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Abstract

Background: In the study of associations between genomic data and complex phenotypes there may be
relationships that are not amenable to parametric statistical modeling. Such associations have been investigated
mainly using single-marker and Bayesian linear regression models that differ in their distributions, but that assume
additive inheritance while ignoring interactions and non-linearity. When interactions have been included in the
model, their effects have entered linearly. There is a growing interest in non-parametric methods for predicting
quantitative traits based on reproducing kernel Hilbert spaces regressions on markers and radial basis functions.
Artificial neural networks (ANN) provide an alternative, because these act as universal approximators of complex
functions and can capture non-linear relationships between predictors and responses, with the interplay among
variables learned adaptively. ANNs are interesting candidates for analysis of traits affected by cryptic forms of gene
action.

Results: We investigated various Bayesian ANN architectures using for predicting phenotypes in two data sets
consisting of milk production in Jersey cows and yield of inbred lines of wheat. For the Jerseys, predictor variables
were derived from pedigree and molecular marker (35,798 single nucleotide polymorphisms, SNPS) information on
297 individually cows. The wheat data represented 599 lines, each genotyped with 1,279 markers. The ability of
predicting fat, milk and protein yield was low when using pedigrees, but it was better when SNPs were employed,
irrespective of the ANN trained. Predictive ability was even better in wheat because the trait was a mean, as
opposed to an individual phenotype in cows. Non-linear neural networks outperformed a linear model in
predictive ability in both data sets, but more clearly in wheat.

Conclusion: Results suggest that neural networks may be useful for predicting complex traits using high-
dimensional genomic information, a situation where the number of unknowns exceeds sample size. ANNs can
capture nonlinearities, adaptively. This may be useful when prediction of phenotypes is crucial.

Background
Challenges in the study of associations between genomic
variables (e.g., molecular markers) and complex pheno-
types include the possible existence of cryptic relation-
ships that may not be amenable to parametric statistical
modeling, as well as the high dimensionality of the data,
illustrated by the growing number of single nucleotide
polymorphisms, now close to 10 million in humans
http://www.genome.gov/11511175. These associations
have been investigated primarily using naïve single-

marker regressions and, more recently, with Bayesian
linear regression models of various types [1-3] but that
assume additive inheritance almost invariably, while
typically ignoring interactions and non-linearity. Taking
into account these phenomena may enhance the ability
of predicting outcomes, and this is relevant in genome-
assisted management of livestock and plants and in indi-
vidualized medicine.
There has been a growing interest in the use of non-

parametric methods for prediction of quantitative traits
based on reproducing kernel Hilbert spaces regressions
on markers [2,4-7] and radial basis functions models [8]
or related approaches [9]. Artificial neural networks
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(ANN) provide an interesting alternative because these
learning machines can act as universal approximators of
complex functions [10,11]. ANNs can capture non-linear
relationships between predictors and responses and learn
about functional forms in an adaptive manner, because a
series of transformations called activation functions are
driven by parameters. ANNs can be viewed as a compu-
ter based system composed of many processing elements
(neurons) operating in parallel [12], and also as a sche-
matic of Kolmogorov’s theorem for representation of
multivariate functions [13]. An ANN is determined by
the network structure, represented by the number of
layers and of neurons, by the strength of the connections
(akin to non-parametric regression coefficients) between
inputs, neurons and outputs, and by the type of proces-
sing performed at each neuron, represented by a linear or
non-linear transformation: the activation function.
Neural networks have the potential of accommodating
complex relationships between input and response vari-
ables, as well as of difficult to model interactions among
inputs. For these reasons, ANNs are interesting candi-
dates for the analysis of complex traits affected by cryptic
forms of gene X gene interaction, and many algorithms
for training (fitting) such networks are now available [14].
In this study we investigated the performance of sev-

eral ANN architectures using Bayesian regularization (a
method for coping with the “small n, large p“ problem
that arises in statistical models including a massive
number of explanatory variables) when predicting milk
production traits in a sample of Jersey cows or mean

grain yield in hundreds of inbred wheat lines. The archi-
tectures considered differed in terms of number of neu-
rons and activation functions used, and the input
(predictor) variables were derived from pedigree and
molecular marker information on the corresponding
samples. The paper begins with a brief account of Baye-
sian regularized neural networks, of their connection
with linear random regression models often used in
quantitative genetics, and of how Bayesian regularization
is made. Subsequently, it is shown how a neural network
treatment of genomic data can enhance predictive ability
over and above that using pedigree information (in Jer-
seys) or linear Bayesian regression on markers (in both
cows and wheat), which is representative of a standard
approach in quantitative genomics.

Methods
For clarity of presentation the methodology is presented
first, as the main objective of the paper was to cast
neural networks in a quantitative genetics predictive
context. Subsequently, a description of the two sets of
data used to illustrate how the Bayesian neural networks
were run is provided. As stated, the first data set con-
sisted of milk, protein and fat yield in dairy cows. The
second set represented 599 lines of wheat, with mean
grain yield as target trait.

Excursus: Feed-Forward Neural Networks
To illustrate, consider a network with three layers, as
shown in Figure 1 for the Jersey cow data. In the left-
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Figure 1 Illustration of the neural networks used. In the Jersey data there were 297 elements of pedigree or genomic relationship matrices
used as inputs (the p’s) for each target trait. In the Figure, each pk (k = 1,2,...,297) is connected to 5 hidden neurons via coefficients wj,k (j
denotes neuron, k denotes input). Each hidden and output neuron has a bias parameter b(l)j , j denotes neuron, l denotes layer). The variable t̂i
represents the trait predicted value for datum i.
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most layer, there are input variables, 297 in Figure 1, or
transformations thereof (called features) that enter into
the network as predictors. In the middle ("hidden”) layer
there is a varying number of neurons; 5 are shown in
Figure 1, but the number used is a model selection
issue, with this addressed via an evaluation of predictive
performance. In the right-most layer, there is a single
("output”) node, at least for quantitative response vari-
ables. Each input (or feature) connects to each neuron
with a strength represented by an unknown coefficient
w. The collected input into a given neuron can be trans-
formed (or not, in which case one speaks of an identity
or linear activation function), and this activated net
input is emitted to the output layer with a strength
represented by another unknown coefficient. A similar
process takes place for every neuron.
Algebraically, the process can be represented as fol-

lows. Let ti (the target phenotype) be a quantitative trait
measured in individual i (i = 1,2,...,n) and let pi = {pij}
be a vector of inputs or explanatory variables, e.g., mar-
ker genotypes or any other covariate measured in each
of such individuals, with allowance made for inclusion
of a 1, corresponding to the indicator variable for an
intercept in a regression model. Suppose there are S
neurons in the hidden layer of the architecture. The
input into neuron k (k = 1,2,...,S) prior to activation, as
described subsequently, is the linear function w’k pi,
where w’k ={wkj } is a vector of unknown connection
strengths ("regressions”) peculiar to neuron k, including
an intercept (called “bias” in the machine learning litera-
ture) in w’k. This input is transformed ("activated”) using
some linear or non-linear function f(.), which can be
neuron-specific or common to all neurons; this yields fk
(w’k pi) (k = 1,2,...,S). Subsequently, the so activated
emission from neuron k is sent to the output layer, with
the collection of emissions over all neurons being

b + cg
[

s∑
k=1

wkfk(w′
kpi)

]
, where b is an overall bias para-

meter, c is a regression on an activated emission, g(.) is
another activation function, possibly non-linear, and w1,
w2,...,wS are regressions on each of the activated emis-
sions fk(w’k pi). The link between the response variable
(phenotype) and the inputs is provided by the model

ti = b + cg

[
s∑

k=1

wkfk(w′
kpi)

]
+ ei; i = 1, 2, . . . , n (1)

where ei ~ (0, s2) and s2 is a variance parameter. If g
(.) is a linear or identity activation function, the model
is a linear regression on the adaptive covariates fk(w’k
pi); if, further, fk(.), is also linear, the regression model is
entirely linear. The term “adaptive” means that the cov-
ariates are functions of unknown parameters, the {wkj}
connection strengths, so the networks can “learn” the

relationship between explanatory variables and pheno-
types, as opposed to posing it arbitrarily, as it is the case
in standard regression models. In this manner, this type
of neural network can also be viewed as a regression
model, but with the extent of non-linearity dictated by
the type of activation functions used. Since the number
of parameters increases linearly with the number of neu-
rons, and the number of predictors given by the length
of p (e.g., the number of markers) can amply exceed
sample size, it is necessary to treat the connection
strengths as random effects in which case the Bayesian
connection is immediate [15,16]. This approach is called
“Bayesian regularization”.

Fisher’s infinitesimal model viewed as a neural network
Let t represent an n × 1 vector of phenotypic values and
u ~ (0, As2u ) be a vector of infinitesimal additive
genetic effects, where s2u is the additive genetic var-
iance, A = CC’ = {aij} is the numerator relationship
matrix and C is its lower triangular Cholesky factor
decomposition. Fisher’s linear model on additive genetic
effects (ignoring an overall mean and nuisance fixed
effects, for simplicity) admits at least three
representations:
I) t = u + e = Czsu + e = Cu* + e,
where z is a vector of independent standard normal

deviates, u* = zsu ~ (0, Is2
u) and e ~ (0, Is2) is a resi-

dual vector with s2 interpretable as environmental
variance.
II) t = AA-1u + e = Au** + e,
where u** = A-1u ~ (0, A-1 s2u), and
III) t = A-1 Au + e = A-1u*** + e,
where u*** = Au ~ (0, A3s2u).
In each of these formulations Fisher’s model can be

viewed as a neural network with a single neuron in the
middle layer, where g(.) is an identity or linear activation
function. The respective representations for the three
models given above are

ti = b + g(
∑n

j=1
ciju

∗
j ) + ei,

ti = b + g(
∑n

j=1
aiju

∗∗
j ) + ei,

and

ti = b + g(
∑n

j=1
aiju∗∗∗

j ) + ei.

Here, a bias parameter b is included for the sake of
generality. Hence, the additive model can be viewed as a
single-neuron network regression on either elements of
the Cholesky decomposition of the numerator relation-
ship matrix, on the relationships themselves or on the
elements of the inverse of A, with the strengths of the
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connections represented by the corresponding entries of
u*, u** and u***, respectively.
Is it possible to exploit knowledge of relationships in a

fuller manner? Since a neural network is a universal
approximator, the predictive performance of the classical
infinitesimal linear model can be enhanced, at least
potentially, by taking a model on, say, S neurons, while
effecting non-linear transformations simultaneously. The
rationale is that Fisher’s model holds under some
assumptions which may be violated, such as linkage
equilibrium, e.g., entries of the numerator relationship
matrix are expected values in the absence of selection
and under linkage equilibrium. For instance, using the
second representation above one could write

ti = b + cg

[
s∑

k=1

wkgk(bk +
∑n

j=1
aiju

∗∗[k]
j )

]
+ ei; i = 1, 2, . . . ,n. (2)

Here, the inputs are entries aij of the relationship
matrix, connecting individual i to all other individuals in

the genealogy; the u∗∗[k]
j coefficient is the connection

strength for input j in neuron k; bk is the bias parameter
associated with neuron k; gk is an activation function
peculiar to neuron k; wk is the connection strength
between the activated emission from neuron k and the
output layer, b is the outer layer bias parameter and g(.)
is the outer activation function, which may be linear or
non-linear, although it is typically taken as linear for
quantitative responses. The nonlinear transformations
modify the connection strengths between additive rela-
tionships and phenotypes in an adaptive manner, under-
lining the potential for an improvement in predictive
ability.
Given the availability of dense markers in humans and

animals, an alternative or complementary source of
input that can be used in equation (2) consists of the
elements of a marker-based relationship matrix, as in
[17]; in this case the aij coefficients are replaced by gij, i.
e., elements of some genome or marker-derived rela-
tionship matrix G. As noted by [2], when G is propor-
tional to XX’, where X is the incidence matrix of a
linear regression model on markers, this is equivalent to
Bayesian ridge regression. Of course, nothing precludes
using both pedigree-derived and marker-derived inputs
in the construction of a neural network.

Bayesian regularization
The objective in ANNs is to arrive at some configura-
tion that fits the training data well but that it also has a
reasonable ability of predicting yet to be seen observa-
tions. This can be achieved by placing constraints on
the size of the network connection strengths, e.g., via
shrinkage, and the process is known as regularization. A
natural way of attaining this compromise between

goodness of fit and predictive ability is by means of
Bayesian methods [2,11,15,18]. In this section, an
approach used often for Bayesian regularization in
neural networks [18,19] is presented along the lines of
the hierarchical models employed by quantitative geneti-
cists [15].
Conditionally on m network parameters, the n pheno-

types or outputs (represented as D for data) are assumed
to be mutually independent, with density function
(inputs p are omitted in the notation)

p(D|b,w, σ 2,M) =
n∏
i=1

N
(
ti|b,w, σ 2,M

)
(3)

where N(.) denotes a normal density; b is the outer bias
parameter; w denotes all connection strength coefficients
(including all neuron-specific biases); s2 is the residual
variance and M represents a given neural network archi-
tecture (i.e., a choice of number of neurons and activation
functions). The mean of this distribution is the conditional
(given all regression coefficients) expectation function

b + cg
[

s∑
k=1

wkgk(bk +
∑n

j=1 ajju
∗∗[k]
j )

]
, i = 1,2,...,n. The bias

parameter b can be eliminated simply by taking deviations
from the mean, or assigned a flat prior; for simplicity the
first of the two options was employed in this study. The
Bayesian approach used in regularized neural networks
software (e.g., MATLAB) assigns the same normal prior
distribution to each of the connection strengths, assumed
independent a priori, such that p(w| s2

w) = N(0, Is2
w),

where s2
w is the variance of connection strengths. More

general specifications can be posed, but currently available
software (public or commercially) lacks flexibility for
doing so. Assuming that the two variance parameters are
known, the posterior density of the connection strengths is

P(w|D, σ 2, σ 2
w,M) =

P(D|w, σ 2,M)P(w|σ 2
w,M)

P(D|σ 2, σ 2
w,M)

, (4)

where the denominator is the marginal density of the
data, that is

P(D|σ 2, σ 2
w ,M) =

∫
P(D|w, σ 2,M)P(w|σ 2

w ,M)dw.

For a neural network with a least one non-linear acti-
vation function, the integral is expressible as

p(D|σ 2, σ 2
w ,M) =

(
1

2πσ 2

)n
2

(
1

2πσw2

)m
2 ×

∫
exp

[
− 1
2σ 2

n∑
i=1

(
ti − b − cg

[
s∑

k=1

wkgk(bk+
∑n

j=1
aiju

∗∗[k]
j )

])2

− 1
2σ 2

w
w’w

]
dw

(5)

which does not have closed form, because of non-line-
arity. Recall that b can be set to 0 provided the observa-
tions are suitably centered.
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Although a Bayesian neural network can be fitted
using Markov chain Monte Carlo sampling, the compu-
tations are taxing because of the enormous non-linear-
ities present coupled with the high-dimensionality of w,
such as it is the case with genomic data. An alternative
approach is based on computing conditional posterior
modes of connection strengths, given some likelihood-
based estimates of the variance parameters, i.e., as in
best linear unbiased prediction (when viewed as a pos-
terior mode) coupled with restricted maximum likeli-
hood (where estimates of variances are the maximizers
of a marginal likelihood). The conditional (given s2 and
σ 2
w ) log-posterior density of w is from equation (4)

L(w|D, σ 2, σ 2
w ,M) = K + logP(D|w, σ 2,M) + log P(w|σ 2

w ,M).

Let β =
1

2σ 2
and α =

1
2σ 2

w
(a standard notation in

neural networks literature), and

F(α,β) = β

n∑
i=1

(
ti − b − cg

[
s∑

k=1

wkgk(bk +
∑n

j=1
aiju

∗∗[k]
j )

])2

+ αw’w,

= βED + αEw

(6)

where

ED =
n∑
i=1

(
ti − b − cg

[
s∑

k=1

wkgk(bk +
∑n

j=1
aiju

∗∗[k]
j

])2

,

and Ew = w’w. It follows that maximizing
L(w |D, σ 2, σ 2

w ,M) is equivalent to minimizing F(a, b).
This function is often referred to as a “penalized” sum
of squares, and it embeds a compromise between good-
ness of fit, given by the sum of squares of the residuals
ED, and the degree of model complexity, given by the
sum of squares of the network weights Ew. The value w
= wMAP that maximizes L(w |D, σ 2, σ 2

w ,M) is the mode
of the conditional (given the variances) posterior density
of the connection strengths; MAP stands for “maximum
a posteriori“.
If the additive infinitesimal model is represented as a

neural network, the coefficient of heritability is given by

h2 =
1
2α

/
(

1
2α

+
1
2β

)
=

β

α + β
. As it can be seen in

equation (6), if a<<b, the fitting or training algorithm
places more weight on goodness of fit. If a>>b, the
algorithm emphasizes reduction in the values of w
(shrinkage), which produces a less wiggly output func-
tion [20].
Given a and b, the w = wMAP estimates can be found

via any non-linear maximization algorithm as in, e.g.,
the threshold and survival analysis models of quantita-
tive genetics [21].

Tuning parameters a and b
A standard procedure used in neural networks (and in
the software employed here) infers a and b by maximiz-
ing the marginal likelihood of the data in equation (5);
this corresponds to what is often known as empirical
Bayes. Because (5) does not have a closed form (except
in linear neural networks), the marginal likelihood is
approximated using a Laplacian integration done in the
vicinity of the current value w = wMAP, which depends
in turn on the values of the tuning parameters at which
the expansion is made. This type of approach for non-
linear mixed models has been used in animal breeding
for almost two decades [22].
The Laplacian approximation to the marginal density

in equation (5) leads to the representation

log[p(D|α,β ,M)] ≈ K +
n

2
log(β) +

m
2
log(α)

−∣∣F(α,β)∣∣w=wMAP
(α,β)

− 1
2
log ‖H‖w=wMAP

(α,β)

(7)

where K is a constant and H =
∂2

∂w∂w′ F(α,β) is the

Hessian matrix. A grid search can be used to locate the
a, b maximizers of the marginal likelihood in the train-
ing set. An alternative approach described by [18,23]
involves the iteration (updating is from right to left,
with wMAP evaluated at the “old” values of the tuning
parameters)

αnew =
m

2(wMAP′wMAP + trH−1
MAP)

and

βnew =
n − m + 2αMAPtrH−1

MAP

2
n∑
i=1

(
ti − b −

s∑
k=1

wkgk(bk +
∑n

j=1 aiju
∗∗[k]
j )

)2

w=wMAP
(α,β)

These expressions, as well as (7), are similar to those
that arise in maximum likelihood estimation of variance
components [24-26], which vary depending on the algo-
rithm used. Since b is a positive parameter, it must be

that n > m − 2αMAPtrH
−1
MAP . The quantity

γ = m − 2αMAPtrH
−1
MAP is called “effective number of

parameters” in the network [20] and its value ranges
from 0 (or 1, if an overall intercept b is fitted) to m, the
total number of connection coefficients and bias para-
meters in the network. If g is close to n over-fitting
results, leading to poor generalization. It follows that the
computations are similar to those used in the linear and
non-linear models employed by quantitative geneticists,
the salient aspect being that a neural network can be
strongly non-linear.
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More details on computing procedures for neural net-
works are in [12,14,18,23,27,28]. Typically, an algorithm
proceeds as follows: 1) initialize a, b and all elements in
w. 2) Take one step of the Levenberg-Marquardt algo-
rithm to minimize the objective function F(a, b) and
find the current value of w. 3) Compute g, the effective
number of parameters, using the Gauss-Newton approx-
imation to the Hessian matrix in the Levenberg-Mar-
quardt training algorithm. 4) Compute updates anew and
bnew; and 5) iterate steps 2-4 until convergence.

Neural Network Architectures Evaluated and
Implementation
A prototype of the networks considered is in Figure 1;
as already noted, the architecture shown has five neu-
rons in the hidden (middle) layer. The ANN examined
had from 1 through 6 neurons in the hidden layer. In
architectures with a single neuron, two variants were
considered. In one, the activation functions were linear
(identity) throughout. In this case, e.g., when additive
relationships aij are used as inputs, the network
becomes a random regression on such relationships. If
regularization were based on w∼N(0,A−1σ 2

w) as prior
distribution, this would yield the standard additive ("ani-
mal”) model of quantitative genetics; this was not the
case here because the MATLAB software used (see
below) bases regularization on w ∼ N(0,Iσ 2

w) . The sec-
ond single-neuron architecture was based on equation
(1) with a single outer bias parameter but with a non-
linear activation g of the emission made by the sole neu-
ron in the architecture. The algebraic representation of
this network is

ti = b + cg(b +
∑n

j=1 piju
∗∗
j ) + ei, i = 1, 2, . . . ,n,

where c is the regression of ti on the activated emis-

sion g(b +
∑n

j=1 piju
∗∗
j ) . The objective here was to

explore non-linearities between the inputs (additive or
genomic relationships in the Jersey data, or markers
genotypes in the wheat data) and the targets (pheno-
types); the standard additive genetic model assumes that
these relationships are linear. The activation function
chosen was the hyperbolic tangent transformation

g(xi) =
exi − e−xi

exi + e−xi
, where xi = b +

∑n
j=1 piju

∗∗
j ; here, x can

take any value in the real line and g(xi) is the neuron
emission for cow or wheat line i, which takes values
between -1 and 1. Given the inputs, the predicted phe-
notype or network output is

t̂i = b̂ + ĉ

(
eb̂+�n

j=1pijû
∗∗
j − e−b̂−�n

j=1pijû
∗∗
j

eb̂+�n
j=1pijû

∗∗
j + e−b̂−�n

j=1pijû
∗∗
j

)
i = 1, 2, . . . ,n.

In models with 2-6 neurons the emissions were always
assigned a hyperbolic tangent activation (the choice of
function can be based on, e.g., cross-validation); these
activations were summed and collected linearly as
shown in Figure 1. For example, with 2 neurons the pre-
dictions are obtained as

t̂i = b̂ + ĉ1

⎛
⎝ eb̂1+�n

j=1pijû
∗∗[1]
j − e−b̂1−�n

j=1pijû
∗∗[1]
j

eb̂1+�n
j=1pijû

∗∗[1]
j + e−b̂1−

∑n
j=1 pijû

∗∗[1]
j

⎞
⎠+

ĉ2

⎛
⎝ eb̂2+�n

j=1pijû
∗∗[2]
j − eb̂2−�n

j=1pijû
∗∗[2]
j

eb̂2+�n
j=1pijû

∗∗[2]
j + eb̂2+

∑n
j=1 pijû

∗∗[2]
j

⎞
⎠ i = 1, 2, . . . ,n

where the ĉ coefficients are the estimated linear
regressions of the traits on the activated emissions fired
by each of the two neurons.
MATLAB’s neural networks toolbox [29] was used for

fitting the architectures studied, using Bayesian regulari-
zation in all cases. As mentioned earlier, two combina-
tions of activation functions were tried: 1) the
hyperbolic tangent sigmoid function for activating emis-
sions from each neuron in the hidden layer, plus a linear
activation function from the hidden to the output layer,
and 2) a linear activation throughout, this corresponding
to a linear model with random regression coefficients.
To avoid spurious effects caused by starting values in
each iterative sequence, the networks were trained 20
times in the Jersey data and 50 times in the wheat data
set, for each of the architectures. In Jerseys, each run
randomly allocated 60% of the animals to a training set,
20% to a validation set and 20% to a testing set; results
reported are the average of the 20 runs for each of the
configurations. In wheat, the records were randomly
partitioned into a training (480 lines) and a testing (119
lines) set. Each of the 50 random repeats matched
exactly those of [28], to provide a comparison with the
predictive ability of the Bayesian Lasso and of support
vector regression models used with the wheat data set
by [30].
The neural networks were fitted to data in the training

set, with the a and b parameters, connection strengths
and biases modified iteratively. In the Jersey data, as
parameters changed in the course of training, the pre-
dictive ability of the network was gauged in parallel in
the validation set, which was expected to be similar in
structure to the testing set, because they were randomly
constructed. The same was done with the wheat data,
except that there was no “intermediate” validation set.
Once the mean squared error of prediction reached an
optimal level, training stopped, and this led to the best
estimates of the network coefficients. This estimated
network was then used for predicting the testing set;
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predictive correlations (Pearson) and mean-squared
errors were evaluated.
Before processing, MATLAB rescales all input and

output variables such that they reside in the [-1, +1]
range, to enhance numerical stability; this is done auto-
matically using the “mapminmax” function. To illustrate,
consider the vector x’ = [3,6,4] so that xmin = 3 and xmax

= 6. If values are to range between Amin = -1 and Amax

= +1, one sets temporarily xtemp’ = [-1,1,4], so only x3 =
4 needs to be rescaled. This is done via the formula

x3,new = Amin +
x3 − xmin

xmax − xmin
(Amax − Amin) = −1 +

4 − 3
6 − 3

2 = −1
3
.

MATLAB uses the Levenberg-Marquardt algorithm
(based on linearization) for computing the posterior
modes in Bayesian regularization, and back-propagation
is employed to minimize the penalized residual sum of
squares. The maximum number of iterations (called
epochs) in back-propagation was set to 1000, and itera-
tion stopped earlier if the gradient of the objective func-
tion was below a suitable level or when there were
obvious problems with the algorithm [28,29,31]. Each of
these settings corresponds to the default values provided
by MATLAB.
Jersey cows data
Because of the high-dimensionality of the genotypic
data, the neural networks used either additive or gen-
ome-derived relationships among cows as inputs
(instead of SNP genotype codes), to make computations
feasible in MATLAB. The rationale for this is based on
the representation of the infinitesimal model as a regres-
sion on a pedigree, or as a regression on a matrix that is
proportional to genomic relationships, as argued by [2]
in the context of reproducing kernel Hilbert spaces
regression. The neural networks had the form

ti = b + cg[
s∑

k=1

wkgk(bk +
∑n

j=1
piju

∗∗[k]
j ) + ei, i = 1, 2, . . . ,n (8)

where pij = aij (additive relationship between cows i
and j) or gij (genome-derived relationships). Thus, for
each cow the input vector pi had order 297 × 1.
The expected additive genetic relationship matrix, A =

{aij}, was developed from the pedigree information; this
is a standard metric for degree of kinship used in quan-
titative genetics. A realized genomic relationship matrix,
G = {gij}, was constructed from the marker data follow-
ing [18], and calculated as follows: 1) estimate marker
allelic frequencies and let μi be the estimated frequency
of allele “A” at locus i. 2) Construct a 297 × 35,798
matrix of marker genotype codes M, with typical ele-
ment mij corresponding to the genotype of individual i
for marker j. 3) Calculate the expected frequency of mij

under Hardy-Weiberg equilibrium from the estimates of

the allelic frequencies, and form the 297 × 35,798 matrix
of expectations E. 4) Form the estimated genomic rela-
tionship matrix (assuming linkage equilibrium among
markers) as

G =
(M − E)(M − E)’

2
35,798∑
l=1

μi(1 − μi)

= {gij}.

The matrix Z = M-E contains “centered” codes, such
that the mean of the values in any of its columns is
null; Z can be used as in incidence matrix in marker
assisted regression models [17,32,33]. Then

ZZ’ = G × 2
35,798∑
i=1

μi(1 − μi) is interpretable as a covar-

iance matrix, analogous to Aσ 2
u in the infinitesimal

model. The term 2
35,798∑
i=1

μi(1 − μi) holds under linkage

equilibrium only, and cannot be construed as additive
genetic variance of marker effects in the classical sense
of [33]; its relationship to additive genetic variance in a
finite locus or infinitesimal model is tenuous [16,34].
Wheat lines data
There were 599 wheat lines, each genotyped with 1279
DArT markers (Diversity Array Technology) generated
by Triticarte Pty. Ltd. (Canberra, Australia; http://www.
triticarte.com.au). The DArT markers may take on two
values, denoted by their presence or absence. In this
data set, the overall mean frequency of the allele coded
as “1” was 0.5607, with a minimum of 0.0083 and a
maximum of 0.9866. Markers with a minor allele fre-
quency lower than 0.05 were removed. Missing geno-
types at locus j of line i were imputed using samples
from the marginal distribution of marker genotypes,
that is, xij ∼ Bernoulli

(
p̂j

)
, where p̂j is the estimated

allele frequency computed from the non-missing geno-
types [34]. The phenotype studied was average grain
yield of each line. The data came from the International
Maize and Wheat improvement Center, Mexico, and it
can be downloaded from R package BLR http://cran.r-
project.org/web/packages/BLR/index.html; more infor-
mation can be found in [30,35,36]. The wheat data was
partitioned randomly into a training set (480 lines) and
a test set (119 lines), exactly as in [30].

Results
Degree of complexity
The effective number of parameters (g) associated with
each of the networks examined in the Jersey data is pre-
sented in Table 1 and shown graphically in Figure 2, by
trait and type of input considered, i.e., additive or geno-
mic relationships. Clearly, use of genomic relationships
resulted in a larger number of effective parameters than
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use of pedigree, for all traits and architectures. When
using pedigree relationships, the average (over runs, but
note the large standard errors) effective number of para-
meters ranged from 91 (fat yield, one-neuron model
with non-linear activation), to 136 (protein yield, 6 neu-
rons). This illustrates the impact of shrinkage, and of
how regularized neural networks cope with the “curse of
dimensionality. For example, a 6-neuron network has
close to 1800 nominal parameters. Likewise, when using
genomic relationships as inputs, the average effective
number of parameters ranged from 127 to 166 (fat
yield). Similar results were obtained in the wheat data
(Table 2). The effective number of parameters ranged
from 220 (nonlinear ANN with 4 neurons) to 299 (lin-
ear ANN).
The effective number of parameters behaved differen-

tially with respect to model architecture and this

depended on the input variables used. When using pedi-
grees in the Jersey data, the hyperbolic tangent activa-
tion function in the 1-neuron model reduced g
drastically, relative to the linear model (1 neuron with
linear activation throughout). Then, an increment in
number of neurons from 2 to 6 increased model com-
plexity relative to that of the 1 neuron model with non-
linear activation, but not beyond that attained with the
linear model, save for protein yield. For this trait, g was
118 for the linear model, and ranged from 126 to 136 in
models with 3 through 6 neurons. When genomic rela-
tionships were used as inputs, g was largest for the lin-
ear model for fat and protein yield, and for the 1-
neuron model with a non-linear activation function in
the case of milk yield. In wheat, the effective number of
parameters decreased as architectures became more
complex. There was large variation among runs in

Table 1 Effective number of parameters (± standard errors), by trait, in Jerseys.1

Network Fat yield
(pedigree)

Fat yield
(genomic)

Milk yield
(pedigree)

Milk yield
(genomic)

Protein yield
(pedigree)

Protein yield
(genomic)

Linear 123 ± 5.6 166 ± 2.0 124 ± 7.6 162 ± 2.9 118 ± 8.5 151 ± 4.5

1 neuron 91 ± 4.9 142 ± 2.0 93 ± 5.8 166 ± 2.0 91 ± 10.3 144 ± 2.5

2 neurons 104 ± 5.8 128 ± 7.6 122 ± 6.5 145 ± 7.8 114 ± 8.0 136 ± 8.0

3 neurons 107 ± 5.8 132 ± 5.7 123 ± 5.1 129 ± 6.0 126 ± 6.9 141 ± 4.9

4 neurons 108 ± 5.8 129 ± 4.7 112 ± 4.7 131 ± 5.8 129 ± 5.4 138 ± 6.0

5 neurons 106 ± 4.9 127 ± 4.9 118 ± 4.8 132 ± 5.4 131 ± 4.9 138 ± 5.6

6 neurons 114 ± 3.3 128 ± 7.5 122 ± 5.1 132 ± 5.6 136 ± 4.6 137 ± 5.0
1 Results are averages of 20 runs based on random partitions of the data
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Figure 2 Effective number of parameters obtained from different network architectures in the Jersey data. Results shown are averages
of 20 independent runs. “Linear” denotes a 1-neuron model with linear activation functions throughout.
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effective number of parameters for both data sets, but
there was not a clear pattern in the variability.

Predictive performance
Results pertaining to predictive ability evaluated in the
testing sets are shown in Table 2 for wheat and Tables
3 and 4 for the Jersey data. Figures 3 and 4 depict mean
of squared errors of prediction and correlations coeffi-
cients in the Jersey cows.
The predictive correlations in wheat (Table 2) ranged

from 0.48 with the linear ANN (equivalent to Bayesian
ridge regression) to 0.59 for the nonlinear ANN with 4
neurons. Clear and significant differences between linear
and nonlinear architectures were observed. The
improvements over the linear ANN were 11.2, 14.3, 15.8
and 18.6% in predictive correlation for 1, 2, 3 and 4
neurons in the hidden layer, respectively. Mean squared
errors were also 23-29% smaller than in the linear ANN.
In the Jerseys, the large variability in mean squared

error among runs (Table 3) precludes making strong
statements about differences among architectures. How-
ever, predictive correlations (Table 4) were clearly larger
for the non-linear ANN. For fat yield, the results with
pedigrees employed as input suggest that a non-linear,
adaptive use of additive relationships (as done in all net-
works with the hyperbolic tangent activation function)
can improve predictive performance beyond that of the
infinitesimal model. Further, use of genomic relation-
ships led to more reliable prediction of phenotypes than

use of pedigree information as measured by the predic-
tive correlations in Table 4. The relative increase in
strength of association, as measured by the correlation,
is much larger than the ones that have been reported, e.
g., in dairy cattle [32,37], when prediction of breeding
values of bulls was made from genomic information, as
opposed to from pedigrees. Our result is encouraging
and suggests that genomic data may also play an impor-
tant role in prediction of individual outcomes (as
opposed to breeding value), an issue of relevance in
medicine [4].

Shrinkage
The distribution of connection strengths in a network
gives an indication of the extent of regularization
attained. Typically, weight values decrease with model
complexity, in the same manner that estimates of mar-
ker effects become smaller in Bayesian regression mod-
els when p increases and training sample size is kept
constant. Further, the distribution of weights is often
linked to predictive ability; small values tend to lead to
better generalization. Figure 5 depicts the distributions
of weights for the linear models and for the nonlinear
regularized networks that produced the largest predic-
tive correlations for pedigree and genomic relationships
in the Jersey data. The weights for the linear model
were larger and more variable than for the nonlinear
networks, where distributions were patently leptokurtic,
indicating strong shrinkage towards 0. For example, the

Table 2 Effective number of parameters, predictive correlations, and mean squared errors of prediction: wheat1

ANN architectures Linear 1 neuron 2 neurons 3 neurons 4 neurons

Criterion

Effective number of parameters 299 ± 5.5 260 ± 6.1 253 ± 5.9 238 ± 5.5 220 ± 2.8

Correlations in testing set 0.48 ± 0.03 0.54 ± 0.03 056 ± 0.02 0.57 ± 0.02 0.59 ± 0.02

Mean squared error in testing set 0.99 ± 0.04 0.77 ± 0.03 0.74 ± 0.03 0.71 ± 0.02 0.72 ± 0.02
1 The training-test partitions for this data were random and repeated 50 times; standard errors in parentheses

Table 3 Prediction mean squared errors (± standard errors) by trait: Jerseys1

Network Fat yield
(pedigree)

Fat yield
(genomic)

Milk yield
(pedigree)

Milk yield
(genomic)

Protein yield
(pedigree)

Protein yield
(genomic)

Linear 1.19 ± 0.07 0.86 ± 0.05 1.09 ± 0.05 0.88 ± 0.04 1.00 ± 0.04 0.75 ± 0.07

1 neuron 1.01 ± 0.04 0.74 ± 0.03 0.99 ± 0.04 0.81 ± 0.03 0.97 ± 0.04 0.71 ± 0.04

2
neurons

0.93 ± 0.05 0.70 ± 0.03 0.96 ± 0.05 0.76 ± 0.04 1.02 ± 0.04 0.72 ± 0.04

3
neurons

0.92 ± 0.04 0.71 ± 0.03 0.98 ± 0.02 0.78 ± 0.04 0.96 ± 0.06 0.80 ± 0.04

4
neurons

0.99 ± 0.04 0.84 ± 0.04 0.98 ± 0.04 0.72 ± 0.04 0.90 ± 0.06 0.70 ± 0.03

5
neurons

0.99 ± 0.04 0.86 ± 0.04 1.00 ± 0.05 0.80 ± 0.04 0.93 ± 0.04 0.77 ± 0.04

6
neurons

0.95 ± 0.03 0.77 ± 0.04 1.02 ± 0.05 0.79 ± 0.03 0.95 ± 0.03 0.76 ± 0.05

1Results are the average of 20 runs based on random partitions on the data
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average (over runs) sum of squares of weights for the
linear model and for the non-linear network with 6 neu-
rons when using genomic relationships as predictors of
milk yield were 7.5 and 8.5, respectively; however, the
7.5 for the linear model was the sum of squares of 297
weights whereas the 8.5 for the nonlinear model with 6
neurons was the sum of squares of 1782 weights (6 ×
297). The same picture was observed in the wheat data
(results are not reported).

Discussion
Models for prediction of fat, milk and protein yield in
cows using pedigree and genomic relationship informa-
tion as inputs, and wheat yield using molecular mar-
kers as predictor variables were studied. This was done
using Bayesian regularized neural networks, and pre-
dictions were benchmarked against those from a linear

neural network, which is a Bayesian ridge regression
model. In the wheat data, the comparison was supple-
mented with results obtained by our group using
RKHS or support vector methods. Different network
architectures were explored by varying the number of
neurons, and using a hyperbolic tangent sigmoid acti-
vation function in the hidden layer plus a linear activa-
tion function in the output layer. This combination
has been shown to work well when extrapolating
beyond the range of the training data [36]. The choice
of number of neurons can be based on cross-valida-
tion, as in the present data, or on standard Bayesian
metrics for model comparison [11,15].
The Levenberg-Marquardt algorithm, as implemented

in MATLAB, was adopted to optimize weights and
biases, as this procedure has been effective elsewhere
[38]. Bayesian regularization was adopted to avoid over-

Table 4 Correlation coefficients (± standard errors) in the Jersey testing data set, by trait.1

Pedigree relationships Genomic relationships

Network Fat yield Milk yield Protein yield Fat yield Milk yield Protein yield

Linear 0.11 ± 0.04 0.07 ± 0.03 0.02 ± 0.02 0.43 ± 0.02 0.42 ± 0.03 0.44 ± 0.02

1 neuron 0.23 ± 0.03 0.10 ± 0.03 0.09 ± 0.02 0.51 ± 0.02 0.45 ± 0.02 0.44 ± 0.02

2 neurons 0.22 ± 0.03 0.08 ± 0.01 0.08 ± 0.03 0.49 ± 0.02 0.46 ± 0.03 0.51 ± 0.02

3 neurons 0.22 ± 0.02 0.13 ± 0.02 0.10 ± 0.03 0.53 ± 0.02 0.52 ± 0.02 0.47 ± 0.02

4 neurons 0.20 ± 0.02 0.09 ± 0.02 0.14 ± 0.02 0.45 ± 0.03 0.52 ± 0.02 0.47 ± 0.03

5 neurons 0.23 ± 0.02 0.13 ± 0.02 0.15 ± 0.02 0.42 ± 0.03 0.50 ± 0.02 0.47 ± 0.02

6 neurons 0.27 ± 0.02 0.10 ± 0.03 0.11 ± 0.02 0.48 ± 0.04 0.54 ± 0.02 0.50 ± 0.03
1Results are the average of 20 runs based on random partitions on the data
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Figure 3 Prediction mean squared errors in the Jersey testing set (vertical axis) by network. Results are averages of 20 independent runs.
“Linear” denotes a 1-neuron model with linear activation functions throughout.
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Figure 5 Distribution of connection strengths(wkj) in the linear and selected networks fitted to the Jersey data. The linear model has
single neuron architecture with linear activation functions. a) Fat yield using pedigree relationships: linear model (above) and 6 neurons (below).
b) Milk yield using pedigree relationships: linear model (above) and 6 neurons (below). c) Protein yield using pedigree relationships: linear model
(above) and 5 neurons (below). d) Fat yield using genomic relationships: linear model (above) and 3 neurons (below), e) Milk yield using
genomic relationships: linear model (above) and (below) and 6 neurons (below). f) Protein yield using genomic relationships: linear model
(above) and 2 neurons (below).
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fitting and to improve generalization, and cross-valida-
tion was used to assess predictive ability, as in [28,39].
Because Bayesian neural networks reduce the effective

number of weights relative to what would be obtained
without regularization, this helps to prevent over-fitting
[40]. For the networks we examined, even though the
total number of parameters, e.g., in Jerseys, ranged from
300 to 1795, the effective number of parameters varied
from only 91 to 136 when pedigree relationships were
used, and from 127 to 166 when genomic relationships
were used as inputs, illustrating the extent of regulariza-
tion. There were differences in predictive abilities of dif-
ferent architectures but the small sample used dictates a
cautious interpretation. Nevertheless, the results seem to
support networks with at least 2 neurons, which has
been observed in several studies [20,28,41-43]. This sug-
gests that linear models based on pedigree or on geno-
mic relationships may not provide an adequate
approximation to genetic signals resulting from complex
genetic systems. Because highly parameterized models
are penalized in the Bayesian approach, we were able to
explore complex architectures. However, there was evi-
dence of over-fitting in the Jersey training set, where
correlations between observed and predicted data in the
training set were always larger than 0.90, sometimes
exceeding 0.95. This explains why correlations were
much lower in the testing set, which is consistent with
what was observed in other studies with neural net-
works [42]. Although more parameters in a model can
lead to smaller error in the training data, it cannot be
overemphasized that this is not representative of predic-
tion error in an independent data set, as shown by [43]
working with human stature.
Our results with ANN for wheat are at least as good

as those obtained with the same data in two other stu-
dies. Crossa et al. [35] found cross-validation correla-
tions with the following values when various methods
were used: pedigree information (BLUP), 0.45; pedigree-
based reproducing kernel Hilbert spaces regression
(RKHS), 0.60; RKHS with both pedigree and markers,
0.61; Bayesian Lasso with markers, 0.46; Bayesian Lasso
with markers and pedigree, 0.54, and Bayesian ridge
regression on markers, 0.49. Long et al., [30] compared
the Bayesian Lasso with four support-vector regression
models consisting of the combination of two kernels
and two loss functions. The predictive correlation for
wheat yield (average of 50 random repeats of the cross-
validation exercise) was 0.52 for the Bayesian Lasso, and
ranged between 0.50 and 0.58 for the support vector
implementations. Hence, it seems clear, at least for
wheat yield in this data set, that the non-parametric
methods can outperform a strong learner, the Bayesian

Lasso, and that the neural networks are competitive
with the highly regarded support vector methods [11].
A question of importance in animal and plant breeding

is how an estimated “breeding value”, i.e., an estimate of
the total additive genetic effect of an individual, can be
arrived at from an ANN output. There are at least two
ways in which this can be done. One is by posing archi-
tectures with a neuron in which the inputs enter in a
strictly linear manner, followed by a linear activation
function on this neuron; the remaining neurons in the
architecture, receiving the same inputs, would be treated
non-linearly. A second one, is obtained by observing that
the infinitesimal model can be written as yi = z’iu + e, for
some incidence row vector z’i peculiar to individual i.
Here, the breeding value of the ith individual can be writ-

ten as ui = z′
i

∂

∂zi
(z′iu) . Likewise, consider a linear regres-

sion model for p markers, yi =
∑p

j=1 xijβj + ei = x′
iβ + ei,

where bj is the substitution effect at marker locus j; xij =
0,1,2 is the observed number of copies of a given allele at
locus j on individual I, and x′

i = {xij} and b = {bj} are row
and column vectors, respectively, each with p elements.
Here, the “marked breeding value” of individual i would

be x′
i

∂

∂xi
(x′

iβ) = x′
iβ . Consider next a neural network

with a hyperbolic tangent activation function throughout,
that is

ti = b + cg
[

s∑
k=1

wkgk(bk +
∑n

j=1 piju
∗∗[k]
j )

]
+ ei, .

Let pi = {pij} be the vector of input covariates (e.g.,
genomic or additive relationships, marker genotype
codes) observed on i. Adapting the preceding definitions
to the ANN specification, one would have as breeding
value (BV) of individual i

BVi = p′
i

∂

∂pi
ti =

Cg′

[
s∑

k=1

wkgk(bk +
∑n

j=1
piju

∗∗[k]
j )

]
p’i

s∑
k=1

wkg
′
k(bk +

∑n

j=1
piju

∗∗[k]
j )u∗∗[k],

where:

g′
[

s∑
k=1

wkgk(bk +
∑n

j=1
piju

∗∗[k]
j )

]
= 4P(1 − P),

P =

exp
[
−2

s∑
k=1

wkgk(bk +
∑n

j=1 piju
∗∗[k]
j )

]

1 + exp
[
−2

s∑
k=1

wkgk(bk +
∑n

j=1 piju
∗∗[k]
j )

] ,

u∗∗[k] =
{
u∗∗[k]
j

}
,
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and

gk′(bk +
∑n

j=1
piju

∗∗[k]
j )u∗∗[k] = 4Pk(1 − Pk),

with

Pk =
exp

[
−2(bk +

∑n
j=1 piju

∗∗[k]
j

]
1 + exp

[
−2(bk +

∑n
j=1 piju

∗∗[k]
j )

] .
Thus, the so defined breeding value of individual i

depends on the values of the input covariates observed
on this individual, on all connection strengths and bias
parameters from inputs to neurons in the middle layer
(the u’s and the b’s), and on all connection strengths
from the middle layer to the output layer (the w’s). In
order to obtain an estimate of breeding value the
unknown quantities would replaced by the correspond-
ing maximum a posteriori (MAP) estimates or, say, by
the estimate of their posterior expectation if a Markov
chain Monte Carlo scheme is applied [44].
Another issue is that of assessing the importance of an

input relative to that of others. For example, in a linear
regression model on markers, one could use a point
estimate of the substitution effect or its “studentized”
value (i.e., the point estimate divided by the correspond-
ing posterior standard deviation), or some measure that
involves estimates of substitution effects and of allelic
frequencies. A discussion of some measures of relative
importance of inputs in an ANN is in [28,43], for exam-
ple, the ratio between the absolute value of the estimate
of a given connection strength, and the sum of the abso-
lute values of all coefficients in the network.

Conclusion
Non-linear neural networks tended to outperform
benchmark linear models in predictive ability, and
clearly so in the wheat data. Bayesian regularization
allowed estimation of all connection strengths even
when n<<p, and the effective number of parameters was
much smaller than the corresponding nominal number.
Although the study was based on small samples, and the
differences found may be reflective of random variation,
especially in the Jersey data, our results suggest that the
neural networks may be useful for predicting complex
traits using high-dimensional genomic information, a
situation where the number of coefficients that need to
be estimated exceeds sample size. Neural networks have
the ability of capturing nonlinearities, and do so adap-
tively, which may be useful in the study of quantitative
traits under complex gene action, and particularly when
prediction of outcomes is crucial, such as in persona-
lized medicine.

In summary, predictive ability seemed to be enhanced
by use of Bayesian neural networks. Due to small sample
sizes no claim is made about superiority of any specific
non-linear architecture. As it has been observed in
many studies, the superiority of one predictive model
over another depends on the species, trait and environ-
ment, and the same will surely hold for ANNs.
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