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1 Introduction

The issue of integrable defects in discrete and continuum (classical-quantum) integrable

systems has been the subject of increased research interest during the last two decades or

so [1, 2]–[14]. Recently one of us [15] proposed an algebraic approach for the description of

a Liouville integrable defect in the discrete non-linear Schrödinger model. This approach is

based on the construction of a N -site transfer matrix including the defect matrix at a fixed

point. Classical integrability is guaranteed by the existence of an r-matrix structure [16] for

the discrete bulk Lax matrices, and the defect matrix. The question of quantum integrable

defects (see e.g. [12, 14] and references therein) will not be treated here, although the

corresponding formalism is a straightforward variation of the classical one [15]. Subsequent

derivations of the Poisson-commuting Hamiltonians and the corresponding time-component

of the Lax pair following the canonical construction [16, 17] were given.

This now leads us to propose a similarly fully algebraic picture for a description of

a Liouville integrable defect in the continuous non-linear Schrödinger model. We restrict

ourselves to the case of a single point like defect; extensions of this notion will be commented

upon in the conclusion section.

The procedure itself is based on the construction of a suitable continuous transfer ma-

trix generating the Poisson-commuting Hamiltonians and their associated time-component

V of the continuous Lax pair:

1. The continuous monodromy matrix is built as a coaction:

T (A,−A, λ) = T+(A, x0, λ) L̃(x0, λ) T
−(x0,−A, λ) (1.1)

This of course is the immediate continuum limit of the discrete defect monodromy

matrix (see e.g. [15, 18]). Such monodromy matrices were derived in [19]. The T±

matrices are the monodromies of the differential operator d/dx+L(x) where L is the

continuous Lax matrix L(x) associated to NLS [20], and L̃ is the defect matrix. As in
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the discrete case, Liouville integrability follows from asking that L̃ obeys a quadratic

Poisson algebra
{

L̃a(λ), L̃b(µ)
}

=
[

rab(λ− µ), L̃a(λ)L̃b(µ)
]

(1.2)

with the same r matrix as the bulk monodromy operators, thereby imposing a strong

constraint on the Poisson structure of the dynamical variables parametrizing the

defect.

2. The Poisson-commuting hierarchy of Hamiltonians is then obtained from expansion

in λ−1 of the ln of the trace of the monodromy matrix (1.1). Poisson commutation is

formally guaranteed by the underlying quadratic Poisson structure [17], but must be

checked against possible divergences due to δ-distributions on a support overlapping

the defect point.

3. The time components of the Lax pair are then computed. They are evaluated sepa-

rately in the right bulk (x0, A) and the left bulk (−A, x0) and on the defect point

–from left and right. As in the boundary integrable systems [21] it is required that

V
(±)(x±0 ) → Ṽ

(±)(x0) in order to avoid singular contributions from the zero curvature

condition for the Lax pair U, V:

U̇− V
′ +
[

U, V
]

= 0, x 6= x0. (1.3)

This translates into sewing conditions {C
(j)
± } across the defect relating the right and

left values of the (j−1)th derivatives of the fields by functions of lower derivatives and

the defect parameters. Sewing conditions are thus understood as necessary conditions

to allow identification of the Hamiltonian equations of motion deduced either from

H(i) or from the zero curvature condition for the Lax pair U, V
(i); in other words

they act as “regularizations” in the canonical [16, 17] procedure yielding V
(i) and H(i)

through the classical r-matrix. They will be shown in our example to be sufficient

conditions.

4. Consistency of the procedure then requires to make sure that the sub-manifold of the

sewing conditions {C
(i)
± } is invariant under the Hamiltonian action, which reads as:

{

H(i), C
(j)
±

}

belongs to the ideal generated by C
(i)
± . (1.4)

Once this is checked, we are justified in defining our Hamiltonian dynamical system

as a Liouville-integrable defect in the continuum.

As it clearly appears from our construction in Point 1, the monodromy matrix with

defect realizes a Hamiltonian formulation for a Backlund (or rather dressing) transforma-

tion procedure yielding an “integrable” defect in a Lagrangian approach such as described

previously in [5] and recently in a very explicit way in [22]. Because we are from the very

beginning in a Hamiltonian framework involving the r-matrix structure and associated

construction of the Lax pair, we are indeed safe in stating that we are establishing a strong
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Liouville-integrability for our defect theory. In addition this provides the suitable basis for

a quantization procedure. By contrast integrability discussed in [5, 22] can be character-

ized as weaker “Lax”-type integrability, in that they only show the existence of modified

conserved quantities and their invariance under time evolution triggered by (in the Hamil-

tonian language) the third Hamiltonian. Higher time evolution cannot be discussed in this

Lagrangian framework hence Liouville integrability can not be proved.

Exemplification of the fourfold pattern will be given in section 2 on the example of

NLS equation. Our direct construction can also be formulated as a continuous limit of

the discrete construction given in [15]. We shall comment on this in a final section 3:

The continuous limit is here formulated as the replacement of the discrete index n by the

continuous variable x; the introduction of the normalization scale ∆ in the bulk matrices

exactly as explained in section 5 of the previous paper; and the introduction of this scale

∆ and an overall factor on the defect Lax matrix (disregarding here the parametrization

used in [15], which might be relevant in the case of non ultra-local or extended defects).

Finally, a general proof of the consistency of such sewing conditions as obtained in

Step 3 with the Hamiltonian evolutions triggered by a Lax pair formulation will be given

in section 4.

The Hamiltonians obtained by this procedure; the Lax time-operators V(x); and the

sewing conditions are exactly identified with the direct continuous construction described

in the previous sections. It appears that the “naive” discrete to continuous limit is here

consistent, which may be related to the ultra-local nature of the considered theory.

2 The continuous NLS model with defect

The four fold pattern described in the introduction is generic. We shall now exemplify it

on the simple example of a single point-like defect in a continuum field theory — the non-

linear Schrödinger model — associated to the Yangian classical r-matrix [23]: r(λ) = P
λ
,

P is the permutation operator.

The starting point in our analysis is the derivation of the corresponding monodromy

matrix:

T (A,−A, λ) = T+(A, x0, λ) L̃(x0, λ) T
−(x0,−A, λ)

= P exp
{

∫ A

x+
0

dx U
+(x)

}

L̃(x0, λ) P exp
{

∫ x−

0

−A

dx U
−(x)

}

(2.1)

T± and L̃ satisfy the quadratic relation (1.2). We consider the following defect operator

L̃(x0) = λI+

(

α(x0) β(x0)

γ(x0) δ(x0)

)

. (2.2)

The Lax operator for the NLS model is the familiar (see e.g. [17, 24]):

U
± = Ud + U

+
a ≡

λ

2

(

1 0

0 −1

)

+

(

0 ψ̄±

ψ± 0

)

. (2.3)
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where the bulk fields are canonical i.e.
{

ψ±(x), ψ̄±(y)
}

= δ(x− y),
{

ψ∓(x), ψ̄±(y)
}

= 0. (2.4)

Due to the fact that the L̃ satisfies the quadratic algebra (1.2) the elements α, β, γ, δ

realize the following Poison bracket structure:
{

α(x0), β(x0)
}

= β(x0)
{

α(x0), γ(x0)
}

= −γ(x0)
{

β(x0), γ(x0)
}

= 2α(x0). (2.5)

The discussion on the continuum limit of the discrete NLS in the section 3 will further

justify the present analysis. It will become transparent that the results derived directly

from the continuum monodromy matrix coincide, as one would naturally expect, with the

ones obtained as continuum limits of the discrete expressions presented in section 3 . In

particular, it will be clear (see also [18, 25] and expression (3.19)) that the continuum

analogue of the discrete monodromy matrix is given by (2.1).

The continuum “bulk” monodromy matrices T± satisfy the following differential

equation

∂T±(x, y;λ)

∂x
= U

±T±(x, y;λ) (2.6)

and the zero curvature condition is then expressed as:

U̇
±(x, t)− V

±(x, t) +
[

U
±(x, t),V±(x, t)

]

= 0 x 6= x0 (2.7)

On the defect point in particular the zero curvature condition is formulated as (this will

be also transparent when discussing the continuum limit of the discrete theory)

dL̃(x0)

dt
= Ṽ

+(x0)L̃(x0)− L̃(x0)Ṽ
−(x0) (2.8)

and describes explicitly the jump occurring across the defect point. This will be a major

consistency check of the prescription followed here. The time components Ṽ± at the defect

point will be explicitly derived below together with the bulk quantities V± and the “defect”

quantities Ṽ±.

Now the canonical procedure in extracting the local integrals of motion may be directly

applied. First we consider the following familiar ansatz for the monodromy matrices:

T±(x, y;λ) = (1 +W±(x))eZ
±(x,y)(1 +W±(y))−1 (2.9)

Substituting the ansatz (2.9) into (2.6), and splitting the resulting equation into a

diagonal and an off-diagonal part one obtains

dW±

dx
+W±

Ud − UdW
± +W±

U
±
aW

± − U
±
a = 0,

∂Z±

∂x
= Ud + U

±
aW

±. (2.10)
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Solution of the latter set of equations provides the explicit expressions of the W±, Z±

matrices.

More precisely, let us recall the generating function of the local integrals of motion

G(λ) = ln
(

trT (λ)
)

(2.11)

due to the ansatz (2.9) we can substitute the monodromy matrix accordingly and obtain:

G(λ) = ln tr
[

(1+W+(L))eZ
+(A,x0)

(1 +W+(x0))
−1L̃(x0)(1 +W−(x0))e

Z−(x0,−A))(1 +W−(−L))−1
]

,

but due to the choice of Schwartz boundary conditions at x = ±A we conclude:

G(λ) = ln tr
[

eZ
+(A,x0)(1 +W+(x0))

−1L̃(x0)(1 +W−(x0))e
Z−(x0,−A))

]

. (2.12)

Let us first evaluate the first couple of W (i)’s through (2.10)

W±(1) =

(

−ψ̄±(x)

ψ±(x)

)

, W±(2) =

(

−ψ̄±′

(x)

−ψ±′

(x)

)

W±(3) =

(

−ψ̄±′′

(x) + |ψ±(x)|2ψ̄±(x)

ψ±′′

(x)− |ψ±(x)|2ψ±(x)

)

. (2.13)

Similarly through (2.10) the diagonal elements Z(i) are given as:

Z+(−1) =

(

A

x0

)

, Z−(−1) =

(

x0
−A

)

,

Z±(1) =

(

∫

dx ψ±(x)ψ̄±(x)

−
∫

dx ψ±(x)ψ̄±(x)

)

Z±(2) =

(

−
∫

dx ψ±′

(x)ψ̄±(x)

−
∫

dx ψ±(x)ψ̄±′

(x)

)

(2.14)

Z±(3) =





∫

dx
(

ψ±′′

(x)ψ̄±(x)− |ψ±(x)|4
)

−
∫

dx
(

ψ̄±′′

(x)ψ±(x)− |ψ±(x)|4
)



 .

The expansion of the generating function G in powers of 1
λ
provides the local integrals of

model of the model under consideration. Note that due to the fact that for λ → ∞ the

leading contribution comes from Z
(−1)
11 –keep also in mind that A → ∞. It is thus clear

that the generating function of the local integrals of motion becomes:

G(λ) = Z+
11(λ) + Z−

11(λ) + ln[(1 +W+(x0)
−1L̃(x0)(1 +W−(x0))]11 (2.15)
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and the terms Z±
11 provide the left and right bulk theories whereas the third term of the

expression above gives the defect contribution. More precisely, the first three integrals of

motions may be expressed as

H(1) =

∫ x−

0

−A

dx ψ−(x)ψ̄−(x) +

∫ A

x+
0

dx ψ+(x)ψ̄+(x) + α(x0). (2.16)

H(2) = −

∫ x−

0

−A

dx ψ̄−(x)ψ−′

(x)−

∫ A

x+
0

dx ψ̄+(x)ψ+′

(x)

− ψ̄+(x0)ψ
+(x0) + ψ̄+(x0)ψ

−(x0) + γ(x0)ψ̄
+(x0) + β(x0)ψ

−(x0)−
α2(x0)

2

(2.17)

H(3) =

∫ A

x+
0

dx
(

ψ̄+(x)ψ+′′

(x) + |ψ+(x)|4
)

+

∫ x−

0

−A

dx
(

ψ̄−(x)ψ−′′

(x) + |ψ−(x)|4
)

+ (ψ̄+(x0)ψ
+(x0))

′ + γ(x0)ψ̄
+′

(x0)− β(x0)ψ
−′

(x0)− x+
′

(x0)X
−(x0) +

α3(x0)

3

− ψ̄+(x0)ψ
−′

(x0) + α(x0)
(

− γ(x0)ψ̄
+(x0)− β(x0)ψ

−(x0)− 2ψ̄+(x0)ψ
−(x0)

)

.

(2.18)

It is clear that by construction for all the above charges we have:

{

H(i), H(j)
}

= 0, (2.19)

the latter commutation relations have also been explicitly checked for the three

charges (2.18). To show the commutativity of the charges we made use of the exchange

relations (2.4), (2.5) and also

{

ψ±(x0), e(x0)
}

= 0, e =
{

α, β, γ
}

. (2.20)

The fields ψ±, ψ̄± at the defect are defined point by analytic continuation:

ψ±(x±0 ) → ψ±(x0), ψ̄±(x±0 ) → ψ̄±(x0). (2.21)

Expressions of the time component V of the Lax pair are known (see e.g. [17]). The

generic expressions for the bulk left and right theory are given as:

V
+(x, λ, µ) = t−1(λ)tra

(

T+(A, x, λ)rab(λ− µ)T+(x, x0, λ)L̃(x0, λ)T
−(x0,−A, λ)

)

V
−(x, λ, µ) = t−1(λ)tra

(

T+(A, x0, λ)L̃(x0)T
−(x0, x, λ)rab(λ− µ)T−(x,−A, λ)

)

Ṽ
+(x0, λ, µ) = t−1(λ)tra

(

T+(A, x0, λ)rab(λ− µ)L̃(x0, λ)T
−(x0,−A, λ)

)

Ṽ
−(x0, λ, µ) = t−1(λ)tra

(

T+(A, x0, λ)L̃(x0, λ)rab(λ− µ)T−(x0,−A, λ)
)

. (2.22)
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In the special case where the r matrix is the Yangian the expressions above become:

V
+(x, λ, µ) =

t−1

λ− µ
T+(x, x0, λ)L̃(x0, λ)T

−(x0,−A, λ)T
+(A,X0, λ)

V
−(x, λ, µ) =

t−1

λ− µ
T−(x,−A)T+(A, x0)L̃(x0)T

−(x0, x)

Ṽ
+(x0, λ, µ) =

t−1(λ)

λ− µ
L̃(x0)T

−(x0,−A)T
+(A, x0)

Ṽ
−(x0, λ, µ) =

t−1(λ)

λ− µ
T−(x0,−A)T

+(A, x0)L̃(x0). (2.23)

The next step is to expand the latter expressions. Notice that special care is taken by

construction for the defect point, where separate formulaes naturally emerge. Substituting

the ansatz for the monodromy matrices we can explicitly derive this expansion. Explicit

expressions for the first three orders are given below:

V(µ, x) =

(

1 0

0 0

)

(2.24)

V
−(2)(µ, x) =

(

µ ψ̄−(x)

ψ−(x) 0

)

V
+(2)(µ, x) =

(

µ ψ̄+(x)

ψ+(x) 0

)

Ṽ
−(2)(µ, x0) =

(

µ ψ̄+(x0) + β(x0)

ψ−(x0) 0

)

,

Ṽ
+(2)(µ, x0) =

(

µ ψ̄+(x0)

γ(x0) + ψ−(x0) 0

)

. (2.25)

V
−(3)(x) =

(

µ2 − ψ̄−(x)ψ−(x) µψ̄−(x) + ψ̄−′

(x)

µψ−(x)− ψ−′

(x) ψ̄−(x)ψ−(x)

)

V
+(3)(x) =

(

µ2 − ψ̄+(x)ψ−(x) µψ̄+(x) + ψ̄+′

(x)

µψ+(x)− ψ+′

(x) ψ̄+(x)ψ+(x)

)

Ṽ
−(3)(x0) =





µ2 −
(

ψ̄+(x0) + β(x0)
)

ψ−(x0) µ
(

ψ̄+(x0) + β(x0)
)

+ f(x0)

µψ−(x0)− ψ−′

(x0)
(

ψ̄+(x0) + β(x0)
)

ψ−(x0)





Ṽ
+(3)(x0) =

(

µ2 − ψ̄+(x0)(ψ
−(x0) + γ(x0)) µψ̄+(x0) + ψ̄+′

(x0)

µ
(

ψ−(x) + γ(x0)
)

+ g(x0) ψ̄+(x0)
(

ψ−(x0) + γ(x0)
)

)

(2.26)

where we define

f(x0) = ψ̄+′

(x0)− α(x0)
(

β(x0) + 2ψ̄+(x0)
)

g(x0) = −ψ−′

(x0)− α(x0)
(

γ(x0) + 2ψ−(x0)
)

. (2.27)
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Due to continuity requirements at the points x+0 , x
−
0 (see also a similar argument in [21])

i.e.

V
+(k)(x+0 ) → Ṽ

+(k)(x0), V
−(k)(x−0 ) → Ṽ

−(k)(x0), x±0 → x0 (2.28)

we end up with the following sewing conditions C
(k)
± associated to the defect point:

C
(1)
− : ψ̄−(x0)− ψ̄+(x0)− β(x0) = 0,

C
(1)
+ : ψ+(x0)− ψ−(x0)− γ(x0) = 0

C
(2)
− : ψ̄−′

(x0)− ψ̄+′

(x0) + α(x0)β(x0) + 2α(x0)ψ̄
+(x0) = 0

C
(2)
+ : ψ−′

(x0)− ψ+′

(x0) + α(x0)γ(x0) + 2α(x0)ψ
−(x0) = 0

C
(3)
− : ψ̄−′′

(x0)−ψ̄
+′′

(x0)+2ψ̄−(x0)
2ψ−(x0)−ψ̄

+(x0)
2ψ+(x0)+2α(x0)ψ̄

+′

(x0)

−2
(

β(x0)ψ̄
+(x0)+β

2(x0)
)

ψ−(x0)+
(

β(x0)γ(x0)−2α2(x0)
)

ψ̄+(x0)−β(x0)α
2(x0)=0

C
(3)
+ : ψ−′′

(x0)−ψ
+′′

(x0)+2ψ−(x0)
2ψ̄−(x0)−ψ

+(x0)
2ψ̄+(x0)+2α(x0)ψ

+′

(x0)

−2
(

γ(x0)ψ
+(x0)+γ

2(x0)
)

ψ−(x0)+
(

β(x0)γ(x0)−2α2(x0)
)

ψ+(x0)−γ(x0)α
2(x0)=0.

(2.29)

Higher (j-th) sewing conditions involving jumps of higher (j−1)-th derivatives of the fields

will arise from the construction of time components of higher Lax pairs.

Step 4 of the procedure now follows: we need to explicitly check the compatibility

of the sewing conditions with the hierarchy of Hamiltonian evolutions i.e. we show that

generic relationships of the type (1.4) can be implemented consistently with the commuting

time evolutions. We have in particular checked that:

{

H(1), C
(1)
±

}

= ±C
(1)
± ,

{

H(1), C
(2)
±

}

= ±C
(2)
±

{

H(2), C
(1)
±

}

= ∓C
(1)
± δ(0) + C

(2)
±

{

H(2), C
(2)
±

}

= C
(3)
± ± C

(1)
± δ′(0),

{

H(3), C
(1)
−

}

= C
(3)
− + δ(0)C

(2)
− + δ

′

(0)C
(1)
− + 2ψ̄+2(x0)C

(1)
+

+
(

ψ̄+(x0) + ψ̄−(x0) + 2β(x0)
)

ψ−(x0)C
(1)
−

(2.30)

In section 4 we shall formally prove the compatibility of the generic sewing constraints,

emerging from continuity conditions imposed on the time components of the Lax pairs,

with the charges in involution.

Having defined both the local integrals of motion, and the corresponding Lax pairs we

now extract the associated equations of motion. Hamiltonian equations on the one hand

ψ̇±(x, t) = {H(j), ψ±(x, t)}, ˙̄ψ±(x, t) = {H(j), ψ̄±(x, t)} x 6= x0

ė(x0, t) = {H(j), e(x0, t)}, e ∈ {α, β, γ} (2.31)
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and the zero curvature conditions (2.7), (2.8) on the other hand, give rise as should rightly

be expected to the same equations of motion. We shall focus on the equations of motion

emerging from the Hamiltonian H(3) (and the Lax pair U±, V±(3)). For the left and right

bulk theories we obtain the familiar equations of motion from the NLS model

ψ̇(x, t) =
∂2ψ±(x, t)

∂x2
− 2|ψ±(x, t)|2ψ±(x, t)

˙̄ψ(x, t) =
∂2ψ̄±(x, t)

∂x2
− 2|ψ±(x, t)|2ψ̄±(x, t) (2.32)

the dot denotes derivative with respect to time. For the defect point

α̇(x0) = γ(x0)ψ̄
+′

(x0) + β(x0)ψ
−′

(x0)− α(x0)γ(x0)ψ̄
+(x0) + α(x0)β(x0)ψ

−(x0)

β̇(x0) = 2α2(x0)ψ̄(x0)− 2α(x0)ψ̄
+′

(x0) + α2(x0)β(x0)− β(x0)γ(x0)ψ̄
+(x0)

−β2(x0)ψ
−(x0)− 2β(x0)ψ̄

+(x0)ψ
−(x0)

γ̇(x0) = −2α(x0)ψ
−′

(x0)− 2α(x0)ψ
−(x0)− α2(x0)γ(x0) + γ2ψ̄(x0)

+β(x0)γ(x0)ψ
−(x0) + 2γ(x0)ψ̄

+(x0)ψ
−(x0). (2.33)

The fact that we end up to the same equations of motion from either the Hamiltonian or

the Lax pair description for all the points on the line further confirms the consistency of the

whole process. Indeed, identification of the equations of motion from these two procedures

confirms that the sewing conditions represent a guarantee that the time-like operators

of the Lax pair are correctly defined by the Semenov-Tjan-Shanskii expression (2.22) on

the r.h.s. and l.h.s. of the defect point consistently with the hamiltonian evolutions, in

other words the sewing conditions may be conjectured to represent the necessary and

sufficient consistency conditions for application of the Semenov-Tjan-Shanskii procedure

to inhomogeneous forms of monodromy matrices.

3 Discrete NLS model: the continuum limit

We shall first briefly recall in this section the main results reported in [15]. From the

discrete expressions of the local integrals of motion and the corresponding Lax pairs we

shall derive a consistent continuum limit which will reproduce the results of the previous

section further confirming the validity of the proposed process. Let us first recall that the

bulk Lax operator is given by (see e.g. [20]):

Laj(λ) = λDj +Aj

=

(

λ+ Nj xj
−Xj 1

)

(3.1)

where Nj = 1− xjXj and the fields x, X are canonical:

{

xi, Xj

}

= δij . (3.2)
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The defect Lax operator is basically the sl2 one expressed as:

L̃an = λ+ Ãan

= λ+

(

αn βn
γn δn

)

, (3.3)

the index n simply denotes the position of the defect on the one dimensional spin chain.

Note that the L̃ matrix is required to obey the same ultra-local Poisson bracket structure

as the bulk matrices L (3.1) so that integrability is ensured. For this reason the elements

α, β, γ, δ satisfy the following exchange relations:
{

αn, βn

}

= βn
{

αn, γn

}

= −γn
{

βn, γn

}

= 2αn. (3.4)

Inserting the defect at the n-th site of the one dimensional lattice the corresponding

monodromy matrix is expressed as:

Ta(λ) = LaN (λ)LaN−1(λ) . . . L̃an(λ) . . . La1(λ). (3.5)

The trace of the monodromy matrix — the transfer matrix t(λ) — as customary provides

a family of Poisson commuting operators guaranteeing the integrability of the system. The

expressions of the discrete integrals of motion obtained in [15] from the expansion of ln t(λ)

in powers of 1
λ
:

H(1) =
∑

j 6=n

Nj + αn

H(2) = −
∑

j 6=n,n−1

xj+1Xj −
1

2

∑

j 6=n

N
2
j − xn+1Xn−1 − βnXn−1 + γnxn+1 −

α2
n

2

H(3) = −
∑

j 6=n,n±1

xj+1Xj−1 +
∑

j 6=n,n−1

(Nj + Nj+1)xj+1Xj +
1

3

∑

j 6=n

N
3
j + x̃n,n+1Nn−1Xn−1

+X̃n,n−1xn+1Nn+1+αnx̃n,n+1Xn−1+αnX̃n,n−1xn+1−x̃n,n+1Xn−2−xn+2X̃n,n−1+
αn

3

3
(3.6)

where we define

x̃n,n+1 = xn+1 + βn

X̃n,n−1 = Xn−1 − γn. (3.7)

Similarly the time component of the discrete Lax pairs L, A
(j) were explicitly derived

in [15], and the corresponding expressions are recalled below: A
(1)
j remains the same for

all sites,

A
(1)
j (µ) =

(

1 0

0 0

)

(3.8)
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A
(2)
j for j 6= n, n+ 1 is given by

A
(2)
j (µ) =

(

µ xj
−Xj−1 0

)

, (3.9)

whereas

A
(2)
n =

(

µ βn + xn+1

−Xn−1 0

)

, A
(2)
n+1 =

(

µ xn+1

γn −Xn−1 0

)

. (3.10)

Also A
(3)
j for j 6= n, n± 1, n+ 2 is given by

A
(3)
j =

(

µ2 + xjXj−1 µxj − xjNj + xj+1

−µXj−1 +Xj−1Nj−1 −Xj−2 −xjXj−1

)

(3.11)

and

A
(3)
n−1 =

(

µ2 + xn−1Xn−2 µxn−1 + x̃n,n+1 − Nn−1xn−1

−µXn−2 −Xn−3 + Nn−2Xn−2 −Xn−2xn−1

)

A
(3)
n =

(

µ2 + x̃n,n+1Xn−1 µx̃n,n+1 + xn+1 − Nn+1xn+1 + f

−µXn−1 −Xn−2 + Nn−1Xn−1 −x̃n,n+1Xn−1

)

A
(3)
n+1 =

(

µ2 + xn+1X̃n,n−1 µxn+1 + xn+2 − Nn+1xn+1

−µX̃n,n−1 −Xn−1 + Nn−1Xn−1 + g −X̃n,n−1xn+1

)

A
(3)
n+2 =

(

µ2 + xn+2Xn+1 µxn+2 + xn+3 − Nn+2xn+2

−µXn+1 − X̃n,n−1 + Nn+1Xn+1 −Xn+1xn+2

)

(3.12)

where we define

f = xn+2 − xn+1 − αn(βn + 2xn+1)

g = Xn−1 −Xn−2 − αn(γn − 2Xn−1). (3.13)

Notice that the continuum limits of the expressions above (3.13) provide the continuum

quantities given in (2.27).

To obtain the suitable continuum limits of the expressions defined above let us first

introduce the spacing parameter ∆ in the L-matrix of the discrete NLS model as well as

in the L̃ matrix of the defect (index-free notation):

L(λ) =

(

1 + ∆λ−∆2xX ∆x

−∆X 1

)

(3.14)

L̃(λ) = ∆λ+∆

(

α β

γ δ

)

(3.15)
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Let us now introduce the following notation (see also [15, 18, 25]):

xj → x−(x), Xj → X−(x), 1 ≤ j ≤ n− 1, x ∈ (−A, x0)

xj → x+(x), Xj → X+(x), n+ 1 ≤ j ≤ N, x ∈ (x0, A), (3.16)

where x0 is the defect position in the continuum theory. Note also that in order to perform

the continuum limit we bear in mind that:

∆

n−1
∑

j=1

fj →

∫ x−

0

−A

dx f−(x)

∆
N
∑

j=n+1

fj →

∫ A

x+
0

dx f+(x). (3.17)

The continuum limit of the first integral of motion is then given by (2.16).

Notice that in the first integral we considered terms proportional to ∆, whereas in

the second integral the first non trivial contribution to the continuum limit is of order

∆2. The respective continuum quantity reads then as in (2.17). The continuum limit of

H(3), after taking into account terms of order ∆3, becomes (2.18). It is clear that the

expressions (2.16)–(2.18) were obtained by simply identifying:

x± ≡ ψ̄±, X± ≡ −ψ±. (3.18)

Moreover, in the continuum limit the Lax pair is formulated as:

Lj(λ) → I+∆ U(λ, x) +O(∆2), Aj → V(x), Aj+1 → V(x+∆). (3.19)

The discrete zero curvature condition reads as:

L̇j(λ) = Aj+1(λ)Lj(λ)− Lj(λ)Aj(λ), j 6= n (3.20)

which in the continuum limit takes the form (keep terms of order ∆) [18, 25]:

U̇− V
′ +
[

U, V
]

= 0. (3.21)

The Lax pair associated to the first integral is quite trivial (2.24). The Lax pairs associated

to the integrals of motion are derived after taking the following limits:

Lj → L+(x), A
(k)
j → V

+(k)(x). j ∈ {n+ 1, . . . N}, x ∈ (x0, L)

Lj → L−(x), A
(k)
j → V

−(k)(x). j ∈ {1, . . . n− 1}, x ∈ (−L, x0)

L̃n → L̃(x0), A(k)
n → Ṽ

−(k)(x0), A
(k)
n+1 → Ṽ

+(k)(x0). (3.22)

Let us now comment on the zero curvature condition at the defect point. Recall the

associated discrete zero curvature condition:

˙̃Ln(λ) = An+1(λ)L̃n(λ)− L̃n(λ)An(λ). (3.23)

The continuum limit of the latter formula, bearing also in mind (3.22) is given by expres-

sion (2.8). The time component corresponding to H(2) (terms of order ∆) is then given

by (2.25) And the quantities corresponding to H(3) (terms of order ∆2) are given by (2.26).

The valid continuum limits taken above provide extra consistency checks on the results

obtained in the continuum case in the previous section.
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4 Hamiltonian compatibility for the sewing conditions

We shall formulate in this section a generic proof on the compatibility of the sewing con-

ditions with the time evolutions triggered by the hierarchy of Hamiltonians.

A formal justification of the closure of sewing conditions on themselves under a linear

evolution triggered by the integrable Hamiltonians generated by ln t(λ) can actually be

given once the linear time evolution of the time-like component of the Lax pair is estab-

lished. It is convenient to start our proof in the frame of discrete integrable models and

then consider the suitable continuum limit along the lines described in the previous section.

We recall that the discrete time evolution Aj is defined as follows: given the Lax matrix

Lj(µ) its time evolution (discrete zero curvature condition) reads as:

L̇j(µ) = Aj+1(λ, µ)Lj(µ)− Lj(µ)Aj(λ, µ). (4.1)

The generating function of the local Hamiltonians (the trace of the monodromy matrix)

may be expanded as: ln t(λ) =
∑

i
H(i)

λi and the generating function A reads as: Aj(λ, µ) =
∑

i

A
(i)
j

(µ)

λi .

In the case where the r matrix associated to the system is the Yangian solution the

time operator may be expressed as (see also [25] and references therein for more details)

Aj(λ, µ) =
t−1(λ)

λ− µ
T (j − 1, 1;λ)T (N, j;λ) (4.2)

where we introduce the notation:

T (i, j;λ) = Li(λ)Li−1(λ) . . . Lj(λ), i > j. (4.3)

Making use of the latter relations (4.1)–(4.3) we deduce the time evolution of Aj , (recall

also {t(λ), t(µ)} = 0) i.e.:

{

ln t(z), Aj(λ, µ)
}

=
[

Aj(z, λ), Aj(λ, µ)
]

. (4.4)

This derivation was given here for simplicity in the discrete framework. It naturally extends,

— especially given the continuum limit process described in the previous section (see

also [18, 25]) — to the continuous case by: j → x (x ≡ ∆j). Equation (4.4) is valid for

all points including the defect point n. Similarly its continuum equivalent is valid at every

point of the interval (−A, A) including the defect point x0.

Recall now that the sewing conditions are generated by the continuity condition relat-

ing V
±(x±0 ) and Ṽ

±(x0). From (4.4) it becomes possible to write the generic time evolution

of the sewing conditions:

{

ln t(z), V±(x±0 , λ, µ)− Ṽ
±(x0, λ, µ)

}

=

=
[

V
±(x±0 , z, λ), V

±(x±0 , λ, µ)
]

−
[

Ṽ
±(x0, z, λ), Ṽ

±(x0, λ, µ)
]

=
[

∆V
±(z, λ), V±(x±0 , λ, µ)

]

+
[

Ṽ
±(z, λ), ∆V

±(λ, µ)
]

, (4.5)
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where self-explanatorily ∆V
± = V

±(x±0 ) − Ṽ
±(x0). Sewing conditions are obtained from

expansion of ∆V
±(λ, µ) in powers of λ−1. Them-th power yields them-th sewing condition.

Expansion of the relevant terms in (4.5) yields:

ln t(z) =
∑

k≥0

H(k)

zk
, ∆V

±(λ, µ) =
∑

m≥0

C
(m)
± (µ)

λm
(4.6)

Then equation (4.5) becomes:







∑

k≥0

H(k)

zk
,
∑

m≥0

C
(m)
± (µ)

λm







=

=





∑

k≥0

C
(k)
± (λ)

zk
,
∑

j≥0

V
±(j)(x±0 , µ)

λj



+





∑

k≥0

Ṽ
±(k)(x0, λ)

zk
,
∑

j≥0

C
(j)
± (µ)

λj



 (4.7)

Further expanding quantities C
(k)
± (λ), Ṽ±(j)(λ) in powers of λ as

Ṽ
±(k)(x0, λ) =

k−1
∑

i=0

Ṽ
±(k,i)(x0)λ

i, C
(k)
± (λ) =

k−1
∑

i=0

C
(k,i)
± λi (4.8)

and fixing k and m in (4.7) leads to the following fundamental relation:

{

H(k), C
(m)
± (µ)

}

=
k−1
∑

i=0

[

C
(k,i)
± , V±(m+i)(x±0 , µ)

]

+
k−1
∑

i=0

[

Ṽ
±(k,i)(x0), C

(m+i)
± (µ)

]

. (4.9)

Now expanding C
(p)
± (µ), V±(m−i)(x±0 , µ) in powers of µ:

C
(p)
± (µ) =

p−1
∑

l=0

C
(p,l)
± µl, V

±(p)(x±0 , µ) =

p−1
∑

l=0

V
(p,l)
± (x0)µ

l (4.10)

and fixing l in the sums above we conclude

{

H(k), C
(m,l)
±

}

=
k−1
∑

i=0

[

C
(k,i)
± , V±(m+i,l)(x±0 )

]

+
k−1
∑

i=0

[

Ṽ
±(k,i)(x0), C

(m+i,l)
±

]

. (4.11)

C
(p,l)
± are matrices with entries being the constraints of the type (2.29) or linear combi-

nations thereof. The Poisson bracket of any Hamiltonian H(k) with the generic scalar

constraint C
(m,l)
± is now expressed as finite linear combination of the same scalar con-

straints, and this concludes our formal proof on the Hamiltonian compatibility of the

sewing conditions.

5 Conclusions and perspectives

Let us now summarize what we have achieved at this time. We have formulated a fully

Hamiltonian framework for a description of a Liouville-integrable point-like single defect
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on a continuous line in a bulk-integrable field theory. The defect is initially introduced as a

set of discrete dynamical variables independent of the bulk fields, constrained however by

the requirement of having a Poisson structure parametrized by the same classical r-matrix

as the bulk space-like Lax operator. A hierarchy of Poisson-commuting Hamiltonians

is then derived canonically from the combined bulk-defect monodromy matrix. Sewing

conditions are then imposed by the requirement that the time-like operators of the Lax

pair (describing each time evolution associated with each Hamiltonian of the hierarchy)

be defined consistently in the left and right neighborhood of the defect point. They fix

relations between the defect parameters, and left-right limits at the defect of successive

derivatives of the bulk fields.

They were shown, first on the specific example of non-linear Schrödinger equation,

then following a general algebraic argument based on the r-matrix structure, to be com-

patible with all time evolutions triggered by the hierarchy of Hamiltonians in the sense

that the Poisson bracket of any hamiltonian with any constraint closes (moreover linearly)

on the ideal of functions on the phase space generated by the constraints; hence they can

be simultaneously imposed to the dynamical bulk and defect variables evolving simultane-

ously under action of the full hierarchy. The hierarchy of Hamiltonians together with the

hierarchy of sewing constraints thus defines a Liouville-integrable system.

The sewing conditions, as already emphasized, can be understood as the consistency

conditions for the existence of a canonical Semenov-Tjan-Shanskii type construction for

well-defined time-like operators in the Lax pair, i.e. operators such that the zero-curvature

conditions for the Lax connection give the same equations of motion as the Hamiltonian

evolution computed from the Poisson structure, both in the bulk and at the defect point.

Finally as a further consistency check the continuous dynamical equations were iden-

tified with a suitable scaling limit of the discrete formulation in [15]. This first allows to

put into a clearer perspective a number of previous results on “integrable” defects. As

already commented upon the Lagrangian approach advocated in many works [5]–[11] has

difficulties in dealing with the fundamentally Hamiltonian notion of Liouville integrabil-

ity; it is in a sense a “single-time” approach instead of the multi-time approach naturally

associated with the notion of Hamiltonian hierarchy. “Integrability” in this framework

essentially means that the constructed conserved quantities are shown to be time-invariant

under one single time-evolution (the one associated to the first non trivial Hamiltonian

of the hierarchy; usually the second or third one) which is of course weaker than Liou-

ville integrability. A formulation closer to ours can be found in [22], where the Bäcklund

transformation scheme of [11] is rewritten using a combined bulk-defect monodromy ma-

trix similar to ours. A similar formulation was proposed earlier by [12]. In both cases

however the defect matrix is written directly as a function of the limit bulk variables (in

our language, this means solving directly the sewing conditions to get an on-shell defect

matrix). This makes the analysis of the Poisson structure (required to speak of integra-

bility) tricky since the on-shell defect matrix should now have non-trivial PB’s with the

left and right bulk monodromy matrices — an issue which our “off-shell plus constraints”

approach eliminates. Note that by contrast, the Hamiltonian formulation of a point like

Bäcklund transformation by Sklyanin [26, 27] is precisely of this “off shell” type.
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We can now comment on several possible future developments of our scheme: An

extension of the point-like single defect approach to other ultra-local integrable field the-

ories should not raise too many difficulties at least in its principle. Theories considered

in [5]–[11] are natural candidates to this extension, which would then clarify the issue of

actual Liouville integrability for the proposed defect models. Multiple point-like defects

will a priori be described by similar combinations of bulk and defect matrices with inde-

pendent defect parameters and sewing conditions at each defect point. Extended defects

should also be considered, in the spirit of the so-called Type II Bäcklund transformation

formalism [7, 8, 22] for which one should work at providing a Hamiltonian formulation

following the lines of our present construction.

A very challenging question is raised when considering non ultra-local theories. The

ultra-local form of the Poisson structure in our example considerably simplifies the for-

mulation of the time-like Lax operators which are essential to our whole scheme. Non

ultra-local PB’s are naturally [19] associated not with single r-matrices but with r, s pairs

parametrizing semiclassical reflection algebras. The monodromy matrix structure is more

complicated (general quadratic form with two matrices) hence the defect Poisson struc-

ture will also need to be extended; in addition the issue of defect/bulk interaction through

crossed Poisson brackets (even off-shell!) must be addressed. Construction of the time-like

Lax operators also becomes then a very non trivial operation (see e.g. [21]).

Finally, let us comment on possible approaches to quantum integrable defects in the

continuum. As indicated in the Introduction a construction based on a RTT quantum

algebra was already proposed in [12–14], and is based on the construction of a quantum

monodromy matrix on a discrete lattice. Note that the monodromy matrix, and the results

presented in [15] are apparently valid in the quantum case as well.

An alternative approach also exists. It was developed by the Annecy group in general

cases [28, 29] and particularized to NLS in [30]. It uses an ab initio approach through con-

struction of factorizable scattering matrices realizing a “reflection-transmission algebra”.

It turns out that this approach admits a classical limit1 and a comparison with our current

results may be quite illuminating: indeed it is not immediate at this stage how classical

sewing conditions gotten from a Semenov-Tjan-Shanski scheme of Lax pair construction

may arise from this RT algebra. It is interesting to note that self-adjointness require-

ments on extensions of the quantum NLS Hamiltonian [25] closely resemble the first two

continuity conditions of the classical time-like Lax operator.

This opens a new, final avenue of investigation. It is possible to compare this classi-

cal limit of quantum transmission matrices with classical transmission amplitudes on the

classical defect. These may be obtained by explicitly solving the bulk-plus-defect NLS

equation for soliton-like configurations through application of classical direct/inverse scat-

tering methods to the Lax pair L and V corresponding to the NLS Hamiltonian with the

first two sewing conditions. We conjecture that the sewing conditions, being regularity

conditions on the operator describing the time evolution, will allow for the actual existence

of non singular, computable classical amplitudes for the soliton moving across to the defect,

hence allowing for the existence of (at least semi classical) transmission matrices.

1We are indebted to Eric Ragoucy for pointing out this fact to us.
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[29] M. Mintchev, É. Ragoucy and P. Sorba, Reflection transmission algebras,

J. Phys. A A 36 (2003) 10407 [hep-th/0303187] [INSPIRE].
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