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Background
The oxygen concentration in normal tissue is maintained in a steady state, where the 
oxygen diffused from the capillaries meets the metabolic demand of the surrounding 
cells. Disrupting this balance, such as in wound repair for extra oxygen demand, triggers 

Abstract 

Background: Tumor hypoxia is involved in every stage of solid tumor develop‑
ment: formation, progression, metastasis, and apoptosis. Two types of hypoxia exist in 
tumors—chronic hypoxia and acute hypoxia. Recent studies indicate that the regional 
hypoxia kinetics is closely linked to metastasis and therapeutic responses, but regional 
hypoxia kinetics is hard to measure. We propose a novel approach to determine the 
local pO2 by fusing the parameters obtained from in vivo functional imaging through 
the use of a modified multivariate Krogh model.

Methods: To test our idea and its potential to translate into an in vivo setting through 
the use of existing imaging techniques, simulation studies were performed comparing 
the local partial oxygen pressure (pO2) from the proposed multivariate image fusion 
model to the referenced pO2 derived by Green’s function, which considers the contri‑
bution from every vessel segment of an entire three‑dimensional tumor vasculature to 
profile tumor oxygen with high spatial resolution.

Results: pO2 derived from our fusion approach were close to the referenced pO2 
with regression slope near 1.0 and an r2 higher than 0.8 if the voxel size (or the spatial 
resolution set by functional imaging modality) was less than 200 μm. The simulation 
also showed that the metabolic rate, blood perfusion, and hemoglobin concentration 
were dominant factors in tissue oxygenation. The impact of the measurement error of 
functional imaging to the pO2 precision and accuracy was simulated. A Gaussian error 
function with FWHM equal to 20 % of blood perfusion or fractional vascular volume 
measurement contributed to average 7 % statistical error in pO2.

Conclusion: The simulation results indicate that the fusion of multiple parametric 
maps through the biophysically derived mathematical models can monitor the intra‑
tumor spatial variations of hypoxia in tumors with existing imaging methods, and the 
potential to further investigate different forms of hypoxia, such as chronic and acute 
hypoxia, in response to cancer therapies.

Keywords: Multi‑variate Krogh model, In vivo functional imaging, Dynamic contrast 
enhanced computed tomography, Photoacoustic spectroscopy
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physiological angiogenesis. The nascent vessel sprouting and pruning from the exist-
ing vessel network in physiological angiogenesis are tightly regulated. If the disruption 
is severe enough, necrosis or apoptosis develops, resulting in a stroke or myocardial 
infarction. Unlike physiological angiogenesis, tumor-induced angiogenesis is uncon-
trolled, resulting in a tortuous, leaky, and dilated microvasculature. This dysfunctional 
microvasculature cannot supply the oxygen demand from tumor cells, and leads to a 
spatiotemporal heterogeneous hypoxia distribution in tumor [1]. The hypoxia further 
fuels abnormal angiogenesis and disrupts other cellular mechanisms, such as immune 
response [2] and cell survival [3, 4]. Thus, tumor hypoxia imaging and quantification are 
important in cancer research and have been an active research to search better cancer 
therapeutic outcomes [5–8]. There are two types of tumor hypoxia: chronic hypoxia 
(also known as diffusion-limited hypoxia) and acute hypoxia (also known as perfusion-
limited hypoxia). Recent studies demonstrate that local tumor hypoxia behavior has 
profound impact in tumor metastasis and therapeutic outcomes [9, 10], hence charac-
terizing and profiling the hypoxia in high spatiotemporal resolution can not only explore 
the further understanding causality between hypoxia and tumors but also is beneficial to 
cancer patient care.

Current in vivo preclinical diagnostic methods to determine the partial pressure of 
oxygen (pO2) include polarographic electrode (or Eppendorf probe), photolumines-
cence-quenching optical probe or biomarker assays based on the 2-nitroimidazoles 
(pimonidazole and EF5). These techniques provide a direct and quantifiable measure 
of pO2 or the relative oxygen level (pO2 < 10 mmHg) or hypoxic fraction in tissue, but 
their disadvantages have limited their wide spread use. For example, the Eppendorf 
probe necessitates an invasive procedure (needle insertion or biopsy) and lacks spatial 
information. Oxygen level quantification using 2-mitroimidazoles result in inconsisten-
cies with Eppendorf probe measurements [11, 12] or with locoregional tumor control, 
disease-free survival [13] and event-free survival time [14]. PET and SPECT radiop-
harmaceutical tracers engineered around these biomarkers, such as 18F-MISO or 64Cu-
ATSM, provide a noninvasive means to measure hypoxia [15, 16], and have been found 
to correlate with therapeutic response and outcome from radiation and chemotherapy 
[17, 18] when comparing average tumor-to-muscle ratios. However, these methods 
are still in the early stages of research and lack any mechanistic information causal to 
hypoxia.

Other approaches first quantify the hemodynamic parameters then extrapolate the 
local oxygen concentration. Near-infrared spectroscopy, such as diffuse optical tomogra-
phy and photoacoustics, is widely used to measure hemoglobin concentration (CtHb) and 
its oxygen saturation (SaO2) level by quantifying the differential absorption spectrum of 
oxy- and deoxy-hemoglobin molecules [19, 20]. Quantitative BOLD MRI is also capable 
of measuring oxygen saturation levels in vivo as demonstrated in preclinical studies [21] 
and have been shown to correlate to pimonidizole staining. The oxygen concentration 
using dynamic contrast enhanced imaging by injecting contrast agents in blood circula-
tion to measure local vascular hemodynamics correlates to Eppendorf pO2 histograph 
and pimonidizole-based immunohistochemistry [22, 23]. Each of these techniques pro-
vides a quantifiable measure of a single factor contributing to hypoxia, such as perfu-
sion, hemoglobin concentration, or oxygen saturation, with good spatial and temporal 
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resolution. By combining or fusing these parameters through the implementation of 
oxygen transport models, the precise local pO2 and etiology leading to hypoxia can be 
investigated. Integration of mathematical modeling and imaging observations proves to 
be a powerful approach to understand tumor vasculature behaviors at various scales and 
can have application in clinical diagnosis [24–26]. The approach will become more relia-
ble as the progression of imaging hardware provides accurate anatomical and functional 
measurements in high spatiotemporal resolution.

The advent of mathematical modeling in oxygen transport began as early as the twen-
tieth century. Krogh in collaboration with Erlang, a mathematician, first approached the 
modeling of oxygen transport as a frame work to design experiments, interpret data, 
and suggest new insights on how the smallest micro vessels can supply oxygen to tissue, 
given the lack of technology at the time in support of his quest to understand oxygen 
transport in capillaries. With his model, he was able to conclude that the skeletal muscle 
tissue milieu was already well oxygenated and that the capillary bed only exchanged very 
low amount of oxygen with the muscle cells, contrary to the common belief at the time 
[27]. Krogh’s tissue cylindrical model set the stage for almost all subsequent models and 
has had tremendous and continuous impact to the field. By the 1960s, an interest in tis-
sue oxygen transport was renewed, and steady-state and time-dependent models were 
developed to investigate the influence of hemoglobin and myoglobin oxygen binding 
within the microcirculation and whole in organs systems [28]. These models expanded 
upon Krogh’s model to include compartments for the RBCs, the plasma layer, the cap-
illary wall, intestinal space and cellular volume, and used to study muscle physiology 
[29]. For example, Hellums used these concepts of mass transport to predict the pas-
sage of RBCs through capillaries would result in pO2 fluctuations [30], a phenomenon 
only recently observed [31, 32]. Multiple parallel vessel models better accounted for the 
O2 diffusion between capillaries, where advanced numerical techniques were beginning 
to applied, including finite difference and finite element methods [33]. When combined 
with advanced computational systems, local oxygen concentrations due to tissue hetero-
geneity could be further investigated [33]. By 2000, Secomb, Hsu, and Pries developed a 
Green’s function algorithm to calculate the steady-state local pO2 contributed from all 
vessel segments within a 3D network [34, 35], and was used to study the development 
of microvascular networks as well as different regulatory mechanisms on blood flow in 
tumors [36–38]. By implementing finite difference methods, time-dependent solutions 
of heterogeneous microvascular networks under various physiological conditions were 
now possible [39].

The objective of this study is to profile the 3-D oxygen concentration and hypoxic frac-
tion by fusing the multiple parameters obtained from in vivo functional imaging through 
the use of oxygen transport model. To obtain local oxygen concentration levels based 
on 3-D imaging, the Krogh model has been reformulated, where the inputs are obtained 
from the parametric images of the vascular physiology and hemoglobin status within the 
tumor. Thus, a multivariate image-fusion model of pO2 (or MVIF model)  is provided. 
The MVIF model depends on the spatial resolution of the imaging system, as the point 
spread function decreases, the voxel volume will contain a single vessel and the local 
pO2 level will be determined with higher accuracy and precision, see Fig.  1. Prior to 
in vivo testing, simulation studies are performed to investigate the viability of the MVIF 
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model, where previously published biological models and microscopic data were used 
as a point of reference. The goals of this study are to identify an optimal voxel size and 
the necessary instrumental sensitivities to obtain an accurate and precise determination 
of pO2. The range of spatial resolutions and sensitivities used in these simulation stud-
ies are consistent with in vivo dynamic contrast-enhanced (DCE) imaging (clinical and 
preclinical MRI, CT, or photoacoustic) and optical or photoacoustic spectroscopy (PCT-
S). 3D tumor vasculature and hemodynamic quantification using intravital microscopy 
are used to simulate the in vivo parametric measurements (such as perfusion, fractional 
plasma volume, and the hemoglobin status within each voxel) which are subsequently 
fused to our model to obtain 3D pO2 maps. These MPO2 maps are compared on a voxel-
by-voxel basis to the referenced pO2 values calculated by Green’s function [34]—which 
shows close correlation to the local tumor oxygen level using microelectrode [40]—to 
investigate the necessary image resolution and to determine the sensitivity by varying 
the statistical and systematic uncertainty in the in vivo imaging parameters.

Methods
Simulation procedure overview

The performance of our model was tested in two different tissue types: the brain and a 
tumor. The microvasculature within the brain served as an internal control or normal tis-
sue, while the microvasculature of the tumor represented an abnormal or diseased tissue. 
The 3-D microvasculature of the tumor and the brain is displayed in Fig. 2a and b, the 
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Fig. 1 Schematic illustration of the vascular reduction as function of the voxel size. As the voxel size is 
reduced, the vascularity of the regional vessel network within the voxel becomes less complex; thus, using 
a single effective vessel with multi vascular attributes to calculate the local pO2 becomes possible. In the 
MPO2 model, a single straight cylindrical vessel is placed at the center of the voxel and the average voxel pO2 
(MPO2) is calculated. The effective vascular structure and its functional inputs (e.g. blood flow, hemoglobin 
concentration, and fraction of vessel volume) are obtained from in vivo imaging measurements, thus provid‑
ing a means to fuse this information based on the biophysics model approach
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3D dimension of tumor encompassing entire vasculature was 0.990 × 0.810 × 0.15 mm3, 
the dimension of brain was 0.150 × 0.160 × 0.14 mm3. Basically a window chamber was 
employed into the dorsal flap of the animal and tumor cells were implanted subcuta-
neously near a vessel in the chamber to study tumor-induced angiogenesis. Intravital 
microscopy was used to image  3D tumor vascular structure; photometric techniques 
were used to quantify hemodynamic variables (such as blood flow, hematocrit) in each 
vessel segment of the vasculature. The detailed experimental protocol and the proce-
dures of post image and video processing to derive blood flow and vascular branching 
angle can be found in the publication of Fontanella et al. [41] and Brizel et al. [42]. The 
Green’s function algorithms to utilize the experimental vascular inputs from window 
chamber model in calculating oxygen distribution were downloaded from the website 
[43].

In this study, the oxygen profile calculated by Green’s function was used as a refer-
ence. The Green’s function method calculates the pO2 at any location within the tumor 
by considering the contribution from all single vessel segments in the tissue volume. 
Once the pO2 profile within the entire tissue volume (brain or tumor) was completed, 
a virtual 3-D voxel grid representing the reconstructed image volume by DCE-CT was 
superimposed onto the tissue. The average effective hemodynamic values in each finite 
voxel were calculated based on its known microvascular architecture. These voxel-based 
hemodynamic parameters are used as inputs to our single-vessel multivariate oxygen 
transportation model (MVIF) to calculate the pO2 (MPO2) in each voxel of the virtual 
grid. The corresponding pO2  (GPO2) calculated using Green’s function was also cal-
culated and used as a reference value. A scatter plot of MPO2 versus GPO2 for each 
voxel was compared by performing a linear regression. Since the placement of the vir-
tual (or imaging) voxel grid is somewhat arbitrary and depends on the voxel size, the 
grid was randomly translated by less than a half a voxel length for larger voxel sizes. To 
account for these variations and to increase the number of data points for large-voxel 
MPO2 to GPO2 data, the grid was translated, the new vascular architecture for each 
voxel extracted, and the MPO2 and GPO2 calculated and plotted.

Fig. 2 Illustration of reconstructed three‑dimensional microvessel network of a a tumor 
(1000 × 1000× 150 μm3) and b brain (150 × 160 × 140 μm3) by confocal scanning microscope with sub‑μm 
resolution (all axis’s are in units of micrometers)
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Implementing Green’s function algorithm to calculate referened pO2 (GPO2)

The Green’s function algorithm developed by Hsu and Secomb [34] was used to calculate 
the tissue oxygen concentrations resulting from the unique microvasculature geometry 
and hemodynamics in each tissue. The physiological constants used in these simulations 
were listed in Table  1. To reduce computation time, the tissue space was first discre-
tized into an isotropic cubic lattice, the distance between two lattice points was 15 μm 
in our simulation (see Fig.  3). The oxygen consumption rate at each lattice point was 
derived from the Michaelis–Menten equation. Similarly vessels as oxygen source were 
discretized into sub vessel segments with 50  μm in length. The midpoint of each sub 
vessel segment represented the location oxygen source. In Green’s function algorithm, 
the major oxygen release factors (blood flow, oxygen diffusion rate in vessel and in tissue 
space, hemoglobin concentration, and oxygen release rate from hemoglobin into plasma 
simulated by Hill’s equation) and oxygen consumption rate were considered to calculate 
pO2 at the tissue lattice point (LPO2). Although Green’s function algorithm assumes the 
system to be under steady-state conditions and other assumptions to reduce the compu-
tational complexity, a statistically significant correlation between the tumor oxygen con-
sumption rate derived by Green’s function and the actual microelectrode measurements 

Table 1 Key simulation parameters used in Green function model

Tumor Brain

1 Maximum oxygen consumption rate, M0 0.0004 cm3/cm3/sec 0.0025 cm3/cm3/sec

2 Total blood inflow 230.37 nL/min 10.8 nL/min

3 Saturated hemoglobin concentration C ′ 8800 μM 8800 μM [50]

4 n in Hill equation 3.0 3.0 [34]

5 P50 26 mmHg 26 mmHg [50]

6 Oxygen diffusion constant D 2000 μm2/s 2000 μm2/s [63]

7 Oxygen solubility in blood 0.0385 μl/g mmHg 0.0385 μl/g mmHg [64]

Fig. 3 A 2‑D schematic of a cubic lattice used to evaluate the detailed pO2 profile in a tumor and the virtual 
grid to simulate the voxels from in vivo functional imaging modality. a The cubic lattice structure (blue 
diamonds) is used to calculate the pO2 value using Green’s function algorithm, where the edge length of the 
lattice is 15 µm. A 200‑µm virtual grid is superimposed over the tumor. The color of the vessel segment indi‑
cates the geometrical relation of the vessel segment to the voxel. Green vessel segments are located entirely 
within the voxel; yellow segments represent vessels that cross two voxels; and blue segments are located 
outside the grid. b An example of a 100‑µm virtual grid of the same tumor is displayed for comparison



Page 7 of 19Lee and Stantz  BioMed Eng OnLine  (2016) 15:114 

in microvasculatures was reported [40], which provides a measure of confidence in pO2 
from Green’s function as a reference.

Once all LPO2 was determined, a virtual grid composed of isotropic finite-sized vox-
els was superimposed onto the entire tissue, for example Fig.  3a and b demonstrated 
the virtual grid of 100- and 200-μm voxel overlaid on tumor. The voxel pO2, referred to 
as GPO2, was calculated by averaging all the LPO2 located inside the voxel, and repre-
sented the reference to evaluate the voxel pO2 by our multivariate single-vessel model.

Implementing the multivariate image‑fusion (MVIF) model to calculate voxel pO2(MPO2)

All MVIF algorithms were programmed in Matlab (Mathworks Inc.) A detailed deriva-
tion of the multivariate image fusion model of oxygen concentration (MVIF) is described 
in the Additional file 1. MVIF is a modified single cylindrical vessel model proposed by 
Krogh and Erlang [27, 44] used to calculate the pO2 in a voxel of tissue based as a func-
tion of several key physiological parameters related to oxygen supply and consumption. 
The final analytic equation of MVIF to calculate pO2 in cylindrical coordinates is: 

F represents blood perfusion, rc is the single vessel radius, rT is the upper radial bound-
ary in MVIF, pO2 (z = 0) is the initial pO2 at the entrance of the vessel, D is the oxygen 
diffusion constant, H is Henry’s constant, M is the oxygen consumption rate, m is the 
slope of the oxygen-hemoglobin dissociation curve (see equation  2 in the Additional 
file  1), G1 is the geometrical term or form factor depicting radial diffusion within the 
voxel, and G2 is the geometrical term or form factor of advection along the z of cylindri-
cal vessel.

In this simulation study, since the vasculature geometry and hemodynamic measure-
ment inside the voxel of the virtual grid are known, some inputs for MVIF—such as the 
effective vessel radius rc, blood perfusion F , and the initial pO2—can be calculated pre-
cisely as they were to measure by functional imaging modalities. Hill’s equation was used 
twice to calculate the initial pO2 in each voxel in this simulation. The lumen pO2 in each 
vessel segment of the vasculature was calculated using Green’s function, the correspond-
ing SaO2 in each vessel segment, therefore, can be derived using Hill’s equation. In simu-
lation the vessel segment ID and volume contribution within each voxel were recorded, 
the voxel SaO2 from all vessel segments within the voxel was calculated using the follow-
ing formula:

∑

i

SaO2(i) ∗ vol(i)/V , SaO2(i) is the oxygen saturation of vessel segment i; 
vol(i) is the volume of vessel segment i within the voxel; V  is the total vascular volume 
of the voxel. We used Hill’s equation again to derive the initial pO2 as input for MVIF 
from this voxel SaO2. The parameters or constants appearing in MVIF and Hill’s equa-
tion were listed in Table 2. The pO2 at any point within the voxel vessel was calculated; 
the average pO2 from the pO2 within the voxel represented the voxel pO2 calculated by 
MVIF, referred to as MPO2. Scattering plot of MPO2 versus GPO2 (as reference) on a 
voxel-by-voxel basis was plotted to evaluate the correlation and to identify the voxel out-
lier of which MPO2 significantly deviated from GPO2.

pO2(r, z) = pO2(z = 0)−
M ·H

(1+m) · F
G2(z; rc, rT )−

M ·H

2D
G1(r; rc, rT ).
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MVIF response to voxel size (image spatial resolution)

In general, the complexity of the vessel network depends on the voxel size and the tis-
sue type, as illustrated in Figs.  1, 2 and 3. In functional imaging image spatial resolu-
tion is determined by the voxel size. To investigate the accuracy and precision of the 
MVIF model as function of the voxels sizes, linear regression analysis was used to evalu-
ate the correlation between MPO2 and GPO2 at different voxel sizes ranging from 50 to 
300 µm, in 50 µm increments. For the brain tissue, only 50 and 100 µm voxel sizes were 
investigated because of the size of the tissue volume, 150 µm × 160 µm × 140 µm.

Hypoxic fraction correlation

The hypoxic fraction (HF) is the fraction of the tumor volume that has a pO2 less than 
a defined threshold, which typically ranged between 2.5 and 10 mmHg. Tumor HF has 
been used in clinical diagnosis, and has been estimated by a variety of techniques includ-
ing immunohistochemistry, computed tomography, or [18F] 2-fluoro-2-deoxy-glocose 
PET [23, 45]. Similarly, the relationship between the HF as determined from MPO2 and 
GPO2 models was investigated. First, the tumor HF for MPO2 and GPO2 was calculated 
for various thresholds, from 2.5 to 15  mmHg in 2.5  mm steps. The number of voxels 
exceeding the hypoxic threshold was counted and divided by the total number of voxels 
in tumor. Since the brain (or normal) tissue is well oxygenated, a pO2 threshold ranging 
from 16 to 22 mmHg with 2 mmHg intervals was used.

Sensitivity and error analysis in MVIF modeling

Since nonlinear MVIF takes the hemodynamic and structural inputs from in vivo func-
tional imaging to calculate MPO2, it is important to know (1) its response to changes in 
the input parameters and (2) how the hemodynamic or structural measurement error 
from in vivo functional imaging experiment affects the accuracy and precision of MPO2.

To answer the first objective the referenced MPO2 was calculated with the input val-
ues listed in Table  2. We then calculated MPO2 when only one input was considered 
as variable while other inputs remained as constant. Four new inputs which are ±10 

Table 2 Key simulation parameters used in MVIF model

Tumor Brain

1 Maximum oxygen consumption rate, M0 0.0004 cm3/cm3/sec 0.0025 cm3/cm3/sec

2 Saturated hemoglobin concentration C ′ 8800 μM 8800 μM [50]

3 P50 26 mmHg 26 mmHg [50]

4 n in Hill equation 3.0 3.0 [34]

5 Henry’s constant, H 0.74 mmHg/μM 0.74 mmHg/μM [65]

6 Oxygen diffusion constant D 2000 μm2/s 2000 μm2/s [63]

7 Initial pO2 determination (see “Method” 
section)

Convert voxel SaO2 using Hill’s equation [64]

8 Effective vessel diameter (see “Method” 
section)

By all vessel segments within the voxel

9 Effective voxel blood flow (see “Method” 
section)

By all vessel segments within the voxel

10 Effective SaO2 (see “Method” section) Convert intravessel pO2 to SaO2 using Hill’s equation
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and ±20 % from the referenced input value listed in Table 2 were used to calculate the 
corresponding MPO2 responses. The percent change in MPO2 compared to the refer-
enced MPO2 value was then calculated and plotted. In this study we tested the MVIF 
response to following inputs: perfusion, vessel radius which is proportional to the frac-
tional plasma volume, concentration of hemoglobin (CtHb), oxygen saturation (SaO2), 
and maximum oxygen consumption rate (M0). The reference values for blood perfusion, 
CtHb, and the SaO2 were selected from DCE-CT and PCT-S measurements [46–49], and 
the maximum oxygen metabolic rate was chosen from the literature [50].

The second objective aims to learn how much the potential measurement error of 
functional DCE-CT could impact on the MVIF pO2 prediction in accuracy and preci-
sion. For this purpose we chose the voxel size equal to 150 μm because the scattering 
plot of GPO2 vs. MPO2 showed good correlation (see Fig. 5). Since blood perfusion and 
the fraction of vessel volume are two key DCE-CT measurements to tissue oxygenation, 
we evaluated the measurement error influence of those two major hemodynamic param-
eters to MVIF model. A Gaussian error function was used with a full-width at half-
maximum (FWHM) equal to 20 % of the blood perfusion to generate ten mock blood 
perfusions for each voxel, and then the corresponding ten MPO2 were calculated. The 
average of ten MPO2 and the standard error were calculated and plotted as a function of 
GPO2. Identical procedures were applied to the fractional vessel volume to investigate 
how the error in the fraction of vessel measurements from DCE-CT could impact the 
MVIF performance.

Nearest‑neighbor algorithm to reduce the outliers at 50‑μM voxel scattering plot

The 50 μm voxel size for the tumor resulted in a significant increase in the variance and 
deviation from a slope of 1.0 as determined from the regression analysis (see Fig. 5a). 
This was not observed in the normal brain microvasculature. Unlike the brain, as the 
voxel size decreased for the tumor, an increasing number of voxels did not include a 
blood vessel, included a very small section of a blood vessel, or had a neighboring voxel 
with a large blood vessel. To compensate for the influence of the 6-neighboring voxels on 
a voxel’s average pO2 value, the average MPO2 from these surrounding voxels was added 
to the MPO2 value from the voxel itself to improve the correlation at 50 μm, or equiva-
lently, to incorporate (or approximate) the boundary conditions. Therefore, the MPO2 
calculation in each voxel was replaced by the average of surrounding six voxel pO2.

Results
Correlation between MPO2 And GPO2 as a function of voxel size

For the normal brain microvasculature, the scatter plots of the average Green’s function 
pO2 (GPO2) and multivariate image fusion model pO2 (MPO2) for voxel dimensions of 
50 and 100 µm were plotted in Fig. 4. At 50-μm voxel, the (slope, r2) values using linear 
regression analysis were (1.0, 0.86), at 100-μm voxel, the (slope, r2) were (1.0, 0.97). For 
the abnormal tumor microvasculature, the scatter plot and linear regression analysis for 
the six different voxel sizes (50–300 μm in 50 μm increment) were plotted in Fig. 5a–f. 
The (slope, r2) using linear regression analysis at voxel sizes from 50 to 300 μm in 50 μm 
increment were (0.99, 0.71), (0.98, 0.80), (1.0, 0.83), (1.0, 0.75), (0.65, 0.62), and (0.3, 
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0.46). The corresponding Pearson correlation coefficients (R) were 0.84, 0.89, 0.86, 0.84, 
0.72 and 0.67 respectively, and all correlation coefficients reached statistical significance 
(p < 0.05).

In Fig.  5a–c, the r2 value for the 50  μm voxel size was lower than that of 100 and 
150 μm, which can be explained by the influence of oxygen contribution from the vessels 
(arterioles or venules) in the neighboring voxels. The nearest neighbor algorithm was 
applied to approximate this effect, where the average pO2 from the surrounding vox-
els was added to the MPO2 value and accounts voxel lacking vasculature and outliers 
observed in the scatter plots. After applying this algorithm, the correlation between 
MPO2 and GPO2 at 50 μm significantly improved (compare of Figs. 5a, 6a). The r2 as 
function of voxel size were displayed in Fig. 6b.

Hypoxic fraction correlation between MPO2 And GPO2 as function of voxel size

Hypoxia fraction (HF) of tumor is another common clinical relevance parameter to eval-
uate tumor oxygen level. In the brain, the pO2 threshold values were set to 16, 18, 20, 
and 22 mmHg; and in the tumor, the thresholds were set to 2.5–15 mmHg in 2.5 mmHg 
increment. Figure 7 demonstrated the normal brain HF correlation and regression anal-
ysis of GPO2 and MPO2 model; the (slope, r2) for voxel size of 50 and 100  μm were 
(0.92, 0.97) and (0.96, 0.98) respectively. Figure 8 showed the tumor HF correlation and 
linear regression of voxel size 50–300 μm in 50 μm increment; the respective (slope, r2) 
of linear regression for voxel size from 50 to 250  μm in 50  μm increment were (0.44, 
0.97), (0.84, 0.98), (0.85, 0.99), (0.79, 0.94) and (0.93, 0.86).

Sensitivity of MVIF To microvascular hemodynamic and structural inputs

The changes in the local pO2, either GPO2 or MPO2, due to systematic offsets in the 
vascular inputs are displayed in Fig.  9. Those vascular inputs were chosen based on 
the reported influence on tumor oxygenation [51, 52], and determined from DCE-CT 
or PCT-S measurements [46–49]. These values were 10 and 20 % change in the blood 
vessel radius (thus, fractional vascular volume), blood perfusion, oxygen metabolic rate, 
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Fig. 4 Correlation between MPO2 and GPO2 in the brain. a Displayed is the scatter plot and linear regression 
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oxygen saturation (SaO2), and hemoglobin concentration (CtHb) relative to the reference 
values (Table 1). The absolute fluctuation in the average MPO2 from the four vascular 
inputs was 9.7, 15.2, 16.0, 12.6, and 15.0 %, respectively. The oxygen consumption rate 
had the largest impact on tissue oxygenation, while the vessel radius (or the fractional 
vascular volume) had the lowest impact on tissue oxygenation.

0 5 10 15 20 25 30

0

5

10

15

20

25

30
Voxel size = 50 µm

y = 0.99*x - 0.87
Rsq = 0.71

0 5 10 15 20 25 30

0

5

10

15

20

25

30
Voxel size = 100 µm

y = 0.98*x + 1
Rsq = 0.80

0 5 10 15 20 25
0

5

10

15

20

25
Voxel size = 150 µm

y = 1*x - 1
Rsq = 0.83

0 5 10 15 20
0

5

10

15

20

25
Voxel size = 200 µm

y = 1*x + 0.2
Rsq = 0.75

0 5 10 15 20
0

2

4
6

8

10
12

14

16
18

20
22

Voxel size = 250 µm

y = 0.65*x + 6.5
Rsq = 0.62

0 5 10 15 20 250

1

2

3

4

5

6

7

8

9

10
Voxel size = 300 µm

y = 0.3*x + 0.27
Rsq = 0.46

a b

c d

e f

Fig. 5 Correlation between MPO2 and GPO2 in the tumor at various voxel sizes. At 50‑µm voxel size (a), two 
outlier populations (highlighted by green and red dash ovals) were observed. The green oval indicates the 
voxels that were overestimated, MPO2 significantly greater than GPO2, and the red oval the voxels that were 
underestimated, MPO2 significantly lower than GPO2. The correlation and linear regression analysis for voxel 
sizes 100, 150, and 200 μm (see b–d) are better compared to the other voxel sizes (see a, e, f)



Page 12 of 19Lee and Stantz  BioMed Eng OnLine  (2016) 15:114 

MVIF response to the measurement error of microvascular inputs

To investigate how the precision of the measurement using in vivo functional imaging 
modality (e.g. DCE-CT) influence the MPO2 accuracy and precision, a Gaussian error 
function was used to generate ten configurations of perturbed maps of blood perfusions 
fractional vessel volume and the MPO2 and GPO2 maps calculated. The full width at 
half maximum (FWHM) of the Gaussian error function was set to 20 % of the mean vas-
cular input value. The variation in MPO2 due to the measurement error in perfusion for 
the 150 μm voxel size is shown in Fig. 10a, where the error bar represents the standard 
deviation from these ten simulations. Similarly, the MPO2 variation due to the measure-
ment error in the fractional vessel volume is shown in Fig. 10b. The Coefficient of varia-
tion (CV) is used to quantify the dispersion of the data relative to the mean. An average 
CV of the MPO2 as a result of the measurement error in blood perfusion and the frac-
tion of vessel volume was 6.4 and 7.0 %.

Fig. 6 Correlation between MPO2 and GPO2 in the tumor after applying the nearest‑neighbor algorithm 
for the 50‑µm voxel data. a The scatter plot and linear regression fit are displayed after applying the nearest 
neighbor algorithm (see Fig. 5a for comparison). b The distribution of r2‑values as a function of voxel size. The 
blue stars are from the r2‑values in Fig. 5 and the red star is after applying the nearest neighbor algorithm to 
the 50‑μm voxel data
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Discussion
Many preclinical and clinical cancer investigations suggest that two types of hypoxia 
occur heterogeneously within a solid tumor: acute hypoxia (cycling hypoxia) and chronic 
hypoxia (diffusion-limited hypoxia) [10, 53]. In several tumor model acute hypoxia pro-
motes tumor angiogenesis and tumor metastasis [10, 54], hence determining the eti-
ology of hypoxia can provide new insights into predicting therapeutic response and 
developing novel therapeutic protocols to enhance efficacy. Here we proposed a novel 
assay to delineate diffusion- and perfusion-based hypoxia based on insufficient vascu-
lature related to (G1 and D, the geometric diffusion length and rate, respectively) and 
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poorly blood perfused tissue related to (G2 and F, the geometry related to convective 
forces and perfusion) under a steady-state conditions (see equation  3 and 4 in Supple-
ment Data). By considering the variation of these parameters as a function of time [e.g., 
Perfusion = Perfusion(t) and m = m(t)], acute and chronic hypoxia could be assessed, 
which could be tested relative to variations in angiogenic (VEGF, FGF, etc.) and inflam-
matory (IL6, histamine, prostaglandins, NO) activity or their corresponding therapies. 
As an initial step, an in vivo high-resolution oxygen profiling assay is being proposed to 
image the spatial variations in tumor hypoxia. This capability will further advance our 
understanding the role hypoxia has in solid tumors as well as in developing new cancer 
treatments, such as in anti-angiogenic therapy.

In this study, a method was proposed that fuses microvascular functional attributes 
from functional imaging modalities through a multivariate oxygen transport model to 
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FWHM), and (b) and for perfusion
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obtain local tumor oxygen levels was investigated. High-resolution DCE-CT (or DCE-
PCT) and PCT-S can longitudinally characterize local vessel structure and hemodynam-
ics as well as tumor metabolic status. Those measurements represent tumor oxygenation 
status thus in principle a biophysical oxygen transportation model, in this case a mul-
tivariate modified Krogh model for a finite volume, can take the real measurements as 
inputs to calculate local oxygen level, and furthermore to profile tumor oxygen status. 
The major challenge to verify the model prediction is to have simultaneous tumor func-
tional measurements and corresponding oxygen level measurement in the finite volume. 
To the best of our knowledge, no such experiment or data has been conducted or pub-
lished. To evaluate this idea and our multivariate model, we used the well characterized 
tumor or brain microvasculature and functions using intravital confocal microscopy, 
and Secomb’s 3D oxygen transportation model to calculate the pO2 distribution as a ref-
erence to evaluate the voxel pO2 from MVIF model. The tumor oxygen consumption 
rates derived from Secomb’s 3-D model agree closely with the oxygen electrode probe 
measurements [40]. A major limitation of this study is the limited photon penetration 
from confocal microscopy, thus the simulation results from this study would only rep-
resent the peripheral microvasculature or microvasculature grown in window chamber 
[55, 56], which could be different from the microvasculature in other region of tumor. 
A second constraint of this investigation was the lack of few key measurements, such as 
the oxygen consumption rate, thus in simulation they were either derived from appro-
priated biophysical equation or assigned as constant.

As depicted in Fig. 1, the voxel size is associated with the vascular complexity or aver-
age inter vessel spacing and can have a significant impact on the accuracy and preci-
sion of the multivariate image-fusion algorithm (MVIF) model. An ideal model would 
provide a scatter plot with a flat r2 and a slope of 1.0 for all voxel sizes. As shown in 
Fig.  5b, this is clearly not the case, where an optimal voxel size was observed for the 
tumor and potentially the brain. Visually, this appears to depend on the voxel size rela-
tive to the inter vessel spacing or vascular density (see Fig. 3). For voxel sizes ranging 
from 100 to 200  μm, the coefficient of determination (r2), reached a maximum and 
remained relatively flat. For relatively small voxel sizes (50 μm), the average oxygen dif-
fusion length and inter vessel spacing can exceed the voxel’s dimensions. As a result, 
two outlier groups were introduced into the scatter plot of MPO2 versus GPO2 for the 
tumor: an overestimated group, of which MPO2 was exceedingly greater than GPO2, 
and the underestimated group. Since these outliers were not observed for the 50  µm 
voxel data in the normal brain tissue, it demonstrates the impact of the abnormal and 
heterogeneous structure and function of the tumor vasculature on these results. To cor-
rect for these outliers, an algorithm was developed to account for oxygen diffusion from 
neighboring voxels (Fig. 6). For relatively larger voxel sizes, the precision and accuracy of 
MPO2 became worse and the slope (thus sensitivity) decreased; thus, the single vessel 
model can no longer adequately represent the complexity or heterogeneity of the vascu-
lature, and as a result, the uncertainty in the average pO2 in a voxel becomes unaccep-
table. Given that the inter vessel spacing ranged from ~12 to 125 μm (Fig. 3), consistent 
with other tumor models (K, L, M), and was acquired within the periphery or rim of 
the tumor (Fig. 2), the results from this study show that the proposed modified Krogh 
image fusion model is accurate and precise for voxel sizes 200 μm and below (r2 < 0.75 
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and slope < 0.98). Therefore, the spatial resolution needed will need to be 200 μm or less. 
Such resolution can be obtained by many small animal imaging systems (photoacoustic, 
micro-CT, micro-MRI).

The hypoxic fraction (HF) indicates the hypoxic status of the entire tumor, a parameter 
used in 2-nitroimidazole based immunohistochemistry. Figure 7 showed the HF corre-
lation of MPO2 and the referenced GPO2 with thresholds at 16, 18, 20, and 22 mmHg, 
a close regression was observed which shows that MVIF can accurately and precisely 
predict HF as a result of the normal microvasculature. In Fig. 8, the tumor HF data with 
threshold from 2.5 to 15.0 mmHg with 2.5 mmHg increment were linearly distributed; 
the linear regression analysis showed that the r2 at all voxel sizes was significant except 
at 300 µm albeit the HF from MVIF was consistently lower than that from Green’s func-
tion, and the regression offset was higher than that of brain microvasculature. Abnormal 
tumor microvessel structure or hemodynamics or both contributed to the HF offset and 
accuracy.

The oxygen metabolic rate, the blood flow perfusion, and hemoglobin concentra-
tion were three dominant factors in tissue oxygen transportation, as displayed in Fig. 9. 
Although the direct hemoglobin measurements and oxygen metabolic rates were not 
available in this simulation investigation, we chose Hill’s equation and Michaelis–Men-
ton equation to estimate the hemoglobin concentration and oxygen metabolic rate in 
MPO2 calculation. For future in vivo experiments monitoring tumor pO2 fluctuations 
as function of space and time, all three parameters should be measured to achieve accu-
rate and precise MPO2 estimation using MVIF. PCT-S is capable to derive hemoglobin 
concentration and oxygen saturation in high spatiotemporal resolution, the oxygen con-
sumption rate can be derived from the fraction of cell volume from DCE-CT or dynamic 
contrast enhanced photoacoustic tomography. The use of photoacoustic imaging alone 
can avoid coregistration with DCE-CT, and the concern of radiation superimposing on 
the tumor progression or compound treatment.

The influence of measurement error of functional imaging to the MPO2 precision and 
accuracy was simulated and summarized in Fig. 10. Overall, 20 % error (FWHM) in per-
fusion or fractional vessel volume did not deteriorate accuracy and precision when at 
least 10 measurements were acquired at each voxel and used to estimate the pO2.

There remains limitations of this technique as well as some potential future direc-
tions. A key limitation of the proposed technique is for larger voxel sizes. If a model can 
be devised to rescue the MPO2 versus GPO2 correlation beyond 200 μm, the ability to 
translate into the clinic is viable.

Multi-vessel models consisting of 2 and 3 parallel cylindrical vessels with identical 
dimensions and hemodynamics and uniformly spaced within 250 and 300  µm voxels 
were simulated. However, the improvement was limited. Introducing symmetry into 
these models and simple bifurcated structures could explain the scatter and nonlinear-
ity in the data; however, identifying or imposing a single concept or methodology would 
challenging, and requires additional constraints, such as including angiogenic informa-
tion or inferring a scaling factor based on fractals [57, 58]. Additional pathological fea-
tures affecting oxygen transport should also be considered, such as oxygen permeability 
across the vessel wall. Even though tumor vasculature is highly fenestrated and the pres-
sure gradient across the vessel wall reduced due to elevated interstitial fluid pressure, 
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models including oxygen permeability suggest this may have a non-negligible effect [59, 
60]. With the ability to measure the permeability-surface area product and interstitial 
fluid pressure through in vivo imaging, it may be possible to test these models [46, 61]. 
Green’s function solution of oxygen transport has a number of advantages in the way it 
handles boundary conditions, the ability to handle a larger set of physiological param-
eters, efficiency of calculation, and validation to in vivo measurements, it lacks the abil-
ity to handle necessary advanced features FDTD and FEM methods support, such as 
dynamic changes in its parameters and oxygen permeability.

Conclusion
The results from this simulation study demonstrate that the fusion of in vivo functional 
imaging based on the MPO2 model to quantify local tumor oxygen concentrations is 
feasible. A significant correlation was measured between the MPO2 model, a single ves-
sel model, and the Green’s function algorithm (GPO2), a detailed microvascular model, 
for voxel sizes ranged from 50 to 200 μm, where MPO2 was calculated based on in vivo 
functional imaging measurements. This upper limit is consistent with the spatial resolu-
tion from existing small animal scanners, and provides a new technique to assay in vivo 
intra-tumor hypoxia. Future work will investigate the potential to monitor the dynamic 
changes in pO2. This additional capability will be able to characterize regions of the 
tumor undergoing chronic and acute forms of hypoxia and the hemodynamics parame-
ters responsible, thus providing critical information on the role hypoxia and metabolism 
play in cancer progression and therapy, in particular anti-angiogenic therapies [10, 62].
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