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Abstract For semi-supervised techniques to be applied safely in practice we at least want
methods to outperform their supervised counterparts.We study this question for classification
using the well-known quadratic surrogate loss function. Unlike other approaches to semi-
supervised learning, the procedure proposed in this work does not rely on assumptions that
are not intrinsic to the classifier at hand. Using a projection of the supervised estimate onto
a set of constraints imposed by the unlabeled data, we find we can safely improve over
the supervised solution in terms of this quadratic loss. More specifically, we prove that,
measured on the labeled and unlabeled training data, this semi-supervised procedure never
gives a lower quadratic loss than the supervised alternative. To our knowledge this is the
first approach that offers such strong, albeit conservative, guarantees for improvement over
the supervised solution. The characteristics of our approach are explicated using benchmark
datasets to further understand the similarities and differences between the quadratic loss
criterion used in the theoretical results and the classification accuracy typically considered
in practice.

Keywords Semi-supervised learning · Least squares classification · Projection

1 Introduction

We consider the problem of semi-supervised classification using the quadratic loss function,
which is also knownas least squares classification or Fisher’s linear discriminant classification
(Hastie et al. 2009; Poggio and Smale 2003). Suppose we are given an Nl × d matrix with
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feature vectors X, labels y ∈ {0, 1}Nl and an Nu × d matrix with unlabeled objects Xu

from the same distribution as the labeled objects. The goal of semi-supervised learning is to
improve the classification decision function f : Rd → R using the unlabeled information in
Xu as compared to the case where we do not have these unlabeled objects. In this work, we
focus on linear classifiers where f (x) = w�x.

Much work has been done on semi-supervised classification, in particular on what addi-
tional assumptions about the unlabeled data may help improve classification performance.
These additional assumptions, while successful in some settings, are less successful in others
where they do not hold. In effect they can greatly deteriorate performance when compared
to a supervised alternative (Cozman and Cohen 2006). Since, in semi-supervised applica-
tions, the number of labeled objects may be small, the effect of these assumptions is often
untestable. In this work, we introduce a conservative approach to training a semi-supervised
version of the least squares classifier that is guaranteed to improve over the supervised least
squares classifier, in terms of the quadratic loss on the labeled and unlabeled examples. It is
the first procedure for which it is possible to give strong guarantees of non-degradation of
this type (Theorem 1).

To guarantee these improvements, we avoid additional assumptions altogether. We intro-
duce a constraint set of parameter vectors induced by the unlabeled data, which does not
rely on additional assumptions about the data. Using a projection of the supervised solution
vector onto this constraint set, we derive a method that can be proven to never degrade the
surrogate loss evaluated on the labeled and unlabeled training data when compared to the
supervised solution. Experimental results indicate that it not only never degrades, but often
improves performance. Our experiments also indicate the results hold when performance is
evaluated on objects in a test set that were not used as unlabeled objects during training.

The main contribution of this work is to prove that a semi-supervised learner that is
guaranteed to outperform its supervised counterpart exists for some classifier. We do this by
constructing one in the least squares classifier. This non-degradation property is important in
practical applications, since one would like to be sure that the effort of the collection of, and
computation with unlabeled data does not have an adverse effect. Our work is a conceptual
step towards such methods. The goal of this work is to prove and illustrate this property.

Others have attempted to mitigate the problem of reduction in performance in semi-
supervised learning by introducing safe versions of semi-supervised learners (Li and Zhou
2011; Loog 2010, 2014). These procedures do not offer any guarantees or only do so once
particular assumptions about the data hold. Moreover, unlike some previous approaches, the
proposed method can be formulated as a convex quadratic programming problem which can
be solved using a simple gradient descent procedure.

The rest of this work is organized as follows. The next section discusses related work. Sec-
tion 3 introduces our projection approach to semi-supervised learning. Section 4 discusses
the theoretical performance guarantee and its implications. Section 5 provides some alter-
native interpretations of the method and relations to other approaches. In Sect. 6 empirical
illustrations on benchmark datasets are presented to understand how the theoretical results
in terms of quadratic loss in Sect. 4 relate to classification error on an unseen test set. We end
with a discussion of the results and conclude.

2 Prior work and assumptions

Early work on semi-supervised learning dealt with the missing labels through the use of
Expectation Maximization in generative models or closely related self-learning (McLachlan
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1975). Self-learning is a simple wrapper method around any supervised procedure. Starting
with a supervised learner trained only on the labeled objects, we predict labels for the unla-
beled objects. Using the known labels and the predicted labels for the unlabeled objects, or
potentially the predicted labels with highest confidence, we retrain the supervised learner.
This process is iterated until the predicted labels converge. Although simple, this procedure
has seen some practical success (Nigam et al. 2000).

Singh et al. (2008), among others, have argued that unlabeled data can only help if P(x)
and P(y|x) are somehow linked. They show that when a specific cluster assumption holds,
semi-supervised learning can be expected to outperform a supervised learner. The goal of
our work is to show that in some cases (i.e. the least squares classifier) we do not need
explicit assumptions about those links for semi-supervised learning to be possible. Instead,
we leverage implicit assumptions, including possiblemodel misspecification, that are already
present in the supervised classifier. Similar to Singh et al. (2008), we also study the finite
sample case.

Most recent work on semi-supervised methods considers what assumptions about this
link between P(x) and P(y|x) allows for the effective use of unlabeled data. A lot of work
involves either the assumption that the decision boundary is in a low-density region of the
feature space, or that the data is concentrated on a low-dimensional manifold. A well-known
procedure using the first assumption is the Transductive SVM (Joachims 1999). It can be
interpreted as minimizing the following objective:

min
w∈Rd ,yu∈{−1,+1}Nu

Nl∑

i=1

max(1 − yiw�xi , 0) + λ||w||2

+λu

Nu∑

j=1

max(1 − y( j)
u w�x j , 0) , (1)

where class labels are encoded using+1 and−1. This leads to a hard to optimize, non-convex,
problem, due to the dependence on the labels of the unlabeled objects yu. Others, such as
Sindhwani and Keerthi (2006), have proposed procedures to efficiently find a good local
minimum of a related objective function. Similar low-density ideas have been proposed for
other classifiers, such as entropy regularization for logistic regression (Grandvalet andBengio
2005) and a method for Gaussian processes (Lawrence and Jordan 2004). One challenge with
these procedures is setting the additional parameter λu that is introduced to control the effect
of the unlabeled objects. This is both a computational problem, sinceminimizing (1) is already
hard for a single choice of λu , as well as a estimation problem. If the parameter is incorrectly
set using, for example, cross-validation on a limited set of labeled examples, the procedure
may actually reduce performance as compared to a supervised SVM which disregards the
unlabeled data. It is this behaviour that the procedure proposed in this work avoids. While it
may be outperformed by the TSVM if the low-density assumption holds, robustness against
deterioration would still constitute an important property in the cases when we are not sure
whether it does hold.

Another oft-used assumption is that data is located on a lower dimensional manifold than
the original dimensionality of the dataset. By estimating this manifold using unlabeled data
we can improve the estimate of the classification boundary (Zhu et al. 2003). Theoretical
results have shown that particular classes of problems can be constructed, where manifold
regularization can solve classification problems (Niyogi 2013) that cannot be efficiently
learned without knowing the manifold. For these classes of problem the objects actually do
reside on a lower dimensional manifold and the distance between objects on this manifold is
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essential for their classification. When a problem does not belong to such a class, Lafferty
and Wasserman (2007) show that manifold regularization does not improve over supervised
learning. In these cases, manifold regularizationmay actually lead to worse performance than
the supervised alternative. In general, these methods require some domain knowledge by
having to define a similarity matrix between objects. Again, if the manifold assumption does
not hold, or the domain knowledge is not correctly specified, the semi-supervised classifier
may be outperformed by the supervised classifier.

An attempt at safety in semi-supervised learning was introduced in Li and Zhou (2011),
who propose a safe variant for semi-supervised support vector machines. By constructing
a set of possible decision boundaries using the unlabeled and labeled data, the decision
boundary is chosen that is least likely to degrade performance. While the goal of this work is
similar, we do not rely on the existence of a low-density separator and obtain a much simpler
optimization problem.

Another attempt at safety was proposed by Loog (2010, 2014), who introduce a semi-
supervised version of linear discriminant analysis, which is closely related to the least squares
classifier considered here. There, explicit constraints are proposed that take into account the
unlabeled data. In our work, these constraints need not be explicitly derived, but follow
directly from the choice of loss function and the data. While the impetus for these works is
similar to ours, they provide no theory to guarantee no degradation in performance will occur
similar to our results in Sect. 4.

3 Projection method

The proposed projection method works by forming a constraint set of parameter vectors
Θ , informed by the labeled and unlabeled objects, that is guaranteed to include woracle, the
solutionwewould obtain if we had labels for all the training data.Wewill then find the closest
projection of the supervised solution wsup onto this set, using a chosen distance measure.
This new estimate, wsemi, will then be guaranteed to be closer to the oracle solution than
the supervised solution wsup in terms of this distance measure. For a particular choice of
measure, it follows (Sect. 4) thatwsemi will always have lower quadratic loss when measured
on the labeled and unlabeled training data, as compared to wsup.

Before we move to the details of our particular contribution, we first introduce briefly the
standard supervised least squares classifier.

3.1 Supervised solution

We consider classification using a quadratic surrogate loss (Hastie et al. 2009). In the super-
vised setting, the following objective is minimized for w:

L(w,X, y) = ‖Xw − y‖2. (2)

The supervised solution wsup is given by the minimization of (2) for w. The well-known
closed form solution to this problem is given by

wsup = (X�X)−1X�y. (3)

If the true labels corresponding to the unlabeled objects, y∗
u, would be given, we could

incorporate these by extending the vector of labels y∗
e
� =

[
y�y∗

u
�]

as well as the design
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matrix X�
e = [

X�X�
u

]
and minimize L(w,Xe, y∗

e ) over the labeled as well as the unlabeled
objects. We will refer to this oracle solution as woracle.

3.2 Constraint set

Our proposed semi-supervised approach is to project the supervised solutionwsup onto the set
of all possible classifiers wewould be able to get from some labeling of the unlabeled data. To
form this constraint set, consider all possible labels for the unlabeled objects yu ∈ [0, 1]Nu .
This includes fractional labelings, where an object is partly assigned to class 0 and partly
to class 1. For instance, 0.5 indicates the object is assigned equally to both classes. For
a particular labeling y�

e = [
y�y�

u

]
, we can find the corresponding parameter vector by

minimizing L(w,Xe, ye) for w. This objective remains the same as (2) except that fractional
labels are now also allowed. Minimizing the objective for all possible labelings generates the
following set of solutions:

Θ =
{(

X�
e Xe

)−1
X�
e

[
y
yu

]
| yu ∈ [0, 1]Nu

}
. (4)

Note that this set, by construction, will also contain the solution woracle, corresponding to
the true but unknown labeling y∗

e . Typically, woracle is a better solution than wsup and so we
would like to find a solution more similar to woracle. This can be accomplished by projecting
wsup onto Θ .

3.3 Choice of metric

It remains to determine how to calculate the distance between wsup and any other w in the
space. We will consider the following metric:

d(w,w′) =
√

(w − w′)� X�◦ X◦ (w − w′), (5)

where we assume X�◦ X◦ is a positive definite matrix. The projected estimator can now be
found by minimizing this distance between the supervised solution and solutions in the
constraint set:

wsemi = min
w∈Θ

d(w,wsup). (6)

Setting X◦ = Xe measures the distances using both the labeled and unlabeled data. This
choice has the desirable theoretical properties leading us to the sought-after improvement
guarantees as we will demonstrate in Sect. 4.

3.4 Optimization

By plugging into (6) the closed form solution of wsup and w for a given yu, this problem
can be written as a convex minimization problem in terms of yu, the unknown, fractional
labels of the unlabeled data. This results in a quadratic programming problem, which can
be solved using a simple gradient descent procedure that takes into account the constraint
that the labels are within [0, 1]. The solution of this quadratic programming problem ŷu can
then be used to find wsemi by treating these imputed labels as the true labels of the unlabeled
objects and combining them with the labeled examples in Eq. (3).
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4 Theoretical analysis

We start by stating and proving our main result which is a guarantee of non-degradation in
performance of the proposed method compared to the supervised classifier. We then discuss
extensions of this result to other settings and give an indication of when improvement over
the supervised solution can be expected.

4.1 Robustness guarantee

Theorem 1 Given X, Xu and y, X�
e Xe positive definite and wsup given by (3). For the

projected estimator wsemi proposed in (6), the following result holds:

L(wsemi,Xe, y∗
e ) ≤ L(wsup,Xe, y∗

e )

In other words: wsemi will always be at least as good or better than wsup, in terms of the
quadratic surrogate loss on all, labeled and unlabeled, training data. While this claim does
not prove, in general, that the semi-supervised solution improves in terms of the loss evaluated
on the true distribution, or an unseen test set, we will consider why this is still a desirable
property after the proof.

Proof The proof of this result follows from a geometric interpretation of our procedure.
Consider the following inner product that induces the distance metric in Eq. (5):

〈
w,w′〉 = w�X�

e Xew′ .

Let HXe = (Rd , 〈., .〉) be the inner product space corresponding with this inner product. As
long as X�

e Xe is positive definite, this is a Hilbert space. Next, note that the constraint space
Θ is convex. More precisely, because, for any k ∈ [0, 1] and w1,w2 ∈ Θ we have that

(1 − k)w1 + kw2 =(1 − k)
(
X�
e Xe

)−1
X�
e

[
y�y�

1

]�

+ k
(
X�
e Xe

)−1
X�
e

[
y�y�

2

]�

=
(
X�
e Xe

)−1
X�
e

[
y� ky�

1 + (1 − k)y�
2

]�

∈ Θ

where the last statement holds because ky1 + (1 − k)y2 ∈ [0, 1]Nu .
By construction wsemi is the closest projection of wsup onto this convex constraint set Θ

in HXe . One of the properties for projections onto a convex subspace in a Hilbert space is
(Aubin 2000, Proposition 1.4.1.) that

d(wsemi,w) ≤ d(wsup,w) (7)

for any w ∈ Θ . In particular consider w = woracle, which by construction is within Θ . That
is, all possible labelings correspond to an element inΘ , so this also holds for the true labeling
y∗
u. Plugging in the closed form solution ofworacle into (7) and squaring the distance we find:

d(wsemi,woracle)
2 =w�

semiX
�
e Xewsemi

− 2w�
semiX

�
e y

∗
e + y∗

e
�y∗

e

+ C

=L(wsemi,Xe, y∗
e ) + C
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and

d(wsup,woracle)
2 =w�

supX
�
e Xewsup

− 2w�
supX

�
e y

∗
e + y∗

e
�y∗

e

+ C

=L(wsup,Xe, y∗
e ) + C

whereC is the same constant in both cases. From this the result in Theorem 1 follows directly.
�

4.2 Generalization performance

So far, we have considered the performance of the procedure evaluated on the labeled and
unlabeled objects, instead of the out of sample performance on unseen test data. A different
quantity of interest is the expected loss, which is based on the true underlying data distribution
and is also referred to as the risk:

∑

y∈{0,1}

∫
(y − x�w)2 p(x, y)dx .

The result does not prove that wsemi is, in general, better than wsup in terms of this risk. In
case Nu → ∞, however, and p(x) basically becomes known, wsemi is in fact guaranteed
to be better in terms of the risk, since the risk becomes equal to the loss on the labeled and
unlabeled data in this case.

When we have a finite number of unlabeled samples, the result presented in the theorem
is still relevant because it proves that we at least get a better solution in terms of the empirical
risk on the full data, i.e., the risk that is typically minimized if all labels are actually available.

Apart from this, one may be specifically interested in the performance on a given set of
objects, the transductive learning setting, which we will address now.

4.3 Transduction and regularization

It is possible to derive a similar result for performance improvement on the unlabeled data
alone by using X◦ = Xu in the distance measure and changing the constrained hypothesis
space to:

Θu =
{
(X�

u Xu)
−1X�

u yu | yu ∈ [0, 1]Nu
}

.

This would lead to a guarantee of the form:

L(wsemi,Xu, y∗
u) ≤ L(wsup,Xu, y∗

u) .

However, since we would not just like to perform well on the given unlabeled data, but on
unseen data from the same distribution as well, we include the labeled data in the construction
of the constrained hypothesis space.

The result in Theorem 1 also holds if we include regularization in the supervised classifier.
Using L2 regularization, the supervised solution becomes:

wsup = (X�X + λI)−1X�y,

where λ is a regularization parameter and I a d × d identity matrix, potentially containing a
0 for the diagonal entry corresponding to the constant feature that encodes the bias. Theorem
1 also holds for this regularized supervised estimator.
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4.4 Improved performance

Since the inequality in Theorem 1 is not necessarily a strict inequality, it is important to get
an idea when we can expect improvement of the semi-supervised learner, rather than just
equality of the losses. Consider a single unlabeled object. Improvement happens whenever
wsup �= wsemi, which occurs ifwsup /∈ Θ . For this to occur it needs to be impossible to assign
a label yu such that we can retrieve thewsup by minimizing L(w,Xe, ye). This in turn occurs
when there is no yu ∈ [0, 1] for which the gradient

∇‖Xew − ye‖2
∣∣∣∣
w=wsup

= 0 .

This happens only if x�
u wsup > 1 or x�

u wsup < 0. In other words, if observations xu are
possible with values that have a sufficiently large absolute value andwsup is not small enough
to mitigate this, an update will occur. This is especially likely to occur if the supervised
solution is not sufficiently regularized, x�

u wsup can then easily be larger than 1 or smaller than
0. For more than a single unlabeled object, the conditions for a change are more complex,
since the introduction of a non-zero gradient by one object can be compensated by other
objects. The experiments in Sect. 6 confirm, however, that generally improvements can be
expected by means of the proposed semi-supervised learning strategy.

5 Relation to other methods

The projection method in Eq. (6), using X◦ = Xe in the distance measure, can be rewritten
in a different form:

argminwsemi
max

yu∈[0,1]Nu
L(wsemi,Xe, ye) − L(wsup,Xe, ye).

In other words, the procedure can be interpreted as a minimization of the difference in loss
on the labeled and unlabeled data between the new solution and the supervised solution, over
all possible labelings of the unlabeled data. From this perspective the projected estimator is
similar toMaximumContrastive Pessimistic LikelihoodEstimation proposed byLoog (2016)
who consider using log likelihood as the loss function. In this formulation it is apparent that
the projected estimator is very conservative, since it has to have low loss for all possible
labelings, even very unlikely ones.

In a similar way an alternative choice of distance function, X◦ = X, has a different
interpretation. It is the minimizer of the supervised loss function under the constraint that its
solution has to be a minimizer for some labeling of the unlabeled data:

argminw∈Θ L(w,X, y),

withΘ defined as in Eq. (4). This formulation corresponds to the Implicitly Constrained Least
Squares Classifier (Krijthe and Loog 2015) and seems less conservative since the solution
does not need to have a low loss for all possible labelings, it merely has to work well on
the labeled examples. For this distance measure, the proof in Sect. 4 no longer holds, but
empirical results indicate it may have better performance in practice, while it still protects
against deterioration in performance by minimizing the loss over only the labeled objects.

Another interpretation of the projection procedure is that it minimizes the squared differ-
ence between the predictions of the supervised solution and a new semi-supervised solution
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on the set of objects in X◦, while ensuring the semi-supervised solution corresponds to a
possible labeling of the unlabeled objects:

min
w∈Θ

‖X◦w − X◦wsup‖2 .

Since this comparison requires only the features in X◦ and not the corresponding labels, this
can be done either on the labeled data, when we choose X◦ = X, but also on the labeled
and unlabeled data combined when X◦ = Xe. This interpretation is similar to the work of
Schuurmans and Southey (2002), where the unlabeled objects are also used to measure the
difference in predictions of two hypotheses.

6 Experimental analysis

For our experiments, we consider 16 classification datasets. six of these are the semi-
supervised learning benchmark datasets proposed by Chapelle et al. (2006), while the other
ten were retrieved from the UCI Machine Learning repository (Lichman 2013). All of the
datasets are binary classification problems, or were turned into two-class problems by merg-
ing several similar classes. As a preprocessing step, missing input values were imputed using
medians and modes for the Mammography and Diabetes datasets. The code to reproduce the
results presented here is available from the first author’s website.

The number of labeled examples is chosen such that Nl > d . This is necessarily to
have a high probability that the matrix X�

e Xe is positive definite, which was a requirement
of Theorem 1. More importantly, this avoids peaking behaviour (Raudys and Duin 1998;
Opper and Kinzel 1996), were the unregularized supervised least squares classifier has low
performancewhen thematrixX�X is not full-rank. For the SVMandTSVM implementations
we made use of the SVMlin software (Sindhwani and Keerthi 2006). For these we used
parameter settings λ = 0.01 and λu = 1.

6.1 Robustness

To illustrate Theorem 1 experimentally, as well as study the performance of the proposed
procedure on a test set, we set up the following experiment. For each of the 16 datasets,
we randomly select 2d labeled objects. We then randomly sample, with replacement, 1000
objects as the unlabeled objects from the dataset. In addition, a test set of 1000 objects is also
sampled with replacement. This procedure is repeated 100 times and the ratio between the

average quadratic losses for the supervised and the semi-supervised procedure L(wsemi,Xe,y∗
e )

L(wsup,Xe,y∗
e )

is calculated. As stated by Theorem 1, this quantity should be smaller than 1 for the Projection
procedure. We do the same for self-learning applied to the least squares classifier and to an
L2-Transductive SVM, which we compare to the supervised L2-SVM. The results are shown
in Figure 1.

On the labeled and unlabeled data the loss of the projectionmethod is lower than that of the
supervised classifier in all of the resamplings taken from the original dataset. Compare this to
the behaviour of the self-learner. While on average, the performance is quite similar on these
datasets, on a particular sample from a dataset, self-learning may lead to a higher quadratic
loss than the supervised solution. It is favourable to have no deterioration in every resam-
pling because in practice one does not deal with resamplings from an empirical distribution,
but rather with a single dataset. A semi-supervised procedure should ideally work on this
particular dataset, rather than in expectation over all datasets that one might have observed.
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Fig. 1 Ratio of the loss in terms of surrogate loss of semi-supervised and supervised solutions measured on
the labeled and unlabeled instances. Values smaller than 1 indicate that the semi-supervised method gives
a lower average surrogate loss than its supervised counterpart. For both the projected estimator and self-
learning this supervised counterpart is the supervised least squares classifier and loss is in terms of quadratic
loss. For the L2-Transductive SVM, quadratic hinge loss is used and compared to the quadratic hinge loss
of a supervised L2-SVM. Unlike the other semi-supervised procedures, the projection method, evaluated on
labeled and unlabeled data, never has higher loss than the supervised procedure, as was proven in Theorem 1

We see similar behaviour as self-learning for the difference in squared hinge loss between
the L2-SVM and the L2-TSVM. While better parameter choices may improve the number
of resamplings with improvements, this experiment illustrates that while semi-supervised
methods may improve performance on average, for a particular sample from a dataset there
is no guarantee like Theorem 1 for the projected estimator. When looking at the difference
in loss on an unseen test set, we find a similar results (not shown).

6.2 Learning curves

To illustrate the behaviour of the procedure with increasing amounts of unlabeled data and
to explore the relationship between the quadratic surrogate loss and classification accuracy
on an unseen test set we generate learning curves in the following manner. For each of
three illustrative datasets (Ionosphere, SPECT and USPS), we randomly sample 2d objects
as labeled objects. The remaining objects are used as a test set. For increasing subsets of
the unlabeled data (2, 4, 8, . . . , 512), randomly sampled without replacement, we train the
supervised and semi-supervised learners and evaluate their performance on the test objects,
in terms of classification accuracy as well as in terms of quadratic loss. We consider both the
projection procedure where the distance measure is based on the labeled and the unlabeled
data (denoted as Projection) as well as the projected estimator that only uses the labeled
data in the distance measure (denoted as ICLS). The resampling is repeated 1000 times and
averages and standard errors are reported in Figure 2.

The first dataset (Ionosphere) in Figure 2 is an example where the error of the self-learning
procedure starts to increase once we add larger amounts of unlabeled data. In terms of the
loss, however, the performance continues to increase. This illustrates that a decrease in the
surrogate loss does not necessarily translate into a lower classification error. The projected
estimators do not suffer from decreases in performance for larger numbers of unlabeled data
in this example. In terms of the loss, however, there seems to be little difference between the
three methods.

The second dataset (SPECT) is an example where both the self-learning procedure and the
conservative projected estimator are not able to get any improvement out of the data, while the
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mean

less conservative projection (ICLS) does show some improvement in terms of classification
error.

On the USPS dataset the self-learning assumptions do seem to hold and it is able to attain
a larger performance improvement as the amount of unlabeled data grows. Both in terms
of the error and in terms of the loss, the projected estimators show smaller, but significant
improvements.

6.3 Cross-validation

In a third experiment, we apply a cross-validation procedure to compare the performance
increase in terms of the classification error of semi-supervised classifiers when compared to
their supervised counterpart. The cross-validation experiments were set up as follows. For
each dataset, the objects were split into 10-folds. Subsequently leaving out each fold, we
combine the other 9 folds and randomly select d + 5 labeled objects while the rest is used as
unlabeled objects. We end up with a single prediction for each object, for which we evaluate
the misclassification error. This procedure is repeated 20 times and the averages are reported
in Table 1.

The results indicate that in terms of classification errors, the projection procedure never
significantly reduces performance over the supervised solution. This is in contrast to the
self-learner, which does significantly increase classification error on 2 of the datasets.
The price the projected estimator pays for this robustness, is smaller improvements over
the supervised classifier than the less conservative self-learner. The Transductive SVM
shows similar behaviour as the self-learner: it shows large improvements over the super-
vised alternative, but is also prone to degradation in performance on other datasets. The
ICLS procedure is, as expected, less conservative than the projection method based on
the labeled and unlabeled observations, which leads to larger improvements on all of the
datasets.
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Fig. 3 Training time of semi-supervised methods relative to the training time of the supervised classifier for
increasing amounts of unlabeled data on a simulated dataset with 2 Gaussian classes with 100 features and
Nl = 200

6.4 Computational considerations

Since the projection proposed in Eq. (6) can be formulated as a quadratic programming prob-
lem with a positive definite matrix, the worst case complexity is O(N 3

u ). Comparing this
to Transductive SVM solvers, for instance, the CCCP procedure for Transductive SVMs by
Collobert et al. (2006) has a worst case complexity of O((Nl + 2Nu)

3). The SVMlin imple-
mentation of Sindhwani and Keerthi (2006) we compare to here makes few claims about
its theoretical complexity. As Collobert et al. (2006) and Sindhwani and Keerthi (2006)
note, however, the practical complexity is often much lower than the worst case complex-
ity and should be evaluated empirically. Figure 3 shows the computational time relative to
the supervised classifier as we increase the number of unlabeled samples for our imple-
mentation of the Projection estimator and for the L2-TSVM implementation of Sindhwani
and Keerthi (2006). The figure shows that the SVMlin implementation scales much better
as the number of unlabeled examples is increased. SVMlin’s solution does not, however,
guarantee that the solution is a global optimum, as the projection approach does, or guaran-
tee any safe improvements over supervised learning. Whereas the explicit goal of SVMlin
is to scale TSVM to larger datasets, we have not attempted to more efficiently solve the
quadratic programming problem posed by our approach and leave this as an open prob-
lem.

7 Discussion

The main result of this work is summarized in Theorem 1 and illustrated in Figure 1: the
proposed semi-supervised classifier is guaranteed to improve over the supervised classifier
in terms of the quadratic loss on all training data, labeled and unlabeled. The results from the
experiments indicate that on average, both the projected estimator and other semi-supervised
approaches often show improved performance,while on individual samples from the datasets,
the projected estimator never reduces performance in terms of the surrogate loss. This is an
important property since, in practical settings, one only has a single sample (i.e. dataset) from
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a classification problem, and it is important to know that performance will not be degraded
when applying a semi-supervised version of a supervised procedure on that particular dataset.
Even if we do not have enough labeled objects to accurately estimate this performance,
Theorem 1 guarantees we will not perform worse than the supervised alternative on the
labeled and unlabeled data in terms of the surrogate loss.

7.1 Surrogate loss

Theorem 1 is limited to showing improvement in terms of quadratic loss. As the experiments
also indicate, good properties in terms of this loss do not necessarily translate into good
properties in terms of the error rate. In the empirical risk minimization framework, however,
classifiers are constructed by minimizing surrogate losses. This particular semi-supervised
learner is effective in terms of this objective. In this sense, it can be considered a proper
semi-supervised version of the supervised quadratic loss minimizer.

One could question whether the quadratic loss is a good choice as surrogate loss (Ben-
David et al. 2012). In practice, however, it can perform very well and is often on par and
sometimes better than, for instance, an SVM employing hinge loss (Rasmussen andWilliams
2005; Hastie et al. 2009; Poggio and Smale 2003). Moreover, the main result in this work
basically demonstrates that strong improvement guarantees are at all possible for some sur-
rogate loss function. Whether and when an increase in performance in terms of this surrogate
loss translates into improved classification accuracy is, like in the supervised setting, unclear.
Much work is currently being done to understand the relationship between surrogate losses
and 0 − 1 loss (Bartlett et al. 2006; Ben-David et al. 2012).

7.2 Conservatism

Arguably, a robust semi-supervised learning procedure could also be arrived at by very
conservatively setting the parameters controlling the influence of unlabeled data in semi-
supervised learner procedures such as the TSVM.There are two reasonswhy this is difficult to
achieve in practice. The first reason is a computational one.Most semi-supervised procedures
are computationally intensive. Doing a grid search over both a regularization parameter as
well as the parameter controlling the influence of the unlabeled objects using cross-validation
is time-consuming. Secondly, and perhapsmore importantly, itmay be very difficult to choose
a good parameter using limited labeled data. Goldberg and Zhu (2009) study this problem in
more detail.While their conclusion suggests otherwise, their results indicate that performance
degradation occurs on a significant number of datasets.

The projected estimator presented here tries to alleviate these problems in two ways.
Firstly, unlike many semi-supervised procedures, it can be formulated as a quadratic pro-
gramming problem in terms of the unknown labels which has a global optimum (which is
unique in terms ofw) and there are no hyper-parameters involved. Secondly, at least in terms
of its surrogate loss, there is a guarantee performance will not be worse than the alternative
of discarding the unlabeled data.

As our results indicate, however, the proposed procedure is very conservative. The pro-
jection with X◦ = X (ICLS) is a classifier which is less conservative than the projection
based on all data, and offers larger improvement in the experiments while still being robust
to degradation of performance. For this procedure Theorem 1 does not hold. Better under-
standing in what way we can still prove other robustness properties for this classifier is an
open issue.
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An alternative way to derive less conservative approaches could be by changing the con-
straint set Θ . The purpose of this work has been to show that if we choose Θ conservatively,
such that we can guarantee it contains the oracle solution woracle, we can guarantee non-
degradation, while still allowing for improved performance over the supervised solution in
many cases. To construct a method with wider applicability, an interesting question is how
to restrict Θ based on additional assumptions, while ensuring that woracle ∈ Θ with high
probability.

7.3 Other losses

Another open question is for what other losses we can apply the projection procedure pre-
sented here. Apart from the issue of defining the metric in these cases, for some other loss
functions the current definition of the constraint set might not constrain the parameter space
at all. In the case of hinge loss or logistic loss, empirical results seem to indicate that the
constraint setΘ always includeswsup. The lack of a closed-form solution, however, hampers
a detailed theoretical analysis of these settings. Therefore, an exact characterization of the
kinds of losses for which the procedure is amenable has to be left as an open problem.

8 Conclusion

We introduced and analyzed an approach to semi-supervised learning with quadratic surro-
gate loss that has the interesting theoretical property of never decreasing performance when
measured on the full, labeled and unlabeled, training set in terms of this surrogate loss when
compared to the supervised classifier. This is achieved by projecting the solution vector of
the supervised least squares classifier onto a constraint set of solutions defined by the unla-
beled data. As we have illustrated through simulation experiments, the safe improvements in
terms of the surrogate loss on the labeled and unlabeled data also partially translate into safe
improvements in terms of the classification errors on an unseen test set. Moreover, the pro-
cedure can be formulated as a standard quadratic programming problem, leading to a simple
optimization procedure. An open problem is how to apply this procedure or a procedure with
similar theoretical performance guarantees, to other loss functions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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