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Abstract

Background: Genetically engineered (GE) ringspot virus-resistant papaya cultivars ‘Rainbow’ and ‘SunUp’ have
been grown in Hawai’i for over 10 years. In Hawai’i, the introduction of GE papayas into regions where non-GE
cultivars are grown and where feral non-GE papayas exist have been accompanied with concerns associated with
transgene flow. Of particular concern is the possibility of transgenic seeds being found in non-GE papaya fruits via
cross-pollination. Development of high-throughput methods to reliably detect the adventitious presence of such
transgenic material would benefit both the scientific and regulatory communities.

Results: We assessed the accuracy of using conventional qualitative polymerase chain reaction (PCR) as well as
real-time PCR-based assays to quantify the presence of transgenic DNA from bulk samples of non-GE papaya seeds.
In this study, an optimized method of extracting high quality DNA from dry seeds of papaya was standardized. A
reliable, sensitive real-time PCR method for detecting and quantifying viral coat protein (cp) transgenes in bulk seed
samples utilizing the endogenous papain gene is presented. Quantification range was from 0.01 to 100 ng/μl of
GE-papaya DNA template with a detection limit as low as 0.01% (10 pg). To test this system, we simulated
transgene flow using known quantities of GE and non-GE DNA and determined that 0.038% (38 pg) GE papaya DNA
could be detected using real-time PCR. We also validated this system by extracting DNA from known ratios of GE seeds
to non-GE seeds of papaya followed by real-time PCR detection and observed a reliable detection limit of 0.4%.

Conclusions: This method for the quick and sensitive detection of transgenes in bulked papaya seed lots using
conventional as well as real-time PCR-based methods will benefit numerous stakeholders. In particular, this
method could be utilized to screen selected fruits from maternal non-GE papaya trees in Hawai’i for the presence
of transgenic seed at typical regulatory threshold levels. Incorporation of subtle differences in primers and probes
for variations in cp worldwide should allow this method to be utilized elsewhere when and if deregulation of
transgenic papaya occurs.
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Background
Papaya (Carica papaya L.) is widely grown in tropical and
subtropical regions for its nutritional benefits and medi-
cinal applications. World production of papaya is approxi-
mately 11.5 million tons with the USA accounting for
13,653 tons [1]. It is among the top 10 commodities pro-
duced in Hawai’i, USA with a farm gate value of $11.1 mil-
lion in 2010 [2]. It is a polygamous diploid (2n = 18) plant
species with a complex breeding system including dioe-
cious and gynodioecious forms that are manifested
through individuals being male, female, or hermaphrodites
[3,4]. In Hawai’i, only the hermaphrodite plants are cur-
rently commercially important. Male and female papayas
are obligate outcrossers, whereas hermaphrodites are self-
pollinating. However, cross-pollination has been reported
in hermaphrodite papayas at various levels depending
upon a number of factors such as morphological relation-
ships of stamens and stigma, timing of anther dehiscence
relative to flower anthesis, and incidence of insect pollina-
tors [5-8].
A major obstacle to large-scale commercial production

of papaya worldwide is the devastating disease caused by
papaya ringspot virus (PRSV), which severely impacts pa-
paya yield [9-11]. Development of genetically engineered
(GE) virus-resistant papaya was initiated in 1987 and cul-
minated in 1998 with the commercial release of two GE
cultivars, ‘Rainbow’ and ‘SunUp', which were transformed
with the modified binary vector pGA482GG/cpPRV-4 car-
rying gus, nptII, and PRSV coat protein (cp) transgenes
[12-15]. These have been widely planted in Hawai’i, with
‘Rainbow’ accounting for 77% of the total 805 ha in com-
mercial production [2]. The incorporation of GE papaya
into the agricultural landscape in Hawai’i confers the pos-
sibility of movement of transgenes between the GE and
non-GE papayas through outcrossing (i.e., pollen move-
ment) or seed movement. Hence, there is a need for better
information about the rates of gene flow in papaya to
monitor and minimize adventitious presence of transgenes
and facilitate profitable coexistence of GE and non-GE pa-
paya growers. We are especially interested in gene flow via
pollen wherein it is conceivable that transgenic seed could
reside within fruit produced on a non-transgenic plant.
This has motivated our effort to develop reliable methods
for detection of transgene in a mixture of putatively GE
and non-GE papaya seeds.
A number of different assays have been employed to de-

tect transgene flow. Previously, the GUS marker gene was
employed to track pollen movement from a 0.5 ha ‘Rain-
bow’ papaya field into surrounding border rows of non-GE
papaya plants using histochemical GUS staining [16]. Al-
ternatively, real-time PCR (or qPCR) assays have been de-
veloped for several GE plant species for efficient transgene
detection in mixed samples [17-20]. Real-time PCR offers a
quick, economical and high-throughput alternative for
detection of gene flow in GE and non-GE plants as com-
pared to the GUS assay, Southern blot or conventional
PCR analysis. Real-time PCR of bulk DNA extractions
from seed has been utilized to detect adventitious presence
of transgenes in maize [21]. This technique is probably the
most appropriate for detecting transgenes in bulked seed
lots of papaya. The development of a real-time PCR detec-
tion method for assessing transgenic status of papaya using
papain and cp genes has been reported [22]. However, the
researchers did not report the use of this method on a mix-
ture of GE and non-GE papaya. Thus, our goal was to im-
prove the published method [22] for detection in mixed
(GE and non-GE) samples as well as optimize DNA extrac-
tion from dried papaya seeds. We envisage our method-
ology as being helpful to detect adventitious presence of
transgenes in mainly non-GE papaya seed lots. In the
present study, we extracted DNA from bulked dry seeds
and then utilized conventional and real-time PCR assays to
test transgene detection limit in GE papaya, as well as
known mixtures of DNAs from GE and non-GE papaya.
We also investigated transgene detection limit in GE and
non-GE papaya in different ratios of GE and non-GE pa-
paya seed mixtures. Since papaya seeds are rich in poly-
saccharides and preliminary experiments showed that
reliable DNA extraction required optimization for max-
imal sensitivity of detection, we performed detailed ex-
periments using various DNA isolation procedures. The
goal of this research was to produce a protocol that
could be reliably used to estimate GE seed presence
within papaya fruits, with special attention to predom-
inantly non-GE bulk samples.

Methods
Plants
We used non-GE ‘Waimanalo’ papaya seeds and GE seeds
containing PRSV cp transgene from the cultivars ‘SunUp’
(homozygous CP/CP) and ‘Rainbow’ (hemizygous CP/-).
All seed samples were used for genomic DNA extraction,
as well as conventional PCR and real-time PCR procedures.

DNA extraction and quantification optimization
Genomic DNA from 500 mg dry seeds (~45 seeds) was
extracted by the following six methods to determine which
one was optimal and most reliable for PCR: (1) DNeasy
Plant Mini kit (Qiagen Inc., Valencia, CA, USA), (2)
TRIzol reagent method (Life Technologies, Carlsbad, CA,
USA), (3) QIAcube kit (Qiagen Inc., Valencia, CA, USA),
(4) Promega Maxwell 16 kit (Promega, Madison, WI,
USA), (5) CTAB method [23], and (6) modified CTAB
method. For each method, three independent experiments
were performed incorporating three types of papaya sam-
ples (‘Waimanalo', ‘Rainbow’ and ‘SunUp’). Seeds were
macerated using a mortar and pestle under liquid nitro-
gen. Protocols for the commercial DNA isolation kits were
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followed according to the manufacturers’ procedures. In
addition, the extracted genomic DNA was treated with
4 μl of RNaseA (10 mg/ml; Fisher Scientific, Pittsburgh,
PA, USA).
We sought to optimize a CTAB method [23] (modified

CTAB) using the following extraction procedure. Seeds
were macerated using a mortar and pestle under liquid ni-
trogen wherein 5 ml extraction buffer (100 mM Tris–HCl
pH 8.0, 20 mM EDTA pH 8.0, 1.4 M NaCl, 2% CTAB, 1%
PVP-40, 1% PVPP-40 and 2% β-mercaptoethanol) was
added. The samples were incubated at 65°C for 45 min
(with intermittent inversion every 10 min). To improve
the quality of extracted genomic DNA, the suspension
was emulsified with equal volume of phenol (pH 5.0):
chloroform: isoamyl alcohol (25:24:1; biotechnology grade,
Fisher Scientific, Pittsburgh, PA, USA) twice. This was
followed by emulsification with equal volume of chloro-
form: isoamyl alcohol (24:1) step performed twice. Gen-
omic DNA was precipitated by addition of two volumes of
chilled isopropanol, and the pellet was washed twice with
250 μl of chilled 70% ethanol prior to suspension in 100 μl
of TE buffer [10 mM Tris–HCl (pH 8.0), 1 mM EDTA
(pH 8.0)]. The extracted genomic DNA was treated with
4 μl of RNaseA (10 mg/ml; Fisher Scientific, Pittsburgh,
PA, USA) to completely remove the residual RNA. Gen-
omic DNA was again re-precipitated with two volumes of
chilled isopropanol and 1/10th volume of 7.5 M sodium
acetate to remove residual polysaccharides from DNA,
and the pellet was washed with 100 μl of chilled 70% etha-
nol before re-suspension in 50 μl of TE buffer [10 mM
Tris–HCl (pH 8.0), 1 mM EDTA (pH 8.0)] to increase the
yield. Genomic DNA concentration was determined by
using a Nanodrop ND1000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA) as well as by electrophor-
esis in 1% agarose gels with 1× TAE buffer (pH 8.0) with
detection under UV light after ethidium bromide staining.
DNA was also extracted from GE and non-GE papaya
seed mixtures at 10:90 (10%), 1:99 (1%), 1:249 (0.4%),
1:499 (0.2%) and 1:999 (0.1%).
Conventional PCR
PCR with forward and reverse primer pairs, viz., papain-
A1 and papain-A2 specific for the papaya papain gene,
and CP-A1 and CP-A2 for the cp gene (synthesized by In-
tegrated DNA Technologies; www.idtdna.com) [22], were
used in this study. The papain gene, which is unique to
papaya, was used as an internal control, whereas cp gene
is found only in transgenic papaya. Both papain and CP
primer pairs (Table 1) were tested for locus-specific
amplification. PCR amplification was carried out in a
programmable thermal cycler (Eppendorf Mastercycler,
Hamburg, Germany) in a 20 μl volume reaction mixture
containing 10× reaction buffer consisting of 500 mM
KCl, 15 mM MgCl2 and 100 mM Tris–HCl (pH 9.0),
200 μM dNTPs, 0.3 μM each of forward and reverse pri-
mer, 1 U Taq polymerase (Fisher Scientific, Pittsburgh, PA,
USA) and 25–30 ng of template genomic DNA. Reactions
were run at 95°C for 5 min (initial denaturation) followed
by 40 cycles of 95°C for 30 s (denaturation), 55°C for 30 s
(annealing) and 72°C for 40 s (extension). Final extension
was carried out at 72°C for 10 min. Amplified PCR prod-
ucts were resolved on 1.5% agarose gels with 1× TAE buffer
(pH 8.0) and were detected under UV light after ethidium
bromide staining. PCR products of papain and CP primer
pairs were carefully gel eluted and the samples were puri-
fied using QIAGEN QIAquick gel extraction kit (Qiagen
Inc., Valencia, CA, USA). Purified PCR products were
Sanger-sequenced at the University of Tennessee-Core Se-
quencing Facility.
Real-time PCR
Gene-specific (Table 1) non-fluorescent forward and re-
verse primer pairs for papain and cp genes (papain-B1
and papain-B2, and CP-B1 and CP-B2 respectively [22]),
along with TaqMan® fluorescent dye-labeled probes for
papain and cp genes were synthesized by Applied
Biosystems (Foster City, USA). Papain and CP probes
were both labeled with FAM (6-fluorescein amidite)
fluorescent reporter dye at the 5' end. At the 3’ end, the
papain probe was labeled with fluorescent quencher dye
6-carboxytetramethylrhodamine (TAMRA), while the
CP probe was labeled with minor groove binding
(MGB) dye. The papain gene was used as an internal
control [22] to optimize the quality of DNA extracted
by various methods and for assessing the efficiency of
real-time PCR for the selected cp transgene.
Real-time PCR, performed in a 96-well optical reac-

tion plate (Applied Biosystems, Foster City, USA),
containing a 20 μl reaction mixture of 1× TaqMan uni-
versal PCR master mix (includes ROX as a passive refer-
ence dye), 0.9 μM each of forward and reverse primers,
0.4 μM probe and 2.5 μl of respective DNA solution.
For the generation of a standard curve, the extracted
DNA was serially diluted to final concentrations of 100,
10, 1.0 and 0.01 ng/μl. Real-time PCR (ABI7900 Fast
Real-time PCR system; Applied Biosystems, Foster City,
USA) was performed using the following program: 50°C
for 2 min, 95°C for 10 min, 45 cycles of 95°C for 15 s,
58°C 30 s, and 60°C for 30 s. Real-time PCR products
were also resolved on 2% agarose gels with 1× TAE buf-
fer (pH 8.0) and were detected under UV light after eth-
idium bromide staining. A standard regression curve of
Ct values generated from DNA samples of known con-
centrations was interpolated for quantification. All reac-
tions were performed in triplicate with papain primers
and water as internal controls.

http://www.idtdna.com


Table 2 The comparison of genomic DNA purity and yield
in dry papaya seeds using various DNA extraction methods

Method Purity A260/280 A260/230 Yield (ng/μl)

DNeasy Plant mini kit 2.7 0.29 6.34

TRIzol 1.1 0.72 11.0

CTAB 1.3 0.94 28.72

QIAcube 2.47 0.74 14.56

Promega Maxwell 16 1.12 0.83 16.34

Modified CTAB 1.82 1.76 211.79

Table 1 Primer pairs and fluorogenic probes used for the conventional and real time-PCR

Primers and probes Orientation Sequence (5' →3') Amplification length (bp)

Papain-A1 Forward GGC TCA ATA TGG TAT TCA CTA CAG AAA T 363

Papain-A2 Reverse CAT CGG TTT TGG CTG CAT AA

Coat protein-A1 Forward GAC ATC TCT AAC ACT CGC GC 411

Coat protein-A2 Reverse CTT CGA GAG CCA TAT CAG GTG

Papain-B1 Forward AGT GGC TCA ATA TGG TAT TCA CTA CAG A 91

Papain-B2 Reverse AAA ATG TAG ATA TAC CTC CCT TGA GCG

Papain-P Probe (FAM)-ATA CTT ACC CAT ATG AGG GAG TGC AAC GTT ATT G-(TAMRA)

Coat protein-B1 Forward CCG CGG TAT GGA ATC AAG AG 100

Coat protein-B2 Reverse TCG AGA GCC ATA TCA GGT GTT TT

Coat protein-P Probe (FAM)-CTC GCT AGA TAT GCT TTC GAT TTC TAT GCG GT-(MGB)
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Validation: sensitivity of real-time PCR assays in a range
of dilutions of GE and non-GE papaya seed DNA
A dilution series involving mixtures of GE and non-GE
papaya genomic DNA was used to validate the sensitivity
of real-time PCR assays in detecting the presence of
transgenes. We mixed GE papaya genomic DNA with
non-GE papaya genomic DNA such that the % GE DNA
material constituted 50, 25, 12.5, 6.25, 3.125, 1.56, 0.75
and 0.038% of total DNA. Mixtures of GE and non-GE pa-
paya seeds at 10, 1, 0.4, 0.2 and 0.1% were also utilized for
real-time PCR assay. Standard regression curves of Ct
(cycle threshold) values generated from DNA samples of
known concentrations and seed mixtures were interpo-
lated to estimate transgene quantities. All reactions were
performed in triplicate with papain primers and water as
internal controls.

Results and discussion
Concerns over the use of GE organisms have led to myriad
national regulations for transgenic plants in most coun-
tries. Labeling of GE food products has become an im-
portant part of the regulatory framework in many
countries, including those in the European Union, United
Kingdom, Japan, Australia, New Zealand, and Thailand
[24,25]. In Hawai’i, because of close proximity of commer-
cial fields of conventional and GE papaya plants, a situ-
ation exists in which adventitious presence of transgenes
might occur at low frequency in non-GE fields [16,26,27].
Consequently, until recently, shipment of non-GE papayas
from Hawai’i to Japan required a cumbersome “Identity
Preservation Protocol” involving certification of non-GE
status of each papaya tree using GUS assays [28,29]. Of
course, a GE pollination event onto a non-GE tree could
yield GE seed. The USDA Tropical Plant Genetic Re-
sources and Disease Research (TPGRDR) unit in Hilo,
Hawai’i, is also concerned about the accidental export of
adventitious transgenes in papaya germplasm provided to
overseas research or industry destinations [27]. Hence,
there is a clear need for higher throughput and reliable
methods for detection, identification and tracking of
transgenes. Of particular utility would be procedures that
could use DNA extracted from bulked tissue samples, es-
pecially seeds. Such methods will be of real benefit to the
state and national government agencies charged with
regulating shipments of GE products for commercial or
research purposes.
The first objective was to isolate high quality DNA from

dry seed lots of papaya. Commercial DNA isolation kits
(Table 2) have proven effective in isolating genomic DNA
from leaves of many crop plants, such as rice, barley, to-
mato, citrus, and Arabidopsis [30-32]. However, these kits
were not effective to isolate useful amounts of high quality
genomic DNA from dry papaya seeds (Figure 1A). Gen-
omic DNA isolation from plants is often recalcitrant
[32-34], and difficulties in obtaining high quality genomic
DNA from papaya tissues (e.g., leaf, fruit) have also been
encountered by other researchers [24,35-37]. Proteins, poly-
saccharides, polyphenols, fibers, carbohydrates, lipids and
other various secondary metabolites can decrease the effi-
ciency of plant DNA extraction [38-40]. Some, if not most,
of these constituents are likely causes of DNA extraction
problems in papaya seed [41]. Endonucleases, polyphenols,
or polysaccharides, which can all co-precipitate along with
DNA during extraction, result in irreversible interactions



Figure 1 Genomic DNA extraction from dry papaya seeds. A)
Using six different techniques (Lane 1: DNeasy Plant Mini kit; 2: TRIzol;
3: Blank; 4: ‘Normal’ CTAB; 5: QIAcube; 6: Promega Maxwell 16).
B) Using modified CTAB extraction procedure (Lane 1: ‘Rainbow’; 2:
‘SunUp’; 3: ‘Waimanalo’). M: 1 kb DNA ladder (Fisher Scientific).

A

C D
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M   1    2    3    4     5    6    7    8     M    1     2    3     4   5           

363 bp

91 bp

411 bp

100 bp

363bp
411bp

Figure 2 Conventional PCR amplification. A) Papain primer pair
(Lanes 1,5: water; 2–4: papain PCR primer pair for ‘Rainbow’, ‘SunUp’
and ‘Waimanalo’ respectively; 6–8: papain probe for ‘Rainbow’, ‘SunUp’
and ‘Waimanalo’ respectively. B) Coat protein (CP) primer pair (Lane 1:
water; 2–3: CP PCR primer pair for ‘Rainbow’ and ‘SunUp’ respectively;
4–5: CP probe for ‘Rainbow’ and ‘SunUp’ respectively. C) Papain primer
pair (Lane 1: ‘Waimanalo’; 2–6: ‘SunUp’:‘ Waimanalo’ seed mixtures in
the ratio of 10, 1, 0.4, 0.2 and 0.1%). D) CP (Lanes 1: ‘Waimanalo’; 2–6:
‘SunUp’: ‘Waimanalo’ seed mixtures in the ratio of 10, 1, 0.4, 0.2 and
0.1%). M: 1 kb DNA ladder (Fisher Scientific).
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with nucleic acids that can further affect purification of
DNA [34,38] and enzymatic reactions such as Taq DNA
polymerase-mediated PCR [32,42,43]. Thus, it is not un-
usual for DNA extraction methods to require species- and
tissue-specific optimization [34,44,45]. Presence of tannins
in seed samples [41] likely affected the efficacy of many of
the tested methods; the best results were achieved with
modified CTAB method, which had an increased concen-
tration of β-mercaptoethanol (2%). This reduced co-
precipitation of proteins, polysaccharides and other impur-
ities. Performing phenol: chloroform: isoamyl alcohol, and
chloroform: isoamyl alcohol as well as precipitation steps
twice may have further aided in the removal of tannins and
denaturation of proteins. Modified CTAB protocol de-
scribed here efficiently eliminated most contaminants, in-
cluding RNA, and yielded clear and water-soluble DNA
pellets from papaya seeds (Figure 1B).
Absorbance of each papaya genomic DNA sample was

evaluated at the ratios A260/A280 and A260/A230 and
the purity and yield of genomic DNA are presented in
Table 2. It is generally regarded that ratio A260/A280
values of 1.8 indicate high purity DNA, whereas less than
1.8 indicate protein contamination in DNA samples, and
more than 1.8 indicate that there might be RNA contam-
ination [32]. The resultant A260/A280 and A260/A230
absorbance ratios were 1.82 and 1.76 respectively in the
modified CTAB method, indicating that the papaya seed
genomic DNA was free of protein and polysaccharides/
polyphenol contamination (Table 2) and the quantity and
quality of genomic DNA was suitable for both conven-
tional as well as real-time PCR amplifications.
Another objective in this study was to test the suitability

of DNA extracts as templates for PCR-based transgene as-
says. We conducted two types of PCR assays (conventional
and real-time) to detect GE transgenes in non-GE papaya.
The assays simultaneously targeted an endogenous gene
(papain) and the cp transgene. For accurate analysis of GE
organisms, inclusion of a positive control, a specific gene
that is naturally present in all varieties of the crop being
studied, is necessary. Papain is a papaya-specific gene and,
hence, was used as an internal standard in the study. As
expected, papain gene amplification gave rise to a 363 bp
amplification product for ‘Waimanalo’ (non-GE), ‘SunUp’
and ‘Rainbow’ (GE papayas), whereas cp gene amplifica-
tion resulted in a 411 bp amplification product for ‘SunUp’
and ‘Rainbow’ (Table 1, Figure 2A,B). No cp gene amplifi-
cation product was observed for ‘Waimanalo’. Specificity
of papain and CP primer pairs were tested by sequencing
the purified PCR products followed by in silico testing
using BLASTn search. No sequence matched except for
the query sequence, which indicated that these primers
were specific for papain and cp genes. Similar results for
papain and cp gene amplification were also obtained when
a mixture of GE and non-GE papaya seeds was tested
(Figure 2C,D). For conventional PCR detection to be sen-
sitive and specific, each step in conventional PCR should
be optimized for reliability and sensitivity of the assay [46].
Avoidance of DNA degradation and removing chemical
contaminants that can hamper PCR amplification can pro-
foundly influence the consistency of the method as a



91 bp

100 bp

B CA

D
Figure 3 Real-time PCR amplification of papain and coat
protein (CP) primer pairs. A) ‘Waimanalo’. B) ‘Rainbow’. C) ‘SunUp’.
Lanes in A, B and C depicting papain amplification, 1: water; 2–5:
100 ng/μl, 10 ng/μl, 1 ng/μl and 0.01 ng/μl of DNA respectively. D)
Real-time PCR amplification of CP under different total nucleic acid
concentrations of 100 ng/μl, 10 ng/μl, 1 ng/μl and 0.01 ng/μl (Lane 1:
water; 2–5: ‘Rainbow’; 6–9: ‘SunUp’). M: 1 kb DNA ladder (Fisher Scientific).
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whole [46]. Concerns have also been raised that a non-
optimized PCR condition with a low efficiency DNA poly-
merase enzyme can give false negative results [31,47,48].
Most of the published PCR protocols for identification of
transgenes in papayas have relied on tissues of individual
plants or seeds derived from homogeneous populations
[24,27], leaving unresolved the complications inherent in
developing an accurate, highly sensitive methodology for
detecting and quantifying the presence of transgenes in a
mixture of GE and non-GE sources.
Real-time PCR has gained acceptance because of its

speed, exceptional sensitivity, reproducibility, and reduced
risk of carry-over contamination compared to conven-
tional PCR methods [47]. It has been extensively used to
determine the presence of transgenes and zygosity in GE
plants [49]. It has also been utilized for detection of two
transgenic events in ‘Widestrike’ cotton [25] and to moni-
tor transgene persistence and bioavailability after release
into soil as well as within the soil food web [50,51]. For
the real-time PCR experiment, papain-B1 and papain-B2
primer pairs for papain gene, CP-B1 and CP-B2 primer
pairs for cp gene, as well as gene-specific probes for pa-
pain and cp were used (Table 1). The optimized quantita-
tive protocol allowed positive cp transgene detection in
papaya. Real-time PCR amplification products were also
analyzed by 2% agarose gel electrophoresis and in all cases
a single band of expected size was observed (Figure 3).
Real-time PCR product of the papain gene was 91 bp for
‘Waimanalo’, ‘SunUp’ and ‘Rainbow’, whereas the cp gene
was 100 bp for ‘SunUp’ and ‘Rainbow’ (Table 1, Figures 2
and 3). As expected, ‘Waimanalo’ generated no cp gene
amplification product. The results confirm that papain-
A1/A2 and B1/B2 were specific to endogenous papain
gene in both the non-GE (‘Waimanalo’) and GE-
papayas (‘SunUp’ and ‘Rainbow’), whereas coat protein-
A1/A2 and B1/B2 were specific only to GE-papayas
(‘SunUp’ and ‘Rainbow’). No amplification was observed
in either negative control, including non-GE papaya ex-
tract or water alone, confirming the specificity of the
quantitative protocol.
Sensitivity of real-time PCR study was tested by carrying

out a series of PCR reactions using genomic DNA dilu-
tions ranging from 100 to 0.01 ng/μl, which was compar-
able to other serial dilution studies [52]. Using three
parallel repetitions, standard curves of papain and cp
genes were generated for the assessment of the accuracy
of the real-time PCR quantification system. Standard
curves showed a strong linear relationship for both papain
(R2 = 0.995) and CP probe (R2 = 0.997) (Figure 4). Similar
R2 values of 0.996 and 0.997 were obtained in GE-cotton
for Cry1A(c) and Sad1 amplicons respectively [53], a value
of 0.99 in ‘Widestrike’ cotton [25] and a value between
0.99 and 1 in GE maize MON81 and NK603 [54]. Nega-
tive correlation between the initial amount of genomic
DNA in the template and the Ct (cycle threshold) value
obtained after amplification reflects the concentration-
dependent efficiency of real-time PCR reaction. The Ct
value was found to deviate from linear trend of the calcu-
lated standard curve when the amount of DNA used was
less than 0.01 ng/μl (10 pg/μl), suggesting that the quanti-
fication was not accurate below this concentration [22].
The coefficient of variation was very low (0.008) in the
present study indicating that the methods should be re-
producible. These data were within the range of those of
papain, lectin and sad gene detection assays used from
other GE plant studies [22,55,56].
Previously, other researchers have shown that real-time

PCR assays of mixtures of ‘Widestrike’ cotton DNA and
non-GE cotton DNA at 0.09%, 0.9% and 5.0% revealed a
linear relationship between initial GE DNA concentration
and Ct value [25]. When GE-maize cultivars MON81 and
NK603 were tested with real-time PCR [54], a quantifica-
tion range from 0.5% to 100% in 100 ng of non-GE DNA
was reported. Real-time PCR was able to detect quantifi-
able levels of Roundup Ready® soybean that ranged from
0.03 to 87% in common grocery store food items that con-
tain soy-based products [28]. DNA mixtures prepared
from each of the three GE-cotton lines in DNA of a non-
GE cotton line at levels of 0.01, 0.05, 0.1, 0.5, 1.0, 3.0 and
5.0% gave a detectable signal at 0.05% or higher level [51].



Figure 4 Linear regression obtained in real-time PCR under different total nucleic acid concentrations of 100 ng/μl, 10 ng/μl, 1 ng/μl
and 0.01 ng/μl. A) With papain primer pair in ‘Waimanalo’. B) With coat protein (CP) primer pair in ‘SunUp’. C) With CP primer pair in ‘Rainbow’.
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To evaluate the potential of real-time PCR for transgene
flow estimation in GE papaya, we used GE lines of papaya
containing the cp transgene (‘SunUp’ and/or ‘Rainbow’), as
well as a known non-GE line (‘Waimanalo’). Genomic
DNA isolated from GE lines was mixed into non-GE lines
at levels of 50, 25, 12.5, 6.25, 3.125, 1.56, 0.75 and 0.038%.
Standard curves generated using real-time PCR showed a
strong linear relationship with R2 = 0.995 (Figure 5A),
which indicated that the transgene could likely be identified
in a dilution of 0.038% (38 pg). Serially diluted real-time



100 bp100 bp

A

B C

Figure 5 Real-time PCR analysis of coat protein (CP) in a dilution series of GE in non-GE papaya DNA. A) Linear regression obtained with
CP primer pair with total nucleic acid mixtures of ‘Rainbow’ and ‘Waimanalo’. B) GE ‘Rainbow’ DNA diluted in non-GE ‘Waimanalo’ DNA. C) GE
‘SunUp’ DNA diluted in non-GE ‘Waimanalo’ DNA. Lanes in B and C, 1: water, 2–5: 3.125%, 1.56%, 0.75% and 0.038% transgenic DNA respectively.
M: 1 kb DNA ladder (Fisher Scientific).

Nageswara-Rao et al. BMC Biotechnology 2013, 13:69 Page 8 of 11
http://www.biomedcentral.com/1472-6750/13/69
PCR reaction amplification products for ‘Waimanalo-
SunUp’ and ‘Waimanalo-Rainbow’ were also analyzed by
2% agarose gel electrophoresis, and in all cases a single
band of the expected size was observed (Figure 5B,C).
The linear relationship between DNA dilution and Ct
number extends to 0.038% dilution, indicating that this
is the lowest detectable limit for transgenes in mixed
papaya DNA samples.
Genomic DNA from seed mixtures of GE and non-

GE papaya seeds at 10, 1, 0.4, 0.2 and 0.1% was also uti-
lized for real-time PCR assay. Standard curves could be
generated from only seed mixtures that were 10, 1 and
0.4% transgenic where there was a strong linear rela-
tionship; R2 = 0.996 (Figure 6A). When real-time PCR
reaction amplification products of papain primer pair
were analyzed on 2% agarose gel electrophoresis, a sin-
gle band of the expected size was observed in all the
seed mixture ratios (Figure 6B) while the expected size
of real-time PCR reaction amplification products of
CP primer pair was observed in 10, 1, 0.4 and 0.2%
(Figure 6C). Since the number of GE seeds used in seed
mixtures of GE and non-GE papaya seeds for 0.2 and
0.1% ratios is very low, the possibility of losing a part or
all of the GE genomic DNA in one of the many steps of
DNA extraction and purification cannot be ruled out.
As long as care is taken, however, in seed handling and
subsequent DNA extraction procedures, our procedure
should detect transgenic papaya DNA below thresh-
olds typically outlined by regulatory agencies [57].
The present study adds to PCR [35] and real-time [22]

PCR detection methods that have been developed to de-
tect transgenes in papaya using papain and cp genes.
Xu et al. [22] tested papaya varieties to confirm the
presence of papain gene for use as an appropriate in-
ternal control gene. They established levels of detection
(10 pg) of DNA as template for papain and cp gene to
confirm the transgenic nature of GE papaya varieties
utilized in their study [22], which was validated in the
present study using same primer sequences. Similar de-
tection levels with linear relationships and slope values
were also obtained in the current study, however we
used different germplasm [22]. Unlike previous studies,
these results were validated by using known amounts of
GE and non-GE papaya in DNA mixtures whereby the



Figure 6 Real-time PCR analysis of coat protein (CP) transgene in seed mixtures of ‘Waimanalo’ and ‘SunUp’. A) Linear regression
obtained with coat protein primer pair at 10, 1, 0.4%. B) Papain primer pair (Lanes 1: water; 2–5: ‘SunUp’: ‘Waimanalo’ seed mixtures in the ratio of
10, 1, 0.4, 0.2 and 0.1%; 6: ‘SunUp’; 7: ‘Waimanalo’). C) CP primer pair (Lanes 1–5: ‘SunUp’: ‘Waimanalo’ seed mixtures in the ratio of 10, 1, 0.4, 0.2
and 0.1%; 6: ‘SunUp’; 7: ‘Waimanalo’; 8: water). M: 1 kb DNA ladder (Fisher Scientific).
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transgenic DNA could be detected as low as 0.038%.
Furthermore, the present study was also validated by
assaying known amounts of transgenic seed in mixtures
to determine sensitivity down to 0.4% transgenic seed at
the hemizygous state. In both these experiments, detec-
tion levels (0.038% and 0.4%) were below threshold typ-
ical of regulatory agencies.

Conclusions
Absence of quantitative data on the incidence of adven-
titious transgene presence has led to speculation on the
consequences of biological risks in papaya. We have de-
veloped a procedure to quantify and describe adventi-
tious presence of GE transgenes in mixtures of GE and
non-GE papaya seeds. This real-time PCR based detec-
tion technique should be useful for quick and sensitive
detection of GE vs non-GE papaya as a biosafety and
regulatory tool.
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