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Abstract In order to estimate the effects of a local struc-
ture on the Hubble parameter we calculate the low-redshift
expansion for H(z) and δH

H for an observer at the center
of a spherically symmetric matter distribution in the pres-
ence of a cosmological constant. We then test the accuracy
of the formulas comparing them with fully relativistic non-
perturbative numerical calculations for different cases for
the density profile. The low-redshift expansion we obtain
gives results more precise than perturbation theory since it
is based on the use of an exact solution of Einstein’s field
equations. For larger density contrasts the low-redshift for-
mulas accuracy improves respect to the perturbation theory
accuracy because the latter is based on the assumption of
a small density contrast, while the former does not rely on
such an assumption. The formulas can be used to take into
account the effects on the Hubble expansion parameter due
to the monopole component of the local structure. If the H(z)
observations will show deviations from the �CDM predic-
tion compatible with the formulas we have derived, this could
be considered an independent evidence of the existence of a
local inhomogeneity, and the formulas could be used to deter-
mine the characteristics of this local structure.

1 Introduction

The standard cosmological model is based on the assump-
tion that the Universe is homogeneous and isotropic on suf-
ficiently large scales. Nevertheless local observations could
be strongly affected by local structure as shown for example
in [1], and it is important to study its effects. The analy-
sis of luminosity density data [2] has provided some strong
experimental evidence supporting the existence of local inho-
mogeneities, but it would be important to confirm it using

a e-mail: aer@physics.uoc.gr

another observable such as the baryonic acoustic oscillations
(BAO) measurements [3–8]. The BAO scale allows in fact to
determine the expansion rate of the Universe H(z) indepen-
dently from the luminosity distance and as such provides an
important source of information as regards our Universe. If
the H(z) estimations obtained from BAO observations data
will show deviations from the �CDM predictions this could
be considered an independent evidence of the existence of
local inhomogeneities. This motivates the calculation of a
low redshift formula for H(z), able to take into account the
effects of inhomogeneities which cannot be fully modeled
with perturbation theory, as some of the inhomogeneities
found for example in [2]. A low-redshift expansion based
on the use of exact solutions of Einstein’s equations is in fact
valid also for large values of the density contrast or of the
gravitational potential.

The effects of a local inhomogeneity on cosmological
observations have been studied already for different cases
[1,9–30] such as the equation of state of dark energy or
the luminosity distance [18,19,23]. It has been shown for
example that the value of the cosmological constant could be
affected significantly by the presence of local inhomogene-
ity seeded by primordial curvature perturbations [9], which
could also lead to the wrong conclusion of a varying equation
of state for dark energy while only a cosmological constant
is present [19]. The origin of these effects is that spatial inho-
mogeneities can change the energy of the propagating pho-
tons, contaminating the cosmological redshift due to the Uni-
verse expansion and consequently introducing some errors in
the estimation of parameters based on cosmological models
which ignore the effects of the inhomogeneities.

In this paper we will focus on the low-redshift effects of
inhomogeneities on the Hubble expansion parameter, adopt-
ing an analytical approach based on the use of an exact solu-
tion of Einstein’s equations to model the local structure. We
first derive the redshift expansion of the geodesics equations
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and use it to obtain the expansion of H(z). We then compute a
formula for δH

H , the relative difference between the �CDM
and the inhomogeneous case. Finally we compare the for-
mulas with the numerical calculations based on the integra-
tion of the Einstein’s equation and the geodesics equations,
finding good agreement. We also check that the low-redshift
expansion formulas are more precise than the perturbative
calculation, especially when the density contrast is larger.

2 Modeling the local Universe

We use the LTB solution to model the monopole component
of the local structure [31–35]

ds2 = −dt2 + (R′(t, r))2dr2

1 + 2 E(r)
+ R(t, r)2d�2, (1)

where R is a function of the time coordinate t and the radial
coordinate r , E(r) is an arbitrary function of r , and R′(t, r) =
∂r R(t, r). The Einstein equations imply that
(
Ṙ

R

)2

= 2E(r)

R2 + 2M(r)

R3 + �

3
, (2)

ρ(t, r) = 2M ′

R2R′ , (3)

where M(r) is an arbitrary function of r , Ṙ = ∂t R(t, r), and
we choose a system of units in which c = 8πG = 1.

To compute H(z) we need to solve the radial null
geodesics [36]

dr

dz
=

√
1 + 2E(r(z))

(1 + z)Ṙ′[t (z), r(z)] , (4)

dt

dz
= − R′[t (z), r(z)]

(1 + z)Ṙ′[t (z), r(z)] , (5)

and then we substitute in the formula for the Hubble param-
eter in a LTB space [37,38]

H(t, r) = 2

3
H⊥(t, r) + 1

3
H‖(t, r), (6)

H(z) = H(t (z), r(z)), (7)

where

H⊥(t, r) ≡ Ṙ(t, r)

R(t, r)
, (8)

H‖(t, r) ≡ Ṙ′(t, r)
R′(t, r)

. (9)

The analytical solution can be derived [39,40] introducing
a new coordinate η = η(t, r), and new functions ρ0(r) and
k(r) given by

∂η

∂t

∣∣∣
r

= r

R
= 1

a
, (10)

ρ0(r) = 6M(r)

r3 , (11)

k(r) = −2E(r)

r2 . (12)

We will adopt, without loss of generality, the coordinate sys-
tem in which ρ0(r) is a constant, the so called FLRW gauge.
We can then express Eq. (2) in the form
(

∂a

∂η

)2

= −k(r)a2 + ρ0

3
a + �

3
a4. (13)

The coordinate η, which can be considered a generalization
of the conformal time in a homogeneous FLRW Universe, is
defined implicitly by Eq. (10). The relation between t and η

is obtained by integrating Eq. (10) and is given by [26]

t (η, r) =
∫ η

0
a(x, r) dx + tb(r), (14)

where tb(r) is a functional constant of integration called the
bang function, since it corresponds to the fact that in these
models the scalar factor can vanish at different times at dif-
ferent locations. We will consider models with tb(r) = 0.
The solution of Eq. (13) can then be written in the form

a(η, r) = ρ0

k(r) + 3℘(
η
2 ; g2(r), g3(r))

, (15)

where ℘(x; g2, g3) is the Weierstrass elliptic function and

g2(r) = 4

3
k(r)2, g3(r) = 4

27
(2k(r)3 − �ρ2

0 ). (16)

In terms of η and a(η, r) the radial null geodesics and the
Hubble parameter are given by [12]

dη

dz
= −∂r t (η, r) + G(η, r)

(1 + z)∂ηG(η, r)
, (17)

dr

dz
= a(η, r)

(1 + z)∂ηG(η, r)
, (18)

H(η, r) = H(t (η, r), r), (19)

where

G(η, r) ≡ R,r√
1 + 2E(r)

= [∂r (a(η, r)r) − a−1∂η(a(η, r)r)∂r t (η, r)]√
1 − k(r)r2

.

(20)

The function G(η, r) has an explicit analytical form, making
the above geodesics equations particularly suitable for a low-
redshift expansion.

3 Low-redshift expansion of the Hubble parameter
H(z)

In order to obtain a low-redshift formula for the Hubble
parameter we expand the function k(r) as

k(r) = k0 + k1r + k2r
2 + · · · , (21)
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We also need an expansion for t (η, r), which can be obtained
from the exact solution for a(η, r) according to

t (η, r) = t0(r) + a(η0, r)(η − η0)

+ 1

2
∂ηa(η0, r)(η − ηo)

2 + · · · , (22)

where we defined the function t0(r) by

t0(r) ≡ t (η0, r). (23)

Using the properties of the Weierstrass elliptic functions ℘, ζ ,
and σ [41] we can compute the integral in Eq. (14), obtaining

t (η, r) = 2ρ0

3℘′
(
℘−1

(
− k(r)

3

))
⎡
⎣ln

⎛
⎝σ

(
η
2 − ℘−1

(
− k(r)

3

))

σ
(

η
2 + ℘−1

(
− k(r)

3

))
⎞
⎠

+ ηζ

(
℘−1

(
−k(r)

3

)) ⎤
⎦ , (24)

where ℘′ is the derivative of the Weierstrass elliptic function
℘. ℘−1, ζ , and σ are defined by the equations

℘−1 (℘ (x)) = x, (25)

ζ ′ (x) = −℘ (x) , (26)
σ ′ (x)
σ (x)

= ζ (x) . (27)

The use of the exact expression for t (η, r) improves the accu-
racy for the expansion for the geodesics with respect to pre-
vious calculations [23], which were based on a perturbative
expansion of t0(r), rather than the use of the exact value.

Now we can find the low redshift Taylor expansion for the
geodesic equations [19], and then we calculate the Hubble
parameter. We expand the solution of the geodesic equations
according to

r(z) = r1z + r2z
2 + r3z

3 + · · · , (28)

η(z) = η0 + η1z + η2z
2 + · · · . (29)

After substituting the above expansion in the geodesic equa-
tions we can map the solution of the system of differential
equations into the solution of a system of algebraic equa-
tions for the coefficients of the expansion. Here we give the
formulas for the case in which k0 = 0, which is enough
to understand qualitatively the effects of the inhomogeneity.
The term k0 corresponds in fact to the homogeneous com-
ponent of the curvature function, which in the absence of
inhomogeneities is simply the curvature of a FLRW model
and as such is not associated to any new physical effect not
already known from standard cosmology.

For the geodesics we get

η1 = − 1

a2
0 H0

[a0 + t ′0(0)], (30)

η2 = 1

12a3
0 H

2
0 �M

[a0H0t
′
0(0)(3�M (9�M − 4) − 8K1)

+ a2
0 H0(9�2

M − 4K1)

+ 6�M (3H0(�M − 1)t ′0(0)2 − t ′′0 (0))], (31)

r1 = 1

a0H0
, (32)

r2 = 1

12a2
0 H0�M

[a0(4K1 − 9�2
M )

+ 6(2 − 3�M )�Mt ′0(0)], (33)

r3 = 1

72a3
0 H

2
0 ���2

M

[a2
0 H0(4K

2
1 (2��

+ ζ0(2 − 3�M ) + �M ) − 60K1���2
M

+ 3���M (8K2 + 3(9�M − 4)�2
M ))

− 36a0H0���M t0′(0)(K1(4�M − 2)

+ (8 − 9�M )�2
M ) + 18���2

M

× (6H0(3�2
M − 4�M + 1)t ′0(0)2 + (2 − 3�M )t ′′0 (0))],

(34)

where �M , ��, T0, and Kn are dimensionless quantities
given by [16]

ρ0 = 3�Ma3
0H

2
0 , (35)

� = 3��H2
0 , (36)

T0 = η0 (a0H0) , (37)

Kn = kn(a0H0)
n+2. (38)

We have also used the following definitions:

a0 = a(η0, 0), (39)

H0 = H(η0, 0), (40)

ζ0 = ζ

(
T0

2
; 4K 2

0

3
,

4

27

(
2K 3

0 − 27���2
M

))
, (41)

where ζ is the Weierstrass zeta function. As we can see in
the above formulas the effects of the inhomogeneity start to
show, respectively, at first order for η(z) and second order
for r(z).

In order to obtain a formula for the Hubble parameter as
a function of the redshift we need to substitute Eqs. (17) and
(18) in Eq. (19),

H(z) = H(η(z), r(z)). (42)

After expanding up to second order in z we get

H(z) = H0 + H1z + H2z
2, (43)

H1 = 1

2
H0�M

(
4t ′0(0)

a0
+ 3

)
, (44)

H2 = 1

72a2
0���M

[a2
0 H0(20(ζ0 − 1)K 2

1

+ 48K1���M + 27��(4 − 3�M )�2
M )

+ 6a0H0���Mt ′0(0)(20K1 + 9(8 − 5�M )�M )
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Fig. 1 We plot t ′0(0) as a function of K1. This is the quantity deter-
mining the leading order effect for δH

H as shown in Eq. (51)

+ 18���2
M (H0(25 +

− 12�M )t ′0(0)2 + 5t ′′0 (0))]. (45)

The procedure to reduce the analytical formula to this form is
rather complicated since it involves the expression wherever
possible of all the intermediate terms of physically meaning-
ful quantities using the properties of the Weierstrass elliptic
functions [41]; we give more details in Appendix A.

As we can see from the first order coefficient H1, the lead-
ing order in t ′0(0) determines the sign of the correction with
respect to the homogeneous case, and for this reason we plot
t ′0(0) as a function of K1 in Fig. 1. At second order we have
a more complicated dependency for H2, which involves also
K2 and t ′′0 (r).

We can easily interpret the linear behavior shown Fig. 1,
applying the chain rule for the derivative

t ′0(0) = ∂t0(r)

∂k

∂k

∂r

∣∣∣
r=0

= αK1, (46)

α = (a0H0)
−3 ∂t0(r)

∂k

∣∣∣
k=k0

≈ −0.57. (47)

4 Relative difference of H(z) with respect to the
homogeneous case

For a flat FLRW solution the expansion rate is given by

HFLRW(z) = H0

√
�M (1 + z)3 + ��. (48)

Since we want to compare the inhomogeneous case with the
flat FLRW case we define the relative difference as

δH(z)

H
= H�LT B(z)

HFLRW(z)
− 1, (49)

where we denote by H�LT B(z) the expansion rate defined
in Eq. (42).

We can now expand the above expression at low redshift
to get

δH(z)

H
= δH1

H
z + δH2

H
z2 + · · · , (50)

δH1

H
= 2�Mt ′0(0)

a0
= 2α�M

a0
K1, (51)

δH2

H
= 1

36a2
0 H0���M

[2a2
0 H0K1(5(ζ0 − 1)K1

+ 12���M ) + 3a0H0���Mt ′0(0)(20K1

+ 9(8 − 9�M )�M ) + 9���2
M

× (H0(25 − 12�M )t ′0(0)2 + 5t ′′0 (0))]. (52)

It is straightforward to verify that in the homogeneous limit,
when K0 = K1 = K2 = 0, as expected, δH1 = δH2 = 0,
since t ′0(0) = t ′′0 (0) = 0. From the expression for δH1

H the
crucial role played by t ′0(0) is clear, which determines the
sign of the relative difference at leading order in the redshift,
and according to Eqs. (46) and (47) it is proportional to K1.

Using Eq. (47) we can also see that for a fixed K0 the sign
of K1 determines the sign of δH1

H at very low redshift when
the second order contributions can be neglected. This is in
good agreement with Figs. 3 and 4, which show an approx-
imate linear behavior with opposite slope, corresponding to
different values of K1.

4.1 Testing the accuracy of the formulas

In order to test the accuracy of the analytical formulas and
compare it with perturbation theory we perform numerical
calculations using LTB solutions corresponding to the den-
sity contrasts shown in Fig. 2. Using large density contrasts
we can test the limit of the perturbation theory results and
compare them with the low-redshift expansion.

As seen in Figs. 3 and 4 the analytical formula for the
relative difference of H(z) with respect to the homogeneous

Fig. 2 The density contrast δ = δρ
ρb

is plotted as a function of the
redshift for three different inhomogeneities profiles modeled by LTB
solutions
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Fig. 3 The relative difference
with respect to the homogeneous
case δH(z)

H is plotted as a
function of the redshift for three
different density contrasts. The
colors correspond to the density
contrasts in Fig. 2. The solid
lines are for the numerical
calculation, the dashed lines are
for the analytical formulas, and
the dot-dashed lines are for the
perturbation theory result

Fig. 4 The relative percentual
difference
(z) = 100 δH/H−(δH/H)num

(δH/H)num of
δH/H with respect to the
numerical results is plotted as a
function of the redshift for the
analytical formula (dashed) and
for perturbation theory
(dot-dashed). The colors
correspond to the density
contrasts in Fig. 2. As can be
seen the low-redshift formula is
always better, especially for
larger density contrasts

case is in good agreement with δH(z)
H obtained by integrat-

ing numerically the geodesics and background equations and
is more accurate than the perturbation theory. From Fig. 4
in particular we can see that the agreement with the exact
numerical calculation for the redshift expansion is in general
better than that of the perturbation theory result. For larger
density contrasts, as expected, the perturbative calculation is
increasingly inaccurate while the red-shit expansion is still
in good agreement with the exact numerical result, since
it does not rely on the assumption of a small density con-
trast. This is due to the fact that perturbation theory is based
on the assumption that δρ/ρ � 1, while the low-redshift
expansion is based on an exact solution of the Einstein
equations.

5 Conclusions

We have derived a low-redshift analytical formula for the
Hubble parameter for an observer at the center of a spheri-
cally symmetric matter distribution, using an exact solution
of Einstein’s field equations. Such a formula is in good agree-
ment with numerical calculations and is more accurate than
the perturbation theory result, especially for large density
contrasts. This is due to the fact that perturbation theory is
based on the assumption that δρ/ρ � 1, while the low-
redshift expansion is based on an exact solution of the Ein-
stein equations.

If the H(z) observations will show deviations from the
�CDM predictions compatible with the formulas we have
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derived, this could be considered an independent evidence
of the existence of a local inhomogeneity, and the formulas
could be used to determine the characteristics of this local
structure.

While the expansion for r(z) depends on our choice of
radial coordinate, the formulas for the H(z) are independent
of it, since both H and the redshift are physically observable
quantities and as such are independent of the gauge choice.
Since in the derivation of the formulas the inhomogeneity
profile is determined by the coefficients of the expansion of
the function K (r), there is still some coordinate dependency
left in the way we parameterize the inhomogeneity. While our
choice of gauge is quite natural, since in the FRW gauge, cor-
responding to ρ0(r) = const, the radial coordinates reduces
to the radial FRW comoving coordinate in the limit in which
the function k(r) goes to zero, a totally coordinate indepen-
dent formula would still be preferable. For this reason in the
future it will be interesting to derive formulas which are com-
pletely independent of the choice of the coordinate system,
parameterizing the inhomogeneity in terms of the redshift
expansion of the density ρ(z), which is a physical observ-
able, instead of using the expansion of K (r).
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Appendix A: Derivation of the analytical formula

In order to obtain the formula for the redshift expansion of
H(z) we have applied several manipulations and substitu-
tions. The method is based on re-expressing everything in
terms of physical quantities, starting from the definitions of
a0 and H0, which are related to ℘ and ℘′ by the equations

a0 ≡ (η0, 0) = ρ0

k0 + 3℘0
, (53)

H0 ≡ H(η0, 0) = −3℘′
0

2ρ0
, (54)

where

℘0 = ℘(η0; g2(0), g3(0)), (55)

℘′
0 = ∂℘ (η; g2(0), g3(0))

∂η

∣∣∣
η=η0

. (56)

By inverting the previous equations we obtain the following
relations:

℘0 = ℘(η0; g2(0), g3(0)) = ρ0 − a0k0

3a0
, (57)

℘′
0 = ∂℘ (η; g2(0), g3(0))

∂η

∣∣∣
η=η0

= −2H0ρ0

3
. (58)

We can then substitute the above expressions everywhere ℘

and ℘′ appear, making the final formula only depending on
physical quantities such as H0. In order to simplify the results
we have also used the Einstein equation at the center (η0, 0),

1 = −K0 + �M + ��. (59)
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