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Abstract A new method is proposed for direct determi-

nation of bone porosity based on histograms of 3D lCT

scans and for precise definition of the global image seg-

mentation threshold, preserving assessed porosity in the

reconstructed binary image of the bone sample. In this

method, the normed histogram is considered to be a

probability distribution of voxel density (CT number or

gray level) in the scan. It is a linear combination of two

distributions characterizing the frequency of occurrence of

voxels of pore and matrix type with various densities.

Volume porosity, in this model, defines the probability of

pore voxel occurrence in the whole set of voxels in the scan

of the sample. This parameter and the parameters of both

probability distributions are determined by an optimization

method. The new method was used to determine the

porosity and segmentation thresholds for lCT images of

two 3D samples of human cancellous bone. The results

were compared with those determined by the standard

method and Otsu’s method. The new method allows the

porosity and the image segmentation threshold to be

determined even in cases where use of the other methods is

questionable or impossible.

Introduction

Identification of the microscopic geometry of bone tissue

and macroscopic parameters of its pore space structure is a

very important issue in the study of the physical properties

of such material. The internal bone structure determines its

local mechanical properties and bone strength, as an ele-

ment of the human skeleton, and also strongly influences

processes that take place in the bone tissue.

There are many methods for identifying the microscopic

pore geometry of porous materials and their macroscopic

parameters, such as optical microscopy, ultrasonic

microscopy and porosimetry, mercury porosimetry, electric

spectroscopy, permeametry, and gas pycnometry. Micro-

computed tomography (lCT) [1–3] is another of these

methods. It is a very modern, nondestructive method used

in various branches of science and engineering [4–7] for

identification of the spatial structure of heterogeneous

materials and small physical objects. In this method, as in

the computed tomography applied in medical diagnostics,

X-rays are used to achieve an image resolution of one

micrometer.

Microtomographic images of samples of porous mate-

rials form a basis for the reconstruction of the microscopic

pore space geometry or matrix architecture. This allows

identification of the stochastic characteristics, microscopic

and macroscopic parameters of the pore space and matrix

structure, material constants, and their directional charac-

teristics [8–18]. For this purpose, pure geometrical methods

[9, 14, 19–21] and methods of simulation of physical

processes at microscopic level [12, 13, 16, 18] are used.

The accuracy of the parameters and coefficients

obtained in this way is directly determined by the recon-

struction quality of the microscopic pore space geometry. It

depends not only on the image resolution of the sample, but

also on the quality of the image segmentation, i.e., on the

quality of transformation of the microtomographic image

with various gray levels to a binary image. The crucial step

for this process is image thresholding, which defines a

limiting value of the gray level that separates all points
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(voxels) of the scan into two subsets constituting the matrix

and the pore space. One can distinguish six groups of

image thresholding methods [22]: local [23, 24], global

[25, 26], based on the shape of the histogram [27], and

using such tools as clustering [15], entropy [28], and fuzzy

logic.

Thresholding is also crucial in the standard methods of

determining the porosity parameter from microtomo-

graphic images of the material samples. For a binarized

image of porous material, its porosity is a simple measure

of the voxel volume fraction representing pores in the

sample.

The most popular methods of global thresholding based

on the shape of the histogram include what will be called

here the standard method [25], and Otsu’s method [29].

These are often used in microtomographic image analysis

of human and animal bones [2, 10, 25, 26, 30–32].

In the standard method, the image segmentation

threshold is defined as the voxel density (CT number or

gray level) for which the frequency of voxel occurrence in

the sample of bone scan reaches a minimum between the

two extremes of the histogram corresponding to the pore

and matrix types of voxels. In the graph of the cumulative

histogram, this threshold value defines the location of the

inflection point in the vicinity of which changes in the pore

and matrix volume fractions in the sample are the smallest.

It also corresponds to the ultimate changes in the voxel

density. The standard method of determining the segmen-

tation threshold has been implemented in some computer

microtomographs.

In Otsu’s method of thresholding, applied to lCT ima-

ges of bone samples, the histogram of the scan is divided

into two parts by the unknown value of the binarization

threshold. After normalization, they are used as probability

distributions of the density of voxels of two types (pore and

skeleton) defined on two separate ranges. This makes it

possible to define expressions for the mean voxel density of

both classes as functions of the binarization threshold, and

to define the so-called between-class variance of the mean

densities of voxels in the scan. This is a measure of the

deviation of the mean densities of both classes from the

mean density of all voxels in the scan. Maximization of the

value of this variance is the criterion for determining the

optimum value for the scan binarization threshold. This

method is often used for automatic threshold selection for

image segmentation, and is implemented in the numerical

computing environment MATLAB.

The aim of this paper is to present a new method for

determining the porosity parameter and the binarization

threshold for 3D lCT images of bone tissue in which the

standard procedure for their assessment has been reversed.

First, using the model-based approach, the bone porosity is

determined directly from the histogram of the 3D lCT

image. Next, the binarization threshold is calculated from a

condition requiring the obtained porosity to be preserved in

the reconstructed binary image of the bone sample.

In this paper, bone is considered as a macroscopically

strongly inhomogeneous porous material with low porosity

in regions of the cortical bone and with high porosity in

regions of the cancellous bone. The spatial distribution of

this parameter is a basic macroscopic characteristic of such

a material, determining its mechanical properties, which

are important in, for example, diagnostics of morbidities of

the bone.

Due to the largely random nature of the origin of image

blurring in lCT scans [3, 4, 33, 34], a stochastic mixture

model of a scan of the bone sample is proposed here. In this

model, all voxels in the scan are considered to be of pore or

matrix type, the density of which is a random variable, and

the normalized histogram of the scan represents the prob-

ability distribution of this variable. This distribution is

assumed to be a linear combination of two distributions

describing the frequency of occurrence of vowels with

various densities in the sets of voxels of pore and matrix

type. The porosity in the proposed model defines the fre-

quency (probability) of occurrence of voxels of pore type

in the whole set of voxels in the scan of the bone sample.

The porosity parameter and parameters of the density

distributions of voxels of pore and matrix type are deter-

mined by an optimization method implemented in the

numerical computing environment MATLAB, i.e., by

matching the mathematical model of the histogram to the

histogram of the scan of the bone sample. In the applied

method, the porosity parameter is calculated independently

from an expression that minimizes a particular function of

the approximation error. The obtained porosity allows the

binarization threshold of the lCT image to be immediately

determined, since the porosity should be preserved in the

reconstructed binary image.

The proposed method was used to determine the

porosities and the threshold values of two cubic samples of

cancellous bone with various porosities taken from differ-

ent places on the lCT scan of a human condyle. To make

the samples statistically representative, a size limit was

established above which their histograms do not change

considerably. The results were compared with those

obtained by the standard method [25, 31] and Otsu’s

method [29]. It was shown that the porosity and threshold

values of a sample with a small matrix fraction, as deter-

mined by the new method, are considerably smaller than

those obtained using the standard method and Otsu’s

method. For porosity the differences are of a few percent,

while for the segmentation threshold they are about 140 %

and 40 %, respectively. This strongly influences the quality

of reconstruction of the microscopic geometry of the bone

sample.
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The proposed method may be used for determining

the porosity and the binarization threshold of repre-

sentative samples of various porous materials. Its mul-

tiple use also enables identification of the spatial

distribution of both parameters in lCT images of

inhomogeneous porous materials, and consequently

allows more precise reconstruction of their microscopic

structure.

Characteristics of bone scan samples

The new method of determining bone porosity based on a

histogram of a 3D lCT image is presented using a scan of a

human condyle performed on the microtomograph Sky-

Scan 1172 with a voxel size of 17 lm. The tomogram of

one cross-sectional layer of the investigated bone is shown

in Fig. 1a.

Fig. 1 Microscopic

representations of the

investigated bone samples:

a tomogram of one cross-

sectional layer of human

condyle; b tomogram of one

layer of sample I

(400 9 400 9 1 voxels);

d tomogram of one layer of

sample II (400 9 400 9 1

voxels); c, e histograms of

samples I and II respectively.

Internal graphs contain enlarged

plots of the continuous parts of

the histograms
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The gray levels in this figure represent the CT numbers

of particular voxels in the layer of values from 0 to 255,

where 0 stands for black and represents voxels of pore type.

For convenience, the CT number of voxel represented in

the image by the voxel gray level will here be called the

voxel density. The voxel density distribution in a scan

corresponds to the mass density distribution in the scanned

object, but does not represent this distribution directly.

We apply the methods of statistical analysis to investi-

gate samples of the bone scan characterized locally by the

density of voxels treated as a random variable. Due to the

high macroscopic heterogeneity of bone, the voxel set in

the whole bone scan cannot be considered as a study

population, since all statistical characteristics of voxels

have to be referenced to an area that can be recognized as

homogeneous and representative in the statistical sense.

To make the analysis representative, two cubic samples

of the scan of cancellous bone with sides of 400 voxels were

taken from different places on the bone scan (Fig. 1a). One

sample was taken from the lateral part of the bone scan

(sample I) and the other from its central part (sample II).

Enlarged images of one layer of both samples are shown in

Fig. 1b and d. Their histograms are presented in Fig. 1c and

e, respectively, and show the frequency of occurrence of

voxels with the given density in the scans of the bone

samples. After normalization, these curves can be inter-

preted as probability distributions of voxel density in the set

of all voxels of the sample. Both histograms are discon-

tinuous in the neighborhood of the point of zero density, and

contain two visible extremes. In the range of lower values of

the density, it corresponds to voxels of pore type, while in

the range of higher values it corresponds to voxels of matrix

type. The values of the histogram at the extreme points are

different in both samples. This is caused by the larger

volume fraction of pores in sample II in comparison with

sample I, which is also visible in their tomograms.

The histograms of both samples of the bone scan also

contain a considerable number of voxels with middle density

values that cannot be uniquely attributed either to pores or to

the matrix. This means that the choice of the threshold value of

the density is very important for the segmentation process of

samples of bone scans, and is crucial for the proper recon-

struction of images of microscopic pore space geometry.

The dependence of the normalized histograms of both

cubic bone samples on their size is shown in Fig. 2. For the

sake of clarity, the discontinuous part of the histograms

occurring in the neighborhood of the point of zero density

is omitted. This figure shows that the histograms in both

cases depend on the size of the sample, and the differences

between them decrease as the size increases. For samples

with side length greater than 100 voxels, the histograms are

almost the same. Samples of the limiting size can be

considered statistically representative for calculations of

macroscopic parameters and material characteristics, the

definitions of which are based on the volumetric relations

in the sample, e.g., for porosity.

Taking into account that the binarization threshold of the

sample scan is uniquely related to the sample porosity (see

‘‘Determination of the binarization threshold’’ section), the

binarization threshold should, therefore, also be determined

for representative samples. Otherwise, both parameters will

be functions of the sample size and hence it will not be

possible to consider them as macroscopic quantities. This

means that the whole bone, as a macroscopically strongly

inhomogeneous material, should be characterized by a

function defining the spatial distribution of the porosity, and

the high accuracy of reconstruction of its microscopic pore

space structure based on lCT images requires determination

of the spatial distribution of the scan binarization threshold.

The analysis presented here is performed using samples

with a side length of 125 voxels.

Model of the bone histogram

Taking into account that the origins of the blurring of

microtomographic images are of a random nature [3, 33,

34], we derive a mathematical description of the histo-

gram of the bone scan sample, taking a probabilistic

mixture model of the histogram as a starting point. We

assume that the quantized, three-dimensional sample of

the scan of porous material constitutes a stochastic set of

voxels with various densities (CT numbers) q represented

in the scan by gray levels. The set of voxels in the scan

sample form the overall population of the analyzed vox-

els, and their density is a random variable, the probability

distribution function of which, denoted by w(q), we

identify with the normalized histogram of the sample of

porous material’s scan. This defines the frequency of

occurrence of voxels with the given density in the whole

set of voxels composing the sample of the scan. We

assume, however, that the set of voxels in the sample

consists of two separate subsets (subpopulations): voxels

of pore type and of matrix type. The frequencies of voxel

occurrence in these subsets are described by the proba-

bility distributions wp(q) and wm(q), respectively. Both

functions are defined on the whole domain of real num-

bers. This means that the attribution of a voxel of given

density to the pore type or matrix type subset is of a

stochastic nature, being described by the probability dis-

tributions wp(q) and wm(q).

To derive the relationship between the voxel density

distribution w(q) in the scan sample and the distributions

wp(q) and wm(q) in the subsets of voxels of pore and matrix

type, we determine the probability of the event Dq of

occurrence in the scan sample of voxels with density in the
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infinitesimal range hq; q ? dqi. We introduce the follow-

ing notation:

A—the event of occurrence of voxels of pore type in the

scan sample.

B—the event of occurrence of voxels of matrix type in

the scan sample.

X—the set of the elementary events.

Events A and B are disjoint and their union forms the

certain event,

A \ B ¼ U; A [ B ¼ X ð3:1Þ

where U denotes the empty set.

Therefore, the probabilities of these events can be rep-

resented in the form

PðAÞ ¼ fv; PðBÞ ¼ 1� fv: ð3:2Þ

The parameter fv defines the frequency (probability) of

occurrence of voxels of pore type in the set of all voxels in

the sample of the scan. Therefore, this parameter can be

interpreted as a measure of fraction of the pore voxels in

the sample. We assume that value of parameter fv is equal

to the volume fraction of pores (porosity) in the bone

sample, the lCT image of which is analyzed.

Taking into account that Dq , X, and applying the total

probability theorem, we have

PðDqÞ¼PðDqjAÞPðAÞ þ PðDqjBÞPðBÞ; ð3:3Þ

where P(Dq|A) and P(Dq|B) are conditional probabilities.

Since

PðDqjAÞ ¼ wpðqÞdq; PðDqjBÞ ¼ wmðqÞdq;

PðDqÞ ¼ wðqÞdq;
ð3:4Þ

from (3.3) we obtain the relation

wðqÞ ¼ fv wpðqÞ þ ð1� fvÞwmðqÞ; ð3:5Þ

in which the porosity fv of the sample of porous material is

present explicitly.

Such probabilistic models are commonly applied for the

statistical analysis of data in various fields of scientific

research [35]. This includes clustering, handing missing

data, modeling heterogeneity, density estimation, pattern

recognition, and machine learning.

Determination of porosity and other model parameters

The probabilistic mixture model (3.5) of the histogram of a

bone scan sample allows determination of complete

information about the statistical characteristics and internal

structure of the voxel set in the sample. This includes the

porosity parameter fv and the parameters describing the

density distributions wp(q) and wm(q) of voxels in the pore

and matrix type subsets. These parameters will be esti-

mated here by an optimization method, fitting the mathe-

matical model of the histogram to the histogram of the

bone scan sample. Due to the rather free choice of the

quantization limits of the scan, they cannot be identified

with the limit values of the voxel densities in their

Fig. 2 Dependence of histograms (a, c) and cumulative histograms (b, d) on the size of cubic samples of bone scans (side lengths: 25, 50 … 125

voxels): a, b sample I; c, d sample II
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distributions. Therefore, estimators of these parameters are

determined during the optimization process.

Probability distribution functions

We assume that the probability distribution functions wp(q)

and wm(q) occurring in the formula (3.5) have the form

wjðqÞ ¼ CjgjðqÞ

¼ Cj

q�aj
bj�aj

� �aj� 1
bj�q
bj�aj

� �bj� 1

q�aj
bj�aj

� �ajþbjþ bj�q
bj�aj

� �ajþbj
ðj ¼ p,mÞ;

ð4:1Þ

where

Cj ¼
ðaj þ bjÞ
pðbj � ajÞ

sin p
aj

aj þ bj

� �
ð4:2Þ

is the normalization coefficient.

This distribution can be obtained from the rational dis-

tribution of the form

gðxÞ ¼ aþ b
p xo

sin
a

aþ b
p

� �
ðx=xoÞa�1

1þ ðx=xoÞaþb
ð4:3Þ

by conversion of the random variable x, defined on the

infinite domain of the positive real numbers, to a variable q
given by the relation

x

xo

¼ q� a

b� q
; ð4:4Þ

and defined on the interval ha, bi. Due to the form of

function (4.1) we will call it a modified beta distribution.

Distributions (4.1) are defined on the finite domain of

voxel densities and can take a skew form. Their parameters

have to satisfy the following conditions:

bj [ aj; aj þ bj [ aj [ 0 ðj ¼ p,mÞ:

In the case when

aj � 1; bj � 1;

the distributions take finite values over the whole range of

voxel densities.

Taking into account that the distributions (4.1) contain

four parameters for each type of voxels, the theoretical

model of the histogram given by the formula (3.5) is a

function of nine parameters. This provides the model with

high flexibility.

Optimization procedure

The parameters of the mixture model can be estimated by

various methods [35], e.g., moment matching, spectral, direct

optimization, minimum message length, and maximum

likelihood (as with the expectation maximization (EM)

algorithm). These methods estimate the structure parameters

of the analyzed overall population as well the distribution

parameters of its sub-populations based on sampling of the

overall population.

The investigated set of voxels in the sample of the bone

scan, unlike typical objects of statistical research, form an

overall population with a known value for the frequency of

occurrence of each element (voxel density) in the popula-

tion, with the exception of voxels with zero density ascri-

bed to them during the quantization process. The

distribution of voxel density in the scan sample, repre-

sented by the normed cumulative histogram, is composed

using information about the densities of all voxels in the

sample of the scan which form the overall population of the

investigated set of voxels, and not only a statistical sample

of them. This allows the use of direct optimization methods

instead of statistical methods to estimate the model

parameters of the histogram.

The optimization procedure applied here is based on the

multi-parameter nonlinear regression method, implemented

in the numerical computing environment MATLAB. In this

method, the best fit of the theoretical model to the exper-

imental data is obtained by minimization of the sum of

squared residuals of the model, i.e., the differences

between the values of the data and the fitted model.

Denoting the normed histogram of the sample of the

bone scan by h(qi), the residuals r(qi) of the model take the

form

rðqiÞ ¼ hðqiÞ � wðqiÞ; ð4:5Þ

where qi (i = 1, 2, … N) is the voxel density in the bone

scan sample.

Then, the objective function of the optimization problem

can be defined in the form

Eðfv; pÞ ¼
XN

i¼1

r2ðqiÞ ¼
XN

i¼1

Yi � fvXið Þ2; ð4:6Þ

where

Xi ¼ wpðqiÞ � wmðqiÞ ¼ Cp gpðqiÞ � Cm gmðqiÞ;
Yi ¼ hðqiÞ � wmðqiÞ ¼ hðqiÞ � Cm gmðqiÞ;

ð4:7Þ

and

p ¼ ½ap; bp; ap; bp; am; bm; am; bm�

represents the vector of parameters of distributions wp(q)

and wm(q) given by relation (4.1).

Function (4.6) depends on nine parameters of the mix-

ture model of the histogram: the porosity fv and eight

parameters of the distributions (4.1). Considering the nor-

malization coefficients Cp and Cm as parameters, the dis-

tributions (4.1) become functions of five parameters that
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have to satisfy the normalization conditions (4.2). They

play the role of constraints imposed on the model param-

eters. Such a change in the way of viewing the parameters

of the objective function (4.6) is useful because it enables a

reduction of the independent parameters that have to be

determined directly in the optimization procedure.

Taking into account that the mixture model (3.5) of the

histogram depends linearly on the porosity fv and the

normalization coefficients Cp and Cm, their optimum val-

ues for given values of the remaining parameters can be

determined effectively from the condition for the minimum

of the objective function (4.6). The first derivatives of

function (4.6) with respect to the parameters fv, Cp, and Cm

give the conditions

XiYi � fv X2
i ¼ 0 ; Yi w

i
p � fv Xi w

i
p ¼ 0;

Yi w
i
m � fv Xi w

i
m ¼ 0;

ð4:8Þ

where

wi
j ¼ wjðqiÞ ¼ Cj gjðqiÞ ; ð Þi ¼

XN

i¼1

ðÞi
�

N:

Due to relation (4.7)1 only two of the conditions in (4.8)

are independent. Condition (4.8)1 can be used to define the

optimum value of the porosity fv; then the condition (4.8)2,

or equivalently (4.8)3, defines the constraint imposed on the

model parameters.

Applying condition (4.8)1 the objective function (4.6)

reduces to the form

EpðpÞ � Eðfv;pÞ ¼ N Y2
i � XiYi

� �2
=X2

i

� �
: ð4:9Þ

The quantity EpðpÞ characterizes the error of the

approximation, and its variance r2 is given by the formula

r2 ¼ Ep=N ¼ Y2
i � XiYi

� �2
=X2

i : ð4:10Þ

Since the number of data in the data set (in the sample of

the bone scan) is very large, formally the law of large

numbers and central limit theorem can be used to estimate

the porosity distribution. Then expression (4.8)1 defines the

mean value of the porosity, and its variance r2
fv

is given by

r2
fv
¼ r2

,XN

i¼1

X2
i ¼ Y2

i

.
X2

i � XiYi=X2
i

� �2
� �

=N:

ð4:11Þ

This allows the confidence interval fv ± Dfv for the

porosity to be constructed for the assumed confidence level.

In the optimization procedure applied here, the multi-

parameter nonlinear regression method is used repeatedly

for each randomly chosen starting value of the model

parameters. The procedure is stopped when the changes in

the approximation error (4.9) become very small.

Determination of the binarization threshold

The purpose of the process of binarization of the scan of

the sample of porous material is to produce a numerical

representation of the sample’s internal geometry which

precisely reflects the geometry of the real object. This

requires division of the whole set of voxels in the sample

scan into two disjoint subsets representing the matrix and

the pore space. Such a division is determined by the

threshold value of voxel density, above which voxels are

ascribed to the matrix, and below which they are ascribed

to the pore space. In this case, the histogram of the sample

scan with distributed voxel gray levels is transformed into a

two-value histogram, and the sample image becomes bin-

ary. Therefore, the choice of the binarization threshold

determines the quality of the reconstruction of the micro-

scopic pore geometry and simultaneously defines the

porosity of the sample.

The method proposed here for determining the porosity

directly from the histogram of the sample scan, without

prior reconstruction of its binary image, allows reversion of

the order of determination of the porosity and the binari-

zation threshold. This is possible because the binarization

procedure should preserve the determined porosity of the

sample. Therefore, the threshold of voxel density qt should

reach the value for which the probability of occurrence of

voxels in the sample scan with densities smaller than this

threshold (voxels ascribed to pores) is equal to the porosity.

We obtain the condition

Zqt

ap

wðqÞdq ¼ fv: ð5:1Þ

This means that the threshold density qt and its confi-

dence interval qt ± Dqt can be directly determined from

the cumulative histogram when the value of the porosity fv
and its confidence interval fv ± Dfv are known. From

condition (5.1) we have

Dqt ¼ Dfv =wðqtÞ: ð5:2Þ

Considering (3.6), the condition (5.1) can be written in

the form

ð1� fvÞ
Zqt

ap

wmðqÞdq ¼ fv

Zbm

qt

wpðqÞdq; ð5:3Þ

which also allows another interpretation of this condition.

The left side of equality (5.3) defines the probability of

occurrence in the sample scan of voxels of matrix type with

densities less than the threshold qt (q\qt), whereas the

right side of this condition defines the probability of

occurrence of voxels of pore type with densities greater
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than this threshold (q[qt). The equality of these expres-

sions means that the number of voxels of matrix type

ascribed to pores in the process of binarization has to be

equal to the number of voxels of pore type ascribed to the

matrix. This provides the internal compatibility of voxel

division in the sample scan by the threshold qt with the

stochastic division of this set determined in the optimiza-

tion process based on the histogram model.

Results

The values of the estimators of the histogram model

parameters for the bone sample scans I and II, as deter-

mined by the optimization method described in subsection

4.2, are presented in Table 1. This gives the results of five

example optimizations for each sample with the best fit of

the mathematical model, obtained during the optimization

process performed for different randomly chosen starting

values of the model parameters. The table also gives the

standard deviation r of the approximation error.

The graphs of the histograms of both samples and their

example approximations described by the mixture model

(3.5) and distributions (4.1) for the model parameter esti-

mators I-1 and II-1 are shown in Fig. 3, and distributions of

the approximation error r(q) are presented in Fig. 4.

Table 2 gives the values of volume porosities and cor-

responding segmentation thresholds calculated from

expressions (4.8)1 and (5.1), respectively, for the first three

parameter estimators presented in Table 1. The porosities

and binarization thresholds are given together with their

confidence intervals Dfv and Dqt, calculated from the var-

iance (4.11) and from relation (5.2), respectively, for the

confidence level 0.99.

For comparison, the estimators of the binarization

threshold and the porosity parameter determined by the

standard method and Otsu’s method of image segmentation

are also included in Table 2. Evaluation of the binarization

threshold of sample II by the standard method is not clear,

due to difficulties in establishing the position of the mini-

mum of the histogram. In this work, the minima of both

sample histograms are based on their local polynomial

approximations.

Figure 5 illustrates how the segmentation threshold

determined by the new and standard methods influences the

quality of bone image reconstruction.

Discussion

The results of the optimization process described in the

previous section show that the applied mixture model of

Table 1 Estimators of the

histogram model parameters for

bone sample scans I and II of

human condyle

Estimation Estimators of the histogram model parameters

Number r 9 104 ap bp ap bp am bm am bm fv

Sample I I1 1.16 -157 178 6.45 3.49 72 275 1.22 3.20 0.699

I2 1.17 -152 174 6.23 3.45 70 280 1.21 3.46 0.696

I3 1.18 -155 177 6.37 3.48 72 278 1.20 3.39 0.698

I4 1.18 -159 181 6.54 3.53 73 275 1.20 3.23 0.700

I5 1.18 -155 177 6.37 3.48 72 278 1.20 3.39 0.698

Sample II II1 1.25 -48 64 1.81 2.19 13 174 1.05 1.06 0.885

II2 1.27 -49 65 1.85 2.25 12 179 1.07 1.11 0.885

II3 1.27 -49 65 1.85 2.25 12 180 1.07 1.12 0.885

II4 1.27 -49 65 1.86 2.25 12 182 1.07 1.15 0.885

II5 1.27 -49 65 1.85 2.24 12 180 1.07 1.12 0.885

Fig. 3 Histograms (circles) of

sample I (a) and II (b) and their

approximations (solid lines)

described by the mixture model

for parameter estimators I-1 and

II-1
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the histogram and the modified beta distribution of the

voxel density describe the histograms of both investigated

samples of bone scans with high accuracy. This concerns

both qualitative (Fig. 3) and quantitative (Fig. 4) fitting of

the theoretical and experimental curves. From Fig. 4 it

results that the oscillations of the approximation error of

Fig. 4 Distributions of the

approximation error of the

histograms of sample I (a) and

II (b) from the mixture model

for the parameter estimators I-1

and II-1

Table 2 Porosities and

segmentation thresholds of

samples I and II determined by

the new and standard methods

and by Otsu’s method

Estimation number New method Standard method Otsu’s method

fv ± Dfv qt ± Dqt qs
t

f s
v

q
o

t
f

o

v

Sample I I1 0.699 ± 0.002 89 ± 1 91 0.699 89 0.695

I2 0.696 ± 0.002 88 ± 1

I3 0.698 ± 0.002 89 ± 1

Sample II II1 0.885 ± 0.002 47 ± 1 112 0.956 65 0.914

II2 0.885 ± 0.002 47 ± 1

II3 0.885 ± 0.002 47 ± 1

Fig. 5 Influence of the binarization thresholds determined by the new

method (images: a) for qt = 88 and d for qt = 43 and the standard

method (images: c for qt = 91 and f for qt = 112) on the quality of

image reconstruction. Tomogram b and its binary images a and

c represent sample I, whereas tomogram e and its binary images d and

f represent sample II
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both sample histograms are greater in the range of lower

densities; however, their relative values are comparable in

the whole range. The mean values of the approximation

error of the histogram are: r = 1.18 9 10-4 and

r = 1.25 9 10-4 for samples I and II, respectively

(Table 1), and the estimators of the porosity parameter

determined in consecutive realizations of the optimization

procedure take values lying within very narrow intervals.

For 20 optimizations performed for each sample, with

starting parameters generated randomly, the estimators

obtained for the porosity lie in the intervals h0.6940,

0.7016i and h0.8849, 0.8853i for samples I and II,

respectively. This is the case in spite of some instability of

the determined parameter estimators for the pore voxel

density distribution, observed for sample I (Table 1). This

is caused mainly by the lack of information about the form

of the histogram in the part cut-off during the process of

quantization of the scan.

The small values of the approximation error of the

histograms determine very narrow confidence intervals for

the porosity parameter estimator, even for a confidence

level of 0.99. They take the value Dfv = 0.002 for both

samples (Table 2). This interval cannot, however, define

the confidence interval of the porosity parameter of sample

I determined by the optimization procedure, since in each

realization of the optimization process the estimator of the

porosity parameter takes different values outside this

interval. In the case of sample II, the porosity parameter

determined in the consecutive realizations of the optimi-

zation process belongs to the confidence interval.

A solution to this problem is to consider the procedure

of determining the porosity as a random process that pro-

vides the assumed minimum level of fitting to the model

histogram. Then the porosity becomes a random variable of

this process, the stochastic characteristics of which can be

determined based on numerical experimental data. For 20

realizations of the optimization procedure performed for

sample I, the obtained mean value of the porosity param-

eter is f I
v ¼ 0:698, and its standard deviation and confi-

dence interval for the confidence level 0.99 take the values

rI
fv
¼ 0:003, Df I

v ¼ 0:007. Finally, for both samples the

following results were obtained:

f I
v ¼ 0:698� 0:007; f II

v ¼ 0:885� 0:002:

This allows the mean value of the scan binarization

threshold qt and its confidence interval Dqt to be deter-

mined. From relations (5.1) and (5.2) we have

qI
t ¼ 88� 3; qII

t ¼ 47� 1:

The binarization threshold of sample II determined by

the new method is much smaller than the thresholds

determined by the standard method and Otsu’s method

(Table 2). As a consequence, the porosities determined by

these methods are also considerably different. These dif-

ferences take values of about 138 % and 38 %, respec-

tively for the binarization threshold, and about 8 % and

3 % for the porosity. Nonetheless, the binarization

threshold and the porosity of sample I determined by all

three methods are almost the same. This substantial dif-

ference between the parameters of sample II determined by

the new and standard methods is caused by the different

levels of the models on which they are based. In the

standard method, only information about one point of the

histogram is used, whereas in the new method based on the

stochastic model of the histogram, determination of image

parameters is based on the information contained in the

whole histogram. Therefore, the new method enables the

porosity and the image segmentation threshold to be

determined even in a case where application of the standard

method is very difficult or impossible, i.e., when the his-

togram does not contain explicit extremes.

Detailed investigation of the relation between Otsu’s

method and the method proposed here is difficult on account

of the different ways of using the histogram for determining

the scan binarization threshold. Such a task would require

detailed comparative analysis of both methods, which would

be outside the scope of this work. Nevertheless, some

qualitative evaluations can be formulated. The approach

based on the mixture model of the histogram seems to be

more fundamental. This method uses Eq. (5.1) for deter-

mining the scan binarization threshold, which can be inter-

preted as the primary definition of that threshold. Relation

(5.1), written in the form (5.3), defines the statistical

meaning of the thresholding process. Fulfillment of

Eq. (5.3) provides the internal compatibility of the voxel

division in the scan sample by the threshold density with the

stochastic division of this set determined in the optimization

process based on the histogram model. However, Otsu’s

method is formulated in a way that ensures that Eq. (5.1) is

satisfied identically for any value of the scan binarization

threshold. Instead of condition (5.1), an optimization pro-

cedure is proposed for determining the optimum value of the

binarization threshold using the between-class variance of

the voxel mean density in the scan sample as an objective

function. The arbitrary choice of the objective function

based on the mean densities of voxels of both classes ensures

the simplicity of the optimization procedure, but it does not

ensure its general nature.

The substantial difference between the binarization

thresholds of sample II determined by the new method and

the standard or Otsu’s method is strongly influence the

quality of reconstruction of its microscopic geometry. It is

especially visible for the thresholds determined by the new

and the standard methods, as shown in Fig. 5.
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Conclusion

A new method has been proposed here for determination of

the bone porosity and image segmentation threshold based

on the histogram of bone lCT scans. The novelty of this

method consists in the use of a model-based approach that

enables reversion of the procedure used in the other

methods.

Use of the model-based approach and the optimization

method for identification of the porosity and the image

segmentation threshold enables consideration of all of the

information contained in the histogram, and not only

information regarding the position of its separated points or

the mean values of voxel densities, as in the standard

method or Otsu’s method. This ensures the high accuracy

of both determined parameters, and improves the quality of

the image reconstruction of the microscopic pore space

geometry. As a consequence, other macroscopic parame-

ters, such as tortuosity and permeability, determined by

simulation of physical processes in the pore space, can also

be identified with better precision.

Moreover, the new method allows the porosity and the

image segmentation threshold to be determined even in

cases where application of the other methods is question-

able or impossible.
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24. Müller R, Hildebrand T, Rüegsegger P (1994) Non-invasive bone

biopsy: a new method to analyze and display the three-dimen-

sional structure of trabecular bone. Phys Med Biol 39:145–164

25. Ding M, Odgaard A, Hvid I (1999) Accuracy of cancellous bone

volume fraction measured by micro-CT scanning. J Biomech

32:323–326

26. Beaupied H, Chappard C, Basillais A, Lespessailles E, Benhamou

CL (2006) Effect of specimen conditioning on the microarchi-

tectural parameters of trabecular bone assessed by micro-com-

puted tomography. Phys Med Biol 51:4621–4634

27. Rosenfeld A, Torre P (1983) Histogram concavity analysis as an

aid in threshold selection. IEEE Trans Syst Man Cybern SMC

2:231–235

28. Kapur JN, Sahoo AKC, Wong A (1985) A new method for gray-

level picture thresholding using the entropy of the histogram.

Graph Model Image Process 29:273–285

29. Otsu N (1979) Threshold selection method from gray-level his-

tograms. IEEE Trans Syst Men Cybern SMC 9:62–66

958 J Mater Sci (2015) 50:948–959

123

http://dx.doi.org/10.1002/9780470612187
http://dx.doi.org/10.1007/s00339-006-3507-2
http://dx.doi.org/10.1029/2005JB003774
http://dx.doi.org/10.1029/2005JB003774


30. Lima ICB, Oliveira LF, Lopes RT (2006) Bone architecture

analyses of rat femur with 3D microtomographics images. J Ra-

dioanal Nucl Chem 269:639–642

31. Scanco Medical AG (1997) MicroCT 20 User’s Guide, Software

Revision 2.1:54–55

32. Palacio-Mancheno PE, Larriera AI, Doty SB, Cardoso L, Fritton

SP (2014) 3D assessment of cortical bone porosity and tissue

mineral density using high-resolution lCT: effects of resolution

and threshold method. J Bone Miner Res 29:142–150

33. Van Geet M, Swennen R, Wevers M (2000) Quantitative analysis

of reservoir rocks by microfocus X-ray computerized tomogra-

phy. Sediment Geol 132:25–36

34. Ketcham RA, Carlson WD (2001) Acquisition optimization and

interpretation of X-ray computed tomographic imagery: appli-

cations to geosciences. Comput Geosci 27:381–400

35. McLachlan G, Peal D (2000) Finite mixture models. Wiley, New

York

J Mater Sci (2015) 50:948–959 959

123


	Determination of bone porosity based on histograms of 3D microCT images
	Abstract
	Introduction
	Characteristics of bone scan samples
	Model of the bone histogram
	Determination of porosity and other model parameters
	Probability distribution functions
	Optimization procedure

	Determination of the binarization threshold
	Results
	Discussion
	Conclusion
	Open Access
	References


