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Abstract Item recommendation helps people to discover

their potentially interested items among large numbers of

items. One most common application is to recommend top-

n items on implicit feedback datasets (e.g., listening history,

watching history or visiting history). In this paper, we

assume that the implicit feedback matrix has local property,

where the original matrix is not globally low rank but some

sub-matrices are low rank. In this paper, we propose Local

Weighted Matrix Factorization (LWMF) for top-n recom-

mendation by employing the kernel function to intensify

local property and the weight function to model user pref-

erences. The problem of sparsity can also be relieved by sub-

matrix factorization in LWMF, since the density of sub-

matrices ismuch higher than the originalmatrix.We propose

a heuristic method to select sub-matrices which approximate

the original matrix well. The greedy algorithm has approx-

imation guarantee of factor 1� 1
e
to get a near-optimal

solution. The experimental results on two real datasets show

that the recommendation precision and recall of LWMF are

both improved about 30% comparing with the best case of

weighted matrix factorization (WMF).

Keywords Recommendation systems � Local matrix

factorization � Implicit feedback � Weighted matrix

factorization � Item recommender � Sub-modular

1 Introduction

MF [4] projects users and items into a latent low-dimen-

sional space. Further, the missing entries in the original

matrix can be recovered using the dot product between user

and item latent vectors. Recently, LLORMA [7] has been

shown to be more effective than the traditional MF. The

original matrix is divided into several smaller sub-matrices,

in which we can exploit local structures for better low-rank

approximation. In each sub-matrix, the standard MF tech-

nique is applied to generate sub-matrix-specific latent

vectors for both users and items.

The above techniques can achieve good performance in

rating prediction when high-quality explicit feedback is

available. For example, ratings are explicit feedbacks which

indicate users’ preference. However, explicit feedbacks are

not easy to get and rating prediction cannot be used in top-

n item recommendation directly. Compared with the explicit

feedback, the implicit feedbacks are more common and

larger. User discovers the item if her behaviors are implicit

feedbacks, such as listening, watching or visiting the item.

Otherwise, user is unaware of the item. Different from the

explicit feedback, the numerical value to describe implicit

feedback is nonnegative and very likely to be noisy [10].

Therefore, we consider doing top-n item recommenda-

tion based on implicit feedback datasets. Specifically, we

also assume that the implicit feedback matrix is not
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globally low rank but some sub-matrices are low rank.

Instead of decomposing the original matrix, we decompose

the sub-matrix intuitively. We propose Local Weighted

Matrix Factorization (LWMF), integrating LLORMA [7]

with WMF [10] in recommending by employing the kernel

function to intensify local property and the weight function

to intensify modeling user preference. The problem of

sparsity can also be relieved by sub-matrix factorization in

LWMF, since the density of sub-matrices is much higher

than the original matrix. Two key issues of such a sub-

matrix-ensemble method are (1) how to generate the sub-

matrices and (2) how to set the ensemble weights for sub-

matrices. For the first problem, we propose a heuristic

method DCGASC to select sub-matrices which approxi-

mate the original matrix well. For the second problem, we

adopt the kernel function to model local property and

explore user preferences by the weight function.

The main contributions can be summarized as follows:

• We propose LWMF which integrates LLORMA with

WMF to recommend items on implicit feedback

datasets. LWMF utilizes the local property to model

the matrix by dividing the original matrix into sub-

matrices and relieves the sparsity problem.

• Based on kernel function, we propose DCGASC

(Discounted Cumulative Gain Anchor Point Set Cover)

to select the sub-matrices in order to approximate the

original matrix better. At the same time, we conduct the

theoretical sub-modularity analysis of the DCGASC

objective function.

• Based on item recommendation problem, we further

propose a variant method user-based LWMF, which is

more reasonable for item recommendation and get

better performance.

• Extensive experiments on real datasets are conducted to

compare LWMF with state-of-the-art WMF algorithm.

The experimental results demonstrate the effectiveness

of our proposed solutions.

The rest of the paper is organized as follows: Section 2

reviews related work and Sect. 3 presents some prelimi-

naries about MF (Matrix factorization), WMF and

LLORMA. Then, we describe LWMF in Sect. 4 including

the heuristic method DCGASC to select sub-matrices and

the learning algorithm of local latent vectors. Experimental

evaluations using real datasets are given in Sect. 5. Con-

clusion and future work are followed in Sect. 6.

2 Related Work

One of the most traditional and popular ways for recom-

mender systems is KNN [1]. Item-based KNN uses the

similarity techniques (e.g., cosine similarity, Jaccard

similarity and Pearson correlation) between items to rec-

ommend the similar items. Then, MF [2–4] methods play an

important role in model-based CF methods, which aim to

learn latent factors on user-item matrix. MF usually gets

better performance than KNN-based methods, especially on

rating prediction. Recently, several studies focus on using

the ensemble of sub-matrices for better low-rank approxi-

mation, including DFC [5], LLORMA [7, 8], ACCAMS [9]

and WEMAREC [26]. These methods partition the original

matrix into several smaller sub-matrices, and a local MF is

applied to each sub-matrix individually. The final predic-

tions are obtained using the ensemble of multiple local MFs.

Typically, clustering-based techniques with heuristic adap-

tations are used for sub-matrix generation. We give a brief

review of these studies. Mackey et al. [5] introduces a

Divide-Factor-Combine (DFC) framework, in which the

expensive task of matrix factorization is randomly divided

into smaller subproblems. LLORMA [7, 8] uses a non-

parametric kernel smoothing method to search nearest

neighbors; WEMAREC [26] employs Bregman co-cluster-

ing [30] techniques to partition the original matrix. How-

ever, such methods focus on explicit feedback datasets,

while most of the feedbacks are implicit, such as listening

times, click times and check-ins. The explicit feedbacks are

not always available, while implicit feedbacks are large and

common. So Hu et al. [10] and Pan et al. [11, 12] propose

weighted matrix factorization (WMF) to model implicit

feedback with alternative least square (ALS). For details, Hu

et al. [10] present a whole-data-based learning approach

setting a uniform weight to missing entries, i.e., giving all

zero entries the same weight. Pan et al. [11, 12] propose a

sample-based approach which samples negative instances

from missing data and adopts nonuniform weighting.

To improve the efficiency of WMF, several approaches

have been proposed. Pilaszy et al. [27] design an approx-

imate solution to ALS presenting novel and fast ALS

variants both for the implicit and for the explicit feedback

datasets. Recently, Devooght et al. [28] propose the ran-

domized block coordinate descent (RCD) learner, which is

a dynamic framework and reduces the complexity. Further,

He et al. [24] design an algorithm based on the element-

wise alternating least squares (eALS) technique to optimize

a MF model with variably weighted missing data. Other

related work on implicit feedback datasets is ranking

methods, such as BPR [13] and pairwise learning [14].

With the explosion of size of the training data, the ranking

methods need use some efficient sampling techniques to

reduce complexity. Finally, for BPR framework, there are a

lot of special scenarios, such as recommending music [15],

News [16], TV show [17] and POI [18, 19], utilizing the

additional information (e.g., POI recommender considers

the geographical information) to improve prediction

performance.
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Our method employs the kernel function to intensify

local property and the weight function to explore user

preferences. As for parameter learning, we adopt eALS

skillfully to learn the latent factors.

3 Preliminary

In this section, we present some preliminaries about basic

MF, weighted MF for implicit datasets and local matrix

factorization method LLORMA. A glossary of notations

used in the paper is listed in Table 1. In what follows, we

denote matrices by bold capital letters and sets by hand-

written form. Superscripts of different forms, such as Rh,

denote different sub-matrices. Subscripts on matrices mean

the indices of data. For example, Rh
um denotes the entry for

the u-th user and them-th item of the h-th data sub-matrix. In

addition, row vectors are represented by having the transpose

superscript>, otherwise by default they are column vectors.

3.1 Matrix Factorization

MF is a dimensionality reduction technique, which has

been widely used in recommendation system, especially for

the rating prediction [3, 4]. Due to its attractive accuracy

and scalability, MF plays a vital role in recent recom-

mendation system competitions, such as Netflix Prize,1

KDD Cup 2011 Recommending Music Items,2 Alibaba Big

Data Competitions.3 Given a sparse matrix R 2 RN�M with

indicator matrix I, and latent factor number

K � minfN;Mg. The aim of MF is:

min
P;Q

XN

u¼1

XM

m¼1

Ium Rum � P>
u Qm

� �2 ð1Þ

where Rum is the observed score by the u-th user for the m-

th item. Pu and Qm are the latent vectors of the u-th user

and the m-th item, respectively. In order to avoid overfit-

ting, regularization terms are usually added to the objective

function to modify the squared error. So the task is to

minimize
PN

u¼1

PM
m¼1 IumðRum � P>

u QmÞ2 þ kPkPk2F þ kQ
kQk2F . The parameters kP and kQ are used to control the

magnitudes of the latent feature matrices (i.e., P and Q).

Stochastic gradient descent is often used to learn the

parameters [4].

3.2 Weighted Matrix Factorization

Hu et al. [10] and Pan et al. [11, 12] argue that original MF

is applied on explicit feedback datasets, especially for

rating prediction and is not suitable on implicit feedback.

So they propose weighted matrix factorization (WMF) to

handle the cases with implicit feedback. Recently, WMF

has been widely used in TV show, music and point-of-

interest recommendation. To utilize the undiscovered items

and to distinguish between discovered and undiscovered

items, weight matrix is added to the MF:

Wum ¼ 1þ logð1þ Rum � 10eÞ ð2Þ

where the constant e is used to control the rate of incre-

ment. Considering the weights of implicit feedback, the

optimization function is reformulated as follows:

min
P;Q

XN

u¼1

XM

m¼1

Wum Cum � P>
u Qm

� �2þkPkPk2F þ kQkQk2F

ð3Þ

where each entry Cum in the 0/1 matrix C indicates whether

the u-th user has discovered the m-th item, which can be

defined as a binarized matrix:

Cum ¼
1 Rum [ 0

0 Rum ¼ 0

�
: ð4Þ

Table 1 Notations used in the paper

Symbols Descriptions

N, M Number of rows (users) and columns (items)

K The number (� minðN;MÞ) of dimensions for local

latent vectors

H The number of sub-matrices

R Data matrix (2 RN�M) (with missing values)

C Binarized data matrix (2 RN�M) of data matrix R
(with missing values)

W The confidence weight matrix of C

P;Q The local latent matrix for all users (items) w.r.t. the

data matrix R

Rh The h-th data sub-matrix

Ch The h-th binarized data sub-matrix

Wh The confidence weight matrix of binarized data sub-

matrix Ch

Th The sub-matrix weight matrix of binarized data sub-

matrix Ch

Ph
u;Q

h
m The local latent vector (2 RK ) for the u-th user (the

m-th item) w.r.t. the data sub-matrix Rh

A The data point set (nonzero user-item pair set)

ai ¼ hui;mii The data point hui;mii (nonzero user-item pair, 2 A)

Â The anchor point set (� A)

âh ¼ hûh; m̂hi The anchor point ðûh; m̂hÞ (2 Â)

Eðai; ajÞ The kernel value between two data points

1 http://www.netflixprize.com/.
2 http://www.kdd.org/kdd2011/kddcup.shtml.
3 https://102.alibaba.com/competition/addDiscovery/index.htm.
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3.3 Low-rank Matrix Approximation

Lee et al. [7, 8] proposed LLORMA, which is under the

assumption of locally low rank instead of globally low rank.

That is, limited to certain types of similar users and items, the

entire rating matrix R is not low rank but a sub-matrix Rh is

low rank. It is to say that the entirematrixR is composed by a

set of low-rank sub-matrices R ¼ fR1;R2; . . .;RHg with

weight matrix set T ¼ fT1;T2; . . .;THg of sub-matrices,

where Th
um indicates the sub-matrix weight of Rh

um in Rh:

Rum � 1

Zum

XH

h¼1

Th
umR

h
um ð5Þ

where Zum ¼
PH

h¼1 T
h
um. LLORMA uses the MF intro-

duced in Sect. 3.1 to approximate the sub-matrix Rh. If the

matrix has local property, it can achieve good accuracy in

predicting ratings following the paper [7].

4 Local Weighted Matrix Factorization

In this section, we introduce our proposed model LWMF

and further propose a heuristic method to select sub-ma-

trices. Finally, we adopt fast element-wise ALS to learn the

local latent vectors Ph and Qh.

4.1 Our Proposed Model

Following the LLORMA, we first select sub-matrices

from the original matrix, and then each sub-matrix is

decomposed by WMF methods as shown in Fig. 1. We

propose LWMF which integrates LLORMA with WMF

to recommend top-n items on implicit datasets. We

estimate each binarized sub-matrix Ch by WMF in

Sect. 3.2 as follows:

min
Ph;Qh

XN

u¼1

XM

m¼1

Th
umW

h
umðCh

um � Ph
u

>
Qh

mÞ
2

þ khPkPhk2F þ khQkQhk2F

ð6Þ

where khP and khQ are the regularization of user and item

in the sub-matrix. So the original binarized Matrix C

can be approximated by the set of sub-matrices

C ¼ fC1;C2; . . .;CHg:

Cum � 1

Zum

XH

h¼1

Th
umP

h
u

>
Qh

m ð7Þ

where Zum ¼
PH

h¼1 T
h
um is the normalizer and Th

um indi-

cates the weight for the entry Ch
um in the sub-matrix Ch.

Two key issues of such a sub-matrix-ensemble method are

(1) how to generate the sub-matrices and (2) how to set the

ensemble weights for sub-matrices.

Following LLORMA to get the sub-matrix, we firstly

find a data point ai ¼ hui;mii in the data point set A ¼
fa1; a2; . . .; ajRjg as the anchor point âh. Then we calcu-

late the relevant degree between anchor point and other

data points by a similarity measure or kernel function.

Finally, we choose the data points whose relevant degree

is larger than a constant to compose the sub-matrix. So

the data points in this selected sub-matrix are similar. In

addition, we can select more anchor points to get more

sub-matrices.

Actually, we use the Epanechnikov kernel to calculate

the relationship between two data point pairs ai ¼ ðui;miÞ
and aj ¼ ðuj;mjÞ. It is computed as the product of user

Epanechnikov kernel (Ebðui; ujÞ) and item Epanechnikov

kernel (Ebðmi;mjÞ) as follows:

Sub-Matrices Selection Sub-Matrices FactorizationFig. 1 Local matrix

factorization
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Eðai; ajÞ ¼ Ebðui; ujÞ � Ebðmi;mjÞ ð8Þ

where

Ebðui; ujÞ_ð1� dðui; ujÞ2Þ 1fdðui;ujÞ� bg

Ebðmi;mjÞ_ð1� dðmi;mjÞ2Þ 1fdðmi;mjÞ � bg

and b is the bandwidth parameter of kernel. Distance

between two users or two items is the distance between two

row vectors (for user kernel) or column vectors (for item

kernel). The initial user latent factor and item latent factor are

learned byWMF.Accordingly, the distance between users ui

and uj is dðui; ujÞ ¼ arccosð Pui
�Puj

kPui
k�kPuj

kÞ, where Pui , Puj are the

local latent vector for the ui-th user and the uj-th user. The

distance between items is computed in the sameway. Sowith

the anchor point âh we set the weight Th
ujmj

¼ Eðâh; ajÞ of
user-item pair huj;mji for sub-matrix Rh, the sub-matrix

regularization khP ¼ kPEbðûh; ujÞ and khQ ¼ kQEbðm̂h;mjÞ.
Therefore, each anchor point stands for a sub-matrix.

Selecting the sub-matrix set C is in fact to select a set of

anchor points Â ¼ fâ1; â2; . . .; âHg. The details of select-

ing anchor point set are discussed in next section.

4.2 Anchor Point Set Selection

Intuitively, the sub-matrix set C ¼ fC1;C2; . . .;CHg should

cover the originalmatrixC, that isC ¼ [Ch2CC
h, so that these

sub-matrix setsC can approximate the originalmatrixC better

than the set that does not cover. Therefore, the anchor points

selection problem can be reduced to the set cover problem.

4.2.1 Anchor Point Set Cover (ASC)

We treat all the nonzero user-item pairs, i.e., data point set

A ¼ fa1; a2; . . .; ajRjg as the candidate anchor point set. Every
candidatepointai cancover itself several other candidate points

denoted by Ai ¼ fai; ai1; ai2; . . .; aiDg � A. Then, we pro-

pose thenaive anchor points covermethod, calledAnchorPoint

Set Cover that returns an anchor point set Â � A such that

max JðÂÞ ¼j [
i2Â Aij

s:t:jÂj ¼H
ð9Þ

Obviously, the ASC problem is sub-modular and monotone

[25]. So the greedy algorithm can achieve 1� 1
e
approxi-

mation ratio of the optimized result.

4.2.2 Discounted Cumulative Gain Anchor Point Set

Cover (DCGASC)

However, set cover problem only needs to cover a point only

once while covering all training data only once is not enough.

Covering the training data more times is also helpful for the

final recommendation. Although performance is improved by

increasing cover times, the gain is discounted,which is similar

to the situation in ranking quality measures NDCG (normal-

ized discounted cumulative gain) [22] and ERR (expected

reciprocal rank) [21] in IR(information retrieval).The premise

of NDCG and ERR is that highly relevant documents

appearing lower in a search result list should be penalized as

the graded relevance value is reduced proportional to the

position of the result. Learning from this discounted approach,

we propose a heuristic method to model this situation, called

Discounted Cumulative Gain Anchor Point Set Cover

(DCGASC) that returns an anchor point order list Â ¼
fâ1; â2; . . .; âHg � A such that

max JðÂÞ ¼
XH

h¼1

X

al2Âh

aolh�1ð1�maxh02f1;...;h�1gEbðâh; âh0 ÞÞ

s:t:jÂj ¼ H ð10Þ

where olh denotes the covered times of al by the selected

anchor points fâ1; â2; . . .; âhg. a 2 ð0; 1Þ is the discount

parameter.When point al has been covered by a anchor point

before, the covered gain will be reduced next time. When

a ¼ 0, this problem reduces to the set cover problem. And

when a ¼ 1, it just gets the anchor point which covers the

other points at most every time. The ð1�maxh02f1;...;h�1g
Ebðâh; âh0 Þ term means DCGASC tends to select the point

which is far from the selected anchor points. Belowwe prove

that Jð�Þ is sub-modular and monotone.

Theorem 1 DCGASC function is sub-modular and also

monotone nondecreasing.

Proof Let S ¼ fâ1; â2; . . .; âH�1g andV ¼ fâ1; â2; . . .
; âH�1; . . .; âX�1g are the anchor point sets, X	H and ai ¼
âX 2 AnV is the next selected anchor point. We have that

JðV [ fâXgÞ � JðVÞ

¼
XX

h¼1

X

al2Âh

aolh�1ð1�maxh02f1;...;h�1gEbðâh; âh0 ÞÞ

�
XX�1

h¼1

X

al2Âh

aolh�1ð1�maxh02f1;...;h�1gEbðâh; âh0 ÞÞ

¼
X

al2Â
X

aolX�1ð1�maxh02f1;...;X�1gEbðâX ; âh0 ÞÞ 	 0

ð11Þ

and

JðS [ fâXgÞ � JðSÞ � ðJðV [ fâXgÞ � JðVÞÞ ¼
¼

X

al2Â
X

aolX0�1ð1�maxh02f1;...;H�1gEbðâX ; âh0 ÞÞ

�
X

al2Â
X

aolX�1ð1�maxh02f1;...;X�1gEbðâX; âh0 ÞÞ
ð12Þ
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where olX0 means the covered times of al by the anchor

points S [ fâXg. Because the number of anchor points

covered satisfies that olX0 6 olX , discount parameter a 2
½0; 1
 and maxh02f1;...;H�1gEbðâX ; âh0 Þ �maxh02f1;...;X�1g
EbðâX; âh0 Þ, we know that JðS [ fâXgÞ � JðSÞ � ðJðV [
fâXgÞ �JðVÞÞ	 0. Therefore, it is proved that the

DCGASC function is monotone and sub-modular.

Due to the monotonicity and sub-modularity of DCGASC

function, the greedy algorithm 1 can provide a theoretical

approximation guarantee of factor 1� 1
e
as described in [23].

Algorithm 1 shows the greedy algorithm: It first obtains the

anchor point which cover other points at most and then uses

Eq. (12) to get the following anchor points in turn.

Algorithm 1: DCGASC Greedy Algorithm
Input : Set of data points A, anchor number H,

DCGASC function f and sets Ai covered by
each data point ai

Output: An anchor point order list Â ⊆ A with
|Â| = H

1 â1 ← argmaxai∈A |Ai|;
2 Â ← {â1};
3 for h from 2 to H do
4 âh ← argmaxa′

i
∈A\Â f(Â ∪ {a′

i}) − f(Â)

5 Â ← Â ∪ {âh}
6 end
7 return Â

4.3 Learning Algorithm

Alternating least square (ALS) is a popular approach to

optimize weightedmatrix factorization [10]. [24] proposed a

fast element-wise ALS learning algorithm which optimizes

each coordinate of the latent vector with the other fixed ones

and speeds up learning by avoiding the massive repeated

computations introduced by the weighted missing data. In

this paper, we use the element-wise ALS learning algorithm

to learn the sub-matrix latent vectors. More specifically, the

latent factors of the u-th user are updated based on

Ph
uk ¼

P
m2Mh Cum � Ĉ

h

um;k

� �
Th
umWumQ

h
mk

P
m2Mh Th

umWumQ
h
mkQ

h
mk þ khP

ð13Þ

where Mh denotes item indices set in the h-th sub-matrix,

i.e., the prediction without the component of latent factor k

Ĉ
h

um;k ¼ Ĉ
h

um � Ph
ukQ

h
mk, where Ĉ

h

um is the predict score.

Noted that Cum and Wum are all the same in the different

sub-matrices. The sub-matrix weight Th
um is the only dif-

ference in Eq. (13) with the original WMF, which may lead

to high running time. Fortunately, due to Th
um ¼

Ebðûh; uÞ � Ebðm̂h;mÞ and khP ¼ kPEbðûh; uÞ, we also can

speed up learning by memorizing the massive repeated

computations. Firstly, Ebðûh; uÞ is both in the numerator

and in the denominator so it can be canceled. Noted that if

Ebðûh; uÞ ¼ 0, it does not need to calculate the latent vector

Ph
u. Then, we focus on the numerator:

X

m2Mh

Cum � Ĉ
h

um;k

� �
Ebðm̂h;mÞWumQ

h
mk

¼
X

m2Mh
u

WumCum � ðWum � 1ÞĈh

um;k

h i
Ebðm̂h;mÞQh

mk

�
X

m2Mh

Ebðm̂h;mÞĈ
h

um;kQ
h
mk ð14Þ

whereMh
u means the set of items discovered by the u-th user

in the h-th sub-matrix. Because Ebðm̂h;mÞ is the same for

different users, the cache method can also be utilized here.

The
P

m2Mh Ebðm̂h;mÞĈ
h

um;kQ
h
mk term can be speeded up:

X

m2Mh

Ebðm̂h;mÞĈ
h

um;kQ
h
mk

¼
X

f 6¼k

Puf

X

m2Mh

Ebðm̂h;mÞQh
mkQ

h
mf

ð15Þ

So the
P

m2Mh Ebðm̂h;mÞQh
mkQ

h
mf can be pre-computed and

used in updating the latent vectors for all users. Similarly,

the same cache method can be used in the calculation of

denominator. We define the SQ
h

as

SQ
h ¼

P
m2Mh Ebðm̂h;mÞQh

mQ
h>
m , so Eq. (13) can be cal-

culated as:

Ph
uk ¼

X

m2Mh
u

WumCum � ðWum � 1ÞĈh

um;k

h i
Ebðm̂h;mÞQh

mk

8
<

:

�
X

f 6¼k

Ph
ufS

Qh

fk

)
=

X

m2Mh
u

Ebðm̂h;mÞðWum � 1ÞQh
mkQ

h
mk

8
<

:

þ SQ
h

kk þ kP
o

ð16Þ

where SQ
h

fk is the (f, k)-th element of the SQ
h

. Similarly, we

define the SP
h

as SP
h ¼

P
u2Uh Ebðûh; uÞPh

uP
h>
u and the

update of item latent vectors is:

Qh
mk ¼

X

u2Uh
m

WumCum � ðWum � 1ÞĈh

um;k

h i
Ebðûh; uÞPh

uk

8
<

:

�
X

f 6¼k

Qh
mfS

Ph

fk

)
=

X

u2Uh
m

Ebðûh; uÞðWum � 1ÞPh
ukP

h
uk

8
<

:

þ SP
h

kk þ kQ

)
ð17Þ
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So with the local sub-matrix weights, one iteration takes

OðNK2 þMK2 þ jRjKÞ time as the same as the fast ele-

ment-wise ALS [24].

Algorithm 2: LWMF Learning Algorithm
Input : data matrix R, anchor number H, DCGASC

function J and sets Ai covered by each data
point ai,W,λP and λQ, the number K of
dimensions for latent vectors

Output: Latent featue matrix sets
P = {P1,P2, ...,PH} and
Q = {Q1,Q2, ...,QH} and the sub-matrix
weight matrices T = T1,T2, ...,TH

1 Use Eq. 4 to calculate binarized data matrix C from
original data matrix R;

2 Use fast element-wise ALS [24] to learn the whole
latent vectors P and Q;

3 Use algorithm. 1 to get anchor set
Â = {â1, â2, ..., âH};

4 for h ← 1 to H do
5 for u ← 1 to N do
6 if Eb(ûh, u) > 0 then
7 Uh ← Uh ∪ {u}
8 end
9 end

10 for m ← 1 to M do
11 if Eb(m̂h, m) > 0 then
12 Mh ← Mh ∪ {m}
13 end
14 end
15 //update local user latent vectors

SQh

=
∑

m∈Mh Eb(m̂h, m)Qh
mQh�

m ;
16 for u ∈ Uh do
17 foreach m ∈ Mh

u do Ĉh
um ← Ph

u
�Qh

m

18 for k ← 1 to K do
19 foreach m ∈ Mh

u do
20 Ĉh

um,k ← Ĉh
um − Ph

ukQ
h
mk

21 calculate Ph
uk using Eq. 16;

22 foreach m ∈ Mh
u do

23 Ĉh
um,k ← Ĉh

um +Ph
ukQ

h
mk

24 end
25 end
26 //update local item latent vectors

SPh

=
∑

u∈Uh Eb(ûh, u)Ph
uP

h�
u ;

27 for m ∈ Mh do
28 foreach u ∈ Uh

m do Ĉh
um ← Ph

u
�Qh

m

29 for k ← 1 to K do
30 foreach u ∈ Uh

m do
31 Ĉh

um,k ← Ĉh
um − Ph

ukQ
h
mk

32 calculate Qmk using Eq. 17;
33 foreach u ∈ Uh

m do
34 Ĉh

um,k ← Ĉh
um +Ph

ukQ
h
mk

35 end
36 end
37 end
38 return P,Q

Algorithm 2 summarizes the process of learning local

weighted latent vectors. First, we use the fast element-wise

ALS [23] to learn the global latent vectors (Line 1). Then we

obtain the anchor set byAlgorithm 1.At last, we adopt the fast

element-wiseALS to learning every sub-matrix latent vectors.

4.4 User-based Local Weighted Matrix

Factorization

The above method LWMF uses the selected sub-matrices to

model the local property and ignore global feature. Especially

for the item recommendation problem,we should recommend

items for a user from all the items. So we propose a variant

method, called User-based Local Weighted Matrix Factor-

ization, which only considers users to select the anchor points

and puts all items into the sub-matrix. Given the user set U ¼
fu1; u2; . . .; uNg (all users) while every user ui can cover itself
several other users denoted by U i ¼ fui; ui1; ui2; . . .; uiDg, we
need tofind user anchor set Û ¼ fû1; û2; . . .; ûHg tomaximize

the user anchor set cover function:

max JðÛÞ

¼
XH

h¼1

X

ul2Uh

aolh�1ð1�maxh02f1;...;h�1gEbðûh; ûh0 ÞÞ

s:t:jÛj ¼ H

ð18Þ

Obviously, this user-based DCGASC function is also sub-

modular and also monotone nondecreasing. Figure 2 shows

the user-based LWMF to select the sub-matrices. Because

we do not need to consider the items, it is much faster to the

user anchor point set. Moreover, user-based LWMF is more

reasonable for item recommendation problem. As a direct

comparison of user-based LWMF, we also implement item-

based LWMF, which only considers items to select the

anchor points and lets all users into the sub-matrix.

5 Experiments

In this section, we evaluate the method proposed in this

paper using real datasets. We first introduce the datasets

Users

Items

Users

Items

Fig. 2 User-based local matrix factorization
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and experimental settings. Then, we compare our method

with WMF under specific parameter settings. We also

compare results with different anchor numbers and two

anchor points selection methods.

5.1 Dataset

We choose two real-world datasets from [29]. One is the

Foursquare check-in data made in Singapore between

August 2010 and July 2011, and another is the Gowalla

check-in data made in California and Nevada between

February 2009 and October 2010. Both are popular online

LBSNs datasets.

The Foursquare check-in data comprises 194,108 check-

ins made by 2312 users at 5596 POIs, and the density is

1:50� 10�2. The Gowalla check-in data comprises

456,967 check-ins made by 10,162 users at 24,238 POIs,

and the density is 1:86� 10�3. Two datasets are very

sparse (Table 2).

More details about two datasets are listed in Table 3.

We randomly select 80% of each user’s visiting locations

as the training set and the rest 20% as the testing set.

5.2 Setting

Next, we show the parameter values. The regularization k
is set to 10, and the performance of recommendation is not

sensitive to this parameter. The weight parameter e for

Fousquare is set to 2 and for Gowalla is set to 3. We set the

bandwidth parameter in Epanechnikov kernel as b ¼ 0:8.

The discount a of DCGASC is set to 0.4. We select 100

anchor points for both datasets. In the experiments, we

observe that if the number of anchor points is larger, the

performance is better. But the training time increases

accordingly.

We employ the Precision@n and Recall@n to measure

the performance. For the u-th user, we set IP
u as the pre-

dicted item list and IT
u as the true list in the testing dataset.

So the Precision@n and Recall@n are:

Precision@n ¼ 1

N

XN

u¼1

jIP
u

T
IT
u j

n

Recall@n ¼ 1

N

XN

u¼1

jIP
u

T
IT
u j

jIT
u j

where jIP
u j ¼ n. In our base experiments, we choose top 10

as evaluation metrics.

We compare seven methods for implicit feedback

datasets:

Table 2 Precision and recall comparison on Foursquare and Gowalla, where column ‘‘improve’’ indicates the relative improvements that our

approach LWMF achieves relative to the basic WMF results

ALL Metrics MP KNNu KNNm WMF LWMFboth LWMFm LWMFu Improve (%)

Foursquare Precision 0.0615 0.0741 0.0698 0.0792 0.0823 0.0869 0.0852 9.80

d = 5 Recall 0.0680 0.8212 0.7975 0.0905 0.0952 0.0962 0.0999 10.34

d = 10 Precision 0.0615 0.0741 0.0698 0.0847 0.0847 0.0878 0.0898 6.03

Recall 0.0680 0.8212 0.7975 0.0993 0.0995 0.0990 0.1047 5.44

d = 20 Precision 0.0615 0.0741 0.0698 0.0844 0.0832 0.0893 0.0915 8.39

Recall 0.0680 0.8212 0.7975 0.0980 0.0982 0.1021 0.1067 8.85

d = 40 Precision 0.0615 0.0741 0.0698 0.0741 0.0828 0.0907 0.0902 22.45

Recall 0.0680 0.8212 0.7975 0.0922 0.0945 0.1028 0.1054 14.27

Gowalla Precision 0.0203 0.0552 0.0587 0.0321 0.0489 0.0478 0.0445 52.56

d = 5 Recall 0.0460 0.1055 0.1014 0.0664 0.0923 0.0884 0.0881 39.05

d = 10 Precision 0.0203 0.0552 0.0587 0.0385 0.0528 0.0526 0.0504 37.10

Recall 0.0460 0.1055 0.1014 0.0779 0.0990 0.0936 0.0989 27.01

d = 20 Precision 0.0203 0.0552 0.0587 0.0442 0.0558 0.0565 0.0581 31.44

Recall 0.0460 0.1055 0.1014 0.0871 0.1035 0.1006 0.1110 27.41

d = 40 Precision 0.0203 0.0552 0.0587 0.0485 0.0578 0.0584 0.0623 28.36

Recall 0.0460 0.1055 0.1014 0.0953 0.1067 0.1034 0.1191 25.04

Bold values indicate the best performance among all the methods

Table 3 Detail information of Gowalla and Foursquare

Foursquare Gowalla

#users 2321 10,162

#locations 5596 24,238

#check-ins 194,108 456,967

avg. #users per loc 34.69 18.85

avg. #loc. per user 83.63 44.97

max #users per loc 695 2,195

max #loc. per user 311 1,113
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• Most popular: This is the most basic method, which

recommends the most popular items to the target user.

• KNNu: This is user-based CF method, where user-user

similarity is calculated based on the training data.

• KNNm: This method is similar to KNNu, and the

difference is that KNNm calculates item-item similarity

based on the training data. Specifically, we set the

neighbor numbers in KNNu and KNNm to 100.

• WMF: This is the state-of-the-art method, which is a

whole-data-based learning approach setting a uniform

weight to missing entries [10, 24].

• LWMFboth: This is our proposed method that employs

the kernel function to intensify local property and the

weight function to explore user preferences.

• LWMFu: A variant method of LWMFboth which only

considers users to select the anchor points and puts all

items into the sub-matrix.

• LWMFm: A variant method of LWMFboth which only

considers items to select the anchor points and puts all

users into the sub-matrix.

Then, we compare two anchor points selection methods to

study the performance of LWMF:

• Random: Sampling anchor points uniformly from

training dataset as paper [7] does.

• Discounted Cumulative Gain Anchor Set Cover

(DCGASC): Discounting cumulative gain of covering

the points which is also sub-modular and monotone.

So LWMF can be expanded into two sub-methods:

LWMF_Random and LWMF_DCGASC. By default,

LWMF means LWMF_DCGASC. Each method is con-

ducted five times independently. Therefore, the average

score indicates the performance of the recommendation

methods.

5.3 Experimental Results

In this section, we discuss the experimental results on

Foursquare and Gowalla datasets.
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Fig. 3 Comparison with different number of anchor points. a Precision on Foursquare, b recall on Foursquare, c precision on Gowalla, d recall

on Gowalla
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5.3.1 Recommendation Methods Comparison

Table 2 lists the precision and recall of seven methods

mentioned above on Foursquare and Gowalla datasets. It

shows the same result as [7] that LORMA outperforms

SVD, and LWMF always outperforms WMF. The perfor-

mances of WMF and LWMF are increasing with the

increase of K. However, on Foursquare, when K gets to 40,

the performances both fall, which indicates that the value

of K has resulted in overfitting. So we choose K to be 20.

On the other hand, the experiments based on Gowalla

dataset show that the value of K is bigger than 40 when the

performance is best. It is obvious that performances of all

LWMF methods are better than WMF methods in all

dimensions. Especially on Gowalla dataset, the precision

and recall of LWMF are more than 25% better than WMF.

Specifically when K equals to 5, the precision of LWMFboth
are 52.56% better than WMF. More obvious improvements

on Foursquare and Gowalla is due to the local property. For

example, there are some business districts in a city and

business POIs are geographically close to each other within

each business district. Additionally as for our three

approaches, we can find that the differences between their

performances are not very obvious. But from an overall

view, LWMFu are better than the other two methods.

LWMFu does the recommendation task based on users, so

it can be inferred that selecting points based on users are

more reasonable than the other two methods. We also do

the comparison of three basic methods, which are

MostPopular, KNNu and KNNm. The experimental results

indicate that our methods are better than these three basic

methods. Although KNNu and KNNm are better than

LWMF when K is low on Gowalla, the performance of

LWMF goes up with the increase of K and is far more

better than KNNu and KNNm.

5.3.2 Comparison with Different Number of Anchor Points

Figure 3 shows the performance of LWMF with different

anchor numbers. For both datasets, the precision and recall

of both LWMF and WMF improve while K increases and

LWMF performs better than WMF with K 	 20. For
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Fig. 4 Anchor point set selection methods comparison. a Precision on Foursquare, b recall on Foursquare, c precision on Gowalla, d recall on

Gowalla
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Foursquare dataset, LWMF with K ¼ 20 and anchor

number H	 20 outperforms WMF with K ¼ 20, while the

same performance on Gowalla dataset needs H	 40 anchor

points. We can see that as the number of anchor points

increases, the performance gets better. When the number of

anchor points gets to 50, we can get a good performance.

Although the training time increases, the gap of running

time of matrix factorization between LWMF and WMF is

small, because the running time of WMF is OðNK2 þ
MK2 þ jRjKÞ and the sub-matrices of LWMF are much

smaller than the original matrix (i.e., in both datasets, each

sub-matrix is about 10% of original matrix averagely).

Only one sub-matrix factorization is much faster than

original matrix factorization. Despite all this, LWMF costs

more time on calculating the KDE between users and items

and selecting anchor points.

5.3.3 Anchor Point Set Selection Methods Comparison

Next, we compare the performance of LWMFu_Random

and LWMFu in Fig. 4. The discount parameter a is set 0.4.

K is set to 20 for Foursquare dataset, while 40 for Gowalla

dataset. From Fig. 4, when the number of anchor points is

small, LWMFu performs better in precision and recall.

When the number of anchor points increases, the gap of

performance among three gets less. Despite this, LWMFu

outperforms LWMFu_Random on both datasets.

5.3.4 Comparison with Different Discounts for DCGASC

Finally, we study the performance of LWMFu with dif-

ferent discount parameters. K is set to 20 for Foursquare

dataset, while 40 for Gowalla dataset. For each a, we

explore results obtained by varying the parameter in the

range (0, 1] with decimal steps. Because the results with

discount parameter a 2 ½0:2; 0:8
 are similar, we only plot

the curves with a 2 f0:2; 0:4; 0:6; 0:8g in Fig. 5. The gap

of performance with four discount parameters is small. The

performance with discount parameter a ¼ 0:4 is better

slightly. In general, the performance of LWMF is not

sensitive to the discount parameter but mainly depends on

the number of anchor points.

0 20 40 60 80 100
0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

P
re
ci
si
on

Anchor Number

WMF_K=20
WMF_K=40
LWMFu_α=0.2
LWMFu_α=0.4
LWMFu_α=0.6
LWMFu_α=0.8

0 20 40 60 80 100
0.07

0.08

0.09

0.10

0.11

R
ec

al
l

Anchor Number

WMF_K=20
WMF_K=40
LWMFu_α=0.2
LWMFu_α=0.4
LWMFu_α=0.6
LWMFu_α=0.8

0 20 40 60 80 100
0.035

0.040

0.045

0.050

0.055

0.060

0.065

P
re
ci
si
on

Anchor Number

WMF_K=20
WMF_K=40
LWMFu_α=0.2
LWMFu_α=0.4
LWMFu_α=0.6
LWMFu_α=0.8

0 20 40 60 80 100
0.08

0.09

0.10

0.11

0.12

R
ec

al
l

Anchor Number

WMF_K=20
WMF_K=40
LWMFu_α=0.2
LWMFu_α=0.4
LWMFu_α=0.6
LWMFu_α=0.8

(a) (b)

(c) (d)

Fig. 5 Comparison with different discounts of anchor points. a Precision on Foursquare, b recall on Foursquare, c precision on Gowalla, d recall
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6 Conclusion and Future Work

In this paper, we propose LWMF which selects sub-ma-

trices to model the user behavior better. LWMF relieves

the sparsity problem by sub-matrix factorization. More-

over, we propose DCGASC to select sub-matrix set, which

improves the performance of LWMF. The extensive

experiments on two real datasets demonstrate the effec-

tiveness of our approach compared with state-of-the-art

method WMF.

We will study the three further directions: (1) to speed

up selecting sub-matrices; (2) in this paper, we first select

the sub-matrix set by selecting anchor points, then do the

weighted matrix factorization for each sub-matrix. So we

need two steps to optimize the objective function. We can

try to find the methods to optimize the local matrix fac-

torization in only one objective function; (3) we can further

leverage other special additional information into LWMF

in some special scenarios, such as the geographical infor-

mation in POI recommender.
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