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1 Introduction

We present a systematic study of extremal, stationary, multi-center black-hole-type solu-

tions in N = 2 D = 4 ungauged Einstein-Maxwell supergravity theories minimally coupled

to an arbitrary number nv of vector multiplets, i.e. quadratic prepotentials.

The action of these 4D N = 2 supergravities can be written, in the framework of special

geometry, in terms of a holomorphic section Ω of the scalar manifold. The corresponding

field equations and Bianchi identities remain invariant under the group of symplectic trans-

formations Sp(2nv + 2,R). This group acts linearly on the section Ω, which transforms as

a symplectic vector when it is parametrized as Ω = (XI , FI), for I = 0, . . . , nv.

The embedding of the duality group of the moduli space into the symplectic group

Sp(2nv + 2,R) establishes, in general, a relation between the upper and lower components

of Ω, XI and FI = FI(X
J) respectively. In some cases, FI is the derivative of a single

function, the prepotential F = F (XJ). The choice of a particular embedding determines

the full Lagrangian of the theory and whether a prepotential exists [1, 2].

In this work, we restrict ourselves to general quadratic prepotentials. These theories1

include the simplest examples of special Kähler homogeneous manifolds, the axion-dilaton

1See [3] for a classification of N = 2 SUGRA special Kähler manifolds.
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model or the

CPn ≡ SU(1, n)

U(1)× SU(n)
(1.1)

case.

These models correspond to Einstein-Maxwell N = 2 supergravities minimally coupled

to nv vector multiplets. They lead to phenomenologically interesting N = 1 minimally

coupled supergravities [4]. Theories derived from particular examples of these quadratic

prepotentials have been studied in detail.2

Black hole solutions in N = 2 D = 4 supergravity have been extensively studied

for a long term by now. See, for example, refs. [8–20]. Multicenter black holes have

been treated in refs. [21–32]. In this work we show how it is possible a detailed study

of stationary multicenter black-hole type solutions with any number of scalar fields and

centers, of the properties of the bosonic field solutions and their global and local properties

making a systematic and intensive use of the algebraic properties of the matrix of second

derivatives of the prepotential, the matrix S and of the matrix S†, its adjoint with respect

the symplectic product. This matrix is an isometry of the symplectic bilinear form, it

connects the real and imaginary parts of symplectic sections of the theory. In this case it

is a real scalar-independent Sp(2nv + 2,R) matrix. Among other results, we obtain bounds

for the physical parameter of the multicenter solution such as horizon areas and ADM mass

valid for any quadratic prepotentials.

The compatibility of the matrix S with respect to the symplectic product makes pos-

sible the definition of an associated inner product for which these matrices are unitary. We

discuss the possibility and convenience of setting up a basis of the (2nv + 2)-dimensional

symplectic vector space built from charge eigenvectors of the matrix S. This set of vectors

are of the form (P±qa), or, alternatively, (qa,Sqa), with P± projectors over the eigenspaces

of S and qa the center vector charges.

The anti-involution matrix S can be understood as a Freudenthal duality x̃ = Sx [33,

34]. We will show here that this duality can be generalized to an Abelian group of trans-

formations

x→ λ exp(θS)x = ax+ bx̃.

Under this set of transformations applied to the charge vectors and I∞ = I(r → ∞), the

horizon area, ADM mass and intercenter distances scale up, respectively, as

Sh → λ2Sh, MADM → λMADM, rab → λrab,

leaving invariant the values of the scalars at the fixed points and at infinity. In the special

case λ = 1, “S-rotations”, the transformations leave invariant the solution. The standard

Freudenthal duality can be written as the particular rotation

x̃ = exp
(π

2
S
)
x .

2The case nv = 1 corresponds to the SU(1, 1)/U(1) axion-dilaton black hole [5–7] with prepotential

F = −iX0X1.
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We argue at the final section of this work that these generalized Freudenthal transforma-

tions leave invariant not only the entropy and other macroscopical quantities of quadratic

prepotential theories but also ∆4, the quartic invariant [33] appearing in the description of

more general theories, 4d SUGRAs that arise from String and M-theory and therefore the

lowest order entropy of these theories.

In section 2, we present some well-known basic aspects of N = 2 D = 4 supergravity

theories and their formulation in terms of special and symplectic geometry. In section 3,

we first introduce the matrices SN,F , stressing some of their known properties and deriving

new ones. We also construct projective operators (as well as their corresponding symplectic

adjoints) based on these matrices. After the consideration of the attractor mechanism in

terms of these projectors, we enter in a full explicit description of multicenter black hole

solutions, their horizons and their asymptotic properties. This is done in sections 4 and 5.

We finally present section 6, which contains a summary and discussion of our work, as well

as an outlook on further proposals.

2 N = 2 D = 4 SUGRA and special Kähler geometry

The field content of the N = 2 supergravity theory coupled to nv vector multiplets con-

sists of {
eµ
a , Aµ

I , zα , ψµ
r , λr

α
}
, (2.1)

with α = 1, . . . , nv, and I = 0, . . . , nv. The theory also contains some hypermultiplets,

which can be safely taken as constant or neglected (further details can be found in [22],

whose notation and concepts we generally adopt). The bosonic N = 2 action can be

written as

S =

∫
M(4d)

R ? 1 + Gαβ̄dzα ∧ ?dz̄β̄ + F I ∧GI . (2.2)

The fields F I , GI are not independent. Whilst F I is given by F I = dAI , GI is a set of

combinations of the F I and their Hodge duals,

GI = aIJF
I + bIJ ? F

I , (2.3)

with scalar-dependent coefficients aIJ and bIJ .

Abelian charges with respect the U(1)nv+1 local symmetry of the theory are defined by

means of the integrals of the gauge field strengths. The total charges of the geometry are

q ≡ (pI , qI) ≡
1

2π2

∫
S∞

(F I , GI) . (2.4)

Similar charges can be defined for specific finite regions.

The theory is defined, in the special geometry formalism, by the introduction of some

projective scalar coordinates XI , as for example, ‘special’ projective coordinates zα ≡
Xα/X0. By introducing a covariantly holomorphic section of a symplectic bundle, V , we are
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able to arrange 2nv quantities that transform as a vector under symplectic transformations

at any point of the manifold. V has the following structure V = V (z, z̄) ≡ (V I , VI) and

satisfies the following identities:〈
V
∣∣ V̄ 〉 ≡ V tωV̄ ≡ V̄ IVI − V I V̄I = −i , (2.5)

where ω is the symplectic form.3

The scalar kinetic term in the action can be written in terms of V as Ls,kin ∼
i
〈
DµV̄

∣∣ DµV
〉

and the scalar metric is given by

Gαβ̄ = ∂α∂β̄K , (2.6)

where the Kähler potential K is defined by the relations V = exp(K/2)Ω, being Ω ≡
(XI , FI) a holomorphic section and

e−K = i
(
X̄IFI −XI F̄I

)
= i
〈
Ω
∣∣ Ω̄
〉
. (2.7)

In N = 2 theories, the central charge Z can be expressed as a linear function on the charge

space:

Z(zα, q) ≡ 〈V | q〉 = eK/2
(
pIFI − qIXI

)
. (2.8)

The embedding of the isometry group of the scalar manifold metric Gαβ̄, into the

symplectic group fixes, through the Kähler potential K, a functional relation between the

lower and upper parts of V and Ω [2, 5],

FI = FI(X
I) , (2.9)

VI = VI(V
I) . (2.10)

There always exists a symplectic frame under which the theory can be described in

terms of a single holomorphic function, the prepotential F (X). It is a second degree

homogeneous function on the projective scalar coordinates XI , such that FI(X) = ∂IF (X).

For simplicity, we will assume the existence of such prepotential along this study although

the results will not depend on such existence. Using the notation FIJ = ∂I∂JF , the lower

and upper components of Ω are related by

FI = FIJX
J . (2.11)

The lower and upper components of V are related by a field dependent matrix NIJ ,

which is determined by the special geometry relations [9]

VI = NIJV
J , (2.12)

Dı̄V̄I = NIJDı̄V̄
J . (2.13)

3We choose a basis such that ω =

(
0 −1nv

1nv 0

)
.
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The matrix N , which also fixes the vector couplings (aIJ , bIJ) in the action, can be

related to FIJ [35] by

NIJ = F̄IJ + TITJ , (2.14)

where the quantities TI are proportional to the projector of the graviphoton, whose flux

defines the N = 2 central charge [35]. For our purposes, it is convenient to write the

relation between NIJ and FIJ as

NIJ ≡ FIJ +N⊥IJ

= FIJ − 2iIm (FIJ) + 2i
Im (FIK)LKIm (FJQ)LQ

LP Im (FPQ)LQ
, (2.15)

where we have decomposed the matrix NIJ into “longitudinal” (the FIJ themselves) and

“transversal” parts (N⊥IJ). The perpendicular term (defined by the expression above)

annihilates LI , or any multiple of it,

N⊥IJ(αLJ) = 0 . (2.16)

From this, (2.12) can be written as

VI = NIJL
J =

(
FIJ +N⊥IJ

)
LJ

= FIJL
J . (2.17)

Thus, the upper and lower components of V and Ω are connected by the same matrix FIJ .

The existence of functional dependencies among the upper and lower components of

the vectors V or Ω imply further relations between their respective real and imaginary

parts. They are related by symplectic matrices S(N),S(F ) ∈ Sp(2nv + 2,R) which are

respectively associated to the quantities NIJ , FIJ as follows:

Re (Ω) = S(F )Im (Ω) , (2.18)

Re (V ) = S(N)Im (V ) = S(F )Im (V ) . (2.19)

The last expression is obtained by means of the relation (2.17). These same relations (2.18)–

(2.19) are valid for any complex multiple of Ω or V . It is straightforward to show, for

example, that for any λ ∈ C, we have

Re (λV ) = S(N)Im (λV ) = S(F )Im (λV ) . (2.20)

The matrix S(F ) is, by direct computation (eq. (75) in [35]), of the form

S(F ) =

(
1 0

Re (FIJ) −Im (FIJ)

)(
0 1

Im (FIJ) Re (FIJ)−1

)−1

. (2.21)

Similarly, the same result applies for S(N) with FIJ → NIJ .4

4The matrix SN is related to M, the matrix that appears in the black hole effective potential [35]

VBH = − 1
2
qtMq, by ωS(N) =M.
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In N = 2 theories, S(N) always exhibits a moduli dependence [4]. However, this is

not the case for S(F ). We will focus in this work on the particular case of theories with

quadratic prepotentials,

F (X) =
1

2
FIJX

IXJ , (2.22)

where FIJ is a complex, constant, symmetric matrix. Then, the corresponding matrix S(F )

is a field-independent, constant matrix. We can assume that Re (FIJ) = 0 and Im (FIJ)

is negative definite. In what follows, we will use the notation S ≡ S(F ). The condition

e−K > 0 and the expression (2.7) implies a restriction on the prepotential. We will write

this restriction in a convenient form in section 3 in terms of the positivity of a quadratic

form.

2.1 General supersymmetric stationary solutions

The most general stationary (time independent) 4-dimensional metric compatible with

supersymmetry can be written in the IWP form [36–38],

ds2 = e2U (dt+ ω)2 − e−2Udx2. (2.23)

Supersymmetric N = 2 supergravity solutions can be constructed systematically fol-

lowing well established methods [20, 22]. In this section we will closely follow the notation

of ref. [22]. The 1-form ω and the function e−2U are related in these theories to the Kähler

potential and connection, K, Q [38]. We demand asymptotic flatness, e−2U → 1 together

with ω → 0 for |x| → ∞. BPS field equation solutions for the action above (for example,

quantities that appear in the metric, as e−2U or ω) can be written in terms of the following

real symplectic vectors R and I

R =
1√
2

Re

(
V

X

)
, (2.24)

I =
1√
2

Im

(
V

X

)
. (2.25)

X is an arbitrary complex function of space coordinates such that 1/X is harmonic. The

2nv + 2 components of I and R are real harmonic functions in R3. There is an algebraic

relation between R and I and the solutions can be written in terms only of the vector I.

By making use of (2.18)–(2.20), we can write the following stabilization equation

R = SI . (2.26)

In practice, specific solutions are determined by giving a particular, suitable, ansatz

for the symplectic vector I as a function of the spacetime coordinates.

Using these symplectic vectors we rewrite the only independent metric component as

e−2U = e−K =
1

2|X|2

= 〈R | I〉 = 〈SI | I〉 . (2.27)
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Similarly, the time independent 3-dimensional 1-form ω = ωidx
i satisfies the equation

dω = 2 〈I | ?3dI〉 , (2.28)

where ?3 is the Hodge dual on flat R3, together with the integrability condition

〈I | ∆I〉 = 0 . (2.29)

The asymptotic flatness condition implies

〈R∞ | I∞〉 = 〈SI∞ | I∞〉 = 1 . (2.30)

The gauge field equations of motion and Bianchi identities can be directly solved in

terms of spatially dependent harmonic functions [22]. The modulus of the central charge

function defined in (2.8) can be written, taking into account (2.27), as

|Z(q)|2e−2U = | 〈R | q〉 |2 + | 〈I | q〉 |2 . (2.31)

At spatial infinity, by assuming the asymptotic flatness condition (2.30), we arrive to

|Z∞(q)|2 = | 〈R∞ | q〉 |2 + | 〈I∞ | q〉 |2 . (2.32)

The, assumed time independent, nv complex scalar fields zα solutions to the field

equations, are given in this formalism by

zα =
Ωα

Ω0
=
V α/X

V 0/X
=
Rα + iIα

R0 + iI0 . (2.33)

This is, in general, a formal expression as the I or R quantities may be scalar dependent.5

These scalar fields can, in principle, take any values (z∞) at infinity. These values will

appear as free parameters in the ansatz that we give for I. Nevertheless, according to the

attractor mechanism, the moduli adjust themselves at some fixed points.

We are interested in this work in extremal, single- or multi-center black hole-type

solutions determined by an I ansatz with point-like singularities of the form

I = I∞ +
∑
a

qa
|x− xa|

, (2.34)

where a = 1, . . . , na being the number na arbitrary and qa = (pa
I , qaI) and I∞ real,

constant, symplectic vectors.

For this kind of solutions, the quantities I∞ are related to the values at infinity of the

moduli while the “charge” vectors qa are related to their values at the fixed points. The

fixed values of the scalars, z(x) → z(xa) = zaf , are the solutions of the following attractor

equations [8, 9, 11]:

qa = Re
(
2iZ̄(zaf )V (zaf )

)
. (2.35)

5Even for a scalar independent ansatz I, the matrix S is, in general, scalar dependent.
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The prepotential performs its influence throughout V and Z (cf. (2.8)). The scalar attractor

values are independent of their asymptotic values and only depend on the discrete charges

zaf = zaf (qa).

Single center black hole solutions are known to exist for all regions of the moduli

scalars at infinity, under very mild conditions on the charge vector. In the multicenter

case, for fixed charge vectors, not all the positions xa in the ansatz (2.34) are allowed.

The integrability condition (2.29) imposes necessary conditions on the relative positions

and on the moduli at spatial infinity (through I∞) for the existence of a solution. In this

framework, a particular black hole solution is completely determined by a triplet of charge

vectors, distances and values of the moduli at infinity (qa,xa, z
α
∞).

3 The stabilization matrix, its adjoint and the attractor equations

Let us consider now the attractor equations (2.35) in more detail. We will use the properties

of the stabilization matrix S to solve them in a purely algebraic way to obtain some

properties and give some explicit expressions for the scalars at the fixed points.

For this purpose, we first establish some well-known properties of SN ,S ≡ SF and

define new matrices: some projector operators associated to them and their respective

symplectic adjoints.

It can be shown by explicit computation that the real symplectic matrices SN ,S ≡
SF ∈ Sp(2nv + 2,R) defined by (2.18)–(2.19), whose explicit expressions are (2.21), satisfy

the relations (see also [35] )

S2
N = S2

F = −1 . (3.1)

From this, it is possible and convenient to define the projector operators6

P± =
1± iS

2
. (3.2)

They satisfy the following straightforward properties

P2
± = P± ,

SP± = ∓iP± , (3.3)

(P±)∗ = P∓ .

For X, Y arbitrary real vectors, we have

P±X = P±Y ⇒ X = Y . (3.4)

According to (3.3), P± are the projectors on the eigenspaces (of equal dimension) of the

matrix S. The symplectic space W can be decomposed into eigenspaces of the matrix S:

W = W+ ⊕W− , (3.5)

6This is done for S ≡ SF , but a similar procedure can be done for SN .
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where W± ≡ P±W . For an arbitrary function of S, f(S), necessarily a linear function

of it,

f(S) ≡ a+ bS ≡ λ exp(θS),

we have

f(S)P± = f(∓i)P±. (3.6)

Complex conjugation interchanges W+ and W− subspaces, both subspaces are isomorphic

to each other and of dimension nv + 1.

We can rewrite a stabilization relation for the projectors P± analogous to (2.20). For

arbitrary λ ∈ C and V ∈ W , for which there is a relation between its real and imaginary

parts of the form Re (V ) = SIm (V ), we have

λV = Re (λV ) + iIm (λV ) = 2iP−Im (λV ) . (3.7)

Thus, the full vector V can be reconstructed applying one of the projectors either from its

real or imaginary part. We see that such vectors are fully contained in the subspace W−

or, equivalently, they are eigenvectors of S

SV = 2iSP−Im (V ) = 2P−Im (V ) = iV . (3.8)

We find it convenient to define the adjoint operator S† of the matrix S, with respect

to the symplectic bilinear product so that, for any vectors A,B ∈W , we have

〈SA | B〉 =
〈
A
∣∣∣ S†B〉 . (3.9)

A straightforward computation shows that S† is given by

S† = −ωStω . (3.10)

Under the assumption of a symmetric FIJ matrix, it is given by

S† = −S . (3.11)

In summary, the matrix S is skew-adjoint with respect to ω and its square is S2 = −1. It

fulfills an “unitarity” condition S†S = 1.

S defines an (almost) complex structure on the symplectic space. This complex struc-

ture preserves the symplectic bilinear form, the matrix S is an isometry of the symplectic

space,

〈SX | SY 〉 = 〈X | Y 〉 . (3.12)

From (3.11), we see that S is an element of the symplectic Lie algebra sp(2nv + 2).

Moreover, the bilinear form defined by

g(X,Y ) ≡ 〈SX | Y 〉 (3.13)

– 9 –
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is symmetric.7 This can be easily seen as (using S† = −S):

g(X,Y ) = 〈SX | Y 〉 =
〈
X
∣∣∣ S†Y 〉 = 〈SY | X〉

= g(Y,X) . (3.14)

We will apply these properties to the study of the attractor equations. In general, the

matrices SN ,SF are scalar dependent. Only one of them, SF , is constant, in the case of

quadratic prepotentials. Let us write SfN ≡ SN (zf ) SfF ≡ SF (zf ) for the matrices evaluated

at (anyone of) the fixed points. Let us use the sub/superindex f to denote any quantity

at the fixed points. For instance, Zf ≡ Z(zαf ) or V f ≡ V (zαf ). If we multiply both sides

of (2.35) by SfN ≡ SN (zf ), we arrive to

SfNq
a = SfNRe

(
2iZ̄fV f

)
= SfFRe

(
2iZ̄fV f

)
= Sqa , (3.15)

where we have used (2.19) and (2.20).8

The attractor equations can be written yet in another alternative way. By using (3.7)

and (2.35), we can write

iZ̄fV f = 2P−iZ̄
fV f

= P−q, (3.16)

or its conjugate equation9

−iZf V̄ f = P+q . (3.17)

That is, the attractor equations simply equalize (a multiple of) the vector V (which, as we

have seen above, lies in the subspace W−) with the part of the charge vector which lies in

W−.

From (3.16)–(3.17), by taking symplectic products, we obtain

|Zf |2
〈
Vf
∣∣ V̄f〉 = 〈P−q | P+q〉 = 〈q | P+q〉

= − i
2
〈Sq | q〉 . (3.18)

If we plug the constraint
〈
V
∣∣ V̄ 〉 = −i, we arrive in a straightforward and purely algebraic

way to the well known formula

|Zf |2 =
1

2
〈Sq | q〉 , (3.19)

7The quadratic form g(X,X) is also known as the “I2(X)” in the literature. The corresponding quartic

invariant in this case can be written as I4(X, . . .) = 〈X | X〉2.
8Following [35], we note that VBH = |Zi|2 + |Z|2 = − 1

2
qtS(N)ωq and |Zi|2 − |Z|2 = 1

2
qtS(F )ωq. At the

fixed points, we have Zi = 0, so that |Z|2 = − 1
2
qtSNωq = − 1

2
qtSFωq. This last equation is satisfied by a

solution of (2.35). Moreover the symmetric matrix ωS is indefinite, it has positive and negative eigenvalues.
9These equations are well known in the literature, see for example section (5 ), eq. (319), in [39] and

references therein.
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which relates the absolute value of the central charge at any fixed point to a quadratic

expression on the charge. It is obvious from (3.19) that the positivity of the quadratic

form g(q, q) = 〈Sq | q〉 (at least locally at all the fixed points) is a necessary consistency

condition for the existence of solutions to the attractor mechanism.

Moreover the consistency condition e−K > 0 can be written as (see (2.7))

e−K = i
〈
Ω
∣∣ Ω̄
〉

= 2 〈Re (Ω) | Im (Ω) 〉
= 2 〈SIm (Ω) | Im (Ω) 〉 > 0. (3.20)

This condition is not automatically satisfied as the symmetric quadratic form g is indefi-

nite.10 In addition to the symmetric bilinear form g(X,Y ), a Hermitian form h of signature

(nv, 1) can be defined from it:

h(X,Y ) = 〈SX | Y 〉+ i 〈X | Y 〉 , (3.21)

which can be written in terms of the projection operators P± as

h(X,Y ) = 2i 〈P−X | Y 〉
= 2i 〈P−X | P+Y 〉 . (3.22)

The three defined structures {g, ω,S} form a compatible triple, each structure can be

specified by the two others.

3.1 S transformations and Freudenthal duality

Let us consider “S-transformations” of the type

X → X ′ = f(S)X,

where f is an arbitrary function. f(S) can be written with full generality as a linear

expression

f(S) ≡ a+ bS

or in “polar form”

f(S) ≡ λ exp(θS)

where a, b or λ, θ are real parameters. The adjoint is f(S)† = f(S†) = f(−S), f †f =

a2 +b2 = λ2. Under these transformations f = f(S) the symplectic and g bilinear products

(and then the Hermitian product h11) become scaled:〈
X ′
∣∣ Y ′〉 = 〈fX | fY 〉 =

〈
X
∣∣∣ f †fY 〉 = λ2 〈X | Y 〉 , (3.23)〈

SX ′
∣∣ Y ′〉 = 〈SfX | fY 〉 =

〈
SX

∣∣∣ f †fY 〉 = λ2 〈SX | Y 〉 . (3.24)

10The matrix ωS it has an even number of negative eigenvalues as detωS = (−1)2nv+2 = 1. The signature

of g is (2nv, 2).
11Or any other multilinear product built from them
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If λ = 1 both products are invariant under the Abelian U(1)-like group of transformations

UF (θ) = exp θS,

the “S-rotations”. Any physical quantity (entropy, ADM mass, scalars at fixed points,

intercenter distances, etc.) written in terms of these products (as it will clearly appear

in the next sections) will automatically be scaled under the general transformations or

invariant under the rotations.

On the other hand it can be easily checked that the “degenerate” Freudenthal duality

transformation [33, 34, 40, 41]. is given in our case by the anti-involutive transformation

X̃ = ω
∂g(X,X)

∂X
= SX , (3.25)

with ˜̃X = −X.

The Freudenthal duality corresponds to a particular S-transformation, a S-rotation of

the type

f(S) = exp((π/2)S). (3.26)

Invariance of quantities as ADM mass and entropy under Freudenthal duality is a special

case of a more general behavior of the solutions under the (Abelian) group of general

S-transformations. A general S-transformations can be written in terms of Freudenthal

duality as

X → X̃(a, b) = aX + bX̃, (3.27)

or,

X̃(λ, θ) = λ cos θX + λ sin θX̃. (3.28)

3.2 Scalar fields at the fixed points

Let us turn now to the problem of obtaining the values of the moduli at the fixed points

and at infinity. The values of the scalar fields at the fixed points can be computed by an

explicit expression, which only involves the matrix SF . The fixed values of the nv complex

scalars zαf (q) (at a generic fixed point with charge q) are given, using (2.33) and (3.16), by

zαf (q) =
(SI)α + iIα

(SI)0 + iI0 =
((S + i)I)α

((S + i)I)0

=
(P−q)

α

(P−q)0
. (3.29)

That is, the fixed values of the scalars are given in terms of the projection of the charges

on the eigenspaces of the matrix S. For quadratic prepotentials, for which S is a constant,

this is a complete and explicit solution of the attractor equations.
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The values of the nv complex scalars at spatial infinity, |x| → ∞, are given by12

zα∞ = lim
|x|→∞

(P−I)α

(P−I)0
=

(P−I∞)α

(P−I∞)0
. (3.30)

According to this formula, the ‘moduli’ zα∞ are simple rational functions of the 2nv +

2 real constant components of I∞. They are thus independent of the fixed attractor

values (3.29) (at least for an I of interest with only point like singularities, as for example

the ansatz (2.34)).

We note that (3.30) is formally identical to (3.29), since they both give the values of the

scalars at a fixed point in terms of the charges, where the roles of I∞ and q are exchanged.

It is suggestive then to write an “effective attractor equation” at infinity, where the center

charge is replaced by the vector I∞. That is, the scalar solutions of the equation

I∞ = Re
(
2iZ̄V

)∣∣
∞ (3.31)

are those ones precisely given by (3.30).

One can extract some algebraic relations for the vectors I∞ and qa and the equa-

tions (3.29)–(3.30) in specific cases, for example for solutions with constant scalars. Let

us assume zf = z∞( 6= 0). In this case, the equations (3.29)–(3.30) imply the projective

equality (λ an arbitrary real, non-zero, constant)

P−I∞ = λP−q . (3.32)

which, due to relation (3.4), implies

I∞ = λq . (3.33)

The asymptotic flatness condition (2.30) implies, in addition,

λ2 =
1

〈Sq | q〉
=

1

2|Zf |2
. (3.34)

The consistency of the last equation is assured by the positivity of the quadratic form

〈Sq | q〉. Thus, we can finally arrive to a characterization of I∞ in the case of constant

scalar solutions

I∞ = ± q√
〈Sq | q〉

. (3.35)

Similar arguments can be stated in the multicenter case.

Let us finish this section with some qualitative remarks. We have arrived to the

expressions (3.29)–(3.30) which can be written, in terms of the projective complex, vector

Ω = (XI , FI), as

Ωfix = P−q , (3.36)

Ω∞ = P−I∞ . (3.37)

12Let us stress that we have used (2.33) and defined I∞ ≡ lim|x|→∞ I, but we have not assumed any

particular ansatz for I up to now.

– 13 –



J
H
E
P
0
5
(
2
0
1
4
)
0
8
1

We could have predicted these expressions a priori:13 if SUSY solutions are uniquely de-

termined by the symplectic real vectors qa, then the also symplectic but complex vector

Ω = (XI , FI) must be related to these vectors in any linear way, respecting symplectic

covariance as well. Moreover, the symplectic sections Ω and V lie in the subspace W−, one

eigenspace of the stabilization matrix S. The only possibility for such relation would be the

expressions (3.36)–(3.37), where the projections of q or I∞ on W− precisely appear. These

expressions, evaluated at the points of maximal symmetry (the horizon and infinity), are

equivalent forms of the standard horizon attractor equations and the generalized attractor

equation at infinity presented here.

The scalars at fixed points are invariant not only under Freudenthal duality or S-

rotations but also under general S-transformations of the corresponding charge vectors.

This is clear taking into account equations (3.6) and (3.29). The same conclusion applies

to the values of the scalars at infinity (see (3.30)) for transformed vectors I∞ → Ĩ∞(λ, θ).

4 Complete solutions for quadratic prepotentials

4.1 Behavior of the scalar field solutions

In the previous section we have obtained some general results without assuming a specific

form for the solutions I. In this section we will make use of the ansatz (2.34) for theories

with quadratic prepotentials to obtain a full characterization of the solutions.

Let us insert the ansatz (2.34) into the general expression for the complex scalars,

(2.33). The values for the time independent nv complex scalars, solutions to the field

equations, are explicitly given by

zα(x) =
(P−I)α

(P−I)0
=

(P−I∞)α +
∑

a
(P−qa)α

|x−xa|

(P−I∞)0 +
∑

a
(P−qa)0

|x−xa|

. (4.1)

This equation is a simple rational expression for the value of the scalar fields in the whole

space. The fields and their derivatives are regular everywhere, including the fixed points

(there could be singularities for special charge configurations which make zero the denom-

inator of (4.1)).

The expression (4.1) interpolates between the values at the fixed points and at infinity.

After some simple manipulations, it can be written as

zα(x) = cα∞(x)zα∞ +
∑
a

cαa (x)zαa,f , (4.2)

where cα∞(x) and cαa (x) are spatial dependent complex functions such that

cα∞(x) + cαa (x) = 1 ,

cα∞(∞) = 1 ,

cα∞(xa) = 0 , (4.3)

lim
x→xb

cαa (x) = δab .

13Similar extended arguments are presented in [42] and references therein.
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For a single center solution, we note that if zα∞ = zαf then the scalar fields are constant in

all space.

It is straightforward to see that the attractor mechanism is automatically fulfilled by

the ansatz (2.34). The value of zα at any center xa is given, taking the corresponding limit

in (4.1), by

zα(xa) =
(P−qa)

α

(P−qa)0
= zαf (qa) , (4.4)

where, after the second equality, we have used the fixed point expression (3.29), which is a

direct consequence of the attractor equations.

On the other hand, the solution at the spatial infinity recovers spherical symmetry.

Again, taking limits, we have (with |x| ≡ r)

zα∞ = zα(r →∞) =
r(P−I∞)α + (P−Q)α

r(P−I∞)0 + (P−Q)0

= (1− c(r))zα∞ + c(r)zαf (Q) , (4.5)

where zf (Q) is the fixed point scalar value which would correspond, according to the at-

tractor equations, to a total charge Q ≡
∑

a qa. The asymptotically interpolating function

appearing above is unique for all the scalars

c(r) =
1

1 + r
r0

, (4.6)

with the (assumed non-zero) scale parameter

r0 =
(P−Q)0

(P−I∞)0
. (4.7)

They are such that

c(0) = 1 , c(∞) = 0 . (4.8)

The scalar charges Σα associated to the scalar fields can be defined by the asymptotic

series

zα(r →∞) = zα∞ +
Σα

r
+O

(
1

r2

)
. (4.9)

Expanding (4.5), we have

zα(r →∞) = zα∞ +
r0(zαf (Q)− zα∞)

r
+O

(
1

r2

)
, (4.10)

and thus the scalar charges are given by

Σα = r0

(
zαf (Q)− zα∞

)
. (4.11)

Hence, the scalar charges are fixed in terms of the charge vectors and the asymptotic

moduli. In the special case of a single center solution, the expression (4.11) is in agreement
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with the well known fact that the scalar charges vanish for double extremal black holes. In

the multicenter case, from this formula we infer a similar result: the scalar charges vanish if

zα∞ = zαf (Q) . (4.12)

Obviously, this does not mean that the scalar fields are constant in all space. Therefore,

the conditions (4.12) could be considered a convenient generalization of double extremal

solutions in the multicenter case. Taking into account the considerations of the previous

section, (3.35), a possible vector I∞ corresponding to this solution would be of the form

I∞ = ± Q√
〈SQ | Q〉

, (4.13)

and the scalar fields would be parametrized at any point of the space by

zα(x) = cα∞(x)zαf (Q) +
∑
a

cαa (x)zαf (qa) . (4.14)

4.2 Intercenter distances and S-transformations

The charge interdistances are restricted, from the 1-form ω condition of integrability [22],

we have (for any charge center qb )

〈I∞ | qb〉+
∑
a

〈qa | qb〉
rab

= 0 , (4.15)

where rab = |xa − xb|. The solutions for this set of equations give the possible values of

the center positions.

Let us study the effect of S-transformations on the intercenter distances for trans-

formed I∞ and charge symplectic vectors. The vector I∞ is constrained by the asymptotic

flatness condition to a unit fixed g-norm, 1 = 〈SI∞ | I∞〉. We consider therefore set of

transformations of the type

I∞ → Ĩ∞(θ) = exp(θS)I∞, (4.16)

qa → q̃a(λ, θ) = λ exp(θS)qa. (4.17)

Under these transformations the equations (4.15) become

λ 〈I∞ | qb〉+ λ2
∑
a

〈qa | qb〉
r̃ab

= 0. (4.18)

Then

rab → r̃ab = λrab, (4.19)

the intercenter distances scale (remain invariant) under general S-transformations (S-

rotations or Freudenthal dualities) of the charge and I∞ vectors.
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Let us see the consequence of the integrability equations for a double extremal two

center configuration. In this case, if I∞ = λQ, we have

0 = λ 〈Q | q2〉+
〈q1 | q2〉
r12

= λ 〈q1 | q2〉+
〈q1 | q2〉
r12

(4.20)

= 〈q1 | q2〉
(
λ+

1

r12

)
.

If we compare this equation with (4.13), we conclude that, if 〈q1 | q2〉 6= 0, we have to

choose the negative sign there and the double extremal intercenter distance is given by

r2
12

∣∣
double ext.

= 〈SQ | Q〉 . (4.21)

In the case 〈q1 | q2〉 = 0 the intercenter distance is not restristed by the compatibility

equation eq. (4.15).

4.3 Near horizon and infinity geometry

Let us now study the gravitational field. The metric has the form given by (2.23), with the

asymptotic flatness conditions −grr = 〈R∞ | I∞〉 = 1 and ω(|x| → ∞)→ 0. For point-like

sources, as those represented by the ansatz (2.34), the compatibility equation (2.29) takes

the form [22]

N ≡
∑
a

〈I∞ | qa〉 = 〈I∞ | Q〉 = 0 . (4.22)

An explicit computation of the total field strength shows that (4.22) is equivalent to the re-

quirement of absence of NUT charges: only after imposing the condition N = 0, the overall

integral of the (F I , GI) field strengths at infinity is equal to Q =
∑
qa. Another conse-

quence of the condition N = 0, which can be checked by direct computation from (2.28),

is that the 1-form ω takes the same value at any of the horizons of the centers that make

up the multicenter black hole. This value is also equal to its value at spacial infinity, which

can be taken to be zero.

Let us write a more explicit expression for the grr component at any space point. We

can write, using the ‘stabilization equation’ (2.26) and the ansatz (2.34), the expression

〈R | I〉 =

〈
SI∞ +

∑
a

Sqa
|x− xa|

∣∣∣∣∣ I∞ +
∑
b

qb
|x− xb|

〉

= 1 +
∑
b

1

|x− xb|
(〈SI∞ | qb〉+ 〈Sqb | I∞〉) +

∑
a,b

〈Sqa | qb〉
|x− xa||x− xb|

= 1 + 2
∑
b

〈SI∞ | qb〉
|x− xb|

+
∑
a,b

〈Sqa | qb〉
|x− xa||x− xb|

, (4.23)
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where we have used the property S† = −S and the asymptotic flatness condition

〈SI∞ | I∞〉 = 1. We introduce now the quantities

Ma ≡ 〈SI∞ | qa〉 , (4.24)

Aab ≡ 〈Sqa | qb〉 , (4.25)

where Aab is symmetric in its indices due to the property (3.14).

With these definitions, we finally write the expression for the metric element as

−grr = 〈R | I〉

= 1 + 2
∑
a

Ma

|x− xa|
+
∑
a,b

Aab
|x− xa||x− xb|

. (4.26)

If the metric element (4.26) describes a black hole, then the right part should be kept

always positive and finite for any finite |x|.14 A sufficient condition for its positivity is, for

example, that the mass-like Ma and area-like Aab parameters are all positive.

Behavior at fixed points and at infinity. We will define new quantities from the

behavior of the metric at infinity: the mass MADM and A∞. At spatial infinity |x| → ∞,

1/|x− xa| → 1/r, the metric element (4.26) becomes spherically symmetric:

−grr = 1 +
2
∑

aMa

r
+

∑
abAab
r2

+O
(

1

r3

)
≡ 1 +

2MADM

r
+
A∞
r2

+O
(

1

r3

)
. (4.27)

The second equation defines MADM and A∞. Comparing both expressions and using (4.24),

(4.25), we have

MADM =
∑
a

Ma = 〈SI∞ | Q〉 , (4.28)

A∞ =
∑
ab

Aab = 〈SQ | Q〉 . (4.29)

The expression for the central charge at infinity, (2.32), becomes then

|Z∞|2 = | 〈P+I∞ | Q〉 |2=| N + iM |2 (4.30)

= M2
ADM +N2 (4.31)

where N is defined by (4.22). The compatibility condition N = 0 is equivalent to the

saturation of a BPS condition

|Z∞|2 = M2
ADM = | 〈SI∞ | Q〉 |2 . (4.32)

Unlike A∞, the MADM quantity depends on the values of the scalars at infinity through

the implicit dependence of I∞ on them. These can take arbitrary values or, at least, can

14Consider, for example, that −grr ∼ e−K > 0.
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be chosen in a continuous range. In the single center case, for any given charge vector,

one can obtain a certain particular solution by setting the scalar fields to constant values

(zαf = zα∞), giving this the minimal possible MADM mass [10]. For multicenter solutions

and generic non-trivial charge vectors, it is not possible to have constant scalar fields.

Nevertheless, we can still proceed to the extremization of MADM(zα∞), with respect to the

scalar fields at infinity for a given configuration.

Let us suppose a configuration with null scalar charges. In this case I∞ = ±λQ,

λ = 1/
√
〈SQ | Q〉. We have MADM = ±1/λ, the positivity of MADM obliges us to choose

the positive sign. For a two center case this in turn implies 〈q1 | q2〉 = 0 and r12 unrestricted

(see section (4.2)). Such I∞ trivially satisfies the absence of NUT charge (N = 0) condition,

and for it zα∞ = zf (Q). This configuration can be considered a multicenter generalization

of the double extremal solutions.

Let us proceed now with the study of the geometry near the centers. For x→ xa the

metric element given by (4.26) becomes spherically symmetric. Moreover, it can be shown

that, by fixing additive integration constants, we can take ωa = ω(x → xa) = 0 at the

same time that ω∞ = ω(x→∞) = 0. As a consequence, the metric at any of the horizon

components with charge qa approaches an AdS2 × S2 metric of the form

ds2 =
r2

〈Sqa | qa〉
dt2 − 〈Sqa | qa〉

r2
dx2 . (4.33)

This is a Robinson-Bertotti-like metric. The Robertson-Bertotti-like mass parameter MRB

is given by

M2
RB,a = 〈Sqa | qa〉 , (4.34)

this is a charge extremal condition impliying the positivity of the charge products:

〈Sqa | qa〉 > 0.15

Then, the near horizon geometry is completely determined in terms of the individ-

ual horizon areas Sh,a = 〈Sqa | qa〉. The horizon area Sh is the sum of the areas of its

disconnected parts

Sh =
∑
a

Sh,a =
∑
a

〈Sqa | qa〉 = 2
∑
a

|Zf,a|2 . (4.35)

This expression can be compared with the area corresponding to a single center black hole

with the same total charge Q =
∑

a qa, which is given by Sh(q = Q) = 〈SQ | Q〉.
The relation between the asymptotic “area” A∞ and the multicenter horizon area, or

horizon entropy Sh, is simply

A∞ = 〈SQ | Q〉 =
∑
a,b

〈Sqa | qb〉

= Sh + 2
∑
a<b

〈Sqa | qb〉 . (4.36)

15The positivity of these quantities implies diverse restrictions as the quadratic form g(X,Y ) = 〈SX | Y 〉
is undefinite with a signature including an even number of negative signs.
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For one center solution we always have A∞ = Sh. For example, in the case of two centers

with charges q1, q2, the difference is16

A∞ − Sh = 2 〈Sq1 | q2〉 > 0 . (4.37)

Let us finally remark that under S-transformations I∞ → Ĩ∞(θ), qa → q̃a(λ, θ) the

ADM mass and the horizon areas scale as

M̃ADM = λMADM , (4.38)

S̃h = λ2Sh . (4.39)

Under the same transformations, the scalars at the fixed points and at infinity remain

invariant whereas the intercenter distances rab scale as (4.19).

5 Freudenthal duals and charge vector expansions

It is well known the utility of the use of the section V , its derivatives DαV and their

complex conjugates as a basis for the symplectic space. Any real symplectic vector X can

be expanded as

X = 2Im
(
Z(X)V̄ + gαβ̄DαZ(X)D̄β̄V̄

)
with Z(X) = 〈V | X〉. The existence and properties of such expansions are based on

the symplectic properties of V and its derivatives as well as on the existence of an anti-

involution S(N) for which S(N)V = iV and S(N)DαV = iDαV .17

We will define here alternative expansions using the properties of the matrix S ≡ S(F ).

As we have seen before, the projectors P± split the (2nv + 2)-dimensional space W into

two (nv + 1)-dimensional eigenspaces

W = W+ ⊕W− ,

in which the eigenvectors of S (therefore eigenvectors of general S-transformations) with

eigenvalues ±i, respectively, lie (cf. section 3).

Given a set of generic real charge vectors (q1, . . . , qn), the sets (P+qa), respectively

(P−qa), possibly completed with additional suitable vectors, can be considered a basis for

16In ref. [7] it has been shown that, for quadratic prepotentials, the single center BPS extremal black

hole area with charge Q = q1 + q2 is always larger than the corresponding two-center area

Sh(Q = q1 + q2) ≥ Sh,1 + Sh,2 .

Or equivalently, taking into account that A∞ is also the area of the corresponding single center black hole

with the same total charge A∞q1,q2 = Sh(Q = q1 + q2), we have

A∞ − Sh = 2 〈Sq1 | q2〉 ≥ 0 .

17See for example section 2.2.2 in [43] and references therein.
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the eigenspaces W+, respectively W−. Let us consider the W subspace B(qn) generated

by eigenvectors of the matrix S associated to center charges, directly of the complex form

B(qn) ≡ Span(P±q1, . . . ,P±qn) , (5.1)

or, equivalently, in the real basis formed by charge vectors and their Freudenthal duals

q̃i = Sqi

B(qn) ≡ Span(q1, . . . , qn,Sq1, . . . ,Sqn) . (5.2)

In particular, we can consider the subspace B(qna) generated by the na pairs (qa, Sqa)
of center charges, whose dimension is, in general, dimB(qna) ≤ 2na. The dimension of

the orthogonal complement to this space, B(qna)
⊥, i.e. those vectors s such that 〈q | s〉 =

〈Sq | s〉 = 0 is, generically, dimB(qna)
⊥ = 2(nv − na) + 2.18 This dimension is zero for

one scalar, one center black holes (nv = 0, na = 1). The set of vectors (qa, Sqa) may form

themselves a (maybe overcomplete) basis for the (2nv + 2) symplectic space. Otherwise,

they can be extended with as many other vectors (si) as necessary to complete such basis.

Any real symplectic vector of interest (e.g. I∞) can be conveniently expanded as

X = 2ReαaP+qa + 2Re γiP+si , (5.3)

where αa, γi are complex parameters or, equivalently, as

X = αaqa + α̃aSqa + γisi + γ̃iSsi , (5.4)

where αa, α̃a, γi, γ̃i are in this case real parameters.19 Let us note that under this same

expansion the dual vector X̃ = SX has respectively complex components (−iα, . . . ) or real

ones (−α̃a, αa, . . . ).
We can use expansions of different quantities in such a basis formed by charge and

extra vectors, to get different results. In a simple illustrative case, by decomposition of the

I∞ vector, we will study different properties. In particular, we will see how the extremality

of the solutions imposes strong conditions on such extra vectors.

5.1 Decomposition of I∞ and double extremality

We will decompose now the vector I into a basis of charge and extra vectors. For the

sake of simplicity we will discuss here the case of a single center solution and one complex

scalar. The dimension of the symplectic space is 2nv + 2 = 4. We will see, in particular,

how the extremality of the solutions imposes strong conditions on such extra vectors. In

addition, we will show, using this decomposition, the double extremality of the black hole

solutions for quadratic prepotentials.

Let us decompose the vector I∞ in the following way (with 〈Sq | q〉 6= 0):

I∞ = αq + βSq + γs+ εSs , (5.5)

18Or equivalently, B(qna)⊥ is defined as the set of vectors s such that h(s, q) = 0 for all q ∈ (qna), where

h is the Hermitian inner product defined in section 3.
19Naturally, other bases are possible or convenient, as for example bases including linear combinations of

the charge vectors, the total charge vector Q, I∞, etc.
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where α, β, γ, ε ∈ R and s ∈ B(qna,Sqna)⊥ is arbitrary. The bilinear form g(X,Y ) =

〈X | Y 〉 is indefinite, it has a signature with an even number of minus signs. A physical

requirement is that A∞ = 〈Sq | q〉 > 0 that implies that, if we choose

〈s | q〉 = 〈s | Sq〉 = 0 (5.6)

then20 we are obliged to choose

〈Ss | s〉 = −1. (5.7)

This vector s can be always determined by a modified Gram-Schmidt procedure for a given

pair of vectors (q,Sq). By projecting the relation (5.5) over any of the individual vectors

(q,Sq), we get

〈I∞ | q〉 = β 〈Sq | q〉 , (5.8)

〈I∞ | Sq〉 = −α 〈Sq | q〉 . (5.9)

Using (4.22), (4.28) and (4.29), we can rewrite these last two expressions respectively as

N = βA∞ , (5.10)

MADM = −αA∞ , (5.11)

from which we read the coefficients α, β in terms of some other, more physical, parameters.

The condition N = 0 implies that β = 0, hence the I∞ vector does not contain any

component in the “Sq” direction.

Let us consider now the asymptotic flatness condition and apply the ansatz (5.5) for

I∞, but without imposing at this moment the N = 0 condition. If we define ∆2 ≡ γ2 + ε2

and make use of (4.31) and the values for α, β, we have

1 = 〈SI∞ | I∞〉
=
(
α2 + β2

)
〈Sq | q〉+

(
γ2 + ε2

)
〈Ss | s〉

=
M2

ADM +N2

A∞
2 〈Sq | q〉 −∆2 , (5.12)

or equivalently,

|Z∞|2 = M2
ADM +N2 = 〈Sq | q〉 (1 + ∆2) . (5.13)

The BPS condition |Z∞| = MADM = 〈Sq | q〉 is only fulfilled if N = 0 (in agreement

with (4.32)) and the additional condition ∆ = 0.

The vanishing of these quantities can be directly seen by imposing extremality in the

metric elements, by requesting extremal RN black hole type metric or, −grr ∼ f2 with f

an spatially harmonic function. The metric component grr is

−grr = 1 +
2MADM

r
+
〈Sq | q〉
r2

= 1 +
2MADM

r
+

(M2
ADM +N2)/(1 + ∆2)

r2

=

(
1 +

MADM

r

)2

+
1

r2

1

1 + ∆2

(
M2

ADM∆2 +N2
)
. (5.14)

20By a simple application of the Silverster inertia theorem.
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The metric element is of the form −grr ∼ f2 with f an spatially harmonic function if and

only if the second term of the previous expression is zero, that is, if and only if

M2
ADM∆2 +N2 = 0 . (5.15)

Thus, the conditions N = 0 and ∆ = 0 (which is equivalent to γ = ε = 0 in (5.5)) are

necessary conditions to recover an extremal RN black hole type metric. In this case, the

central charge at infinity is

|Z∞|2 = M2
ADM = 〈Sq | q〉 . (5.16)

We see that the vanishing of the non-extremality parameter ∆ is equivalent to require

that I∞ is fully contained in the subspace Span(q,Sq), whereas the condition N = 0

further restricts it to be proportional to the vector charge I∞ = q/MADM. In this case,

after imposing the conditions N = ∆ = 0, we can finally write

I =
q

MADM

(
1 +

MADM

r

)
. (5.17)

As a consequence of having I∞ = q/MADM the scalar fields zα are constant everywhere

and equal to their values at the fixed point (see (3.30) and the discussion in section 4). It

might be interesting to remark that in this expression the “unphysical” vector I appears

written in terms of the physical quantities q and MADM which can be chosen by hand from

the beginning.

6 Summary and concluding remarks

We have presented a systematic study of general, stationary, multicenter black hole so-

lutions in N = 2 D = 4 Einstein-Maxwell supergravity theories minimally coupled to

scalars, i.e. theories with quadratic prepotentials. We have assumed a generic multicenter

ansatz (2.34), which depends on qa and I∞.

This analysis is heavily based on the use of the algebraic properties of the anti-

involutive matrix S, the constant matrix of second derivatives of the prepotential of the

theory and of the, defined in this work, symplectic adjoint S†. They are “unitary”, SS† = 1,

with respect to the symplectic product. The matrix S defines a complex structure on the

(2nv + 2)-dimensional symplectic space.

By defining suitable projector operators P±, the symplectic (2nv+2)-dimensional space

is decomposed into eigenspaces of S, W = W+⊕W−. We show that any symplectic section,

whose real and imaginary parts are related Re (X) = SIm (X), lies in the subspace W−.

With the help of these projector operators, we write a purely algebraic expression for the

attractor equations, which equalizes the symplectic section V ∈ W− to the projection of

the corresponding charge vector on that subspace, P−q
a ∈W− (3.16)–(3.17). The modulus

of the central charge function is given in terms of the norm of a charge vector, which is

written in terms of the inner product g, (3.19).

We obtain expressions for the scalar fields evaluated at the fixed points (3.29) and at

infinity (3.30). They are given, in a similar way, in terms of the projections of the center
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charges vectors qa and I∞ on W−, respectively. The values of the nv complex scalars at

spatial infinity are given by (3.30)

zα∞ = lim
|x|→∞

(P−I)α

(P−I)0
=

(P−I∞)α

(P−I∞)0
. (6.1)

This is an explicit formula where the moduli zα∞ are simple rational functions of the 2nv+2

real constant components of I∞.

We write expressions for the scalar field solutions at any space point (4.2) in terms of qa
and I∞ (4.7). They are interpolating expressions between the fixed point values and moduli

values at infinity. In particular, the formalism allows us to easily study a configuration

analogous to the double extremal case in a multicenter scenario: configurations such that

zα∞ = zαf (Q), with Q the total charge. The vanishing of the scalar charges is shown to be

equivalent to this condition. This is in close analogy with the single center case, in which

the vanishing of the scalar charges is a necessary and sufficient condition for the double

extremality of the black hole [10].

We have written the metric element −grr in terms of area-like Aab and mass-like

quantities Ma (4.26) involving the bilinear product g. The study of the near horizon and

infinity geometry of the solution lead us to the consideration of the area-like quantities

Aab = 〈Sqa | qb〉 and A∞ =
∑

abAab = 〈SQ | Q〉, in addition to the horizon areas Sh,a =

〈Sqa | qa〉.
In section 5 we have proposed a decomposition of the (2nv+2)-dimensional symplectic

vector space in a basis of eigenvectors of the matrix S. This set of vectors are of the form

(P±qa), or, alternatively, (qa,Sqa), with P± projectors over the eigenspaces of S and qa the

center vector charges. Any real symplectic vector of interest (e.g. I∞) can be conveniently

expanded as (αa, γi are complex parameters )

X = 2ReαaP+qa + 2Re γiP+si , (6.2)

or as ( real αa, α̃a, γi, γ̃i) X = αaqa + α̃aSqa + γisi + γ̃iSsi. Some simple properties of

the solutions are studied using this decomposition. The decomposition can be seen as an

alternative to the well known expansions in terms of the section V , its derivatives DαV and

their complex conjugates as a basis for the symplectic space. A formalism which allows that

any real symplectic vector X can be expanded as X = 2Im
(
Z(X)V̄ + gαβ̄DαZ(X)D̄β̄V̄

)
The anti-involution matrix S can be understood as a Freudenthal duality q̃ =

Sq [33, 34]. Under this transformation of the charges the horizon area, ADM mass and

other properties of the solutions remain invariant. We have shown, for the quadratic pre-

potential theories studied here, that this duality can be generalized to an Abelian group of

transformations (“Freudenthal transformations”) of the form

x→ λ exp(θS)x = ax+ bx̃.

Under this set of transformations applied to the charge vectors and I∞, the horizon area,

ADM mass and intercenter distances scale up, respectively, as

Sh → λ2Sh, MADM → λMADM, rab → λrab, (6.3)
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leaving invariant the values of the scalars at the fixed points and at infinity. In the special

case λ = 1, “S-rotations”, the transformations leave invariant the solution. The standard

Freudenthal duality can be written as the particular rotation

x̃ = exp(π/2S)x.

It is immediate to ask the question whether such transformations can be generalized

to 4d theories with general prepotentials, not associated to “degenerate” U-duality groups,

including stringy black holes. We can see that this is indeed the case using a simple

argument as follows (a more detailed investigation is presented in [44]). The U-duality

quartic invariant defined ([33], using here a slightly adapted notation ) as

2∆4(x) ≡ 〈T (x) | x〉

can be written also, using the definition of Freudenthal duality, as

∆4(x) =
1

4
〈x̃ | x〉2 .

Let us note then that, for a general transformation this quantity scale as

2∆4(ax+ bx̃)1/2 =
〈

˜ax+ bx̃
∣∣∣ ax+ bx̃

〉
= 〈ax̃− bx | ax+ bx̃〉 (6.4)

= (a2 + b2) 〈x̃ | x〉 (6.5)

= 2(a2 + b2)∆4(x)1/2. (6.6)

For a2 +b2 = 1, a S-rotation, the quantity ∆4 for any U -duality group, and then the lowest

order entropy of any extremal stringy black hole, is invariant under these transformations.

Moreover the invariance of ∆4 is shown [44] to be equivalent to the conditions

∆4(x, x, x̃, x̃) =
1

3
∆4(x), (6.7)

∆4(x, x̃, x̃, x̃) = ∆4(x, x, x, x̃) = 0. (6.8)

For the special case of D = 4 theories with U-duality groups of “degenerate type E7” such

conditions (6.7)–(6.8) can be easily checked by an explicit computation.
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