proof. This follows from Lemma 7.10 as in [21], Proposition 2.4.21.

Using this criterion, we may see that sheafiness implies acyclicity, by analogy with
[21], Theorem 2.4.23.

Lemma 7.13. Let S−, S+ be the simple Laurent covering of X defined by some f ∈ A�

and some q > 0. Let

(A�,AGr) → (B�
1 ,BGr

1 ), (A�,AGr) → (B�
2 ,B�

2 ), (A�,AGr) → (B�
12,B

Gr
12 )

be the morphisms representing the rational subspaces S−, S+, S− ∩S+ of X. Then the map
B�
1 ⊕ B�

2 → B�
12 taking (b1, b2) to b1 − b2 is surjective.

Proof. By Lemma 7.4, we obtain strict surjections

A�{T/q} → B�
1 , A�{U/q} → B�

2 , A�{T/q,U/q−1} → B�
12

taking T to f and U to f −1. In particular, any b ∈ B�
12 can be lifted to some∑∞

i,j=0 aijTiUj ∈ A�{T/q,U/q−1}. Let a′
n be the sum of aij over all i, j ≥ 0with i−j = n;

note that this sum converges in A�. Let b1 be the image of
∑∞

n=0 a′
nTn in B�

1 . Let
b2 be the image of − ∑∞

n=1 a′−nUn in B�
2 . Then (b1, b2) ∈ B�

1 ⊕ B�
2 maps to b ∈ B�

12,
proving the desired exactness.

Theorem 7.14. Suppose that (A�,AGr) is sheafy. Then for every finite covering U of
X by rational subspaces,

Hi(X,O) = Ȟi(X,O;U) =
{
A� if i = 0,
0 if i > 0.
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Proof. By Lemma 7.11, it suffices to check Čech-acyclicity for simple Laurent cov-
erings. Since the sheafy condition propagates to rational subspaces, we may as well
consider only simple Laurent coverings of X itself. In the notation of Lemma 7.13, the
sequence

0 → A� → B�
1 ⊕ B�

2 → B�
12 → 0

is exact at B�
12; by the sheafy hypothesis, it is also exact at A� and B�

1 ⊕ B�
2 .

We may also establish a weak analogue of Kiehl’s theorem on coherent sheaves, by
analogy with [21], Theorem 2.7.7.

Theorem 7.15. Suppose that (A�,AGr) is sheafy. Then the global sections functor
induces an equivalence of categories between O-modules which are locally free of finite
rank and finite projective A�-modules.

Proof. We may use Lemma 7.10 to reduce to the case where notation is as in
Lemma 7.13 and one is given a sheaf whose restrictions to S−, S+, S− ∩S+ correspond
to finite projective modules M1,M2,M12 over B�

1 ,B�
2 ,B�

12, respectively. In this case,
by Theorem 7.14, the diagram

A� ��

��

B�
1

��
B�
2

�� B�
12

(7.16)

forms a glueing square in the sense of [21], Definition 2.7.3. We may thus appeal
to [21], Proposition 2.7.5 to deduce that the modules M1,M2,M12 arise as base
extensions of a finite projective module M over A�.

Definition 7.17. A locally reified valuation-ringed space, or locally rv-ringed space
for short, is a locally ringed space (X,OX) equipped with the additional data of, for
each x ∈ X, a reified valuation vx on the local ring OX,x. A morphism of locally rv-
ringed spaces f : X → Y is a morphism of locally ringed spaces with the property that
for each x ∈ X mapping to y ∈ Y , the restriction of vx along the map OY ,y → OX,x is
equal to vy as a reified valuation.

Definition 7.18. Any locally rv-ringed space of the form Spra(A�,AGr) for some
sheafy (A�,AGr) is called an affinoid reified adic space. For such a space, we recover
A� as the ring of global sections; by Lemma 7.2, we may recover AGr from the reified
valuations on local rings.
A locally v-ringed space which is covered by open subspaces which are affinoid

reified adic spaces is called a reified adic space. We suggest to abbreviate reified adic
space to readic space or R-adic space. As in Remark 3.21, one can formally define a
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“space” associated to a nonsheafy (A�,AGr) using a functor of points approach, by
analogy with [21], §8.2.

8 On the sheafy condition
By analogy with Theorem 3.20, we identify two important classes of sheafy affinoid
seminormed rings. In the analogue of the strongly noetherian case, we also get a more
precise analogue of Kiehl’s characterization on coherent sheaves on affinoid spaces.
We begin with the analogue of the stably uniform condition.

Definition 8.1. We say that a Banach ring A is uniform if its norm is equiva-
lent to its spectral seminorm. (An equivalent condition is that there exists c > 0
such that for all a ∈ A�,

∣∣a2∣∣ ≥ c |a|2.) We say that an affinoid Banach ring
(A�,AGr) is really stably uniform if for any homomorphism (A�,AGr) → (B�,BGr)

representing a rational subspace of X, B� is uniform. See [5] for some exotic exam-
ples related to these conditions (e.g., for uniform rings which are not really stably
uniform).

Lemma 8.2. Let A be a uniform Banach ring. For any f ∈ A, the ideals

(T − f ) ⊆ A�{T/q}, (1 − fU) ⊆ A�{U/q−1}, (T − f ) ⊆ A�{T/q,U/q−1}
(TU − 1)

are closed.

Proof. As in [21], Lemma 2.8.8.

By analogy with Theorem 3.20(b), we have the following.

Theorem 8.3. If (A�,AGr) is really stably uniform, then it is sheafy.

Proof. By Lemma 7.11 and Lemma 7.13, it suffices to check that with notation as in
Lemma 7.13, the sequence

0 → A� → B�
1 ⊕ B�

2 → B�
12

is exact. We first check exactness at A�. By Theorem 4.12, for a ∈ A�,

|a|A�,sp = sup{α(a) : α ∈ M(A�)} = sup{α(a) : α ∈ M(B�
1 ) ∪ M(B�

2 )}.

In particular, if a ∈ ker(A� → B�
1 ⊕B�

2 ), then a has zero spectral seminorm; however,
since A is uniform by hypothesis, this forces a = 0.
We check exactness at B�

1 ⊕ B�
2 following [3], §8.2.3. In the commutative diagram
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0

��

0

��

0 ��

��

(T − f )A�
{
T
q

}
⊕ (1 − fU)A�

{
U
q−1

}
��

��

(T − f )
A�

{
T
q ,

U
q−1

}
(TU−1)

��

�� 0

0 �� A� �� A�
{
T
q

}
⊕ A�

{
U
q−1

}
��

��

A�
{
T
q ,

U
q−1

}
(TU−1)

��

��

0

0 �� A� ��

��

B�
1 ⊕ B�

2
��

��

B�
12

��

��

0

0 0 0

the first two rows are clearly exact, while the columns are exact by Lemma 8.2. By
diagram chasing, we obtain exactness of the third row at B�

1 ⊕ B�
2 .

We next turn to the analogue of the strongly noetherian condition, where we can
carry out a more thorough adaptation of Huber’s constructions.

Definition 8.4. We say that a Banach ring A is really strongly noetherian if
A�{T1/r1, . . . ,Tn/rn} is noetherian for all n ≥ 0 and all r1, . . . , rn > 0. We say that
an affinoid Banach ring (A�,AGr) is really strongly noetherian if A� is really strongly
noetherian; this implies that for every morphism (A�,AGr) → (B�,BGr) representing
a rational subspace of Spra(A�,AGr), B� is really strongly noetherian.

Example 8.5. Any ultrametric field is really strongly noetherian by [2],
Proposition 2.1.3, as then is any Berkovich affinoid algebra over an ultrametric field
(see Definition 9.4).

Example 8.6. Let F be a ultrametric field with nontrivial norm which is perfect of
characteristic p. Let W (F) be the ring of p-typical Witt vectors of F, which may be
viewed as the unique p-adically separated and complete ring whose reduction modulo
p is F. Each x ∈ W (F) can be written uniquely as

∑∞
n=0 pn[ xn] with xn ∈ F and

brackets denoting Teichmüller lifts. The set of x ∈ W (F) for which limn→∞ p−n |xn| =
0 is then a really strongly noetherian Banach ring for the norm x �→ maxn{p−n |xn|};
see [20], Theorem 3.2.

We mention one further class of examples.

Theorem 8.7. Let A be a noetherian ring equipped with the trivial norm. Then A is
really strongly noetherian.

Proof. As in [20], Theorem 3.2, we use a Gröbner basis construction. Choose
r1, . . . , rn > 0. Equip Zn≥0 with the componentwise partial order ≤, and with the
graded lexicographic total ordering �. Since ≤ is a well-quasi-ordering (every
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sequence contains an infinite ascending subsequence) and � refines ≤, � is a well-
ordering. For x = ∑

I xITI ∈ A{T1/r1, . . . ,Tn/rn} nonzero, consider those indices I for
which xI �= 0 and ri11 · · · rinn is maximized, then identify the greatest such index with
respect to �; we define the leading index and leading coefficient of x to be the resulting
values of I and xI , respectively.
For J an ideal of A{T1/r1, . . . ,Tn/rn} and I ∈ Zn≥0, let LI be the ideal of A consisting

of 0 plus the leading coefficients of all elements of J with leading index I. For I1 ≤ I2
we have LI1 ⊆ LI2 . Let S be the set of indices I for which LI �= LI′ for any I ′ < I; this
set is finite by the well-quasi-ordering property of ≤ and the noetherian property of
A. For each I ∈ S, let GI be a set of elements of J realizing each leading coefficient
in some finite set of generators of LI . We may then present each element x ∈ J as a
linear combination of elements of ∪I∈SGI by repeatedly applying the usual division
algorithm as long as x �= 0: identify the leading index of x as a multiple of some
element I of S, then kill off the leading coefficient of x by subtracting off a suitable
monomial linear combination of elements of GI .

Corollary 8.8. Let A be the ring Z((z)) equipped with the z-adic norm (for any
normalization). Then A is really strongly noetherian.

Proof. For q = |z| ∈ (0, 1), we have A ∼= Z{T/q,U/q−1}/(TU − 1), which is really
strongly noetherian by Theorem 8.7.

One important consequence of the really strongly noetherian condition is that it
allows topological considerations to be omitted from many algebraic constructions
involving finitely generated modules.

Lemma 8.9. Let A be a really strongly noetherian Banach ring.
(a) Every ideal in A is closed.
(b) Every finite A-module is complete under the quotient topology induced by some

(and hence any) surjection from a finite free module.
(c) Every morphism between finite A-modules, topologized as in (b), is strict.

Proof. Suppose first that A is Tate. We first observe that if M is a normed A-module
whose completion M̂ is finitely generated, then M = M̂. This is proved as in [3],
Proposition 3.7.3/2: choose an A-linear surjection f : An → M̂, apply the Banach
open mapping theorem for A (see [13]) to deduce that f is strict, then conclude by
Nakamaya’s lemma in the form of [3], Lemma 1.2.4/6.
We now check that for any finite free A-module F, any submodule M of F is com-

plete. To wit, choose any r ∈ (0, 1) and put B = A{T/r,U/r−1}/(TU − 1); then B is
necessarily Tate. By the previous paragraph, the image of M⊗A B in F ⊗A B is closed.
In particular, M ⊗A B and M̂ ⊗A B have the same image in F ⊗A B; since the map
A → B of A-modules is split by the constant coefficient map, this implies thatM = M̂.
By taking F = A in the previous paragraph, we deduce (a). To check (b), let An →

M be a surjection of A-modules and apply the previous paragraph to ker(An → M).
To check (c), we may again extend scalars from A to B and apply the Banach open
mapping theorem.
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As a consequence, we obtain some results on flatness of certain ring homomor-
phisms.

Corollary 8.10. Let A be a really strongly noetherian Banach ring. Then for all n ≥ 0
and r1, . . . , rn > 0, the morphism

A[T1, . . . ,Tn]→ A{T1/r1, . . . ,Tn/rn}
of rings is flat.

Proof. By induction, we reduce to the case n = 1 and put T = T1, r = r1. To handle
this case, we follow [18], Lemma 1.7.6.
We first prove that A → A{T/r} is flat. For M a finite A-module, by Lemma 8.9, M

is complete for its natural topology and any finite presentation of M is strict. We may
thus identify

M ⊗A A{T/r} ∼= M⊗̂AA{T/r} ∼= M{T/r},
where M{T/r} denotes the set of formal sums

∑∞
i=0miTi with mi ∈ M such that for

some (hence any) norm on M induced by a presentation, limi→∞ |mi| ri = 0. For any
short exact sequence 0 → M → N → P → 0, it is clear that

0 → M{T/r} → N{T/r} → P{T/r} → 0

is exact; this proves that A → A{T/r} is flat.
Since A → A[T] and A → A{T/r} are both flat, by standard commutative algebra

(see for instance [10], 0.10.2.5), the verification that A[T]→ A{T/r} is flat reduces
to showing that for each m ∈ Maxspec(A), for k = A/m, the morphism A[T]⊗Ak →
A{T/r}⊗Ak is flat. By the previous paragraph, the target of this map may be identified
with k{T/r}, which as a module over the principal ideal domain k[T] is torsion-free
(since it embeds into k�T�) and hence flat.

Corollary 8.11. Let (A�,AGr) be a really strongly noetherian affinoid Banach ring.
(a) For any rational localization (A�,AGr) → (B�,BGr), the map A� → B� is

flat.
(b) Let {(A�,AGr) → (B�

i ,BGr
i )}i be the morphisms representing a finite cover

U = {Ui}i of X by rational subspaces. Then the morphism A� → ⊕iB�
i is

faithfully flat.

Proof. To prove (a), choose a presentation of B� as in Definition 7.3. By Corollary
8.10, the map

A�[T1, . . . ,Tn]→ A�{T1/q1, . . . ,Tn/qn}
is flat, as then is the map

A�
[
f −1
0

] ∼= A�[T1, . . . ,Tn]
(f0T1 − f1, . . . , f0Tn − fn)

→ A�{T1/q1, . . . ,Tn/qn}
(f0T1 − f1, . . . , f0Tn − fn)

∼= B�
i

(applying Lemma 8.9 to obtain the last isomorphism). Since the ordinary localization
A� → A�[ f −1

0 ] is flat, so then is A� → B�
i . This proves (a), from which (b) follows

by invoking Lemma 7.5 and some standard commutative algebra (see for instance
[25], Tag 00HQ).
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Corollary 8.12. Let (A�,AGr) be a really strongly noetherian affinoid Banach ring.
Then for every rational subspace U of X and every finite covering V of U by rational
subspaces, the maps

F(U) → Ȟ0(U ,O;V), F(U) → H0(U ,O)

are injective. (They will be shown to be bijective in Theorem 8.15.)

Proof. Immediate from Corollary 8.11.

We mention also a refinement of Corollary 8.11, which gives a stronger result but
has a somewhat mysterious extra hypothesis.

Lemma 8.13. Let (A�,AGr) be a really strongly noetherian affinoid Banach ring. Let
(A�,AGr) → (B�,BGr) be a rational localization. Suppose that m ∈ Maxspec(A�) has
the property that A�/m ∼= H(β) for some β ∈ M(B�). Then for every positive integer
n, the map A�/mn → B�/mnB� is an isomorphism.

Proof. We follow [3], Proposition 7.2.2/1. By Lemma 8.9, the ideal mn is closed; we
may thus form the commutative diagram

A� ��

��

B�

����� � � � � �

A�/mn �� B�/mnB�

of Banach rings. The dashed arrow exists and is unique for n = 1 by hypothesis,
and hence for all n by the universal property of rational localizations. Consequently,
surjectivity of B� → B�/mnB� implies surjectivity of A�/mn → B�/mnB�. On the
other hand, surjectivity of A� → A�/mn implies the surjectivity of B� → A�/mn;
since ker(B� → B�/mnB�) = mnB� is contained in the kernel of B� → A�/mn (it
being generated by elements of said kernel), it follows that A�/mn → B�/mnB� is
also injective.

Remark 8.14. For a given pair (A�,AGr), one can deduce Corollary 8.11(a) from
Lemma 8.13 if for every maximal idealm of A�, the Banach ring A�/m is (isomorphic
to) an ultrametric field; that is, its norm is equivalent to a multiplicative norm. This
holds for classical affinoid algebras (see Definition 9.4), but in light of Remark 4.5 it
is unclear to what extent it should occur more generally.

We end up with the following analogue of Theorem 3.20(a).

Theorem 8.15. Let (A�,AGr) be a really strongly noetherian affinoid Banach ring.
Then (A�,AGr) is sheafy.

Proof. By Definition 7.3 and Lemma 7.4, the really strongly noetherian property
propagates to rational subspaces. We may thus follow the proof of Theorem 8.3 after
replacing Theorem 4.12 with Corollary 8.12 and Lemma 8.2 with Lemma 8.9.
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We may also upgrade Theorem 7.15 to obtain an extension of Kiehl’s theorem on
coherent sheaves (see Remark 8.17 and Remark 8.18).

Theorem 8.16. Let (A�,AGr) be a really strongly noetherian affinoid Banach ring.
Then the global sections functor induces an equivalence of categories between coherent
O-modules and finite A�-modules.

Proof. Again, we may use Lemma 7.10 to reduce to the case where notation is as in
Lemma 7.13 and and one is given a sheafF whose restrictions to S−, S+, S−∩S+ corre-
spond to finite modules M1,M2,M12 over B�

1 ,B�
2 ,B�

12, respectively. By Theorem 8.15,
(A�,AGr) is sheafy, so the diagram (7.16) is again a glueing square in the sense of
[21], Definition 2.7.3. Let M be the kernel of the map M1 ⊕ M2 → M12 given by
(m1,m2) �→ m1 − m2. By [21], Lemma 2.7.4, the sequence

0 → M → M1 ⊕ M2 → M12 → 0

is exact and the induced maps M ⊗A� B�∗ → M∗ for ∗ = 1, 2, 12 are surjective;
however, it does not immediately follow that these maps are injective or that M is
finitely generated.
However, we do know that the sheaf F is globally finitely generated (by some

finitely generated submodule of M), so we may choose a surjection O⊕n → F of O-
modules. Let G be the kernel of this surjection and put N1 = G(S−),N2 = G(S+),N12 =
G(S− ∩ S+). By definition, the sequences

0 → N∗ → B�⊕n∗ → M∗ → 0 (∗ = 1, 2, 12)

are exact; by the really strongly noetherian hypothesis, N∗ is a finitely generated B�∗ -
module. By Corollary 8.11, the induced maps Ni ⊗B�i

B�
12 → N12 are isomorphisms.

We may thus repeat the previous argument to see that G is globally finitely generated;
that is, there exists an exact sequence of the form

O⊕m → O⊕n → F → 0.

We may now take global sections to obtain a finite A�-module coker(A�⊕m → A�⊕n)

whose associated sheaf is isomorphic (by the right exactness of tensor products)
to F .

Remark 8.17. In the case of a Tate affinoid algebra over an ultrametric field (see
Definition 9.3), Theorem 8.16 specializes to Kiehl’s original glueing theorem for
coherent sheaves ([3], Theorem 9.4.3/3), modulo the comparison of Grothendieck
topologies (Theorem 9.5). The case of a Berkovich affinoid algebra reduces to the
case of a Tate affinoid algebra using the technique of Lemma 7.2, again modulo
comparison of topologies (Theorem 9.6).

Remark 8.18. The analogue of Theorem 8.16 for affinoid f-adic rings would state
that for (A�,A+) an affinoid f-adic ring such that A� is strongly noetherian, the global
sections functor induces an equivalence of categories between coherent O-modules
on Spa(A�,A+) and finite A�-modules. The status of this statement is unclear to us;
the special case where A� is Tate will be treated in an upcoming sequel to [21], while
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the special case where A� is really strongly noetherian follows from Theorem 8.16.
Some additional results in this direction can be found in [9].

9 Comparison of Grothendieck topologies
We now study the relationship between Gel’fand spectra and readic spectra, following
the study of the relationship between rigid and adic spaces made by Huber ([16], §4)
and van der Put and Schneider [27].

Definition 9.1. For A a nonarchimedean normed ring, define the strictly special G-
topology (resp. the special G-topology) onM(A) by taking the admissible open subsets
to be the finite unions of strictly rational subspaces (resp. rational subspaces) ofM(A)

and taking the admissible coverings to be the finite set-theoretic coverings. Both G-
topologies are prespectral; the special G-topology is also T0.

Definition 9.2. For A = (A�,AGr) an affinoid normed ring, let i : M(A�) →
Spra(A) be the natural inclusion obtained by viewing each real seminorm as a reified
semivaluation. This map is continuous for the special G-topology on M(A�), but not
the natural topology.

Definition 9.3. For A = (A�,A+) an affinoid f-adic ring, view A� as a nonar-
chimedean normed ring via Remark 4.6. Let j : M(A�) → Spa(A) be the natural
map obtained by viewing each real seminorm as a semivaluation. If A� is Tate (but
not necessarily otherwise; see Remark 4.16), this map is continuous for the strictly
special G-topology on M(A�), but not the natural topology.

In general, the maps i, j do not hit enough points of Spra(A) or Spa(A) to make
it possible to recover the structure of these spaces from M(A�). One crucial excep-
tion is the case of classical affinoid algebras. For the remainder of §9, let F be an
ultrametric field.

Definition 9.4. A Tate affinoid algebra over F is a Banach algebra A over F which
can be realized as a topological quotient of F{T1, . . . ,Tn} for some n. If the norm on
F is nontrivial, then every maximal ideal of A has residue field finite over F ([3],
Corollary 6.1.2/3), so we obtain a natural inclusion Maxspec(A) → M(A).
A Berkovich affinoid algebra over F is a Banach algebra over F which can be realized

as a topological quotient of F{T1/r1, . . . ,Tn/rn} for some n and some r1, . . . , rn > 0.

Theorem 9.5. Assume that the norm on F is nontrivial, and let A be a reduced Tate
affinoid algebra over F.

(a) The Banach ring A is uniform.
(b) For any homomorphism (A,A◦) → (B,B+) representing a rational subspace of

Spa(A,A◦), we have B+ = B◦.
(c) The image of the composition Maxspec(A) → M(A)

j→ Spa(A,A◦) is dense for
the patch topology.

(d) Equip M(A) with the strictly special G-topology. Equip Maxspec(A) with the
subspace topology from M(A). Then the images of Maxspec(A) and M(A)
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under the functor Prespec → Spec of Corollary 1.6 may be naturally identified
with each other and with Spa(A,A◦).

Proof. For (a), see [3], Theorem 6.2.4/1. For (b), see [21], Lemma 2.5.9. For
(c), see [21], Corollary 2.5.13 or [16], Corollary 4.2. For (d), one may either see
[16], Corollary 4.4, Corollary 4.5 or argue as follows. Note that by construction, the
map Maxspec(A) → Spa(A,A◦) is spectral and Maxspec(A) admits a basis of qua-
sicompact open subsets each of which is the inverse image of a quasicompact open
subset of Spa(A,A◦). By (c) and Remark 1.12, we obtain a natural isomorphism
Spec(D(Maxspec(A))) ∼= Spa(A,A◦); by similar reasoning, we obtain the isomorphism
Spec(D(M(A))) ∼= Spa(A,A◦).

Theorem 9.6. Let A be a reduced Berkovich affinoid algebra over F.
(a) The Banach ring A is uniform.
(b) For any homomorphism (A, GrA) → (B,BGr) representing a rational subspace

of Spra(A, GrA), we have BGr = GrB.
(c) The images of i : M(A) → Spra(A, GrA) and j : M(A) → Spa(A,A◦) are dense

for the patch topologies.
(d) Equip M(A) with the strictly special G-topology. Then the image of M(A)

under the functor Prespec → Spec of Corollary 1.6 may be naturally identified
with Spa(A,A◦).

(e) Equip M(A) with the special G-topology. Then the image of M(A) under the
functor Prespec → Spec of Corollary 1.6 may be naturally identified with
Spra(A, GrA).

Proof. For (a), see [2], Proposition 2.1.4(ii). To prove (b), we first observe that if A
is a topological quotient of F{T1/r1, . . . ,Tn/rn} for some r1, . . . , rn > 0 in the divisible
closure of

∣∣F×∣∣, then A is a Tate affinoid algebra. We next observe that if r > 0 is
not in the divisible closure of

∣∣F×∣∣, then E = F{T/r,U/r−1}/(TU − 1) is again an
ultrametric field and GrE = (Gr F)[T±] with T placed in degree r. Now consider a
homomorphism as in (b), and put AE = A⊗̂FE and BE = B⊗̂FE. Then on one hand,
GrAE = (GrA) ⊗Gr F GrE. On the other hand, if we put BGr

E = BGr ⊗Gr F GrE, then
BGr
E is integrally closed, (AE ,GrAE) → (BE ,BGr

E ) again represents a rational subspace
of Spra(AE ,GrAE) (described by the same parameters), and BGr

E = GrBE if and only
if BGr = GrB. We may thus reduce (b) to Theorem 9.5(b).
To prove (c), we treat only the case of i, the case of j being similar (and easier). It

suffices to check that for V ⊆ U an inclusion of rational subspaces of Spra(A,GrA)

with i−1(U) = i−1(V ), we must have U = V . Let (A,GrA) → (B,BGr) → (C,CGr)

be the representing homomorphisms. By (b), BGr = GrB and CGr = Gr C, so it
suffices to check that B = C. However, for any ultrametric field E containing F, by
[21], Lemma 2.2.9 we can check that B → C is an isomorphism by checking that
B⊗̂FE → C⊗̂FE is an isomorphism. As in (b), we may thus reduce to the case where
U ,V are strictly rational subspaces; in this case we may appeal directly to [21],
Corollary 2.5.13 to conclude.
The proofs of (d) and (e) are similar, so we omit the former. To prove (e), note

that i is spectral and M(A) admits a basis of quasicompact open subsets for the
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special G-topology each of which is the inverse image of a quasicompact open sub-
space of Spra(A,GrA). By (c), i also has dense image under the patch topology on
Spra(A,GrA). By Remark 1.12, we obtain a natural isomorphism Spec(D(M(A))) ∼=
Spra(A,GrA), as desired.

Remark 9.7. The map j is injective when F has nontrivial norm (see Remark 6.12),
but may not be injective when the norm on F is trivial (see Example 10.4).

Remark 9.8. The conclusion of Theorem 9.5(b) holds also for affinoid subdomains;
see [21], Proposition 2.5.14(a). One may similarly extend Theorem 9.6(b) to affinoid
subdomains; we omit futher details.

Remark 9.9. As in Remark 2.9, the arguments found in [16] in the direction of
Theorem 9.5 rely on elimination of quantifiers in the first-order theory of algebraically
closed valued fields (ACVF); see especially the proof of [16], Theorem 4.1. One
can take a similar approach to Theorem 9.6 by establishing elimination of quanti-
fiers in the theory of algebraically closed reified valued fields (which we propose to
call ACRVF); this should follow easily from the corresponding result for ACVF since
one is simply adding one constant to the language corresponding to the image of
each positive real number in the value group. (A distinct but possibly related theory
is the theory ACV2F of [15], §8.) On the other hand, it is also possible to deduce
Theorem 9.6 directly from elimination of quantifers in ACVF, by making a base exten-
sion from F to a suitably large overfield as in the proof of Lemma 7.2; this approach
is the one taken in [7].

10 Closed unit discs
We illustrate the previous discussion by making all of the constructions explicit in a
simple but instructive case. The reader may find it useful to contrast this situation
with the corresponding picture in the case of adic spectra ([23], Example 2.20).

Example 10.1. Let K be an algebraically closed ultrametric field with residue field
k, and equip A = K[T] with the Gauss norm. The structure of M(A) is well-known;
it is a contractible space which is an inverse limit of finite trees. A detailed treatment
can be found in [1], Chapter 1; here, we only mention that each point of M(A) is
of exactly one of the following types. (This labeling is due to Berkovich; see [2],
Proposition 1.4.4.)
1. A semivaluation factoring through A/m for some maximal ideal m.
2. The ρ-Gauss valuation on K[T − z] for some z ∈ K and some ρ ∈ (0, 1]∩|K×|.

(This includes the Gauss valuation, for which ρ = 1; the corresponding point is
called the Gauss point or maximal point.)

3. The ρ-Gauss valuation on K[T − z] for some z ∈ K and some ρ ∈ (0, 1] \|K×|.
4. None of the above. Any such valuation can be interpreted as the infimum of

the supremum valuations over a decreasing sequence of closed discs with empty
intersection.

For any choice of A+, the natural map M(A) → Spa(A,A+) is injective (see
Remark 9.7). The points not in the image form a fifth type.
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5. A valuation of rank 2 which specializes a point of type 2.
To describe these points more explicitly, choose x ∈ M(A) of type 2 for some partic-
ular z, ρ. The residue field kx of H(x) can then be identified with k(T) with T being
the class of (T − z)/λ for some λ ∈ K with |λ| = ρ. This defines an identification
of kx with the function field of P1

k , but this identification can be modified by chang-
ing the choices of z, λ; consequently, only the point at infinity on P1

k is distinguished.
What we can do canonically is to identify the finite places of kx with the branches
of M(A) below x; each such place then defines a discrete valuation on kx, which we
may compose with x to form a reified valuation of rank 2 specializing x. (For exam-
ple, the branch of M(A) at x containing the type 1 point defined by the ideal (T − z)
corresponds to a specialization of x in which the valuation of (T − z)/λ changes from
being equal to 1 to being infinitesimally smaller than 1.) If x is not the Gauss point,
then the infinite place of kx corresponds to the branch of M(A) above x, and we
similarly obtain one more type 5 point specializing x. By contrast, if x is the Gauss
point, one gets additional points of type 5 specializing x if and only if A+ �= A◦; see
Example 10.3 for a typical example.
For any choice of AGr whose r = 1 component equals A+/A◦◦, there is also a natural

map Spa(A,A+) → Spra(A,AGr). The complement of the image of this map consists
of points of a sixth type.
6. A valuation of rank 2 which specializes a point of type 3.
For x of type 3, there are exactly two points of type 6 specializing to x, corresponding
to the branches of M(A) above and below x. To wit, if x is defined by some z, ρ, then
T − z has valuation equal to ρ according to x, but infinitesimally larger or smaller
than ρ according to the specializations.

Remark 10.2. The difference between Spra(A,AGr) and the rational subspace {v ∈
Spra(A,AGr) : v(T) ≤ 1} consists only of those points of type 5 specializing the Gauss
point not corresponding to branches below x. In particular, M(A) does not meet this
difference.

Example 10.3. In Example 10.1, the ring GrA may be identified with the polyno-
mial ring (GrK)[T] with T placed in degree r = 1. Under this identification, take
AGr = GrK ⊂ GrA. Let � be the reified value group of the valuation on K, and let �′

be the lexicographic product � × R equipped with the reification inherited from �.
Then Spra(A,AGr) contains a unique reified valuation v with values in �′ extending
the valuation on K and sending T to (0, 1); this is a type 5 point of Spra(A,AGr) not
corresponding to a branch below the Gauss point and not satisfying v(T) ≤ 1.

Example 10.4. Keep notation from Example 10.1, but now with the trivial norm
on K. In this case, the structure of M(A) is simpler: the tree consists of branches
corresponding to elements of K, meeting at the Gauss point. The lower endpoints of
each branch is of type 1; the Gauss point is of type 2; other points are of type 3.
There is again an embedding M(A) → Spra(A,AGr); the complement of its image
consists of points of types 5 (specializing the Gauss point) and 6 (two for each type 3
point). However, one cannot fit Spa(A,A◦) in between; it arises from Spra(A,AGr) by
removing the type 6 points, then collapsing the interior of each branch to a point.
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11 Perfectoid algebras and their spectra
To conclude, we quickly redevelop the theory of perfectoid algebras in the context
of reified adic spectra, following [21]. (See [23] and [11] for other treatments.)
Throughout §11, fix a prime number p.

Definition 11.1. By a perfect uniform affinoid Banach algebra over Fp, we will mean
an affinoid seminormed ring (R�,RGr) such that R� is a perfect (i.e., the Frobenius
map is bijective) uniform Banach algebra over Fp (viewed as an ultrametric field
using the trivial norm). Note that this forces RGr to also be perfect. Note also that R�

cannot be both perfect and noetherian unless it is a finite direct sum of perfect fields.

Theorem 11.2. Let (R�,RGr) be a perfect uniform affinoid Banach algebra over Fp.
Let f : (R�,RGr) → (S�, SGr) be a morphism of affinoid seminormed rings satisfying one
of the following conditions.

(a) The morphism f represents a rational subspace of Spra(S�, SGr).
(b) The homomorphism R� → S� is finite étale and SGr is the integral closure of

RGr in Gr S�.
Then (S�, SGr) is also a perfect uniform affinoid Banach algebra over Fp. In particular,

(R�,RGr) is really stably uniform, hence sheafy by Theorem 8.3.

Proof. Part (a) is proved as in [21], Proposition 3.1.7. Part (b) is a consequence of
[21], Theorem 3.1.15.

Definition 11.3. A uniform affinoid Banach algebra (A�,AGr) over Qp is perfectoid
if for all r ∈ R+ and x ∈ A+,r, there exists y ∈ A�,◦,r1/p such that x − yp ∈ A+,r/p. Note
that this forces y ∈ A+,r1/p because AGr is integrally closed.

Lemma 11.4. A uniform affinoid Banach algebra (A�,AGr) over Qp is perfectoid if
and only if it satisfies the following conditions.

(a) The Frobenius map on A�,◦/(p) is surjective.
(b) There exists x ∈ A�,◦ with xp − p ∈ p2A�,◦.

In particular, the perfectoid condition depends only on A� and is consistent with the
definition in [21].

Proof. As in [21], Proposition 3.6.2(d).

Definition 11.5. Given a uniform affinoid Banach algebra (A�,AGr) over Qp, we
may construct a perfect uniform affinoid Banach algebra (R�,RGr) over Fp as follows.
Define the underlying multiplicative monoid R� to be the inverse limit of A� under
the p-power map. We define the addition on R� by the formula

(xn)n + (yn)n =
(
lim

m→∞(xm+n + ym+n)
pm

)
n
.

One checks easily that this gives R� the structure of a perfect uniform Banach algebra
over Fp with respect to the norm |(xn)n| = |xn|. Similarly, define the underlying mul-
tiplicative monoid RGr to be the inverse limit of AGr under the p-power map; again,
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one checks easily that this gives (R�,RGr) the structure of a perfect uniform affinoid
Banach algebra over Fp.

Definition 11.6. Let (R�,RGr) be a perfect uniform affinoid Banach algebra over
Fp. An element z = ∑∞

n=0 pn[ zn]∈ W (R+) is primitive of degree 1 if the following
conditions hold:

z0 ∈ R�,× ∩ R+,1/p, z−1
0 ∈ R+,p, z1 ∈ (R+)×.

In this case, we can form a uniform affinoid Banach algebra (A�,AGr) over Qp by
setting A� = W (R+)[ [ z]−1 ] /(z) and taking AGr,r to be the image of R+,r under the
composition of the Teichmüller map R� → W (R+)[ [ z]−1 ] with the projection to
GrA�.
Conversely, with notation as in Definition 11.5, the map θ : W (R+) → A+ induced

by the multiplicative map R+ → A+ taking (xn)n to x0 is surjective and its kernel is
principal with a generator which is primitive of degree 1 ([21], Lemma 3.6.3).

Theorem 11.7. The constructions of Definitions 11.5 and 11.6 define quasi-inverse
functors which give equivalences of categories between the category of perfectoid uniform
affinoid Banach algebras A over Qp and pairs (R, I) where R = (R�,RGr) is a perfect
uniform affinoid Banach algebra over Fp and I is an ideal of W (R+) generated by an
element which is primitive of degree 1.

Proof. As in [21], Theorem 3.6.5.

Definition 11.8. Suppose that A and (R, I) correspond as in Theorem 11.7. Then A
is an ultrametric field if and only if R is; consequently, in general we obtain a natural
bijection Spra(A) → Spra(R).

Theorem 11.9. Suppose that A and (R, I) correspond as in Theorem 11.7.
(a) The map Spra(A) → Spra(R) is a homeomorphism.
(b) For U ⊆ Spra(A) and V ⊆ Spra(R) which correspond, U is a rational subspace

if and only if V is.
(c) With notation as in (b), let A → B and R → S be the morphisms representing

U and V. Then B is a perfectoid uniform affinoid Banach algebra over Qp, S is
a perfect uniform affinoid Banach algebra over Fp, and B and (S, I · W (S+))

correspond as in Theorem 11.7.

Proof. As in ([21] Theorem 3.6.14).

Theorem 11.10. Suppose that A and (R, I) correspond as in Theorem 11.7.
(a) Let B� be a finite étale A�-algebra viewed as a uniform Banach algebra (see

[21], Proposition 2.8.16) and let BGr be the integral closure of AGr in GrA�.
Then B = (B�,BGr) is again a perfectoid uniform affinoid Banach algebra over
Qp.
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(b) The functors of Theorem 11.7 induce equivalences of categories of objects B as in
(a) and pairs (S, IW (S+)) where R → S is a morphism as in Theorem 11.2(b)
(so S� is a finite étale R�-algebra).

Proof. This follows from ([21] Theorem 3.6.21) and Lemma 11.4, without any
further arguments required.

Theorem 11.11. Let A → B, A → C be morphisms of perfectoid uniform affinoid
Banach algebras. Let (R, I) be the pair corresponding to A via Theorem 11.7, then apply
the correspondence to A → B, A → C to obtain morphisms R → S,R → T . Then B⊗̂AC
is again perfectoid and the map A → B⊗̂AC corresponds via Theorem 11.7 to the map
R → S⊗̂RT; moreover, the tensor product norm on B⊗AC induced by the spectral norms
on B and C coincides with the spectral norm.

Proof. This is the analogue of [21], Proposition 3.6.11, but the proof of that state-
ment is incomplete, so a corrected argument is needed. Note first that as in [21],
Example 3.6.6, both claims hold in the case

B = A{T1/ρ1, . . . ,Tn/ρn}, C = A{T ′
1/ρ

′
1, . . . ,T ′

n′/ρ′
n′ }

with

S = R{T1/ρ1, . . . ,Tn/ρn}, T = R{T ′
1/ρ

′
1, . . . ,T ′

n′/ρ′
n′ }.

We may thus reduce the general case to the case where A → B, A → C factor through
surjections B′ → B,C′ → C. Using [21], Remark 3.1.6, Lemma 3.3.9, we see that
each of these surjections is almost optimal: the quotient norm induced by the spectral
norm on the source coincides with the spectral norm on the target. We thus deduce
both claims in the general case.

Definition 11.12. A reified perfectoid space is a reified adic space over Qp which is
covered by the readic spectra of perfectoid affinoid Banach algebras over Qp. Using
Theorem 11.7, Theorem 11.9, and Theorem 11.10, we may construct a “tilting” corre-
spondence between reified perfectoid spaces and perfect uniform readic spaces over
Fp, which induces homeomorphisms of underlying topological spaces and of étale
topoi.
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