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ABSTRACT: The LHC discovery potential of heavy top partners decaying into a top quark
and a Z boson is studied in the trilepton channel at /s = 13 TeV in the single production
mode. The clean multilepton final state allows to strongly reduce the background contam-
inations and to reconstruct the 7" mass. We show that a simple cut-and-count analysis
probes the parameter space of a simplified model as efficiently as a dedicated multivariate
analysis. The trilepton signature finally turns out to be as sensitive in the low 7" mass
region as the complementary channel with a fully hadronic top quark, and more sensitive
in the large mass domain. The reinterpretation in terms of the top-Z-quark anomalous
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1 Introduction

In 2012 the Run-I of the LHC at the center of mass energies of 7 and 8 TeV has finally
discovered the long sought-after Higgs boson [1, 2]. In Spring 2015 the LHC will start
again to produce pp collisions in the so-called Run-II, at the increased energy of 13 TeV.
It is expected to accumulate 100 — 150 inverse femtobarn (fb~!) of data in the first two
years and up to 300fb~! in the following ones. The primary scope of the Run-II is to
further understand the newly discovered Higgs boson and to eventually make new discov-
eries. In all generality, it is very common in beyond the standard model theories that new
heavy fermions arise to stabilise the Higgs boson mass and to protect it from dangerous
quadratic divergences. In many cases, these new fermions are heavy partners of the third
generation quarks with vector-like couplings. They are commonly predicted by many new
physics scenarios, including Extra Dimensions, Little Higgs Models, and Composite Higgs
Models [3-10]. The observation of new heavy quarks thus plays an important role in the
investigation of the Higgs sector. The common feature of these heavy quarks is to decay
into a standard model quark and a WW* boson, a Z bosons, or a Higgs boson.! The relative
branching ratios are purely determined by the weak quantum numbers of the multiplet the
new quark belongs to [11]. Here we will focus on the case of a singlet heavy quark: the top
partner or T'. Experimental collaborations are now considering the interplay between the
various decay channels in their searches. Recent limits from ATLAS [12] and CMS [13] lie
within 690-780 GeV, depending on the considered final state.

LOther possibilities like 3-body decays are also possible, but are not covered here.



These searches however do not typically consider intergenerational mixing. Although
vector-like quarks are usually assumed to only mix with the third generation following
hierarchy or naturalness arguments [14-18], the top partners can mix in a sizable way with
lighter quarks while remaining compatible with the current experimental constraints [19,
20]. This possibility has been recently pursued and must be considered with attention. The
top partners interactions with the electroweak and Higgs bosons are generically allowed
through arbitrary Yukawa couplings, implying that the branching ratios into light quarks
can be possibly competitive with the top-quark one. Here we consider only the case of
mixing to the first generation of quarks.

Beside opening up the decay channel into a standard model boson plus a light quark,
the mixing with the first generation also enhances the single production, especially due
to the presence of valence quarks in the initial state. Even without mixing, the single
production cross sections at the upcoming LHC energies become competitive with the pair
production ones. Furthermore, the 7" — tZ final state is only recently being experimentally
investigated, both in the dilepton and in the trilepton channels by ATLAS [12]. Following
the investigation first pursued at the 2013 Les Houches workshop [21], in this paper we
study the LHC discovery potential of the 77 — ¢tZ channel in the trilepton decay mode in
single production at /s = 13 TeV, for a singlet 7" quark mixing with the first generation.
To capture all the essential features of the new heavy top quark while remaining as model
independent as possible, the study here presented is performed in the framework of sim-
plified models. We will employ the dedicated model for the heavy singlet top partner as
presented in ref. [20], comprising only 3 independent couplings.

The paper is structured as follows. In section 2 the simplified model under considera-
tion is described. In addition, we propose a convenient way to explore its parameter space.
In section 3 we describe our analysis, comparing the discovery reach obtained in a simple
cut-and-count approach to that obtained in a dedicated multivariate analysis. Results for
L = 100fb~! are collected in section 3.3. The main result of this paper is that the simple
cut-and-count analysis probes the T” parameter space as efficiently as the more sophisti-
cated multivariate analysis. Also, a comparison to the complementary dilepton channel,
recently presented in [22] for a 7" coupling only to the third generation, is pursued. The
reinterpretation of our results to the case of the top-quark flavour-changing neutral cou-
pling to a light quark and a Z boson, which shares the same final state as the 7" discussed
here, is overviewed in section 3.4. Finally, we conclude in section 4.

2 Simplified model

A simple Lagrangian that parametrises the T” couplings to quarks and electroweak boson
is (showing only the couplings relevant for our analysis) [20]
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Figure 1. Feynman diagrams for the process pp — T’j — tZj via couplings of the T” to (a) first
generation quarks and (b) third generation quarks.

where the subscripts L and R label the chiralities of the fermions. Only 3 parameters are
sufficient to fully describe the interactions that are relevant for our investigation. Besides
My, the vector-like mass of the top partner, there are the 2 couplings appearing in eq. (2.1)

- g%, the coupling strength to SM quarks in units of standard couplings, which is only
relevant in single production. The cross sections for the latter scale with the coupling
squared;

- Ry, the generation mixing coupling, which describes the rate of decays to first gen-
eration quarks with respect to the third generation, so that R; = 0 corresponds to
coupling to top and bottom quarks only, while the limit R;, = oo represents coupling
to first generation of quarks only.

For some possible reinterpretation of this effective Lagrangian in terms of complete
models, see refs. [10, 22].

2.1 Cross section parameterisation

In this paper we study the LHC discovery potential of the 7" in single production mode,
in association with a light jet. Then, the 7" decays into a top and a Z boson. The overall
signature reads: pp — T'j — tZj. This process is given by the set of Feynman diagrams
displayed in figure 1.

The are two sets of diagrams, i.e. where the 7" is produced due to the interaction with
light quarks (A1) or due to the interaction with the b quark (Asz). From the Lagrangian in
eq. (2.1), these 2 sets of diagrams give production cross sections that scale differently with
Rj, the mixing coupling. Further, the decay into a top quark and a Z boson scales with
Ry, too. We parametrise the production cross section and branching ratio BR(7” — tZ) as

follows:
R 1
Opprr (M, Re) = As (M) -+ As(Mr) 3 (2.2)
1
BR Mr:, Rp) = B(Myp 2.3
17—tz (Mr, Rp) ( T)1+RL7 (2.3)



My (GeV) | Ai(Mq) (pb) | As(Mq) (pb) | B(Mr) (%)
800 1.2614 0.07242 22.4
1000 0.7752 0.03518 23.5
1200 0.5001 0.01826 24.0
1400 0.3331 0.00994 24.2
1600 0.2265 0.00561 24.4

Table 1. Numerical coefficients for 1°* and 3" production cross sections at the LHC at /s =
13 TeV and T’ branching ratios to tZ.

where A;(M7/) (i = 1,3) and B(M7) are numerical coefficients. In details, A; represents
the production cross section for the heavy quark due to interactions to partons belonging
to the i*" generation, while B is the T” branching ratio for its decay into a top quark and a
Z boson.? They have been evaluated at the LHC at /s = 13 TeV for the CTEQ6L1 PDF [23]
and collected in table 1, for the first and third generations only.

These formulas will allow us to draw the LHC discovery power curves as a function of
Ry, in section 3.3 in a simple way. The product of eq. (2.2) and eq. (2.3) gives the cross
section for pp — T'j — tZj as a function of Ry, in the narrow-width approximation. How-
ever, this also depends on the choice of the PDF, on the top mass, the EW couplings, etc.
By considering the ratio of the cross sections evaluated at different values of Ry (and all
other input fixed) one can factorise the impact of the former. Such ratio can then be used
to rescale a given cross section, evaluated at the user’s choice of the input parameters, as a
function of Ry. In our case, we computed the cross section o (M7, 0.5) of the various bench-
mark points for Ry, = 0.5, hence their cross section for an arbitrary value of Ry, is given by

Opp—s1! (Mrr, Rr) BRy/ 1 7(M7r, Rr)

M 7 R = M ’ 05 '
U( T’ L) G( [A ) Upp—)T’(MT’, 05) BRT/_MZ(MTU 05)

(2.4)

Furthermore, this rescaling can be applied anywhere in the cutflow. It is sufficient to re-
place o(M7y, 0.5) with the cross section after any cut, to obtain the corresponding cross
section at a different value of R after the same cut.

3 Analysis strategy

All samples employed in this study have been generated in MadGraph5_aMC@NLO v2.1.2 [24]
with the CTEQ6L1 PDF [23]. Events have subsequently been hadronised/parton showered
in PYTHIA 6 [25] with tune Z2 [26]. Detector simulation is performed with a customised
version of Delphes 3 [27] to emulate the CMS detector. Jets have been reconstructed with
FastJet [28] employing the anti-k; algorithm [29] with parameter R = 0.5.

The signal (S) is generated at leading order from the model implemented in
FeynRules [30, 31]. We generate 5 benchmark points varying the 7" mass in steps of

2Eq. (2.3) holds when all the T” decay products are much lighter than its mass, which is the case under
consideration.



200 GeV in the range
My € [800;1600] GeV (3.1)

with ¢* = 0.1 and Ry, = 0.5. We do not apply here any k-factor to the signal. Contrary to
the backgrounds, tau leptons have not been included in the generation of the signal samples.

Backgrounds (B) that can give 3 leptons in the final state which are considered in this
analysis are: tt and Z/W + jets with non-prompt leptons, and ttW, ttZ, tZj and VZ
(V. =W, Z/v) with only genuinely prompt leptons. We generated leading order samples
with up to 2 merged jets normalised to the (N)NLO cross section where available, taken
from [24, 32]. For both signal and background, a suitable number of unweighted event is
generated. We checked that the statistical uncertainties at any point of our analyses are
below 1%, and for this reason they will not be quoted.

We do not simulate multijet backgrounds, which can be reliably estimated only from
data. Further, we do not consider jets faking electrons, since this is a feature which is not
supported in Delphes. It is however seen to be negligible in multileptons analyses (see for
instance, ref. [33]).

The analysis is carried out in MadAnalysis 5 [34, 35]. Leptons (¢ = e, p) and jets are
identified if passing the following criteria:

pr(€) > 20 GeV, In(e/w)| < 2.5/2.4, (3.2)
pr(j) > 40 GeV, In(j) <5,
AR((, ) > 0.4 (3.4)

External routines for b-tagging and for lepton isolation have been implemented. Re-
garding the former, here we adopted the medium working point [36], which has an average
b-tagging rate of 70% and a light mistag rate of 1%. To apply the b-tagging, we consid-
ered jets within the tracker only, i.e. with |n(j)] < 2.4. This means that the b-tagging
probability for jets with larger pseudorapidities is vanishing. For the latter, the combined
tracker-calorimetric isolation is used to identify isolated leptons. The relative isolation I,.¢;
is defined as the sum of the pr and calorimetric deposits of all tracks within a cone of
radius AR = 0.3, divided by the pr of the lepton. The latter is isolated if I,..; < 0.10. This
choice has been taken as a compromise to strongly reduce backgrounds with non-prompt
leptons without suppressing the signal, where the two leptons coming from the Z boson
get closer and closer as the top partner mass increases.

After the object reconstruction and selection, we apply some general preselections as
follows: we require at least 1 jet and no more than 3, of which exactly one is b-tagged, and
exactly 3 leptons (electrons or muons). The requirement of less than 3 jets removes the 7"
pair production isolating the single production channel.

Efficiencies and event yields are evaluated for £ = 100 fb~! and are collected in table 2.
The requirement of 3 isolated leptons strongly reduces the tf + X backgrounds, especially
the tt+jets one. The diboson component is instead suppressed by the b-tagging. Regarding
the signal, the requirement of 3 isolated leptons is less efficient as the 7”7 mass increases.
This is because the 2 leptons stemming from the Z boson gets closer to each other as the
T’ gets heavier, due to the larger boost of the Z boson in the 7" — t Z decay.



Background no cuts 1<n; <3 ng =3 ny =1
tH(+X) 7.510° (100%) | 6.110° (81.2%) | 514.9 (0.09%) | 243.8 (47.3%)
tZj 3521 (100%) | 2953 (83.9%) | 290.6 (9.8%) | 170.0 (58.5%)
wWZ 1.410° (100%) | 5.710% (41.9%) | 3883 (6.9%) | 164.3 (4.2%)
Total 7.610% (100%) | 6.110° (80.5%) | 4689 (0.08%) | 578.0 (12.3%)
My (GeV) no cuts 1<n; <3 ng=3 npy =1
800 119.7 (100%) | 105.0 (87.8%) | 39.3 (37.4%) | 25.5 (64.8%)
1000 77.1 (100%) 67.8 (87.9%) | 26.0 (38.4%) | 16.4 (63.2%)
1200 52.0 (100%) 45.3 (87.2%) | 16.1 (35.6%) | 10.1 (62.4%)
1400 35.3 (100%) 30.5 (86.6%) 8.0 (26.1%) | 4.8 (60.1%)
1600 24.5 (100%) 21.1 (86.0%) 3.8 (18.0%) | 2.2 (58.3%)

Table 2. Events surviving the preselections and relative efficiencies (with respect to the previous
item). Signal computed for ¢* = 0.1 and R, = 0.5.

Finally, the pair of same-flavour and opposite-sign leptons closest to the Z boson mass

is chosen, and a cut around their invariant mass distribution is performed,

|IM(T07) — Myz| < 15GeV . (3.5)

The lepton from the top decay is therefore identified as the remaining one in our trilepton
channel and labelled £y .

We describe in the following the 2 analyses we performed, that differentiate from this
point on. The first one is a traditional cut-and-count strategy, where subsequent cuts are
applied to the most important kinematic variables to maximise the signal-over-background
ratio. The second one is a multivariate analysis (MVA), where several discriminating
observables are used at once to distinguish the signal from the background, cutting at the
end only on its output.

3.1 Cut-and-count

The first strategy to study the LHC discovery potential illustrated here is the cut-and-count
one (C&C). As for the previous reconstruction of the Z boson from its decay products,
one could also reconstruct both the top quark and the W boson stemming from its decay.
The presence of only one source of missing energy (one neutrino) allows to reconstruct the
four momentum of the latter by imposing suitable kinematical constraints. Hence one can
reconstruct the W boson and the top quark as resonances in the invariant mass as well as
in the transverse mass distributions of the decay products. We chose to use the latter, in
the following formulation [37]:

mh = (\/M2(m's) + PZ(vis) + ’PT‘)2 — (ﬁT(vis) + ﬁT>2 , (3.6)



Background ny =1 cut (3.5) cut (3.7) cut (3.8)
H(+X) | 243.8 (47.3%) | 154.8 (63.5%) | 135.1 (87.3%) | 83.0 (61.5%)
t7; 170.0 (58.5%) | 155.6 (67.2%) | 148.7 (95.6%) | 139.8 (63.7%)
Wz 164.3 (4.2%) | 146.9 (89.4%) | 138.2 (94.1%) | 71.5 (51.7%)
Total | 578.0 (12.3%) | 457.2 (79.1%) | 422.0 (92.3%) | 204.3 (69.8%)
M7 (GeV) ny =1 cut (3.5) cut (3.7) cut (3.8)
800 95.5 (64.8%) | 23.8 (93.6%) | 22.2 (93.2%) | 20.8 (93.6%)
1000 16.4 (63.2%) | 15.4 (93.8%) | 14.3 (92.4%) | 13.4 (94.0%)
1200 10.1 (62.4%) | 9.5 (94.2%) | 8.7 (92.3%) | 8.1 (92.3%)
1400 48 (60.1%) | 4.5 (93.5%) | 4.1 (92.1%) | 3.8 (91.3%)
1600 2.2 (58.3%) | 2.1(93.3%) | 1.9 (92.2%) | 1.7 (90.0%)

Table 3. Object selection surviving events (and efficiencies with respect to the previous item).
Signal computed for ¢* = 0.1 and Ry = 0.5.

because of the sharper peaks as compared to those in the invariant mass distributions.
Instead to draw suitable window mass cuts, we decided to only apply loose selections,
which maximise their efficiencies while retaining most of the signal. The cuts we applied
are as follows:

10 < MT(éw)/GeV < 150,
0< MT(KW b)/GeV < 220.

(3.7)

In particular, the lower cut in eq. (3.7) is inspired by experimental analyses to suppress
the multijet background, which we did not simulate.

Surviving events and relative efficiencies are collected in table 3. The numerical values
of the cuts appearing in eqs. (3.5)—(3.8) have been chosen to maximise the signal-over-
background ratio while keeping at least 90% of the signal.

Contrary to ref. [13], we do not require a forward jet to not suppress any further the
signal, despite it being a distinctive feature of our signature. This is also not necessary: the
signal is already clearly visible above the background in the distribution of the transverse
mass of the 7" decay products (the 3 charged leptons and the b-jet), as can been seen in
figure 2 for the various signal benchmark points.

We select a window around the peak of each benchmark point to get the best signal-
over-background significance and we collect the final numbers in table 5.

3.2 Multivariate analysis

In section 3.1 we showed that suitable cuts on the most straightforward distributions were
sufficient to isolate the signal from the background. We made use of the signal topology,
which has a Z boson decaying leptonically, and a top-quark decaying into a b-jet and into
a leptonic W-boson. The presence of the intermediate 7" was then seen as a peak in the
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Figure 2. Transverse mass distribution for the 7" decay products: the 3 charged leptons and the
b-jet.

transverse mass of all its visible decay products. One could wonder if this was the best
strategy, i.e. cutting on those variables with the values we chose. There are in fact many
additional variables that one could analyse to distinguish the signal from the background.
However, cutting on any of these variables will unavoidably reduce also the signal. To
overcome this, several variables can be combined using a multivariate analysis (MVA) to
obtain the best signal/background discrimination [38]. We identified some discriminating
variables in table 4, ranked according to their discriminating power when a boosted decision
tree (BDT) is employed. Here, Ay is the difference of the azimuthal angles between 2
objects, An is the difference of their pseudorapidities, and AR = \/(Ap)? + (An)2.

To define some of the angular variables, the whole four-momentum of the neutrino
stemming from the semileptonic top-quark decay has been reconstructed as described
above. Furthermore, we did not include the top mass (neither as invariant mass nor
as transverse mass of its decay products) in the MVA because it did not show a strong
discriminating power. This is understandable because signal and the largest sources of
background both have a top quark in their intermediate states. Finally, the presence of
a forward jet is a prominent feature of the signal. To account for this, we use the largest
pseudorapidity of all jets n™#*(j) in the event.

It is interesting to notice that there are few variables which behaviour is directly
proportional to the T’ mass, like the py of the leading jet or the pr of the 2 leptons



Variable Importance Variable Importance
M (b30) 2.601071 AR(b, tw) 9.771072
pr(2)/Mr(b30) | 9.411072 Ap(t, Z) 8.171072
7 (5) 6.02102 Al z) 5.89102
Ap(Z, p,) 5.371072 | pr(j1)/Mr(b3¢) | 5.081072
An(l) ) 5.051072 An(b, fw) 5.031072
n(t) 4.991072 Ap(Z, tw) 4.631072

n(Z) 4.611072

Table 4. Ranking training variables for My, = 1.0 TeV and full background. Here ¢¢|; identifies
the 2 leptons that reconstruct the Z boson.

reconstructing the Z boson. These correlations are efficiently removed if one consider
ratios of the pp’s over Mp(b3/¢), which in fact decorrelate them. We checked that the
highest sensitivity is reached when the ratio of said variables to the T” reconstructed mass
(Mr(b3¢0)) is considered instead of the actual observables. All other variables are almost
uncorrelated, with a degree of correlation of +30% at most.

The variables in table 4 are used to train the BDT to recognise the signal against the
background. They are selected after the Z mass reconstruction, i.e. after applying eq. (3.5).
A pictorial representation of these variables is in the appendix, for the M7 = 1.0 TeV with
Ry, = 0.5 benchmark point, and for the sum of all backgrounds. The BDT trained on
each benchmark point is then applied on the full signal and background samples. A cut is
performed on the BDT output to get the best signal-over-background significance. Values
of the cuts and best significances are collected in table 5.

We conclude this section with some further comments. Firstly, we checked that the
MVA does not suffer of overtraining as follows. Each sample (signal and background) is
divided into 2 independent subsamples, one that is used for training and the other one for
comparison. The absence of overtraining issues is shown in figure 9: the output for the 2
subsamples coincides.

Secondly, we trained the MVA on the benchmark points (for ¢* = 0.1 and Ry = 0.5).
In section 3.3 we will make use of eq. (2.4) to extend the MVA analysis onto the whole
g*—Ry, plane, without the need to retrain the BDT any further. However, by controlling the
share of the T” coupling between first and third generation quarks, R;, changes the ratio of
incoming sea/valence quarks, which ultimately alters the process kinematics. We directly
checked that the loss in performance, as compared to the results obtained with the suitable
training, is at most of O(10%) when Ry, goes to zero, thereby validating our extrapolating
procedure.? The very same check is carried out for the cut-and-count analysis, with a
similar performance behaviour.

Finally, the reader could wonder if the ratio of variables as described above might let
the training procedure be less Mp/-dependent. It is in fact the case, but still it is not

#Notice that the typical precision that one can aim at with a fast simulation is O(30%).



Analysis Mp =0.8TeV | Mp:=1.0TeV | M7+=1.2TeV | Mrr=1.4TeV | My =1.6 TeV
Mr(b30) cut (GeV) [800 — 860 [840 — 1200] [1000 — 1340] [1120 — 1640] [1200 — 1800]
S (ev.) 18.00 12.28 7.16 3.40 1.57
C&C B (ev.) 8.90 4.88 1.74 0.90 0.63
o 3.47 2.96 2.40 1.64 1.06
cut 0.07 0.08 0.11 0.12 0.12
MVA
o 3.64 3.10 2.50 1.62 1.15

Table 5. Signal and background events and maximum significance for the benchmark points for £ =
100fb~1, after selecting a mass window (for the C&C), or after cutting on the BDT output (MVA).

possible to use a universal MVA training and apply it to all the various 7" samples. This
is because, as clear from table 4, still M7 (b3/) is by far the best discriminating variable. If
we remove it from the training, this becomes less My -dependent for large 7" masses, but
the overall performance of the MVA is even lower than previously. This let us conclude
that it is not possible to create an efficient Mp/-independent training scheme.

3.3 Results

We collect here the final results for the discovery power at the LHC. In the case of the cut-
and-count analysis of section 3.1, we need to select a window around the signal peaks in the
M (b3¢) distribution. For the MVA of section 3.2, we need to perform a cut on the BDT
output that maximises the significance. The maximum significance for the benchmark
points, evaluated as ¢ = S/v/S + B after selecting a window around the mass peak or
cutting on the BDT output, are collected in table 5.

One of the most important result in this paper is that the dedicated BDT analysis
does not significantly improve on the cut-and-count strategy, as clear from table 5. The
latter analysis is certainly sufficient and easier. The cuts as displayed in eqs. (3.7)—(3.8)
are already best optimised, as is the signal peak selection. No further variable/cut need to
be considered/applied.

The significances in table 5 are for the benchmark points, evaluated for ¢* = 0.1 and
Ry, = 0.5. We can now extrapolate them to the full g*~R parameter space using eq. (2.4).
The extrapolation is done by rescaling the cross section and every time reoptimising the cuts
to get the highest significance. The 3 and 5 sigma discovery lines are drawn as a function of
g* and the T" mass for some fixed values of Ry, in figure 3(left), and as a function of g* and
Ry, for the benchmark 7" masses in figure 3(right). Figure 3 shows that with 100fb~! of
data, T' masses up to 2 TeV can be observed, depending on the values of the couplings. The
cross section for the trilepton decay channel of the 7" (and hence the LHC reach) increases
considerably when Ry is non-vanishing, getting to a maximum for Ry ~ 1, corresponding
to 50%—-50% mixing. This effect is simply due to the increased admixture of valence quarks
in production, mitigated by a reduced T’-to-tZ branching ratio, as R}, increases.

The reach in ¢g* is here roughly twice than for the no mixing case (Ry = 0). Then,
for larger values of Ry, ¢g* needs to slightly increase to compensate for the decrease in
cross section due to the larger mixing with the first generation quarks, that suppress the
T" — tZ branching ratio.

,10,
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Figure 3. Significance o = 3 (solid lines) and o = 5 (dashed lines) for £ = 100fb~1.

The discovery power of the trilepton channel can be compared to the one of the dilepton
channel as studied in [22]. The Ry = 0 line in figure 3 is the one considered therein.
However, to be able to draw a meaningful comparison, we shall set ourselves in the same
conditions,? which correspond to the end of the LHC run-II. The plot for this setup is
in figure 4. The curve to be compared is the R; = 0 one on the left-hand side plot. At
low T" masses, the dileptonic channel of ref. [22] performs slightly better, meaning that a
marginally lower value of g* can be probed. At larger 7" masses though the trileptonic
channel is more sensitive, extending the reach by 200 — 300 GeV. In these conditions, our
analysis is sensitive to g* couplings down to 0.05 and 7" masses up to 2.1 TeV at most.

3.4 Top FCNC reinterpretation

We conclude this paper by presenting a reinterpretation of our investigation in terms of
the top-quark FCNC coupling to a light quark and a Z boson. In this scenario, the top
quark interacts with a Z boson and a up- or charm-quark via the x;z, FCNC coupling [39]

_ g KtZq + ny L P RP A
L= Joe A (f%,PL+ [4,Pr) ¢ Zy , (3.9)

where A is the scale of new physics. The Lagrangian in eq. (3.9) gives a similar final state

q=u,c

as the one subject of this paper, pp — tZ, with a top-quark and a Z boson produced back-
to-back. The only difference with the 7’-induced topology is the absence of the forward
jet at leading order. The analyses of the T’-mediated signature subject of this paper could
therefore be as well sensitive to the one induced by the top effective coupling. We tested it
by producing at leading order a pp — tZ sample when turning on one FCNC coupling at
the time. We label them k;z, and k;z., respectively. The samples have been produced as
described in section 3. Finally, they have been analysed at detector level by running them
on the cut-and-count analysis of section 3.1. Efficiencies and event yields for 100 fb~! are
collected in table 6.

“Ref. [22] used an integrated luminosity of 300 fb~" and rescaled the signal by a mean k-factor of 1.14.
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Figure 4. Significance o = 3 (solid lines) and o = 5 (dashed lines) for £ = 300fb~! and k; = 1.14
as in ref. [22].

Cut KtZu KtZc
no cuts 2263(100%) | 5360(100%)
1 <n; <3| 1765(78.0%) | 4452(83.0%)
ng = 191.8(10.9%) | 623.3(14.0%)
ny =1 113.8(59.3%) | 381.0(61.1%)
cut (3.5) | 103.2(90.7%) | 342.7(90.0%)
cut (3.7) 96.2(93.3%) | 323.6(94.4%)
cut (3.8) 91.1(94.7) | 304.7(94.1%)
Mp(b30) > 400 GeV > 200 GeV

S 68.0 304.5

B 102.9 241.7

o 5.2 13.0

Table 6. Surviving events (and efficiencies with respect to the previous item) for the cut-and-count
analysis of the FCNC top coupling r¢z,/A (at current limit) and x;z./A (for BR(t — Zc¢) = 1%),
and signal /background events that maximise the significance.

The My (b3¢) distribution after the application of the cuts of egs. (3.5)—(3.8) is shown
in figure 5. The significance for the k;z, sample is maximised by selecting My (b3¢) >
400 GeV, reaching the value of 5.2 sigma for the present best limit of the coupling of
Kizu/N = 02TeV~! (or BR(t — Zu) = 0.05%) [40], corresponding to a cutoff scale
A = 5TeV. Regarding the k7. sample, we chose a coupling yielding BR(t — Z¢) = 1%
to compare the results. For this value, the highest significance of 13.00 is obtained by
selecting My (b3¢) > 200 GeV. Notice that the only available limit to this coupling is such
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Figure 5. My (b3/¢) distribution with the present best limit on the top-Z-up FCNC coupling and
for BR(t = Zc¢) = 1% for the top-Z-c one.

that BR(t — Zc¢) < 11.4% [41]. For comparison, we applied the MVA trained on each 7"
signal to the FCNC case. Also in this case however it did not improve the sensitivity.

Finally, the cut-and-count discovery power curves at the LHC as a function of the top
FCNC couplings for 100 fb~! are shown in figure 6. Contours for a significance o = 2,3,5
are presented. This analysis can gather evidences for the existence of FCNC processes
in the top sector for kizy/A(kize/A) couplings leading to BRs above 0.025%(0.16%) for
100 fb~!. In case of non observation, 95% C.L. limits can be put for BRs down to 0.016%
and 0.1% for the two couplings, respectively.

4 Conclusions

In this work we described the LHC run-II discovery potential of the trilepton channel for
a singlet top partner in the single production mode and its subsequent decay into a top
quark and a Z boson. A simple cut-and-count analysis has been designed, by selecting
and cutting the most straightforward distributions. A suitable multivariate analysis did
not improve significantly on the cut-and-count results. The comparison was performed on
several signal benchmark points. Further, we proposed a simple way to extend our results
to the whole parameter space of a simplified model.

Overall, a search at the LHC in the trilepton channel can be sensitive to top partners
decaying into tZ for masses up to 2.0(2.1) TeV and couplings down to 0.08(0.05) with
100(300) fb~! of data. We compared to the reach in the dilepton channel of ref. [22],
concluding that the trilepton mode can extend the former by 200 — 300 GeV in 7" masses
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Figure 6. Significance as a function of the top FCNC couplings for the cut-and-count analysis,
and o = 2(white), 0 = 3(red), and o = 5(black) contour lines.

for suitable values of the couplings. Finally, we reinterpreted our analyses in the context of
a top FCNC coupling to a Z boson and a light quark, which provides a similar final state.
We showed that this channel can discover at 50 values of the couplings at the present best
exclusion limit (for 100 fb~1), probe at 30 FCNC branching ratios down to 0.025%(0.16%)
for kizu/A(Kize/A), or eventually extend the exclusion limits down to 0.016% and 0.1%
for the two FCNC couplings, respectively.
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A BDT variables

We present here the training variables for the My = 1.0 TeV with Ry, = 0.5 benchmark
point. The overtraining test is shown in figure 9. As explained in the text, it shows that

there is no overtraining issue.
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