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1 Introduction

In the present investigation we consider BPS bounds for N (> 2)-extended supergravity

theories, in connection with the marginal stability bound of two-center black holes (BHs).

Our analysis is mainly devoted to N > 2 theories, since a vast literature and various results

are known for the N = 2 case (see e.g. [1]-[12, 13]; for studies on N > 2, see e.g. [14, 21]).

Within this latter framework, the most popular application is provided by Calabi-Yau

compactifications of (type II) superstrings. This led to the discovery of the phenomenon

of split attractor flow for multi-center BHs [1], which are stable BPS solutions, possibly

decaying into single center BHs when the scalar flow cross the wall of marginal stability

(besides refs. cited above, see also e.g. [22–26]).

In this note we first extend the BPS bound to situations in which the central charge

is an antisymmetric complex matrix ZAB (φ,Q) rather than a complex function. For BPS

configurations, as well as for some non-BPS ones, this is achieved by exploiting Cauchy-

Schwarz triangular inequalities for matrix norms of various type (see e.g. [27, 28]). For

instance, in the more familiar case of BPS bound, the so-called spectral norm of ZAB

is used.

Interestingly, in some N = 2 as well as N > 2 theories, we find double-center non-BPS

BH solutions which exhibit a stability region across a wall of marginal stability. This is

ultimately due to the fact that non-BPS BHs are supported by different charge orbits; in

the case of N = 2 non-BPS solutions with positive quartic G-invariant (I4 > 0), similar

properties to BPS cases can be found. This is actually not surprising, because many non-

BPS N = 2 BH solutions may become BPS when embedded in higher N supergravities.
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In fact, our analysis, both for BPS and non-BPS cases, agrees with results on explicit

multi-center BPS and non-BPS solutions [6, 8, 9, 11, 14, 15, 19–21].

In order to use the Cauchy-Schwarz inequality, the crucial point is to associate the

first order “fake” superpotential W [29–31, 37] to some well-defined matrix norm ‖Z‖ of

the central charge matrix Z, or of some other charge matrix. Clearly, when this procedure

is possible also for non-BPS states, the matrix norm under consideration will be different

from the spectral norm ‖Z‖s which, as mentioned above, pertains to BPS states.

The paper is organized as follows.

In section 2 we discuss the BPS marginal stability in N -extended supergravity by using

the spectral norm of ZAB. Then, within N = 8 maximal theory, we derive a manifestly

U -duality invariant expression for the marginal stability wall, as well as for the stability

equation fixing the relative distance between the two centers of the solution in terms of

moduli φ and charges Q (with resulting non-vanishing overall angular momentum).

In section 3 we consider several examples in N = 2 and N > 2 supergravity, in which

the results derived in section 2 hold for non-BPS BHs, as well. In N = 2, these include

special Kähler geometry with Cijk = 0, as well as the non-BPS states with I4 > 0 in

theories with homogeneous symmetric vector multiplets’ scalar manifolds.

Section 4 is instead devoted to the study of the more intriguing case of non-BPS states

with I4 < 0. Most of the results of our investigation reproduce the findings of [6, 11],

namely both the two-center BH and the two one-center BHs produced by the its decay lie

on the marginal stability wall, and thus no stable region for multi-center solution exists

other than the marginal one. This is related to the fact that, in these examples, the charge

vectors Q1 and Q2 of the two centers are mutually local (namely, their symplectic product

vanishes: 〈Q1, Q2〉 = 0).

A non-BPS I4 < 0 stable double-center BHs can be found, at least in N = 8 super-

gravity. This is the case in which the Pfaffian Pf (Z) is real, thus with phase ϕ = π,

all along the attractor flow. In fact, under this assumption, the non-BPS “fake” super-

potential WnBPS can be associated to the so-called trace norm of Z itself. On the other

hand, as recently shown in [38, 39], multi-center non-BPS BHs with constrained positions

of the centers and I4 < 0 (and therefore non-BPS also when uplifted to N = 8) have been

explicitly constructed. It would be interesting to investigate the occurrence of the split

attractor flow in this framework.

2 BPS bounds and matrix norms

We here consider the generalization of the BPS bound as well as of the Cauchy-Schwarz

triangle inequality, which is at the basis of the concept of marginal stability. In order

to study this problem, we make a small prelude on matrix norms (see e.g. [27, 28] for

further details).

2.1 Matrix norms

Given a complex rectangular n × m matrix Z, its matrix norm ‖Z‖ is a consistent gener-

alization of the concept of vector norm, satisfying by definition the following properties:
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‖Z‖ > 0 (= 0 iff Z = 0); ‖αZ‖ = |α| ‖Z‖ ∀α ∈ C; and

‖Z1 + Z2‖ 6 ‖Z1‖ + ‖Z2‖ . (2.1)

In our treatment, we will be mainly concerned of three types of norms, which are

particular cases of the so-called Schatten p-norms. Such matrix norms are defined as the

norms of the real vector σ of the singular values of a square n × n matrix Z (which are

nothing but the absolute values of the eigenvalues of Z itself: σ ≡{σi}i=1,..,n):

‖Z‖p ≡
(

∑

i

σp
i

)1/p

. (2.2)

Namely, we will consider the following norms:

1. Spectral norm. Starting from the square matrix Z, one can define the positive semi-

definite matrix ZZ†, whose real positive eigenvalues λi’s (i = 1, ...,m) are the squared

singular values of Z itself: λi = σ2
i . The spectral norm ‖Z‖s of Z is defined as the

maximum norm of the vector σ:

‖Z‖s ≡ ‖σ‖∞ ≡ max {σi} ≡
√

λh, (2.3)

where λh is the highest eigenvalue of the matrix ZZ†. The spectral norm is formally

obtained as the p → ∞ limit of the Schatten matrix p-norm (2.2).

2. Frobenius norm. The Frobenius norm ‖Z‖F of the square matrix Z is defined as the

Euclidean norm of the vector σ :

‖Z‖F ≡ ‖σ‖2 ≡
√

∑

i

λi ≡
√

Tr
(

ZZ†
)

. (2.4)

The Frobenius norm is actually a Schatten matrix 2-norm. As a particular case in

which the matrix Z degenerates to complex vector ZI , we will also consider the usual

Euclidean norm of ZI (I = 1, ...,m) itself, defined as

‖ZI‖2 ≡
√

ZIZ
I
. (2.5)

3. Trace (or nuclear) norm. The trace norm ‖Z‖∗ of the square matrix Z is defined as

the 1-norm of the vector σ:

‖Z‖∗ ≡ ‖σ‖1 ≡
∑

i

√

λi ≡ Tr
(√

ZZ†
)

. (2.6)

The trace norm is actually a Schatten matrix 1-norm.

The crucial property of all these norms is the Cauchy-Schwarz triangle inequality (2.1),

wich we will exploit in order to study the marginal stability of double-center BH configu-

rations, in the case in which the (spatial asymptotical limit of the) relevant matrix norm

‖Z‖ is associated to the ADM mass MADM [40] of the BH solution itself.
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The equivalence of the spectral and Frobenius matrix norms is expressed by the fol-

lowing chain of inequalities:

‖Z‖s 6 ‖Z‖F 6
√

rank (Z) ‖Z‖s . (2.7)

Let us specify (2.7) for Z being the central charge matrix of N = 8, d = 4 supergravity. In

this case, rank (Z) = 8, and

‖Z‖F =

√

√

√

√2

4
∑

i=1

λi =
√

2VBH , (2.8)

where VBH is the BH effective potential. Furthermore, due to the antisymmetry of Z

itself, the Bloch-Messiah-Zumino Theorem [41] implies the eigenvalues of Z and ZZ† to be

pairwise; thus, for Z the chain of inequalities (2.7) can be made more strict:

‖Z‖s 6
‖Z‖F√

2
6

√

rank (Z)

2
‖Z‖s . (2.9)

(2.9) can be rewritten as
√

λh 6
√

VBH 6 2
√

λh ⇔ λh 6 VBH 6 4λh. (2.10)

This can be extended to the non-BPS case, by noticing that the first order “fake” super-

potential WnBPS satisfies the bound

‖Z‖s < WnBPS 6
‖Z‖F√

2
6 2 ‖Z‖s , (2.11)

where the first upper bound on WnBPS is due to eq. (2.17) further below. If one further

applies (2.9) to the quantity WnBPS (φ,Q1 + Q2) and uses the triangle inequality for ‖Z‖s,

the following non-BPS inequality is obtained:

WnBPS (φ,Q1 + Q2) 6 2 ‖Z (φ,Q1 + Q2)‖s 6 2 [‖Z (φ,Q1)‖s + ‖Z (φ,Q2)‖s]

< 2 [WnBPS (φ,Q1) + WnBPS (φ,Q2)] . (2.12)

In the spatial asymptotical limit, (2.12) is an upper limit for the two-center ADM mass in

terms of the ADM masses of the single-center constituents. Note that (2.12) is twice the

marginal stability bound, and in some cases it overestimates the actual bound. Indeed, for

N < 8 non-BPS BHs with I4 > 0 (see section 3 further below) the bound satisfied by the

corresponding first order “fake” superpotential WI4>0 is a triangle inequality:

WI4>0 (φ,Q1 + Q2) 6 WI4>0 (φ,Q1) + WI4>0 (φ,Q2) (2.13)

as in the BPS cases, implying that a stability region for double-center solutions exists in

this case.

It is also interesting to compare (2.11) with the chain of inequalities obtained in [43].

The lowest bound of (2.11) holds for BPS saturation (W 2 = λh = ‖Z‖2
s), while its highest

bound is reached at non-BPS I4 < 0 attractor points. Thus, the inequality obtained in [43]

is nothing but the equivalence of the spectral and Frobenius norms of the central charge

matrix Z of N = 8, d = 4 supergravity.
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2.2 BPS Bounds and first order flows

Let us now consider Z to be the antisymmetric central charge matrix ZAB (A,B = 1, ...,N )

centrally extending the local supersymmetry algebra of an N -extended supergravity theory

in d space-time dimensions. From the Bloch-Messiah-Zumino Theorem [41, 42], the positive

semi-definite matrix ZZ† has [N/2] independent eigenvalues λi (i = 1, ..., [N/2]), and the

BPS bound reads (at spatial infinity)

MADM > λh, (2.14)

where MADM denotes the ADM mass of the considered BH state, whereas, as previously

mentioned, λh ≡ max {λi}. If the BPS bound is saturated by k equal highest eigenvalues

of Z, then the corresponding state is called k
N -BPS. In d = 4 supergravity, if k > 1

the corresponding BH solution has1 I4 = 0 and the near-horizon space-time geometry is

singular (at least in the Einsteinian approximation). Indeed, it is here worth recalling

that the absolute value of the quadratic G-invariant (if any) I2 or the square root of the

absolute value of the quartic G-invariant I4 is the critical, attractor value of W 2 of the

corresponding flow; thus, through the Bekenstein-Hawking entropy-area formula [44, 45],

in the Einstein supergravity approximation the entropy of the single-center extremal BH

solution reads [46, 47]

SBH = π
AH

4
= π W 2

∣

∣

∂W=0
= π VBH |∂VBH=0 = πI, (2.15)

where AH is the area of the BH event horizon, and I is the G-invariant (G denoting the

U -duality group), which does depend on charges, but not on scalar fields. In the theories

under consideration in the present paper, I =
√

|I4|, where I4 is the G-invariant quartic

in charges (as in N = 8 supergravity), or I = I2, where I2 is the G-invariant quadratic in

charges (as in N = 2 minimally coupled CP
n models and in N = 3 supergravity [48]).

For extremal BHs, the warp factor of the metric and the scalar flow associated with

the k
N -BPS solution are determined by the superpotential W =

√
λh, which satisfies first

order flow equations [29]:

U̇ = −eUW ; φ̇α = −2eUgαβ∂βW, (2.16)

with the effective BH potential given by

VBH = W 2 + 2gαβ (∂αW ) ∂βW. (2.17)

Note that in N = 8, (2.17) can be re-written as a differential relation between the spectral

and Frobenius norms of the central charge matrix Z:

‖Z‖2
F = 2 ‖Z‖2

s + 4gαβ (∂α ‖Z‖s) ∂β ‖Z‖s . (2.18)

The same relations hold true for non-BPS BHs for all N > 3 theories and for N = 2

models based on symmetric scalar manifolds (for generalizations beyond symmetric spaces,

1In N = 8 supergravity for k = 1 also a “small” (I4 = 0) charge orbit exists [50, 57, 58]. This orbit

gives both BPS and non-BPS “small” orbits in N = 2 theories. No “small” non-BPS orbits exist in N = 8.

– 5 –
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see e.g. [37]), provided one replaces W with the suitable non-supersymmetric first order

“fake” superpotential WnBPS [29–36]. For non-BPS BHs supported by generic charge

configurations with I4 < 0, the “fake” superpotential has a complicated expression (see

the first, second and fourth of refs. [31–36], and [37]). On the other hand, for all non-BPS

BHs with I4 > 0 the “fake” superpotential can be easily written in terms of a matrix or

vector norm of quantities linear in the charges Q. This allows for an analysis of the marginal

stability properties also for such a class of non-BPS constituents and non-BPS composites.

2.3 BPS marginal stability for N > 2

We are now going to apply the triangle inequality (2.1) of the matrix norms to the appro-

priate matrices relevant for the study of extremal BHs in N -extended supergravity theories.

As mentioned above, for BPS states, regardless their BPS fraction, the relevant object is

the N ×N complex antisymmetric central charge matrix Z ≡ Z[AB] (φ,Q), which is linear

in charges:

ZAB (φ,Q1 + Q2) = ZAB (φ,Q1) + ZAB (φ,Q2) . (2.19)

Thus, if one assumes the symplectic charge vectors Q1 + Q2, Q1 and Q2 to be all BPS,

the triangle inequality for the spectral norm ‖Z‖s defined by (2.3) yields (in the spa-

tial asymptotical limit) a bound on the ADM masses, as follows (we omit the subscript

“ADM” throughout):

M (φ∞, Q1 + Q2) 6 M (φ∞, Q1) + M (φ∞, Q2) , (2.20)

with M2 = λh, and “φ∞” denoting the spatially asymptotical values of scalar fields. The

marginal stability condition corresponds to the saturation of the bound (2.20). Such a sat-

uration defines the marginal stability wall as the (Q1, Q2)-dependent locus in the (spatially

asymptotical) scalar manifold satisfying the equation

√

λh (φ∞, Q1 + Q2) =
√

λh (φ∞, Q1) +
√

λh (φ∞, Q2) . (2.21)

By considering N = 8 supergravity, it is worth recalling that the eigenvalues of ZZ†

are solutions of the (square root of the) characteristic equation [49]

√

det
(

ZZ† − λI
)

=
4
∏

i=1

(λ − λi) = λ4 + aλ3 + bλ2 + cλ + d = 0, (2.22)

where the real coefficients a, b, c, d, as well as the explicit expressions of the λi’s are given,

in terms of Tr
(

ZZ†
)K

(K = 1, ..., 4), in [49] (see also the recent treatment in [50]).

The marginal decay of a “large” (I4 > 0) 1
8 -BPS two-center BH state into two single-

center BPS states (k1, k2 = 1, 2, 4)

1

8
-BPS “large” −→ k1

8
-BPS +

k2

8
-BPS (2.23)

can be studied by using (2.21) and the aforementioned expressions of λi’s. Examples

of (2.23) with k1 and/or k2 > 1 have been considered e.g. in [3, 9].

– 6 –
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We note that, since
√

|I4 (Q1 + Q2)| 6=
√

|I4 (Q1)|+
√

|I4 (Q2)|, the two-center solution

can have less or more entropy than the single-center solution with the same charge vector

Q1 + Q2. While the BPS single-center BH does not exist if I4 (Q1 + Q2) < 0, in the cases

discussed e.g. in [3, 9] the BPS multi-center solution has I4 (
∑

i Qi) ≷ 0, but its entropy is

always given by
∑

i

√

I4 (Qi), with I4 (Qi) > 0 ∀i.

When at least one of the final two single-center BH states is non-BPS, namely for cases

1

8
-BPS “large” −→ k1

8
-BPS + nBPS; (2.24)

1

8
-BPS “large” −→ nBPS + nBPS, (2.25)

there is no marginal decay. Indeed, due to the non-saturation of the BPS bound by one

center or both centers, it respectively holds that (at spatial infinity)

‖Z1 + Z2‖s 6 ‖Z1‖s + ‖Z2‖s <

{

M1 + ‖Z2‖s ;

M1 + M2,
(2.26)

where we use the short-hand notation Zα ≡ Z (Qα) and Mα ≡ M (Qα) (α =

1, 2) throughout.

2.4 N = 8 BPS stability conditions

Given a two-center BH solution, let us now turn to consider the formula of the relative

distance |−→x1 −−→x2| of the two single-center BH constituents with mutually non-local charges

〈Q1, Q2〉 6= 0.

In the N = 2 theory (in which ZAB = ZǫAB, A,B = 1, 2) such a distance is [3]

|−→x1 −−→x2| =
1

2

〈Q1, Q2〉 |Z1 + Z2|
Im
(

Z1Z2

) , (2.27)

where Zi ≡ Z (φ∞, Qi) (i = 1, 2), and2

2
∣

∣Im
(

Z1Z2

)
∣

∣ =

√

4 |Z1|2 |Z2|2 −
(

|Z1 + Z2|2 − |Z1|2 − |Z2|2
)2

. (2.28)

Eq. (2.27) implies the stability region for the double-center BH solution to occur for

〈Q1, Q2〉Im
(

Z1Z2

)

> 0, while it is forbidden for 〈Q1, Q2〉Im
(

Z1Z2

)

< 0. Note that the

quantity 〈Q1, Q2〉Im
(

Z1Z2

)

is even under the center exchange 1 ↔ 2. The scalar flow

is directed from the stability region towards the instability region, crossing the wall of

marginal stability at 〈Q1, Q2〉Im
(

Z1Z2

)

= 0. This implies that the stability region is placed

beyond the marginal stability wall, and on the opposite side of the split attractor flows.

2Note that Im
`

Z1Z2

´

= 0 both describes marginal and anti-marginal stability [12, 13]. Marginal stability

(at which Re
`

Z1Z2

´

> 0) further requires |Z1 + Z2|2 > |Z1|2 + |Z2|2. In the other branch |Z1 + Z2|2 <

|Z1|2 + |Z2|2, anti-marginal stability (at which Re
`

Z1Z2

´

< 0) corresponds to |Z1 + Z2| = ||Z1| − |Z2||.
All these bounds can be reformulated for N > 2 BPS states by replacing |Z| with

√
λh = ‖Z‖

s
.
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By using the fundamental identities of N = 2 special Kähler geometry in presence of

two (mutually non-local) symplectic charge vectors Q1 and Q2 (see e.g. [1, 52, 53]), one

can compute that at BPS attractor points of the centers 1 or 2:

N = 2 : 〈Q1, Q2〉 = −2Im
(

Z1Z2

)

⇒ 2 〈Q1, Q2〉 Im
(

Z1Z2

)

= −〈Q1, Q2〉2 < 0. (2.29)

By using (2.27) and (2.29), one obtains |−→x1 −−→x2| < 0: this means that, as expected, the

BPS attractor points of the centers 1 or 2 do not belong to the stability region of the

two-center BH solution. Furthermore, the result (2.29) also consistently implies:

stability region :
〈Q1, Q2〉 Im

(

Z1Z2

)

= |〈Q1, Q2〉|
√

4 |Z1|2 |Z2|2 −
(

|Z1 + Z2|2 − |Z1|2 − |Z2|2
)2

> 0;

(2.30)

instability region :
〈Q1, Q2〉 Im

(

Z1Z2

)

= − |〈Q1, Q2〉|
√

4 |Z1|2 |Z2|2 −
(

|Z1 + Z2|2 − |Z1|2 − |Z2|2
)2

< 0,

(2.31)

where a particular case of (2.31), holding at the attractor points, is given by (2.29).

By replacing |Z| with
√

λh in (2.28), the generalization of (2.27) to N = 8 maximal

supergravity reads

|−→x1 −−→x2| =
|〈Q1, Q2〉|

√

λ1+2,h
√

4λ1,hλ2,h − (λ1+2,h − λ1,h − λ2,h)2
, (2.32)

where λ1+2,h ≡ λh (φ∞, Q1 + Q2) and λi,h ≡ λh (φ∞, Qi) (i = 1, 2). Note that eq. (2.32)

is manifestly N = 8 U -duality invariant (written in terms of Tr
(

ZZ†
)K

(K = 1, ..., 4)),

and it reduces to (2.27) in the N = 2 case. It is here worth remarking that I4 of the

N = 8 theory is a (moduli independent) G = E7(7)-invariant constructed with the (moduli

dependent) H = SU(8)-invariants Tr
(

ZZ†
)K

(K = 1, 2) and Pf (Z) [46, 48, 51].

Moreover, a result similar to (2.29) holds for N = 8 supergravity, as well. Indeed, by

exploiting the N = 8 generalization of the N = 2 special geometry identities [53]

〈Q1, Q2〉 = −Im
(

Tr
(

Z1Z
†
2

))

, (2.33)

one can compute that at the 1
8 -BPS attractor points of the centers 1 or 2:

N = 8 : |〈Q1, Q2〉| =

√

4λh,1λh,2 − (λ1,h + λ2,h − λ1+2,h)2. (2.34)

However, note that 1
8 -BPS attractor points of the centers 1 or 2 do not belong to the

stability region of the two-center BH solution, but instead they are placed, with respect to

the stability region, on the opposite side of the marginal stability wall.

It is worth concluding the present section by remarking that the results (2.29)

and (2.34) are consistent with situations in which the ADM masses are always on the

– 8 –
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marginal stability wall (for a given set of charges, and within a suitable subspace of the

scalar manifold, such as vanishing axions), and then also 〈Q1, Q2〉 = 0 (mutually local

charges), thus not constraining |−→x1 −−→x2| in any way (with resulting vanishing overall an-

gular momentum). For instance, this holds for the limit (scalarless) case of Reissner-

Nördstrom double-center BH solutions in N = 2 pure supergravity. Some other cases are

discussed in section 4.

3 Marginal stability for non-BPS I2 < 0 and I4 > 0 black holes

We now consider particular non-BPS double-center BH solutions for which marginal sta-

bility walls can be discussed in full generality.

Let us start with the N = 2 theories with CP
n vector multiplets’ scalar manifolds,

namely the models in which the n vector multiplets are minimally coupled to the gravity

multiplet [54] (see also e.g. [55]). Such models all have Cijk = 0, and only one type of non-

BPS attractors, namely the ones with vanishing central charge at the horizon (ZH = 0)

and I2 < 0 (I2 denoting the quadratic G-invariant of these theories). The first order “fake”

superpotential for non-BPS ZH = 0 is nothing but the Euclidean norm (2.5) of the complex

vector of matter charges Za ≡ DaZ (a = 1, ..., n) in local flat indices [30] ((z, z) denotes

the N = 2 - or N = 6 - , d = 4 complex scalars throughout):

W (z, z;Q) =
√

gijZiZj =

√

∑

a

|Za|2 = ‖DaZ‖2 . (3.1)

Thus, due to the linearity of DaZ in the charges Q:

DaZ (z, z;Q1 + Q2) = DaZ (z, z;Q1) + DaZ (z, z;Q2) , (3.2)

the non-BPS ZH = 0 “fake” superpotential given by (3.1) satisfies the triangle inequality:

W (z, z;Q1 + Q2) 6 W (z, z;Q1) + W (z, z;Q2) . (3.3)

Since the spatial asymptotical limit of W is nothing but the ADM mass (namely M ≡
W (φ∞, Q)), it follows that the saturation of the spatial asymptotical limit of (3.3) yields

the marginal stability condition for the decay

nBPS −→ nBPS + nBPS , (3.4)

with I2 (Q1 + Q2) < 0, I2 (Q1) < 0 and I2 (Q2) < 0.

The same holds true for the unique non-BPS (“large”) charge orbit of N = 3 supergrav-

ity [56] (see also e.g. [55]). This theory also has a quadratic G-invariant I2, and a first order

non-BPS “fake” superpotential which is the Euclidean norm (2.5) of the complex vector of

matter charges ZI (I = 1, ..., nV , nV denoting the number of vector multiplets) [30]:

W (z, z;Q) = ‖ZI‖2 ≡
√

ZIZ
I
. (3.5)
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Thus, due to the linearity of ZI in the charges Q:

ZI (z, z;Q1 + Q2) = ZI (z, z;Q1) + ZI (z, z;Q2) , (3.6)

the non-BPS ZH = 0 “fake” superpotential given by (3.5) satisfies the triangle inequal-

ity (3.3), whose spatial asymptotical limit yields an analogue bound for the ADM masses.

The saturation of such a bound is the marginal stability condition for the decay (3.4).

For theories with a quartic G-invariant I4, the non-BPS charge orbit with I4 > 0

can also be discussed in a fairly general way. The crucial observation is that this orbit

is non-BPS for lower N ’s, but it becomes BPS when the model is embedded in maximal

(N = 8) supergravity. Indeed, it is worth noticing that in N = 8 supergravity, unlike

lower-N theories, the unique non-BPS charge orbit is “large” with I4 < 0 [57, 58]. Thus,

since the marginal bounds on moduli and charges are insensitive to the value of N , the

treatment of double-center BH solutions can be performed (for studies of this issue within

a d = 3 approach, see [19]).

As an illustrative example, let us consider the N = 6 theory, characterized by the

central charge matrix ZAB and a complex singlet charge X. This theory shares the very

same bosonic sector with the N = 2 “magic” model based on the degree-3 Euclidean

Jordan algebra over the quaternions (JH
3 ), with central charge Z ≡ X [48, 59, 60]. After the

analysis of [61], the N = 6 1
6 -BPS “large” orbit becomes the N = 2 non-BPS ZH = 0. Thus,

the non-BPS ZH = 0 of the N = 2 JH
3 “magic” supergravity has W =

√
λh = ‖ZN=6‖s >

|X|, and it satisfies the marginal stability bound because of the triangle inequality on

‖ZN=6‖s itself. In this case, the formula (2.32), clearly with λh denoting the maximal

eigenvalue of the semi-positive definite matrix ZN=6Z
†
N=6. On the other hand, the N = 6

non-BPS ZH 6= 0 “large” orbit corresponds to the N = 2 (1
2 -)BPS “large” orbit [61], with

first order superpotential |Z| = |X| >
√

λh = ‖ZN=6‖s. Thus, due to the linearity of

X (z, z;Q) in the charges Q, the triangle inequality (which here is a mere consequence of

the Cauchy-Schwarz inequality on complex numbers)

|X (z, z;Q1 + Q2)| 6 |X (z, z;Q1)| + |X (z, z;Q2)| (3.7)

applies. The relative distance of the two centers |−→x1 −−→x2| can be computed simply by

taking eq. (2.27) and replacing Z with X.

By exploiting the fact that the complex matter charges’ vector DaZ in local flat indices

(a = 1, ..., nV ) can be re-arranged in terms of an antisymmetric complex matrix embedded

in the central charge matrix ZAB of N = 8 supergravity, one can show the above analysis

to hold true for the non-BPS I4 > 0 charge orbits of the remaining N = 2 “magic”

models (based on JA
3 , with A = C, R), which are consistent truncation of the quaternionic

model. The “magic” octonionic model, based on JO

3 , cannot be obtained through consistent

truncation of N = 8 theory, but the above analysis can be still shown to hold, since the

matter charges of the nV = 27 vector multiplets re-arrange (in an USp (8)-irreducible way)

as a skew-traceless 8×8 complex antisymmetric matrix Z0
AB , whose skew-trace is the N = 2

central charge Z.

Therefore, we conclude that the non-BPS I4 > 0 composites and constituents may

satisfy the marginal stability condition, with a region of stable double-center BH solutions.
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Note that this situation is different from the one discussed in [6, 11] in which no stable

multi-center configurations were found for non-BPS composites. However, it confirms the

analysis of explicit multi-center non-BPS solutions with I4 > 0 performed in [19–21].

4 Marginal stability for non-BPS I4 < 0 black holes

In the present section, we discuss the condition of marginal stability for non-BPS states

with I4 < 0. In this case, the above reasoning ascribing the non-BPS lower-N BH states

to BPS orbits in higher-N theories cannot be repeated, because non-BPS BH states with

I4 < 0 are all uplifted to non-BPS I4 < 0 in maximal supergravity (for investigations

within N = 8 and N = 4 theories, see e.g. the first and second refs. of [19]).

We actually find that this occurs, in all known examples, in the rather trivial situation

in which the charge vectors Q1 and Q2 of the two centers are mutually local (i.e. 〈Q1, Q2〉 =

0). A non-trivial case is discussed at the end of the present section.

It is here worth commenting on the N = 2 cases discussed in [29], which are character-

ized by a“twisted” (“fake”) central charge. Let us consider for instance the case discussed,

in the “electric” configuration
(

p0, q1

)

of the so-called 1-modulus t3 model, in section 5

therein. In the (1
2 -)BPS branch (p0q1 < 0), the first order superpotential reads

WBPS = |Z| ; Z =
tq1 + p0t3
√

−i
(

t − t
)3

, (4.1)

while in the non-BPS ZH 6= 0 branch (p0q1 > 0) the first order superpotential reads

WnBPS = |Ztwist| ; Ztwist =
tq1 + p0t2t
√

−i
(

t − t
)3

= t

(

q1 + p0 |t|2
)

√

−i
(

t − t
)3

; (4.2)

⇓

WnBPS = ± |t|

(

q1 + p0 |t|2
)

√

−i
(

t − t
)3

for p0, q1 ≷ 0. (4.3)

Thus, WnBPS given by (4.3) is linear in charges, whereas WBPS given by (4.1) is not:

|Ztwist (Q1 + Q2)| = |Ztwist (Q1)| + |Ztwist (Q2)| ; (4.4)

|Z (Q1 + Q2)| 6 |Z (Q1)| + |Z (Q2)| . (4.5)

Thus, the twist t3 → t2t determining Z → Ztwist makes the stability region for the two-

center non-BPS configuration empty. The multi-center solutions discussed in [6, 11] are

of this kind. Note that
(

p0, q1

)

is a closed subspace with respect to charge addition, as in

general “electric” and “magnetic” configurations (discussed further below) are, as well.

In the particular N = 2 cases discussed in [29], it is observed that WI4<0 (z, z;Q),

also in presence of non-vanishing axions, is linear in charges (we omit the subscript “I4 <

0” throughout):

W (z, z;Q1 + Q2) = W (z, z;Q1) + W (z, z;Q2) . (4.6)
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The property (4.6) has an obvious consequence, namely that non-BPS double-center con-

figurations always occur at the marginal stability wall in the moduli space, since the spatial

asymptotical limit of (4.6) reads

M1+2 (z∞, z∞;Q1 + Q2) = M1 (z∞, z∞;Q1) + M2 (z∞, z∞;Q2) . (4.7)

Therefore, for these charge configurations the non-BPS BH bound states are never stable

but rather only marginally stable, thus producing two single-center BH solutions with

mutually local charges (〈Q1, Q2〉 = 0) and no constraints on the relative distance |−→x1 −−→x2|
between the two centers (and therefore vanishing overall angular momentum). A further

example is provided by eq. (4.1) of the first ref. of [31–36].

A particular subset of such configurations are the “electric” (p0, qi) and “magnetic”

(q0, p
i) ones, which may be axion-free. By plugging them into the explicit general expression

of Z computed in [62], one finds that such configurations support a real or purely imaginary

central charge: Z = ±Z. As a consequence, both BPS and non-BPS constituents do not

form a stable composite, and the moduli are always on the marginal stability wall. Notice

that the situation is different for the
(

p0, q0

)

charge configuration (corresponding to the

presence of only D0 and D6 branes [9]). This configuration may (but does not necessarily)

support axion-free solutions but, as already evident in the 1-modulus t3 model (see e.g. eq.

(3.5) of the first ref. of [31–36]), WI4<0 is not linear in charges nor the absolute value of a

complex quantity linear in charges.

Thus, apart from the
(

p0, q0

)

case, it seems that many known simple non-BPS I4 < 0

configurations are exactly marginal. This situation agrees with the conclusions of the

analysis of [6, 11].

By using norm inequalities, the only non-BPS I4 < 0 configurations which may exhibit

a stability region for double-center BH solutions (and a corresponding wall of marginal

stability for their decay into two single-center BH solutions) seem to be the ones which can

be uplifted to a very particular non-BPS configurations of N = 8 supergravity, namely one

with constant phase. In such a case, one of the duality (SU (8)-) invariants of the theory,

namely the Pfaffian Pf (Z) of the central charge matrix Z, is constrained to be real all

along the corresponding scalar flow; this corresponds to the phase ϕ of Z to be set to its

non-BPS critical value ϕH = π all along the flow. For this configurations, the first order

non-BPS “fake” superpotential can be computed to be nothing but (one quarter of) the

trace norm (2.6) of Z itself [30] (see also the second and third refs. of [31–36]):

WI4<0,ϕ=π (φ,Q) =
1

2

4
∑

i=1

√

λi =
1

4
Tr
(√

ZZ†
)

=
1

4
‖Z‖∗ . (4.8)

Consequently, WI4<0,ϕ=π satisfies the triangle inequality

WI4<0,ϕ=π (φ,Q1 + Q2) 6 WI4<0,ϕ=π (φ,Q1) + WI4<0,ϕ=π (φ,Q2) , (4.9)

provided that (recall (2.33))

〈Q1, Q2〉 = −Im
(

Tr
(

Z1Z
†
2

))

6= 0, (4.10)
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and that Pf (Z1 + Z2), Pf (Z1) and Pf (Z2) are all real; this latter condition can equiva-

lently be recast as

ϕ (φ,Q1 + Q2) = ϕ (φ,Q1) = ϕ (φ,Q2) = π, (4.11)

all along the attractor flow. The marginal stability condition would correspond to the

saturation of the bound (4.9), within the conditions (4.10) and (4.11).

By performing the supersymmetry reduction N = 8 → N = 2 and using the N = 2

formalism introduced in the first ref. of [31–36] and in [37], the constancy of the phase ϕ

along the non-BPS I4 < 0 attractor flow corresponds to the vanishing of the H-invariant

i3 (and to i4 < 0). Thus, the N = 2 analogues of conditions (4.10) and (4.11) respectively

read as follows (for the equality in the l.h.s. of (4.12), see e.g. [1, 52]):

〈Q1, Q2〉 = 2Im
[

−Z1Z2 + gij (DiZ1)DjZ2

]

6= 0; (4.12)

i3 (z, z;Q1 + Q2) = i3 (z, z;Q1) = i3 (z, z;Q2) = 0, i4 (z, z;Q1 + Q2) < 0. (4.13)

The moduli dependence of (4.11) and (4.13) yields a co-dimension three subspace of scalar

manifold. Thus, in the N = 8 → N = 2 supersymmetry reduction, if the three real condi-

tions entailed by (4.13) are all independent, they admit consistent solutions in presence of

mutually non-local charges 〈Q1, Q2〉 6= 0 only with at least two (complex) scalar fields.

5 Concluding remarks

In the present investigation, we have analyzed the marginal stability bound for BPS ex-

tremal (two-center composite) BHs in N > 2 supergravity, as well as whether this bound

can be extended to non-BPS configurations.

By denoting the central charge matrix with Z, for BPS BHs we found that the Cauchy-

Schwarz triangle inequality applies to the ADM mass M = limr→∞

√
λh = limr→∞ ‖Z‖s,

where λh is the highest eigenvalue of the semi-positive definite matrix ZZ†, and ‖·‖s stands

for the spectral matrix norm. This generalization of the marginal stability bound uses the

property of matrix norm as well as the linearity of Z in charges Q:

‖Z (φ,Q1 + Q2)‖s = ‖Z (φ,Q1) + Z (φ,Q2)‖s 6 ‖Z (φ,Q1)‖s + ‖Z (φ,Q2)‖s . (5.1)

Furthermore, we found that all non-BPS BHs of the N = 2 minimal coupling CP
n

sequence (characterized by Cijk = 0) and of N = 3 supergravity, satisfy a marginal stability

bound identical to the one of their BPS counterparts. These theories share the properties

that they cannot be uplifted to d = 5 space-time dimensions, they have a G-invariant I2

which is quadratic in charges, which defines the supersymmetry preserving features of the

charge orbits as follows:

BPS : I2 > 0; nBPS : I2 < 0. (5.2)

For theories with a G-invariant I4 quartic in charges and N < 8, two types of “large”

attractor non-BPS solutions exist, depending on whether I4 ≷ 0.

For I4 > 0 non-BPS BHs, the marginal stability bound as for the BPS BHs applies.

An obvious example is provided by the N = 6 theory, which shares the same bosonic
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sector of the N = 2 “magic” quaternionic (JH
3 -based) supergravity, but with the role of

BPS and non-BPS (both with I4 > 0) interchanged [61]. This example actually extends

to the I4 > 0 non-BPS BHs of all N > 2-extended supergravities with symmetric (vector

multiplets’) scalar manifolds. The N = 5 case is particularly simple, because such a theory

has only two orbits, both BPS: one “large” (1
5 -BPS) and one “small” (2

5 -BPS). At least for

“magic” N = 2 models (with the exclusion of the octonionic one), this result for I4 > 0

non-BPS BHs is not surprising, because such theories can be seen as sub-theories of the

maximal N = 8 supergravity, in which in fact the constraint I4 > 0 defines a unique

(1
8 -BPS) orbit [57, 58].

For I4 < 0 non-BPS BHs, we found that most examples (characterized by particular

charge configurations and moduli dependence) saturate the marginal stability bound, and

thus they cannot admit stable double-center composite solutions. It would be interesting to

determine under which circumstances, for a generic charge configuration belonging to the

non-BPS “large” orbit
E7(7)

E6(6)
, the N = 8 non-BPS first order “fake” superpotential, which in

the asymptotical spatial limit yields the ADM mass, satisfies the marginal stability bound.

It should be recalled that the Ansatz of flat d = 3 spatial slices of the BH geometry, made

in [6, 11], has been removed in [38, 39], in which a general solution for non-BPS multi-

center BHs, with constrained centers and non-vanishing overall angular momentum, has

been explicitly obtained.

For stable configurations with a wall of marginal stability, the split attractor flow will

occur not only for BPS cases, but also for non-BPS cases for which a stability region in

the moduli space exists. In this paper we have shown that, at least in the supergravity

approximation, this is not limited to BPS solutions, but it extends to a broad class of

non-BPS solutions.

Finally, it would be interesting to investigate, in the case of N > 2 non-BPS and

also N > 2 BPS configurations, the fate of the “moduli spaces” [63, 64] of scalar flows

across the split occurring at the marginal stability wall, which may be thus reduce or

remove the “flat directions” spanning the corresponding “moduli space”. For N = 8 1
8 -

BPS (“large”) attractor flow, the “flat directions” have an N = 2 interpretation in terms

of hypermultiplets’ scalar degrees of freedom [48, 63, 65]. Therefore, the double-center

solutions removing the “flat directions” would be genuine N = 8 solutions with no N = 2

interpretation (concerning this, see [19, 21]).
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