
Algorithmica (2015) 72:778–790
DOI 10.1007/s00453-014-9872-x

A Fast and Simple Subexponential Fixed Parameter
Algorithm for One-Sided Crossing Minimization

Yasuaki Kobayashi · Hisao Tamaki

Received: 28 January 2013 / Accepted: 18 January 2014 / Published online: 30 January 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We give a subexponential fixed parameter algorithm for one-sided crossing
minimization. It runs in O(k2

√
2k + n) time, where n is the number of vertices of the

given graph and parameter k is the number of crossings. The exponent of O(
√

k)

in this bound is asymptotically optimal assuming the Exponential Time Hypothesis
and the previously best known algorithm runs in 2O(

√
k log k) +nO(1) time. We achieve

this significant improvement by the use of a certain interval graph naturally associated
with the problem instance and a simple dynamic program on this interval graph. The
linear dependency on n is also achieved through the use of this interval graph.

Keywords Fixed parameter algorithm · Graph drawing · Subexponential time

1 Introduction

A two-layer drawing of a bipartite graph G with bipartition (X,Y) of V (G) places
vertices in X on one line and those in Y on another line parallel to the first and
draws edges as straight line segments between these two lines. We call these parallel
lines layers of the drawing. A crossing in a two-layer drawing is a pair of edges that
intersect each other at a point not representing a vertex. Note that the set of crossings
in a two-layer drawing of G is completely determined by the order of the vertices in
X on one layer and the order of the vertices in Y on the other layer. We consider the
following problem.

OSCM (One-Sided Crossing Minimization)
Instance: (G,X,Y,<,k), where G is a bipartite graph on X∪Y with E(G) ⊆ X×Y ,
< is a total order on X, and k is a positive integer.

Y. Kobayashi (B) · H. Tamaki
Meiji University, Kawasaki, Kanagawa, Japan
e-mail: yasu0207@cs.meiji.ac.jp

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81871534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-014-9872-x&domain=pdf
mailto:yasu0207@cs.meiji.ac.jp

Algorithmica (2015) 72:778–790 779

Question: Is there a total order <′ on Y such that the two-layer drawing of G in which
the vertices in X are ordered by < in one layer and those in Y are ordered by <′ in
the other layer has k or fewer crossings?

OSCM is a key subproblem in a popular approach to multi-layer graph drawing,
called the “Sugiyama approach” [19], which repeatedly solves OSCM for two ad-
jacent layers as it sweeps the layers from top to bottom and vice versa, in hope of
reducing the total number of crossings in the entire drawing.

OSCM is known to be NP-complete [7], even for sparse graphs [16]. On the
positive side, Dujmović and Whitesides [5] showed that OSCM is fixed parameter
tractable [4], that is, it can be solved in f (k)nO(1) time for some function f . More
specifically, the running time of their algorithm is O(ψk ·n2), where n = |V (G)| and
ψ ∼ 1.6182 is the golden ratio. This result was later improved by Dujmović, Fer-
nau, and Kaufmann [6] who gave an algorithm with running time O(1.4656k + kn2).
Fernau et al. [8] reduced this problem to weighted FAST (feedback arc sets in tourna-
ments) and, using the algorithm of Alon, Lokshtanov, and Saurabh [2] for weighted
FAST, gave a subexponential time algorithm that runs in 2O(

√
k log k) + nO(1) time.

This reduction also gave a PTAS using the algorithm of Kenyon-Mathieu and Schudy
[13]. Karpinski and Schudy [12] considered a different version of weighted FAST
proposed in [1], which imposes certain restrictions called probability constraints on
the instances, and gave a faster algorithm that runs in 2O(

√
OPT) + nO(1) time where

OPT is the cost of an optimal solution. However, reducing OSCM to this version
of FAST seems difficult: a straightforward reduction produces an instance that does
not satisfy the required probability constraints. Nagamochi gave a polynomial time
1.4664-approximate algorithm [18] and (1.2964 + 12/(δ − 4))-approximate algo-
rithm when the minimum degree δ of a vertex in Y is at least 5 [17].

Our main result in this paper is the following.

Theorem 1 OSCM can be solved in O(k2
√

2k + n) time, assuming that G is given in
the adjacency list representation and X is given in a list sorted in the total order <.

Our algorithm is faster than any of the previously known parameterized algo-
rithms. Both the dependency O(k2

√
2k) on k and the dependency O(n) on n are

strictly better than the algorithms cited above. In particular, the exponent
√

2k does
not contain the log k factor or any hidden constant as in the exponent O(

√
k logk)

of [8], the only previously known subexponential algorithm for OSCM. Note that the

running time of our algorithm is linear in n as long as k ≤ log2 n
2 − 2 log logn, where

the base of the logarithm is 2. The improvement is not only of theoretical but also of
practical importance: the range of k for which the problem can be practically solvable
is significantly extended.

Moreover, the exponent of O(
√

k) in our bound is asymptotically optimal under
the Exponential Time Hypothesis (ETH) [9], a well-known complexity assumption
which states that, for each k ≥ 3, there is a positive constant ck such that k-SAT
cannot be solved in O(2ckn) time where n is the number of variables. ETH has been
used to derive lower bounds on parameterized and exact computation (see [15] for a
survey). The proof of the following theorem is in Sect. 6.

780 Algorithmica (2015) 72:778–790

Theorem 2 There is no 2o(
√

k)nO(1) time algorithm for OSCM unless ETH fails.

Another advantage of our algorithm over the previous algorithms is simplicity. The
algorithm in [5] involves several reduction rules for kernelization and the improve-
ment in [6] is obtained by introduction of additional reduction rules which entail
more involved analysis. The algorithm in [8] relies on the algorithm in [2] for the
more general problem of FAST. Our result suggests that OSCM is significantly easier
than FAST in that it does not require any advanced algorithmic techniques or sophis-
ticated combinatorial structures used in the algorithm of [2] for FAST, in deriving a
subexponential algorithm.

Our algorithm is along the lines of earlier work [5, 6]. We emphasize that our im-
provement does not involve any complications but rather comes with simplifications.
Our algorithm does not require any kernelization. It is a straightforward dynamic pro-
gramming algorithm on an interval graph associated with each OSCM instance. This
interval graph is implicit in the earlier work [5, 6], but is neither made explicit nor
fully exploited in the previous work. Once we recognize the key role this interval
graph plays in the problem, the design and analysis of an efficient algorithm becomes
rather straightforward. Below we sketch how this works.

Fix an OSCM instance (G,X,Y,<,k). For each vertex y ∈ Y , let ly (ry , resp.)
denote the smallest (largest, resp.) x ∈ X adjacent to y, with respect to the given
total order <. We denote the half-open interval [ly, ry) = {x ∈ X | ly ≤ x < ry} in
the ordered set (X,<) by Iy and denote the system of intervals {Iy | y ∈ Y } by I .
For simplicity, we assume here that the degree of each vertex y in Y is at least 2
so that the interval Iy is non-empty. Our formal treatment in Sect. 3 does not need
this assumption. A key observation in [5] (see Lemma 2 in the present paper), is that
if ru ≤ lv for distinct vertices u,v ∈ Y then u precedes v in any optimal ordering
of Y . Therefore, to determine the optimal ordering on Y , we only need to determine
the pairwise order for each pair {u,v} such that lv < ru and lu < rv , that is, such
that the intervals Iu and Iv intersect each other. Thus, the problem can be viewed
as that of orienting edges of the interval graph defined by the interval system I .
The fact exploited in earlier work [5, 6] to obtain fixed parameter algorithms for
OSCM is that, in our terminology, this interval graph has at most k edges in feasible
instances of OSCM, as each pair of u and v such that Iu and Iv intersect each other
contributes at least one crossing to the drawing no matter which ordering of this
pair in Y is chosen. Our interval graph view tells us more: the clique size of this
interval graph for a feasible instance is at most

√
2k + 1, as otherwise it has more

than k edges, and hence it has a path-decomposition of width at most
√

2k (see [3],
for example, for interval graphs and their path-decompositions). Our algorithm is a
natural dynamic programming algorithm based on this path-decomposition and runs
in time exponential in the width of the decomposition.

We remark that the interval system I also plays an important role in reducing the
dependency of the running time on n to O(n). See Sect. 4 for details.

A preliminary version [14] of the present paper showed that the algorithm runs in
time O(3

√
2k + n). In this paper, we improve the running time to O(k2

√
2k + n).

The rest of this paper is organized as follows. In Sect. 2, we give preliminaries of
the problem and outline our entire algorithms. In Sect. 3, we describe the construction

Algorithmica (2015) 72:778–790 781

of the interval systems used in our algorithm. In Sect. 4, we describe a preprocessing
phase of our algorithm. In Sect. 5, we describe our dynamic programming algorithm.
Finally, in Sect. 6, we give a proof of Theorem 2.

2 Preliminaries and Outline of the Algorithm

In this section, we give some preliminaries and outline our algorithm claimed in The-
orem 1. Throughout the remainder of this paper, (G,X,Y,<,k) will always be the
given instance of OSCM. We assume that G does not have any parallel edges or
isolated vertices. We denote the number of vertices |V (G)| by n and the number of
edges |E(G)| by m. For each v ∈ X ∪ Y , we denote the set of neighbors of v in G by
N(v) and its degree |N(v)| by d(v). We assume that N(v) is given as a list, together
with its length d(v). We also assume that X is given as a list in which the vertices are
ordered by <.

For each pair of distinct vertices u,v ∈ Y , we denote by c(u, v) the number of
pairs (x, x′) with x ∈ N(u), x′ ∈ N(v), and x′ < x. Note that c(u, v) is the number
of crossings between the edges incident with u and those incident with v when the
position of u precedes that of v in the layer for Y . We extend this notation for sets:
for each disjoint subsets U and V of Y , we define c(U,V) = ∑

u∈U,v∈V c(u, v).
We represent total orderings by permutations in our algorithm. Let U be a finite

set. A permutation on U , in this paper, is a sequence of length |U | in which each
member of U appears exactly once. We denote the set of all permutations on U by
Π(U). Let π ∈ Π(U). We define the total order <π on U naturally induced by π :
for u,v ∈ U , u <π v if and only if u appears before v in π .

For each subset U of Y and a permutation π on U , we denote by c(π) the number
of crossings among the edges incident with U when the vertices in U is ordered by π ,
that is,

c(π) =
∑

u,v∈U,u<πv

c(u, v).

For each subset U of Y , we define opt(U) = min{c(π) | π ∈ Π(U)}. The goal of our
algorithm is to decide if opt(Y) ≤ k.

We need the following simple observation to bound the number of edges in feasi-
ble instances of OSCM.

Lemma 1 If G has a two-layer drawing with at most k crossings then |E(G)| ≤
|V (G)| + k − 1.

Proof The proof is by induction on k. The base case k = 0 is trivial since then G must
be a forest. Note that a two-layer drawing of a cycle has at least one crossing. Suppose
k > 0 and fix a two-layer drawing of G with at most k crossings. Let e be an edge
that crosses some edges in the drawing. We apply the induction hypothesis to G \ {e}
to have |E(G)| − 1 ≤ |V (G)| + (k − 1) − 1 and hence |E(G)| ≤ |V (G)| + k − 1. �

We also need the following lemma due to Dujmović and Whitesides [5].

782 Algorithmica (2015) 72:778–790

Lemma 2 (Lemma 1 in [5]) Suppose u and v are distinct vertices in Y such that
c(u, v) = 0. Then we have u <π v in every optimal permutation on Y , unless we also
have c(v,u) = 0.

Motivated by this lemma, let us call an unordered pair {u,v} of distinct vertices
in Y forced to (u, v) if c(u, v) = 0 and c(v,u) > 0. We say that it is forced if it is
forced either to (u, v) or to (v,u). We say such an unordered pair {u,v} is orientable
if c(u, v) > 0 and c(v,u) > 0; free if c(u, v) = 0 and c(v,u) = 0. Let us note that
pair {u,v} is free if u and v are false twins, i.e., N(u) = N(v), and moreover this
common neighbor set is a singleton. We use the above lemma in the following form.

Corollary 1 Let π be an optimal permutation on Y and let u,v be distinct vertices
in Y . If {u,v} is forced to (u, v) then we have u <π v. If {u,v} is free, then the
permutation π ′ obtained from π by swapping the positions of u and v is also optimal.

Proof The first part is a restatement of Lemma 2. Suppose pair {u,v} is free. This
means that N(u) = N(v) = {x} for some x ∈ X. Clearly, u and v are indistinguish-
able in our problem. Therefore the second part holds. �

Since each orientable pair contributes at least one crossing in any ordering of Y ,
the following is obvious.

Proposition 1 Assuming that the given OSCM instance is feasible, the number of
orientable pairs is at most k.

The following is an outline of our algorithm.

1. If m ≥ n + k then stop with “No”.
2. Construct the interval system I described in the introduction and another interval

system J , which inherits the property of I that each intersecting pair of intervals
contributes at least one crossing in the drawing and is designed to allow degree-1
vertices and to facilitate dynamic programming. The construction of these interval
systems can be done in O(m) time. See Sect. 3.

3. If J contains more than k intersecting pairs, stop with “No”.
4. Precompute c(u, v) and c(v,u) for all orientable pairs of vertices u,v ∈ Y . This

can be done in O(n + k) total time. If infeasibility is detected during this precom-
putation, stop immediately with “No”. See Sect. 4 for details of this step.

5. Compute opt(Y) by a dynamic programming algorithm based on the interval sys-
tem J . In this computation, the values of c(u, v) are needed only for orientable
pairs. If infeasibility is detected during this computation, stop immediately with
“No”. If the computation is successful and opt(Y) ≤ k then answer “Yes”; other-
wise answer “No”. This step can be performed in O(k2

√
2k +n) time. See Sect. 5.

The total running time of the algorithm is dominated by the dynamic programming
part and is O(k2

√
2k + n).

It is straightforward to augment the dynamic programming tables so that, when
the last step is complete, an optimal permutation on Y can be constructed. We note

Algorithmica (2015) 72:778–790 783

that this optimal solution is correct even if opt(Y) > k, as long as the dynamic pro-
gramming computation is completed.

3 Interval Systems

We refer to the interval system I = {Iy | y ∈ Y } defined in the introduction as the
naive interval system. Recall Iy = [ly, ry), where ly is the smallest neighbor of y and
ry is the largest neighbor of y, with respect to the total order < on X. The construction
of I can be done in O(m) time: we scan X in the given total order < and, as we scan
x ∈ X, we do necessary book-keeping to record ly and ry for each y ∈ N(x).

We need another system J = {Jy | y ∈ Y } of intervals which is slightly more
complicated than the naive system. This complication comes from the need to deal
with vertices in Y of degree 1 and to facilitate dynamic programming. The system J
will satisfy the following conditions. Let Jy = [ay, by] for each y ∈ Y .

J1 For each y, ay and by are integers satisfying 1 ≤ ay < by ≤ 2|Y |.
J2 For each t , 1 ≤ t ≤ 2|Y |, there is a unique vertex y ∈ Y such that ay = t or by = t .
J3 If bu < av for u,v ∈ Y , then c(u, v) = 0.

Conditions J1 and J2 are for the sake of the ease of dynamic programming described
in the next section, while condition J3 is the essential property that J shares with the
naive interval system.

Let P = {(y, ly,0) | y ∈ Y } ∪ {(y, ry,1) | y ∈ Y }. For each y ∈ Y , (y, ly,0) and
(y, ry,1) are intended to represent the left and the right ends of the interval Jy , re-
spectively. Our strategy is to define a total order on P and let ay (by , resp.) be the
rank of (y, ly,0) ((y, ry,1), resp.) in this total order. For each p ∈ P , we denote by
y(p), x(p), and i(p) the first, second, and the third element of p.

The total order < on P is defined as follows. This definition is based on the given
total order < on X.

The order is primarily based on the second component: if x(p) < x(q) then p < q .
For each x ∈ X, let Px = {p ∈ P | x(p) = x}. To describe the order < within each Px ,
we first partition Px into three subsets: P 1

x = {p ∈ Px | d(y(p)) > 1, i(p) = 1}, P 2
x =

{p ∈ Px | d(y(p)) = 1}, and P 3
x = {p ∈ Px | d(y(p)) > 1, i(p) = 0}. We let p < q

if p ∈ P i
x and q ∈ P

j
x with i < j . The order of elements within P 1

x and within P 3
x

is arbitrary. Elements of P 2
x come in pairs: (x, y,0) and (x, y,1), where y ∈ N(x)

with d(y) = 1. The order in P 2
x is chosen so that (x, y,0) < (x, y,1) for each pair

and these pairs are not interleaved: we do not have y, y′ with (x, y,0) < (x, y′,0) <

(x, y,1) or (x, y,0) < (x, y′,1) < (x, y,1).
Now we list the elements of P as p1, . . . , p2|Y | in the total order just defined. For

each y ∈ Y , we let ay = t where t is such that pt = (y, ly,0) and by = t where t is
such that pt = (y, ry,1). This completes the description of the interval system J .

The construction of J can also be done in O(m) time. The set P is constructed as
a list by scanning X. This list is already sorted in the primary key x. The partitioning
of Px into P 1

x , P 2
x , P 3

x and the pairing in P 2
x are done in O(d(x)) time for each x and

hence in O(m) time for all x ∈ X.

Proposition 2 The system J of intervals defined above satisfies conditions J1, J2, J3.

784 Algorithmica (2015) 72:778–790

Proof From the construction of J based on the total order on P , it is obvious that
J1 and J2 are satisfied. That J3 is satisfied is also obvious, as bu < av for u,v ∈ Y

implies that ru ≤ lv in X. �

We restate Corollary 1 using our interval system J . We say that a permutation π

on U ⊆ Y is consistent with J if bu < av implies u <π v for every pair u,v ∈ U .

Lemma 3 Let U be an arbitrary subset of Y . There is an optimal permutation π on
U that is consistent with J .

Proof Let π be an optimal permutation on U . For each x ∈ X, let Ux denote the set
of vertices in U that are adjacent to x but no other vertices in X. For each x, each pair
of distinct vertices in Ux is free and therefore, applying Corollary 1 to the instance
where Y is replaced by U , we may assume that π restricted on Ux is consistent
with J . Now, let u,v be arbitrary vertices in U and suppose bu < av . By property
J3 of J , we have c(u, v) = 0. If c(v,u) > 0 then {u,v} is forced to (u, v) and we
must have u <π v. Otherwise, {u,v} is free and u,v ∈ Ux for some x ∈ X. By the
assumption on π above, we have u <π v in this case as well. �

4 Computing the Crossing Numbers

Dujmović and Whitesides [5] give an algorithm for computing the crossing numbers
c(u, v) for all pairs {u,v} in O(kn2) time. We spend O(n+k) time for precomputing
c(u, v) for all orientable pairs, ignoring forced and free pairs.

We use the naive interval system I = {Iy | y ∈ Y }, where Iy = [ly, ry), in this
computation.

For each y ∈ Y and x ∈ X, let d<x(y) = |{z ∈ N(y) | z < x}| and d≤x(y) = |{z ∈
N(y) | z ≤ x}|. Then, we have c(u, v) = ∑

x∈N(u) d
<x(v).

It turns out helpful to decompose the above sum as follows.

c(u, v) =
[∑

x∈N(u),lv<x≤rv

d<x(v)

]

+ d(v) · (d(u) − d≤rv (u)
)
. (1)

For each x ∈ X, let Yx = {y ∈ Y | ly < x < ry} be the set of vertices in Y whose
corresponding intervals strictly contain x.

In the following, we call an ordered pair (u, v) orientable if the corresponding un-
ordered pair is orientable. We evaluate these sums simultaneously for all orientable
pairs (u, v), using a counter c[u,v] for each pair. We represent these counters by a
|Y | × |Y | two-dimensional array. Since we cannot afford to initialize all of its ele-
ments, we initialize c[u,v] to 0 only for orientable pairs (u, v). Our algorithm pro-
ceeds as follows.

1. Scan X in the total order <, maintaining Yx as we scan x. When we scan x ∈ X,
we initialize c[u,v] to 0 for each u ∈ N(x) and each v ∈ Yx .

Algorithmica (2015) 72:778–790 785

2. Scan X again in the total order <, maintaining Yx and d<x(y) for each y ∈ Y , as
we scan x. Suppose we are scanning x ∈ X. For each u ∈ N(x) and each v ∈ Yx ,
we add d<x(v), the summand in (1), to c[u,v]. Moreover, for each u ∈ Yx and
v ∈ N(x) such that rv = x, we add d(v) · (d(u) − d≤x(u)), the second term in (1),
to c[u,v].

Lemma 4 Assuming that the given OSCM instance is feasible, the running time of
the above algorithm is O(n + k).

Proof Assume that the given OSCM instance is feasible. In both scans, we maintain
Yx as a doubly linked list with each entry for vertex y having a back-pointer from y.
This allows the addition to and removal from Yx of a single vertex to be done in O(1)

time. Therefore, Yx can be maintained in O(m) = O(n + k) total time for each scan.
In the first scan, the number of times the counters are initialized is at most 2k, since
each pair (u, (x, v)) with u,v ∈ Y and (x, v) ∈ E(G) that leads to an initialization of
c[u,v] contributes at least one crossing in any ordering of Y and with each crossing
at most two such pairs are associated. Therefore the running time of the first scan is
O(n + k). The second scan also consumes O(n + k) time for maintaining Yx and
updating those counters. It remains to show that the maintenance of d<x(v) for each
v ∈ Y can be done in O(n + k) total time. Using a simple counter for each v ∈ Y ,
which is incremented when each x ∈ X adjacent to v is scanned, the maintenance of
d<x(v) for all v ∈ Y can be done in O(m) = O(n + k) time. �

To control the running time for infeasible instances, we count the number of times
the initialization of a counter occurs in the first scan. As soon as the number ex-
ceeds 2k, we stop the computation and report infeasibility.

5 Dynamic Programming

In this section, we describe our dynamic programming algorithm for computing
opt(Y). Owing to the previous section, we assume in this section that c(u, v) and
c(v,u) are available for all orientable pairs {u,v}.

We use the interval system J = {Jy | y ∈ Y } we have defined in Sect. 3, where
Jy = [ay, by].

For each t , 1 ≤ t ≤ 2|Y |, let Lt = {y ∈ Y | by ≤ t}, Mt = {y ∈ Y | ay ≤ t < by},
and Rt = {y ∈ Y | t < ay}. Note that

1. if t = ay for some y ∈ Y then Lt = Lt−1,Mt = Mt−1 ∪ {y}, and Rt = Rt−1 \ {y};
2. if t = by for some y ∈ Y then Lt = Lt−1 ∪ {y}, Mt = Mt−1 \ {y}, and Rt = Rt−1.

In other words, when interval Jy opens at t , y is moved from the “right set” to the
“middle set”; when it closes at t , y is moved from the “middle set” to the “left set”.

For each integer t , 1 ≤ t ≤ 2|Y |, we compute the following and store the results in
a table: (1) c(Lt , {y}), for each y ∈ Mt ; (2) opt(Lt ∪ S), for each S ⊆ Mt .

The recurrences for (1) are straightforward. The base case is c(L1, {y}) = 0, where
L1 = ∅ and y is the unique element of M1. Let 2 ≤ t ≤ 2|Y | and suppose first that

786 Algorithmica (2015) 72:778–790

t = ay for some y ∈ Y . Note that Lt = Lt−1 and Mt \ Mt−1 = {y}. Therefore, for
v ∈ Mt \ {y}, we have c(Lt , {v}) = c(Lt−1, {v}). Since bu < ay for each u ∈ Lt =
Lt−1, we have c(Lt , {y}) = 0. Suppose next that t = by for some y ∈ Y . Note that Lt \
Lt−1 = {y} and Mt−1 \ Mt = {y} in this case. For each v ∈ Mt , we have c(Lt , {v}) =
c(Lt−1 ∪ {y}, {v}) = c(Lt−1, {v}) + c(y, v). Note that pair (y, v) is orientable, as
y, v ∈ Mt−1, and hence c(y, v) is available. Thus, in either case, the table entries
of type (1) for t can be computed from the entries for t − 1 in O(h) time, where
h = |Mt |.

We now turn to the recurrences for type (2) entries. The following lemma helps us
to compute type (2) entries.

Lemma 5 There is an optimal permutation π on Lt ∪ S whose last vertex belongs
to S.

Proof By Corollary 1, we may assume that π consistent with J . Since π is consistent
with J and bu < ay for all u ∈ Lt , we have u <π y for all u ∈ Lt . Then, there must be
some v ∈ S such that either y <π v or y = v, that is, the last vertex of π is contained
in S. �

Lemma 6 Let 1 ≤ t ≤ 2|Y | and let h = |Mt |. Given a table that lists the values of
c(Lt , {v}) for every v ∈ Mt and opt(Lt−1 ∪ S) for every S ⊆ Mt−1, we can compute
in O(h2h) time the values of opt(Lt ∪ S) for all S ⊆ Mt .

Proof First, we compute c(S, {x}) for x ∈ Mt and for S ⊆ Mt \ {x}, and store the
values in a table. Obviously, this computation is done in O(h2h) time.

Suppose t = by for some y ∈ Y . Then Lt = Lt−1 ∪ {y}. Since (S ∪ {y}) ⊆ Mt−1,
for each S ⊆ Mt , opt(Lt ∪ S) = opt(Lt−1 ∪ (S ∪ {y})) is available in the table. Sup-
pose t = ay for some y ∈ Y . Then, we have Lt = Lt−1 and Mt = Mt−1 ∪ {y}. Let
S ⊆ Mt . If y /∈ S, then opt(Lt ∪ S) = opt(Lt−1 ∪ S) is available in the table, since
S ⊆ Mt−1. Suppose y ∈ S. By Lemma 5, there is an optimal permutation π on Lt ∪S

whose last vertex belongs to S. Then we have

opt(Lt ∪ S) = min
x∈S

{
opt

(
Lt ∪ S \ {x}) + c

(
Lt ∪ S \ {x}, {x})}

= min
x∈S

{
opt

(
Lt ∪ S \ {x}) + c

(
Lt , {x}) + c

(
S \ {x}, {x})}.

The second and third terms are in the tables. Hence, we can compute the values
opt(Lt ∪ S) for all S ⊆ Mt by a standard dynamic programming approach in O(h2h)

time. �

The dynamic programming gives us the optimal solution opt(Y) since L2|Y | = Y .
Each pair of vertices in Mt contributes at least one crossing in any ordering of Y .

Therefore, for the given instance to be feasible, we have h(h − 1)/2 ≤ k and hence
h ≤ √

2k + 1, where h = |Mt |. Using this bound and an observation that |Mt | ≥ 2
for at most k values of t , it is straightforward to derive a bound of O(k3/22

√
2k + n)

on the running time of the entire dynamic programming computation. For a tighter
analysis, we need the following lemma.

Algorithmica (2015) 72:778–790 787

Lemma 7 Assume that J has at most k intersecting pairs of intervals. Let H =
�√2k�+1 and, for 2 ≤ h ≤ H , let ch denote the number of values of t with |Mt | = h.
Then, we have ch ≤ 2H−h+2 for 2 ≤ h ≤ H .

Proof Fix h, 2 ≤ h ≤ H . Let t1 < t2 < · · · < tch
be the members of {t | |Mt | = h}. The

first set Mt1 contains h(h − 1)/2 pairs of vertices each corresponding to an intersect-
ing pair of intervals. We claim that Mti for each 2 ≤ i ≤ ch contributes at least h − 1
new intersecting pairs of intervals. This is obvious if Mti = Mti−1 . If Mti = Mti−1 ,
then Mti−1+1 must contain a vertex not in Mti−1 that contributes h new intersecting
pairs. Therefore we have h(h − 1)/2 + (ch − 1)(h − 1) ≤ k. Solving this inequality
for ch, we have ch ≤ k/(h − 1) − h/2 + 1.

If H − h + 2 ≥ log2 k, the claimed bound ch ≤ 2H−h+2 is obvious since then
2H−h+2 ≥ k. So suppose j = H − h + 2 < log2 k. Then, we have (H − j + 1)(H +
2j) = H 2 + H + j (H − 2j + 2) > H 2 > 2k since H ≥ √

2k + 1 ≥ 2(log2 k − 1).
Therefore, we have k/(h− 1) = k/(H − j + 1) < (H + 2j)/2 = H/2 + j and hence

ch < H/2 + j − (H − j + 2)/2 + 1 = 3j

2
≤ 2j .

This is the claimed bound. �

Lemma 8 Assume that the given OSCM instance is feasible, the total running time
of the dynamic programming algorithm based on Lemma 6 is O(k2

√
2k + n).

Proof Let H and ch, 2 ≤ h ≤ H , be as in Lemma 7. Then, from Lemma 6,
it follows that the total running time of the dynamic programming algorithm is
O(

∑
2≤h≤H chh2h + n). By Lemma 7, the first term is bounded by

∑

2≤h≤H

chh2h ≤
∑

2≤h≤H

2H−h+2h2h

=
∑

2≤h≤H

h2H+2

≤ 2H+1H(H + 1)

= O
(
k2

√
2k

)

and therefore we have the claimed bound. �

To control the running time for infeasible instances, we compute ch for each
2 ≤ h ≤ H and, if ch exceeds the proved bound, we immediately stop the compu-
tation as we have detected infeasibility.

6 Proof of Theorem 2

Impagliazzo, Paturi, and Zane [10] have shown that, under ETH, there is no 2o(m)

time algorithm for 3-SAT where m is the number of clauses. We confirm in the lem-
mas below that the standard chain of reductions from 3-SAT to OSCM showing the

788 Algorithmica (2015) 72:778–790

NP-completeness of sparse OSCM is such that the number r of edges in the resulting
OSCM instance is linear in the number m of clauses of the input 3-SAT instance.
Theorem 2 follows, since a 2o(

√
k)nO(1) time algorithm for OSCM would imply a

2o(m) time algorithm for 3-SAT as k ≤ r2 = O(m2) in our reduction and hence would
violate ETH.

Lemma 9 [11] There is a polynomial time algorithm that, given a 3-CNF formula
φ with n variables and m clauses, computes a graph Gφ such that φ is satisfiable if
and only if Gφ has a vertex cover of size at most n + 2m. Moreover, Gφ has at most
2n + 3m vertices and at most n + 6m edges.

Proof (sketch) Let X = {x1, x2, . . . , xn} be the set of variables of φ and C = {c1,

c2, . . . , cm} be the set of clauses of φ. We construct the graph Gφ as follows. For
each variable xi ∈ X, Gφ contains a pair of vertices ui, ūi and an edge {ui, ūi}. For
each clause ci ∈ C, Gφ contains a cycle Ci = {v1

i , v
2
i , v

3
i } of length 3. If the kth literal

of cj is xi for some i, then we add an edge {vk
j , ui} to Gφ . Otherwise, kth literal of

cj is x̄i for some i, then we add an edge {vk
j , ūi} to Gφ . Gφ has 2n + 3m vertices

and n + 6m edges as claimed. The correctness proof of this reduction can be found
in [11]. �

Lemma 10 [11] There is a polynomial time algorithm that, given a graph G with n

vertices and m edges, and an integer k, computes a directed graph D such that G

has a vertex cover of size at most k if and only if D has a feedback arc set of size at
most k. Moreover, D contains at most 2n vertices and at most n + 2m arcs.

Proof (sketch) Let V = {u1, u2, . . . , un} be the set of vertices of G. We construct the
directed graph D as follows. For each vertex ui ∈ V , D contains a pair of vertices
vi,wi together with an arc (vi,wi). For each edge {ui, uj } of G, D contains a pair
of arcs (wj , vi) and (wi, vj). Gφ has 2n vertices and n + 2m arcs as claimed. The
correctness proof of this reduction can be found in [11]. �

Finally, we describe a reduction from the feedback arc set problem to OSCM.
Eades and Wormald [7] first gave such a polynomial time reduction. But the reduced
OSCM instance has Θ(nm) edges, where n is the number vertices and m is the num-
ber of arcs, of a directed feedback arc set instance. For our purposes, we need a
reduction to sparse OSCM due to [16].

Lemma 11 (Sect. 4 in [16]) There is a polynomial time algorithm that, given an
integer t and a directed graph with n vertices and m edges, computes an OSCM
instance I = (G,X,Y,<,k) with 5(n + m) vertices and 4(n + m) edges such that D

has a feedback arc set of size at most t if and only if I is feasible.

Proof (sketch) We denote the vertex set of D by V and the arc set of D by A. Let Xi ,
1 ≤ i ≤ 5, be disjoint sets each of cardinality |V | + |A| and let φi be a bijection from
V ∪ A to Xi for 1 ≤ i ≤ 5. Let G = (X ∪ Y,E) be a bipartite graph with bipartition

Algorithmica (2015) 72:778–790 789

(X,Y) where

X = X1 ∪ X2 ∪ X3 ∪ X4,

Y = X5,

E = {{
φi(w),φ5(w)

} | 1 ≤ i ≤ 4,w ∈ V ∪ A
}
.

Clearly, |X ∪ Y | = 5(n + m) and |E| = 4(n + m). Then we construct the OSCM
instance I = (G,X,Y,<,k) where the total order < and the crossing number k are
appropriately defined. We omit the definition of < and k together with the correctness
proof of the reduction, which can be found in [16]. �

To summarize these reductions, we obtain the following lemma.

Lemma 12 There is a polynomial time algorithm that, given a 3-CNF formula φ with
m clauses, computes an OSCM instance I = (G,X,Y,<,k) such that φ is satisfiable
if and only if I is feasible. Moreover, G contains O(m) edges.

7 Future Work

Fernau et al. [8] gave a PTAS for OSCM using the PTAS of Kenyon-Mathieu and
Schudy [13] for weighted FAST. It would be interesting to know whether our ap-
proach can be used to develop a PTAS. Some exponential space dynamic program-
ming algorithms can be transformed into polynomial space algorithms with additional
time consumption. Our dynamic programming described in Sect. 5 uses exponential
space. It is possible that this algorithm can also be turned into a polynomial space
algorithm, but this does not appear straightforward and probably is another research
topic. We expect that our algorithm performs well on practical instances since these
instances are typically sparse and have small crossing numbers. We already have a
partial implementation with positive preliminary results. For more extensive evalua-
tion, we need to fully implement the algorithm and evaluate it on benchmark instances
available in the graph drawing community.

Acknowledgements We are grateful to anonymous referees for valuable comments about the optimality
of our result under ETH and the suggestions for improving the presentation of the paper. We also thank
Marek Cygan for helpful ideas for the improvement of our running time.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering.
J. ACM 55(5), 1–23 (2008)

2. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: Proceedings of the 36th International Collo-
quium on Automata, Languages and Programming, ICALP 2009, Part I. Lecture Notes in Computer
Science, vol. 5555, pp. 49–58. Springer, Berlin (2009)

790 Algorithmica (2015) 72:778–790

3. Bodlaender, H.: A tourist guide through treewidth. Acta Cybern. 11, 1–23 (1993)
4. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1998)
5. Dujmović, V., Whitesides, S.: An efficient fixed parameter tractable algorithm for 1-sided crossing

minimization. Algorithmica 40(1), 15–31 (2004)
6. Dujmović, V., Fernau, H., Kaufmann, M.: Fixed parameter algorithms for one-sided crossing mini-

mization revisited. J. Discrete Algorithms 6(2), 313–323 (2008)
7. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–

403 (1994)
8. Fernau, H., Fomin, F.V., Lokshtanov, D., Mnich, M., Philip, G., Saurabh, S.: Ranking and drawing

in subexponential time. In: Proceedings of the 21st International Workshop on Combinatorial Algo-
rithms, IWOCA 2010. Lecture Notes in Computer Science, vol. 6460, pp. 337–348. Springer, Berlin
(2010)

9. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 367–375 (2001)
10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Com-

put. Syst. Sci. 63, 512–530 (2001)
11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,

pp. 85–103. Plenum, New York (1972)
12. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggre-

gation and betweenness tournament. In: Proceedings of the 21st International Symposium on Algo-
rithms and Computation, ISAAC 2010, Part I. Lecture Notes in Computer Science, vol. 6506, pp.
3–14. Springer, Berlin (2010)

13. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, STOC 2007, pp. 95–103. ACM, New York (2007)

14. Kobayashi, Y., Tamaki, H.: A fast and simple subexponential fixed parameter algorithm for one-sided
crossing minimization. In: Proceedings of the 20th Annual European Symposium on Algorithms, ESA
2012. Lecture Notes in Computer Science, vol. 7501, pp. 683–694. Springer, Berlin (2012)

15. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull.
Eur. Assoc. Theor. Comput. Sci. 105, 41–72 (2011)

16. Muñoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is NP-hard for sparse graphs. In:
Proceedings of the 9th International Symposium on Graph Drawing, GD 2002. Lecture Notes in
Computer Science, vol. 2265, pp. 115–123. Springer, Berlin (2002)

17. Nagamochi, H.: On the one-sided crossing minimization in a bipartite graph with large degree. Theor.
Comput. Sci. 332, 417–446 (2005)

18. Nagamochi, H.: An improved bound on the one-sided minimum crossing number in two-layered draw-
ings. Discrete Comput. Geom. 33(4), 569–591 (2005)

19. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system struc-
tures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

	A Fast and Simple Subexponential Fixed Parameter Algorithm for One-Sided Crossing Minimization
	Abstract
	Introduction
	Preliminaries and Outline of the Algorithm
	Interval Systems
	Computing the Crossing Numbers
	Dynamic Programming
	Proof of Theorem 2
	Future Work
	Acknowledgements
	References

