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1 Introduction
In recent years, the fractional differential equations have received more and more atten-
tion. The fractional derivative has been occurring in many physical applications such as a
non-Markovian diffusion process with memory [], charge transport in amorphous semi-
conductors [], propagations of mechanical waves in viscoelastic media [], etc. Phenom-
ena in electromagnetics, acoustics, viscoelasticity, electrochemistry, and material science
are also described by differential equations of fractional order (see [–]).
Recently boundary value problems (BVPs for short) for fractional differential equations

have been studied in many papers (see [–]).
In [], bymeans of a fixed point theoremon a cone, Agarwal et al. considered two-point

boundary value problem at nonresonance given by

{
Dα

+x(t) + f (t,x(t),Dμ

+x(t)) = ,
x() = x() = ,

where  < α < , μ >  are real numbers, α –μ ≥  and Dα
+ is the Riemann-Liouville frac-

tional derivative.
Zhao et al. [] studied the following two-point BVP of fractional differential equations:

{
Dα

+x(t) = f (t,x(t)), t ∈ (, ),
x() = x′() = x′() = ,

where Dα
+ denotes the Riemann-Liouville fractional differential operator of order α,

 < α ≤ . By using the lower and upper solution method and fixed point theorem, they
obtained some new existence results.
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Liang and Zhang [] studied the following nonlinear fractional boundary value prob-
lem: {

Dα
+x(t) = f (t,x(t)), t ∈ (, ),

x() = x′() = x′′() = x′′() = ,

where  < α ≤  is a real number, Dα
+ is the Riemann-Liouville fractional differential op-

erator of order α. Bymeans of fixed point theorems, they obtained results on the existence
of positive solutions for BVPs of fractional differential equations.
In [], Bai considered the boundary value problem of the fractional order differential

equation
{
Dα

+x(t) + a(t)f (t,x(t),x′(t)), t ∈ (, ),
x() = x′() = x′′() = x′′() = ,

where  < α ≤  is a real number, Dα
+ is the Riemann-Liouville fractional differential op-

erator of order α.
Motivated by the above works, in this paper, we consider the following BVP of fractional

equation at resonance
{
Dα

+x(t) = f (t,x(t),x′(t),x′′(t),x′′′(t)), t ∈ (, ),
x() = x′() = x′′() = , x′′′() = x′′′(),

(.)

where Dα
+ denotes the Caputo fractional differential operator of order α,  < α ≤ . f :

[, ]×R
 → ×R is continuous.

The rest of this paper is organized as follows. Section  contains some necessary no-
tations, definitions and lemmas. In Section , we establish a theorem on existence of so-
lutions for BVP (.) under nonlinear growth restriction of f , basing on the coincidence
degree theory due to Mawhin (see []). Finally, in Section , an example is given to illus-
trate the main result.

2 Preliminaries
In this section, we introduce notations, definitions and preliminary facts which are used
throughout this paper.
Let X and Y be real Banach spaces and let L : domL ⊂ X → Y be a Fredholm operator

with index zero, and P : X → X, Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL,

X = KerL⊕ KerP, Y = ImL⊕ ImQ.

It follows that

L|domL∩KerP : domL∩ KerP → ImL

is invertible. We denote the inverse by KP .
If � is an open bounded subset of X, and domL ∩ � 
= ∅, the map N : X → Y will be

called L-compact on � if QN(�) is bounded and KP(I –Q)N : � → X is compact, where
I is identity operator.
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Lemma . ([]) If � is an open bounded set, let L : domL ⊂ X → Y be a Fredholm op-
erator of index zero and N : X → Y L-compact on �. Assume that the following conditions
are satisfied:
() Lx 
= λNx for every (x,λ) ∈ [(domL \ KerL)]∩ ∂� × (, );
() Nx /∈ ImL for every x ∈ KerL∩ ∂�;
() deg(QN |KerL,KerL∩ �, ) 
= , where Q : Y → Y is a projection such that

ImL = KerQ.
Then the equation Lx =Nx has at least one solution in domL∩ �.

Definition . The Riemann-Liouville fractional integral operator of order α >  of a
function x is given by

Iα+x(t) =


�(α)

∫ t


(t – s)α–x(s)ds,

provided that the right side integral is pointwise defined on (,+∞).

Definition . The Caputo fractional derivative of order α >  of a function x with x(n–)

absolutely continuous on [, ] is given by

Dα
+x(t) = In–α

+
dnx(t)
dtn

=


�(n – α)

∫ t


(t – s)n–α–x(n)(s)ds,

where n = –[–α].

Lemma . ([]) Let α >  and n = –[–α]. If x(n–) ∈ AC[, ], then

Iα+D
α
+x(t) = x(t) –

n–∑
k=

x(k)()
k!

tk .

In this paper, we denote X = C[, ] with the norm ‖x‖X = max{‖x‖∞,‖x′‖∞,‖x′′‖∞,
‖x′′′‖∞} and Y = C[, ] with the norm ‖y‖Y = ‖y‖∞, where ‖x‖∞ = maxt∈[,] |x(t)|. Obvi-
ously, both X and Y are Banach spaces.
Define the operator L : domL ⊂ X → Y by

Lx =Dα
+x, (.)

where

domL =
{
x ∈ X |Dα

+x(t) ∈ Y ,x() = x′() = x′′() = ,x′′′() = x′′′()
}
.

Let N : X → Y be the operator

Nx(t) = f
(
t,x(t),x′(t),x′′(t),x′′′(t)

)
, ∀t ∈ [, ].

Then BVP (.) is equivalent to the operator equation

Lx =Nx, x ∈ domL.

http://www.boundaryvalueproblems.com/content/2014/1/176
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3 Main result
In this section, a theorem on existence of solutions for BVP (.) will be given.

Theorem . Let f : [, ]×R
 →R be continuous. Assume that

(H) there exist nonnegative functions a,b, c,d, e ∈ C[, ]with�(α–)–(b +c +d +e) >
 such that

∣∣f (t,u, v,w,x)∣∣ ≤ a(t) + b(t)|u| + c(t)|v| + d(t)|w| + e(t)|x|,
∀t ∈ [, ], (u, v,w,x) ∈R

,

where a = ‖a‖∞, b = ‖b‖∞, c = ‖c‖∞, d = ‖d‖∞, e = ‖e‖∞;
(H) there exists a constant B >  such that for all x ∈R with |x| > B either

xf (t,u, v,w,x) > , ∀t ∈ [, ], (u, v,w) ∈R


or

xf (t,u, v,w,x) < , ∀t ∈ [, ], (u, v,w) ∈R
.

Then BVP (.) has at least one solution in X.

Now, we begin with some lemmas below.

Lemma . Let L be defined by (.), then

KerL =
{
x ∈ X

∣∣∣ x(t) = x′′′()


t,∀t ∈ [, ]
}
, (.)

ImL =
{
y ∈ Y

∣∣∣ ∫ 


( – s)α–y(s)ds = 

}
. (.)

Proof By Lemma ., Dα
+x(t) =  has solution

x(t) = x() + x′()t +
x′′()


t +
x′′′()


t.

Combining with the boundary value condition of BVP (.), one sees that (.) holds.
For y ∈ ImL, there exists x ∈ domL such that y = Lx ∈ Y . By Lemma ., we have

x(t) =


�(α)

∫ t


(t – s)α–y(s)ds + x() + x′()t +

x′′()


t +
x′′′()


t.

Then we have

x′′′(t) =


�(α – )

∫ t


(t – s)α–y(s)ds + x′′′().

By the conditions of BVP (.), we see that y satisfies

∫ 


( – s)α–y(s)ds = .

http://www.boundaryvalueproblems.com/content/2014/1/176
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Thus we get (.). On the other hand, suppose y ∈ Y and satisfies
∫ 
 ( – s)α–y(s)ds = .

Let x(t) = Iα+y(t), then x ∈ domL and Dα
+x(t) = y(t). So y ∈ ImL. The proof is complete.

�

Lemma . Let L be defined by (.), then L is a Fredholm operator of index zero, and the
linear continuous projector operators P : X → X and Q : Y → Y can be defined as

Px(t) =
x′′′()


t, ∀t ∈ [, ],

Qy(t) = (α – )
∫ 


( – s)α–y(s)ds, ∀t ∈ [, ].

Furthermore, the operator KP : ImL → domL∩ KerP can be written by

KPy(t) =


�(α)

∫ t


(t – s)α–y(s)ds, ∀t ∈ [, ].

Proof Obviously, ImP = KerL and Px = Px. It follows from x = (x – Px) + Px that X =
KerP + KerL. By a simple calculation, we get KerL∩ KerP = {}. Then we get

X = KerL⊕ KerP.

For y ∈ Y , we have

Qy =Q(Qy) =Qy · (α – )
∫ 


( – s)α– ds =Qy.

Let y = (y–Qy) +Qy, where y–Qy ∈ KerQ = ImL,Qy ∈ ImQ. It follows from KerQ = ImL
and Qy =Qy that ImQ∩ ImL = {}. Then we have

Y = ImL⊕ ImQ.

Thus

dim KerL = dim ImQ = codim ImL = .

This means that L is a Fredholm operator of index zero.
From the definitions of P, KP , it is easy to see that the generalized inverse of L is KP . In

fact, for y ∈ ImL, we have

LKPy =Dα
+ I

α
+y = y. (.)

Moreover, for x ∈ domL∩KerP, we get x() = x′() = x′′() = x′′′() = . By Lemma ., we
obtain

Iα+Lx(t) = Iα+D
α
+x(t) = x(t) + x() + x′()t +

x′′()


t +
x′′′()


t,
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which together with x() = x′() = x′′() = x′′′() =  yields

KPLx = x. (.)

Combining (.) with (.), we know that KP = (L|domL∩KerP)–. The proof is com-
plete. �

Lemma . Assume � ⊂ X is an open bounded subset such that domL∩� 
=∅, then N is
L-compact on �.

Proof By the continuity of f , we can see that QN(�) and KP(I – Q)N(�) are bounded.
So, in view of the Arzelà-Ascoli theorem, we need only prove that KP(I –Q)N(�) ⊂ X is
equicontinuous.
From the continuity of f , there exists constant A >  such that |(I –Q)Nx| ≤ A, ∀x ∈ �,

t ∈ [, ]. Furthermore, denote KP,Q = KP(I –Q)N and for ≤ t < t ≤ , x ∈ �, we have

∣∣(KP,Qx)(t) – (KP,Qx)(t)
∣∣

≤ 
�(α)

∣∣∣∣
∫ t


(t – s)α–(I –Q)Nx(s)ds –

∫ t


(t – s)α–(I –Q)Nx(s)ds

∣∣∣∣
≤ A

�(α)

[∫ t


(t – s)α– – (t – s)α– ds +

∫ t

t
(t – s)α– ds

]

=
A

�(α + )
(
tα – tα

)
,

∣∣(KP,Qx)′(t) – (KP,Qx)′(t)
∣∣ ≤ A

�(α)
(
tα– – tα–

)
,

∣∣(KP,Qx)′′(t) – (KP,Qx)′′(t)
∣∣ ≤ A

�(α – )
(
tα– – tα–

)
,

and

∣∣(KP,Qx)′′′(t) – (KP,Qx)′′′(t)
∣∣

=


�(α – )

∣∣∣∣
∫ t


(t – s)α–(I –Q)Nx(s)ds –

∫ t


(t – s)α–(I –Q)Nx(s)ds

∣∣∣∣
≤ A

�(α – )

[∫ t


(t – s)α– – (t – s)α– ds +

∫ t

t
(t – s)α– ds

]

≤ A
�(α – )

[
tα– – tα– + (t – t)α–

]
.

Since tα , tα–, tα–, and tα– are uniformly continuous on [, ], we see that KP,Q(�) ⊂
C[, ], (KP,Q)′(�) ⊂ C[, ], (KP,Q)′′(�) ⊂ C[, ] and (KP,Q)′′′(�) ⊂ C[, ] are equicontin-
uous. Thus, we find that KP,Q : � → X is compact. The proof is completed. �

Lemma . Suppose (H), (H) hold, then the set

� =
{
x ∈ domL \ KerL | Lx = λNx,λ ∈ (, )

}
is bounded.

http://www.boundaryvalueproblems.com/content/2014/1/176
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Proof Take x ∈ �, then Nx ∈ ImL. By (.), we have

∫ 


( – s)α–f

(
s,x(s),x′(s),x′′(s),x′′′(s)

)
ds = .

Then, by the integral mean value theorem, there exists a constant ξ ∈ (, ) such that
f (ξ ,x(ξ ),x′(ξ ),x′′(ξ ),x′′′(ξ )) = . Then from (H), we have |x′′′(ξ )| ≤ B.
From x ∈ domL, we get x() = , x′() = , and x′′() = . Therefore

∣∣x′′(t)
∣∣ = ∣∣∣∣x′′() +

∫ t


x′′′(s)ds

∣∣∣∣ ≤ ∥∥x′′′∥∥∞,

∣∣x′(t)
∣∣ = ∣∣∣∣x′() +

∫ t


x′′(s)ds

∣∣∣∣ ≤ ∥∥x′′∥∥∞,

and

∣∣x(t)∣∣ = ∣∣∣∣x() +
∫ t


x′(s)ds

∣∣∣∣ ≤ ∥∥x′∥∥∞.

That is

‖x‖∞ ≤ ∥∥x′∥∥∞ ≤ ∥∥x′′∥∥∞ ≤ ∥∥x′′′∥∥∞. (.)

By Lx = λNx and x ∈ domL, we have

x(t) =
λ

�(α)

∫ t


(t – s)α–f

(
s,x(s),x′(s),x′′(s),x′′′(s)

)
ds +



x′′′()t.

Then we get

x′′′(t) =
λ

�(α – )

∫ t


(t – s)α–f

(
s,x(s),x′(s),x′′(s),x′′′(s)

)
ds + x′′′().

Take t = ξ , we get

x′′′(ξ ) =
λ

�(α – )

∫ ξ


(ξ – s)α–f

(
s,x(s),x′(s),x′′(s),x′′′(s)

)
ds + x′′′().

Together with |x′′′(ξ )| ≤ B, (H), and (.), we have

∣∣x′′′()
∣∣ ≤ ∣∣x′′′(ξ )

∣∣ + λ

�(α – )

∫ ξ


(ξ – s)α–

∣∣f (s,x(s),x′(s),x′′(s),x′′′(s)
)∣∣ds

≤ B +


�(α – )

∫ ξ


(ξ – s)α–

[
a(s) + b(s)

∣∣x(s)∣∣ + c(s)
∣∣x′(s)

∣∣
+ d(s)

∣∣x′′(s)
∣∣ + e(s)

∣∣x′′′(s)
∣∣]ds

≤ B +


�(α – )

∫ ξ


(ξ – s)α–

(
a + b‖x‖∞ + c

∥∥x′∥∥∞

+ d
∥∥x′′∥∥∞ + e

∥∥x′′′∥∥∞
)
ds

http://www.boundaryvalueproblems.com/content/2014/1/176
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≤ B +


�(α – )

∫ ξ


(ξ – s)α–

[
a + (b + c + d + e)

∥∥x′′′∥∥∞
]
ds

≤ B +


�(α – )
[
a + (b + c + d + e)

∥∥x′′′∥∥∞
]
.

Then we have

∥∥x′′′∥∥∞ ≤ 
�(α – )

∫ t


(t – s)α–

∣∣f (s,x(s),x′(s),x′′(s),x′′′(s)
)∣∣ds + ∣∣x′′′()

∣∣
≤ 

�(α – )

∫ t


(t – s)α–

[
a(s) + b(s)

∣∣x(s)∣∣ + c(s)
∣∣x′(s)

∣∣
+ d(s)

∣∣x′′(s)
∣∣ + e(s)

∣∣x′′′(s)
∣∣]ds + x′′′()

≤ 
�(α – )

∫ t


(t – s)α–

(
a + b‖x‖∞ + c

∥∥x′∥∥∞

+ d
∥∥x′′∥∥∞ + e

∥∥x′′′∥∥∞
)
ds +

∣∣x′′′()
∣∣

≤ 
�(α – )

∫ t


(t – s)α–

[
a + (b + c + d + e)

∥∥x′′′∥∥∞
]
ds +

∣∣x′′′()
∣∣

≤ 
�(α – )

[
a + (b + c + d + e)

∥∥x′′′∥∥∞
]
+

∣∣x′′′()
∣∣

≤ B +


�(α – )
[
a + (b + c + d + e)

∥∥x′′′∥∥∞
]
.

Thus, from �(α – ) – (b + c + d + e) > , we obtain

∥∥x′′′∥∥∞ ≤ a + �(α – )B
�(α – ) – (b + c + d + e)

:=M.

Thus, together with (.), we get

‖x‖∞ ≤ ∥∥x′∥∥∞ ≤ ∥∥x′′∥∥∞ ≤ ∥∥x′′′∥∥∞ ≤ M.

Therefore,

‖x‖X ≤ M.

So � is bounded. The proof is complete. �

Lemma . Suppose (H) holds, then the set

� = {x | x ∈ KerL,Nx ∈ ImL}

is bounded.

Proof For x ∈ �, we have x(t) = x′′′()
 t and Nx ∈ ImL. Then we get

∫ 


( – s)α–f

(
s,
x′′′()


s,
x′′′()


s,x′′′()s,x′′′()
)
ds = ,

http://www.boundaryvalueproblems.com/content/2014/1/176
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which together with (H) implies |x′′′()| ≤ B. Thus, we have

‖x‖X ≤ B.

Hence, � is bounded. The proof is complete. �

Lemma . Suppose the first part of (H) holds, then the set

� =
{
x | x ∈ KerL,λx + ( – λ)QNx = ,λ ∈ [, ]

}

is bounded.

Proof For x ∈ �, we have x(t) = x′′′()
 t and

λ
x′′′()


t + ( – λ)(α – )

×
∫ 


( – s)α–f

(
s,
x′′′()


s,
x′′′()


s,x′′′()s,x′′′()
)
ds = . (.)

If λ = , then |x′′′()| ≤ B because of the first part of (H). If λ ∈ (, ], we can also obtain
|x′′′()| ≤ B. Otherwise, if |x′′′()| > B, in view of the first part of (H), one has

λ
[x′′′()]


t + ( – λ)(α – )

×
∫ 


( – s)α–x′′′()f

(
s,
x′′′()


s,
x′′′()


s,x′′′()s,x′′′()
)
ds > ,

which contradicts (.).
Therefore, � is bounded. The proof is complete. �

Remark . Suppose the second part of (H) hold, then the set

�′
 =

{
x | x ∈ KerL, –λx + ( – λ)QNx = ,λ ∈ [, ]

}

is bounded.

Proof of Theorem . Set � = {x ∈ X | ‖x‖X < max{M,B}+ }. It follows from Lemmas .
and . that L is a Fredholm operator of index zero and N is L-compact on �. By Lem-
mas . and ., we see that the following two conditions are satisfied:
() Lx 
= λNx for every (x,λ) ∈ [(domL \ KerL)∩ ∂�]× (, );
() Nx /∈ ImL for every x ∈ KerL∩ ∂�.

Take

H(x,λ) = ±λx + ( – λ)QNx.

http://www.boundaryvalueproblems.com/content/2014/1/176
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According to Lemma . (or Remark .), we know that H(x,λ) 
=  for x ∈ KerL ∩ ∂�.
Therefore

deg(QN |KerL,� ∩ KerL, ) = deg
(
H(·, ),� ∩ KerL, 

)
= deg

(
H(·, ),� ∩ KerL, 

)
= deg(±I,� ∩ KerL, ) 
= .

So the condition () of Lemma . is satisfied. By Lemma ., we find that Lx =Nx has at
least one solution in domL ∩ �. Therefore, BVP (.) has at least one solution. The proof
is complete. �

4 An example
Example . Consider the following BVP:

{
D



+x(t) =


 (x

′′′ – ) + t
e

–|x′|–|x′′| + t
 sin(x), t ∈ [, ],

x() = x′() = x′′() = , x′′′() = x′′′().
(.)

Here

f (t,u, v,w,x) =



(x – ) +
t


e–|v|–|w| +

t


sin

(
u

)
.

Choose a(t) = 
 , b(t) = , c(t) = , d(t) = , e(t) = 

 , B = . We get b = , c = , d = ,
e = 

 , and

�

(


– 

)
– (b + c + d + e) > .

Then all conditions of Theorem . hold, so BVP (.) has at least one solution.
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