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Abstract

Background: Niemann-Pick type C (NPC) is an autosomal recessive disease in which cholesterol and glycosphingolipids
accumulate in lysosomes due to aberrant cell-transport mechanisms. It is characterized by progressive and ultimately
terminal neurological disease, but both pre-clinical studies and direct human trials are underway to test the safety and
efficacy of cholesterol clearing compounds, with good success already observed in animal models. Key to assessing the
effectiveness of interventions in patients, however, is the development of objective neurobiological outcome measures.
Multisensory integration mechanisms present as an excellent candidate since they necessarily rely on the fidelity of
long-range neural connections between the respective sensory cortices (e.g. the auditory and visual systems).

Methods: A simple way to test integrity of the multisensory system is to ask whether individuals respond faster to the
occurrence of a bisensory event than they do to the occurrence of either of the unisensory constituents alone. Here, we
presented simple auditory, visual, and audio-visual stimuli in random sequence. Participants responded as fast as
possible with a button push. One 11-year-old and two 14-year-old boys with NPC participated in the experiment and
their results were compared to those of 35 age-matched neurotypical boys.

Results: Reaction times (RTs) to the stimuli when presented simultaneously were significantly faster than when they
were presented alone in the neurotypical children, a facilitation that could not be accounted for by probability
summation, as evidenced by violation of the so-called ‘race’ model. In stark contrast, the NPC boys showed no such
speeding, despite the fact that their unisensory RTs fell within the distribution of RTs observed in the neurotypicals.

Conclusions: These results uncover a previously undescribed deficit in multisensory integrative abilities in NPC, with
implications for ongoing treatment of the clinical symptoms of these children. They also suggest that multisensory
processes may represent a good candidate biomarker against which to test the efficacy of therapeutic interventions.

Keywords: Race model, Neurodegeneration, NPC1, NPC2, Lysosomal disease, Cross-modal, Rare disease, Sensory
processing, Audio-visual, Sensory integration
Background
Niemann-Pick type C (NPC) disease is a rare progressive
lysosomal storage disorder caused by mutations in either
the NPC1 or NPC2 gene, with about 95% of cases attribut-
able to the former [1,2]. Individuals with NPC cannot
properly metabolize cholesterol and other lipids which ac-
cumulate in the brain and in visceral organs (e.g. liver and
spleen), ultimately causing cell dysfunction and organ
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system failure. Although NPC1 and NPC2 proteins are
expressed ubiquitously, brain tissue is the most severely
affected, resulting in widespread intraneuronal storage of
cholesterol and glycosphingolipids that ultimately results in
massive neurodegeneration [3-6]. While appearing rela-
tively typical during the early stages of the disease, over
time NPC children develop vertical gaze palsy, motor sys-
tem impairment, learning difficulties and clumsiness, as
well as seizures [7-9]. Documented changes in brain include
ectopic dendrite growth, altered synaptic connectivity af-
fecting cortical pyramidal neurons, axonal degeneration,
myelin loss, gliosis and the formation of neurofibrillary tan-
gles similar to Alzheimer's disease [10,11]. Neuronal death
is prominent in some brain regions such as the cerebellum
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where Purkinje cells selectively die, undoubtedly contribut-
ing to the clinically-evident motor system dysfunction
[5,10,12]. Effective treatments are limited, although promis-
ing clinical trials are underway based on results in animal
models of NPC [11,13,14].
Key to advancing new treatments for this and related

lysosomal diseases with neural involvement is the devel-
opment of objective biomarkers of neurological function
against which the efficacy of new drugs can be tested in
human patients. Our work and that of others has dem-
onstrated the essential role that multisensory integration
(MSI) plays in typical perception and cognition [15-24].
Because inputs from the various senses (e.g., the audi-
tory, visual and somatosensory systems) initially arrive
into widely separated regions of the neocortex, MSI
must involve ongoing communication between relatively
far-flung cortical regions, although it may well be initi-
ated even earlier in the hierarchy within nuclei of the
thalamus [25]. In this sense, probing multisensory func-
tioning provides an excellent assay of inter-regional
communication, and the fidelity of the multisensory sys-
tem must at least in part be a function of the integrity of
long-range neural connectivity. For this reason we ex-
pected measures of MSI to provide a sensitive metric of
neural dysfunction in NPC disease. What's more, MSI
processes show a prolonged period of neuroplasticity,
with continued development of these abilities seen into
the late teenage years [22,26]. As such, measures of MSI
may provide useful biomarkers against which to test the
impact of treatment on brain function.
A straightforward way to measure multisensory inte-

gration is to compare reaction times (RT) to unisensory
and multisensory events during a simple speeded re-
sponse task. It has been firmly established that adults
react more quickly to multisensory than unisensory in-
puts [21,27-30]. For such behavioral facilitation to be
unequivocally attributed to multisensory integration, this
speeding up must exceed what is predicted due to the
mere presence of a redundant signal (i.e. two inputs).
That is, when two stimulus copies are presented simul-
taneously, even if both were to be processed entirely in-
dependently in the brain, one would still expect to see a
speeding up of responses since there is increased likeli-
hood that either of the two stimuli will yield a fast
reaction-time relative to just one input. This is often re-
ferred to as the Redundant Signals Effect (RSE), and its
presence does not, of itself, necessarily point to integra-
tion effects. The so-called “race model” is applied to test
for the presence of true multisensory effects, by asses-
sing whether responses to multisensory inputs are faster
than the fastest possible responses produced by the uni-
sensory conditions [31-33]. This is achieved by compar-
ing the probabilities of making fast responses during
multisensory events to those during unisensory events.
The race model is said to be violated whenever the cu-
mulative probability (CP) of a response at a given latency
for the multisensory condition is greater than the sum of
the CPs from each of the unisensory conditions. When
the race model is violated, it is taken to be a strong indi-
cation that the inputs from the two different senses are
interacting (in a non-additive way) to produce the speed-
ing of the responses. Work from our laboratory suggests
that this metric of MSI RT-speeding follows a develop-
mental trajectory, with little evidence for behavioral en-
hancement before age 9, but that near full maturity is
reached by age 16 [26,34]. Moreover, in these develop-
mental studies, behavioral performance was shown to
benefit from MSI at the single participant level for 95%
of neurotypical participants aged 11-16, and 100% of
participants aged 13-16. This relatively protracted devel-
opmental trajectory of MSI behavioral facilitation is con-
sistently seen across laboratories [35,36]. Here we used
this behavioral approach to assay multisensory function
in three boys with NPC – two adolescents (14 years, 7
months & 14 years, 5 months old) and one younger boy
(11 years, 1 month) – comparing their performance to
that of 16 neurotypical adolescent boys aged 13-15, and
19 neurotypical boys aged 10-13, respectively.

Methods
Participants
Two adolescent boys with NPC (14 years, 7 months &
14 years, 5 months of age respectively) and one 11 year
old boy with NPC (11 years, 1 month) participated in
the study. NPC was clinically diagnosed by metabolic spe-
cialists and confirmed via genetic testing. Participants
were administered the Wechsler Abbreviated Scales of
Intelligence (WASI-II) The WASI-II is a short and reliable
measure of intelligence that assesses general intellectual
functioning. All four subtests were used: Vocabulary,
Block Design, Similarities, and Matrix Reasoning. Vocabu-
lary measures the individual’s expressive vocabulary, ver-
bal knowledge, and fund of information. Block Design
measures spatial visualization, visual-motor coordination,
and abstract conceptualization. The Similarities subtest
measures verbal concept formation, abstract verbal rea-
soning ability, and general intellectual ability. Matrix
Reasoning measures non-verbal fluid reasoning and gen-
eral intellectual ability. Scores are reported as a Verbal
Comprehension Index (VCI), a Perceptual Reasoning Index
(PRI), and a Full Scale Intelligence Quotient (FSIQ), which
represents performance on all 4 subtests.
The three NPC patients were within the mild to moder-

ately impaired range and moderately to severely impaired
range (Patient 1: FSIQ = 76, VCI = 82, PRI = 74; Patient 2:
FSIQ = 62, VCI = 69, PRI = 58; Patient 3: FSIQ = 63, VCI =
72, PRI = 56). Scores on each subtest of the WASI-II are
detailed in Table 1. The two older patients exhibited mild



Table 1 Wechsler Abbreviated Scale of Intelligence scores

Wechsler Abbreviated Scale of Intelligence (WASI-II) NPC Participant 1 NPC Participant 2 NPC Participant 3

FULL SCALE IQ (FSIQ) 76 (5%) 62 (1%) 63 (1%)

Verbal Comprehension Index (VCI) 82 (12%) 69 (2%) 72 (3%)

Vocabulary 29 27 31

Similarities 49 34 34

Perceptual Reasoning Index (PRI) 74 (4%) 58 (0.3%) 56 (0.2%)

Block design 32 26 28

Matrix reasoning 36 25 21

IQs are standard scores, with a range of 50-160, mean = 100, SD = 15. Corresponding percentile ranks are in parenthesis. Subtests scores (Block Design, Vocabulary,
Matrix Reasoning, and Similarities) are T-scores, with a range of 20-80, mean = 50, and SD = 10.
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high-frequency hearing loss and one of the older patients
as well as the younger one had lower than average visual
acuity. It is important to emphasize that both auditory and
visual stimuli used in the experiment were well above their
detectability thresholds. The reader is referred to Table 2
for more comprehensive phenotypic descriptions of each
of the three NPC participants.
Table 2 Clinical impressions

NPC
Participant 1

Participant 1 is a 14 year 8 month old adolescent boy, wh
He was diagnosed with NPC in 2005 and is currently on th
sodium), Keppra (levetiracetam), and Coumadin (warfarin).
clumsiness and unclear speech, which were also observed
therapy. He is home-schooled due to the frequency of his
high frequency hearing loss (i.e. 4,000 Hz tones were not d
routine vision screen (Snellen chart) revealed 20/20 and 20/3
functioning, as measured by the Full Scale IQ on the WASI-II
Verbal Comprehension Index score fell in the mildly impa
Reasoning Index score which fell in the mild to moderatel
significant. The examiner noted that on several trials of th
the modeled design, however with a 90° rotation. The ex
items called for short succinct answers. This likely contribute
by the subtest can be addressed with one word explanation
developed explanation. Further, the examiner notes that spe
scores underestimating the participant’s true abilities. The ex
frequently towards the end of the testing session.

NPC
Participant 2

Participant 2 is a 14 year 10 month old adolescent boy, wh
study. He was diagnosed with NPC in 2005; this patient ha
the following medications: Trileptal (oxcarbazepine) and Z
occurring 10 months prior to testing. The participant curre
school. A routine hearing screen performed at the lab reve
detected at <60 dB). A routine vision screen (Snellen chart
functioning, as measured by the Full Scale IQ on the WASI-II
Comprehension Index score was in the mild to moderately im
Reasoning Index score which fell in the moderately to severel
significant. The examiner observed that the participant had m
subtests (Block Design). Poor articulation was noted at times,

NPC
Participant 3

Participant 3 is an 11 year 1 month old boy, who was eval
was diagnosed with NPC in 2013. He is currently on the fo
has a history of seizures, including a 4 day hospitalization
render him unconscious. The participant currently receives
specialized classroom setting at school. Normal hearing w
routine vision screen (Snellen chart) revealed 20/50 and 20/3
functioning, as measured by the Full Scale IQ on the WASI-II
Verbal Comprehension Index score fell in the mild to modera
Perceptual Reasoning Index score which fell in the moderate
participant had much difficulty with Block Design subtest of t
possible’. On the Matrix Reasoning subtest of the PRI, the par
starting point for his age and testing here was quickly discon
and cooperative testing session.
Thirty-five neurotypical boys also participated in this
study. Sixteen adolescent boys aged 13-15 served as an
age-matched control group for the two older patients.
Nineteen boys aged 10-12 served as an age-matched con-
trol group for the younger patient. Participants were
screened for neurological and psychiatric disorders, as well
as other major medical conditions. These data were
o was evaluated 3 months after his participation in our behavioral study.
e following medications: Zavesca (miglustat), Depakote (divalproex
He has a history of seizures onsetting at age 14. Parental reports indicate
in the lab. The participant currently receives occupational and speech
seizures. A routine hearing screen performed at the lab revealed mild
etected at <60 dB & 2,000 Hz tones were not detected at <45 dB). A
0 visual acuity, in the right and left eyes respectively. Overall intellectual
, was estimated in the mild to moderately impaired range (FSIQ = 76). His
ired range (VCI = 82) and was somewhat higher than his Perceptual
y impaired range (PRI = 74); however this difference was not statistically
e Block Design subtests of the PRI, the participant was able to reproduce
aminer noted that the participant performed much better when verbal
d to his higher Similarities score, as several of the relationships probed
s, as compared to the Vocabulary subtest which requires a more lengthy,
ech was effortful and may have affected performance, with the current
aminer also noted that the participant appeared fatigued and yawned

o was evaluated 3 months after his participation in our behavioral
s a I1061T and M1142T mutation on exons 21 and 22. He is currently on
avesca (miglustat). He has a history of seizures with the last seizure
ntly receives occupational therapy, speech therapy, and has a 1:1 aide at
aled mild high frequency hearing loss (i.e. 4,000 Hz tones were not
) revealed 20/60 visual acuity in both eyes. Overall intellectual
, was estimated in the moderately impaired range (FSIQ = 62). His Verbal
paired range (VCI = 69) and somewhat higher than his Perceptual
y impaired range (PRI = 58); however, this difference was not statistically
otor difficulties when manipulating the blocks used in one of the PRI
but this was not believed to have interfered with testing.

uated on the same day as his participation in our behavioral study. He
llowing medications: Keppra (levetiracetam) and Zavesca (miglustat). He
due to seizure-like activity. He has suffered a concussion that did not
occupational therapy and academic help with reading and math in a
as confirmed through a routine hearing screen performed at the lab. A
0 visual acuity, in the right and left eyes respectively. Overall intellectual
, was estimated in the moderately impaired range (FSIQ = 63). His
tely impaired range (VCI = 72) and was significantly higher than his
ly to severely impaired range (PRI = 56). The examiner noted that the
he PRI, often asking whether the designs presented to him were ‘even
ticipant could not correctly answer any of items at or beyond the
tinued. The examiner notes that the participant was pleasant, friendly,
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partially reported in a pair of previous studies [26,34]. Par-
ticipants were also administered the WASI-II and Full
Scale IQ (FSIQ), Verbal Comprehension Index (VCI), and
Perceptual Reasoning Index (PRI) scores were obtained,
which for these groups were in the average or high aver-
age range (Older group mean (standard deviation - SD):
FSIQ = 113 (12), VCI = 104 (14), PRI = 110 (12); Younger
group: FSIQ = 113 (14), VCI = 108 (12), PRI = 113 (13)).
Audiometric evaluation confirmed that all participants
had within-normal-limits hearing thresholds. All partic-
ipants had normal or corrected-to-normal vision.
Before entering into the study, informed written con-

sent was obtained from the children's parents, and ver-
bal or written assent was obtained from children. All
procedures were approved by the Institutional Review
Board at The Albert Einstein College of Medicine and
were in accordance with the tenets for the responsible
conduct of human research laid out in the Declaration
of Helsinki.

Paradigm & task
Stimuli
Auditory alone A 1000-Hz tone (duration 60 ms; 75 dB
SPL; rise/fall time 5 ms) was presented from a single
Hartman Multimedia JBL Duet speaker located centrally
atop the computer monitor from which the visual stimu-
lus was presented.

Visual alone A red disc with a diameter of 3.2 cm (sub-
tending 1.5° in diameter at a viewing distance of 122 cm)
appearing on a black background was presented on a Li-
quid Crystal Display (LCD) monitor (Dell Ultrasharp
1704FTP, 60Hz refresh rate) for 60 ms. The disc was lo-
cated 0.4 cm superior to central fixation along the vertical
meridian (0.9° at a viewing distance of 122 cm). A small
cross marked the point of central fixation on the monitor.

Auditory and visual simultaneous The “auditory-alone”
and “visual-alone” conditions described above were pre-
sented simultaneously. The auditory and visual stimuli
were presented in close spatial proximity, with the
speaker placed atop the monitor in vertical alignment
with the visual stimulus.

Procedures
Participants were seated in a dimly lit, sound-attenuated
electrically shielded room (Industrial Acoustics Company,
Bronx, New York) 122 cm from the monitor. They were
given a response pad (Logitech Wingman Precision) and
instructed to press a button with their right thumb as
quickly as possible when they saw the red circle, heard the
tone, or saw the circle and heard the tone together. The
same response key was used for all 3 stimulus types. Pres-
entation software (Neurobehavioral Systems, Inc., Albany
CA) was used for stimulus delivery. This software ensures
precise timing of stimulus presentation and is commonly
used in neuroscience, psychophysics, and psychological
experiments. It takes into account the refresh rate of the
computer monitor when presenting visual stimuli. In this
experiment, stimulus delivery in the multisensory con-
dition was triggered by the onset of the visual stimulus.
All 3 stimulus types were presented with equal probability
and in random order in blocks of 100 trials. Inter-stimulus-
interval (ISI) varied randomly between 1000 and 3000
(ms) according to a uniform (square wave) distribution.
Participants completed a minimum of 8 blocks, with most
completing 10. Breaks were encouraged between blocks to
help maintain concentration and reduce restlessness or
fatigue (these methods are also presented in detail in
Brandwein et al [26,34] and Molholm et al [21]).

Interrogating the race model
To test the race model, we first calculated the cumula-
tive probability of reaction times across the three stimu-
lus types (audio-alone, visual-alone, and audio-visual) for
each of the participants. The range of RTs accepted was
determined at the individual participant level with the
slowest and fastest 2.5% of trials excluded. Using a 95%
cutoff to define the time window for acceptable trials ra-
ther than an absolute cutoff value allowed us to more
accurately capture the range of RTs for each participant,
an important factor in calculating the race model (de-
scribed below). The RT distribution was then divided
into quantiles from the 5th to the 100th percentile in in-
crements of 5%. For any RT latency, t, the race model
holds when this CP value is less than or equal to the
sum of the CP from each of the unisensory conditions.
Conversely, the race-model is said to be violated if the
CP for any audiovisual RT latency is larger than that
predicted by the race model (the sum of the unisensory
CPs) at any quantile. Violations were expected to occur
in the first third of the distribution (i.e. the quantiles
containing the fastest RTs at the lower end of the RT
range) because this is when interactions between visual
and auditory inputs would result in the fulfillment of a
response criterion before either input alone could satisfy
the same criterion [31]. At the individual level, a partici-
pant was said to have shown race model violation if the
CP of his RT to the audiovisual stimulus was larger than
that predicted by the race model at any quantile within
the first third of the distribution. In order to more easily
interpret results from the race model test, a Miller in-
equality value can be computed, both at the individual
and group levels, by subtracting the CP predicted by the
race model from the CP of the multisensory condition.
Any positive “Miller values” indicate race model violation
and RT speeding that cannot be accounted for by prob-
ability summation or by the ‘redundant signals effect’.
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Results
Behavioral performance - reaction times & hit rates
The neurotypical group had a higher percentage of hits
(correctly pressing the button to stimulus presentations)
than the NPC participants. Hit rates are presented in
Table 3. The current report was primarily concerned with
the speed of responding. Overall, neurotypical participants
were faster than the NPC patients (Table 4 and Figure 1).
In order to examine RT variability independent of mean
RT differences between the groups and between expe-
rimental conditions, the coefficient of variation (CV) was
calculated for auditory, visual, and audiovisual conditions
for each individual participant. The CV for the older pa-
tients fell within the neurotypical distribution or over-
lapped with individual neurotypical outliers. The CV for
the younger patient fell outside (but close) to the neuroty-
pical distribution; however there were also younger neuro-
typical controls that were more variable than this younger
patient (see Additional file 1). What's more, in both neuro-
typical age-groups, variability was greatest for the auditory
condition and did not differ significantly between the two
other conditions. Observationally, the CV for individual
NPC patients did not appear to differ substantially across
experimental conditions. Nonparametric tests revealed no
significant differences in RT variability based on stimulus
type. Thus, increased variability in the multisensory condi-
tion should not affect the race model analysis presented
below (for a Discussion see [37]). Detailed analyses and
figures related to CV are provided in Additional file 1.
A repeated measures ANOVA revealed a significant ef-

fect of stimulus type on RTs for both the older F(2,30) =
12.1, p < .001 and younger F(2,36) = 91.4, p < .001 neuroty-
pical groups. Follow-up protected t-tests confirm a speeding
up of RTs for the multisensory condition for the older
neurotypical group (Audio vs. AV - t(15) = 3.4, p < .01;
Visual vs. AV - t(15) = 5.0, p <. 01; Audio vs. Visual - t
(15) = -.31, p = .76) and for the younger neurotypical group
(Audio vs. AV - t(18) = 10.4, p < .01,Visual vs. AV- t(18) =
12.4, p < .01). Additionally, the younger group had signifi-
cantly faster RTs to the auditory condition as compared to
the visual condition, t(18) = -3.1, p < .01.
As our NPC sample contained only 3 participants, we

performed a nonparametric bootstrapping procedure at
Table 3 Hit rates

Au

NPC Participant 1 59%

NPC Participant 2 78%

NPC Participant 3 57%

Older neurotypicals (13-15 years old; N = 16) 92%

Younger neurotypicals (10-12 years old; N = 19) 91%

*Hit rates are depicted as a percentage reflecting correct responses divided by tota
the neurotypical group data. For the NPC participants hit rates is a within subject v
the level of the individual participant data to compare RTs
across the three sensory conditions (Figure 2). For each
NPC patient, we compared the RTs in each of the unisen-
sory conditions against the multisensory RTs, as well as
against each other. The observed differences in mean RT
between Audio vs. AV,Visual vs. AV, and Audio vs. Visual
were compared with reference distributions of differences
that were derived by iteratively randomizing (10,000
times) between the two original RT distributions - i.e.
individual-subject single trial RTs for 1) Audio and AV, 2)
Visual and AV, and 3) Audio and Visual. A two-tailed
threshold of p <0.05 was used to define significance. The
p value for a randomization test was calculated from the
proportion of values in the reference difference distribu-
tion that exceeded the actual observed difference. In other
words, we created a randomized sample distribution of
possible reaction time differences, and sought to deter-
mine the likelihood that the actually observed differences
(either speeding up or slowing down) were due to chance.
There was no significant difference between auditory and
visual RTs for the older NPC participants. The younger
participant (Participant 3) showed significantly faster
RTs in the visual condition compared to the auditory
(p = .015). A significant speeding up was noted in the
multisensory condition relative to the visual condition
(p < .01), but not the auditory condition, for Participant 1.
This was likely driven by the response to the auditory
stimulus as the speeding up is only significant in the AV vs.
V comparison. A significant speeding up was noted in the
multisensory condition relative to the auditory condition
(p < .05), but not the visual condition, for Participant 3.
Again, this was likely driven by the response to the visual
stimulus as the speeding up is only significant in the
AV vs. A comparison. A significant speeding up in the
multisensory condition compared to both unisensory con-
ditions (p's < .01) was noted for Participant 2, indicating
the presence of a Redundant Signals Effect. These tests,
however, do not take into account facilitation due to multi-
sensory interactions, which will be tested below using the
race model calculation.
If motor difficulties alone were to account for the lar-

ger variance in RTs and lower hit rates in the NPC par-
ticipants, one would expect these to occur at the same
ditory Visual Audio-visual

60% 62%

73% 83%

63% 68%

(3) 91% (4)* 93% (2)*

(4)* 88% (6)* 91% (4)*

l number of stimuli presented, with the standard deviations in parenthesis for
alue and therefore has no SD.



Table 4 Reaction times

Auditory Visual Audio-visual

NPC Participant 1 416 (218) 426 (156) 387 (168)

NPC Participant 2 555 (282) 545 (277) 472 (225)

NPC Participant 3 749 (440) 680 (374) 643 (397)

Older neurotypicals (13-15 years old; N = 16) 379 (95)* 381 (93)* 348 (79)*

Younger neurotypicals (10-12 years old; N = 19) 390 (109)* 404 (109)* 341 (102)*

*Reaction times are given in milliseconds with the standard deviations in parenthesis. For the NPC participants the SD reflect a within subject value. For the
neurotypicals the SD is computed on the group mean.
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probability across all three experimental conditions, which
is not the case in this sample. Deficits in motor re-
sponse do not account for the differential effect noted
in 2 of the patients across the unisensory and multisen-
sory conditions. The two NPC adolescents had faster
RTs and a higher percentage of hits in the multisensory
conditions compared to the unisensory. To probe the
nature of this speeding up and assess whether the pa-
tients may be benefitting from an integrative process,
we applied a test for multisensory integration effects (i.e.
testing the race model). In this test a within-individual
analysis is employed, thus accommodating the between
group differences already noted.

Multisensory integration effects - race model
None of the three NPC participants showed any evi-
dence of race model violation. Although in some cases,
Figure 1 Reaction time box and whisker plots. The plots show the distr
year olds (Panel B), for the two unisensory (Audio and Visual) and the mult
RT values for each of the Niemann-Pick type C participants and the black c
neurotypical groups.
they showed faster RTs in the audiovisual condition (see
above), this was not greater than could be accounted for
by simple probability summation. In stark contrast, all of
the neurotypical adolescents in our older sample of 13-15
year olds showed individual-level race model violation,
suggesting that in this age group, multisensory integration
reliably improves behavioral performance under these
conditions. For the 11 year old NPC patient, an additional
cutoff criterion was applied to his RT data before comput-
ing the race model. Unlike the rest of our sample, even
after excluding the fastest 2.5% of RTs, this participant still
had several anticipatory RTs that would be physiologically
impossible (i.e. response latencies in the 40-100 ms range).
These anticipatory responses were evenly distributed across
all stimulus conditions (12% of the Audio trials, 13.5% Vis-
ual trials, and 10% of the AV trials). In order to eliminate
any button presses that weren't directly in response to the
ibutions of mean RT values for 13-15 year olds (Panel A) and for 10-12
isensory (Audiovisual) conditions. The red symbols represent the mean
rosses represent mean RT values for individual outliers from the



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Nonparametric randomization plots for the individual-participant reaction time data for each Niemann-Pick type C patient.
RTs in each of the unisensory conditions were compared against the multisensory RTs (middle and right columns), and against each other (left
column). The observed differences in mean RT between Audio vs. AV, Visual vs. AV, and Audio vs. Visual (red line) were compared with reference
distributions of differences that were derived by iteratively randomizing (10,000 times) between the two original data sets (i.e. individual-subject
single trial RTs for 1) Audio and AV, 2) Visual and AV, and 3) Audio and Visual). Significant differences (p < .05) are indicated by an asterisk.
The findings are mixed. In two of the three patients, any apparent multisensory speeding is not significantly faster than the faster of the two
unisensory responses. However, in one of the patients (Participant 2), RTs to the AV condition are significantly faster compared to both unisensory
inputs. This particular patient is showing strong evidence for the so-called redundant sensory effect, but this speeding does not violate the
race model.
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stimulus, a hard cutoff criteria of 150ms was employed in
his case, as it is generally agreed upon that shorter response
latencies indicate actions that were initiated before the
stimulus onset [38-44]. In the younger sample of 10-12 year
olds, 16 of the 19 participants showed individual-level race
model violation. Figure 3 depicts the CP distributions of re-
action times for each of the experimental conditions –
audio-alone (blue), visual-alone (green), audiovisual (red),
and the race model prediction (using the sum of the CPs of
the unisensory responses (teal). Data for the three NPC
boys are depicted across the top row. Across the middle
row, data from three neurotypical individuals whose RT
variability closely matched that of the NPC children are
plotted for comparison. Despite similar RT variance, each
of these neurotypicals shows race model violation. The bot-
tom row shows data from an additional three neurotypical
boys, where RT mean has been matched to each of the
NPC boys. Again, all 3 neurotypicals show clear race model
violation.
Figure 3 Cumulative reaction time (RT) probability distributions. The
patients (top row) are compared to those of six neurotypical boys. The thre
chosen for their highly similar RT variance. The bottom row depicts three a
of the NPC boys. In the case of all six neurotypical controls, the observed c
(red curve) is faster than the prediction of the race model (cyan curve), ind
the three NPC cases is this pattern observed.
Figure 4A & 4C depict plots of “Miller inequality”
values which were obtained by subtracting the CP pre-
dicted by the race model from the CP for the multisen-
sory condition. Positive values represent race model
violation. Here it can be seen that the traces represent-
ing the two older NPC participants (4A- red) are never
positive, whereas the trace representing the older neuro-
typical controls (blue) is positive for the quantiles repre-
senting the fastest ~30% of RTs. The shape of this Miller
inequality function for neurotypical controls is highly
similar to those reported in similar studies examining
audio-visual integration [26,34]. The Miller inequality
plot for the younger neurotypical controls (Figure 4C-
blue) closely approximates the pattern seen in the older
children, albeit more immature. In the younger NPC par-
ticipant, no race model violation is noted and the shape of
his Miller inequality plot has the same atypical pattern
noted in the two older NPC participants. Figure 4B & 4D
depict box and whisker plots, which offer an additional
cumulative probability of RTs for the three Niemann-Pick type C
e age-matched comparison subjects depicted along the middle are
ge-matched controls chosen for their highly similar mean RTs to those
umulative RT distribution to the multisensory audio-visual condition
icating race model violation (i.e. multisensory integration). In none of



Figure 4 Race model test and Miller value spread. A & C). Race model plots depict the Miller value for the neurotypical groups (blue curves)
and the Niemann-Pick type C patients (red curves). Values above zero indicate race model violation, which are evident in both the older
neurotypicals (N = 16; Panel A) and the younger neurotypicals (N = 19; Panel B), but not in the NPC patients. The shape of the Miller inequality
plot observed in the NPC patients is highly atypical and consistent across all three patients. B & D). Box and Whisker plots depict the spread of
Miller values for the first 6 RT quantiles for the neurotypical group and the single subject Miller values for each of the NPC adolescents (red circles
and red squares). This plot depicts the spread of Miller values for approximately 99% of both neurotypical groups, with the box representing 50%
of the data, the whiskers representing the top 25 and bottom 25 percent, and the horizontal bisecting line representing the median Miller value
for each neurotypical group at that quantile. It can be seen that all three NPC patients (red shapes) fall outside of the distribution of Miller values
for their age-matched neurotypical group. Multisensory facilitation at the individual participant level was noted in all 16 of the 13-15 year olds
and in 16 of 19 of the 11-12 year old neurotypicals.
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representation of these data. Here the box and whiskers
(blue rectangles with black bars) represent the Miller in-
equality values for all of the participants in the neurotypical
group for the first six quantiles, which is the section of the
RT distribution containing the fastest responses and also
where race model violations are expected and seen in the
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neurotypical group (shaded area in Figure 4A & 4C). The
small red shapes (squares and circles) represent the Miller
inequality values for each NPC participant at these quan-
tiles. This plot clearly shows that all three NPC boys fall
completely outside the normal distribution between the
second and sixth quantiles (10th, 15th, 20th, 25th, and 30th
percentiles). Although race model violation is seen from
the first quantile onward for the neurotypical participants,
it is not necessarily seen for all participants at the exact
same quantiles. That is to say that some participants will
show race violation sooner than others and some will con-
tinue to show race model violation for several quantiles
while the effect for others will dissipate more quickly. These
effects, however, are generally seen in first third of the CP
distribution as interactions between auditory and visual
stimuli are likely to occur during these shorter latencies
and so here we focus on the first 5 quantiles of this distri-
bution. Further, we note that multisensory facilitation, as
evidenced by race model violation (i.e. Miller inequality
value greater than 0) was noted at the individual partici-
pants level for all 16 of the 13-15 year old neurotypical con-
trols. For the 10-12 year olds, an age in which multisensory
integration is still emerging and somewhat immature
[45,46], individual-level race model violation was seen for
16 out of 19 (84%) neurotypical controls. The NPC partici-
pants, on the other hand, failed to violate the race model at
any point along the CP distribution. This lack of race model
violation is especially striking for the older NPC partici-
pants as mean RT values for these NPC participants fall
well within the neurotypical distribution in the case of one
of the NPC patients, and overlaps with neurotypical outliers
for the other patient (Figure 1A). This suggests a true mul-
tisensory deficit in that AV gains are accounted for by prob-
ability summation and there are no clear overall unisensory
deficits contributing to this finding. For the younger partici-
pant, this is harder to say as his mean RTs for the auditory
and the AV conditions fall slightly outside the neurotypical
distribution. Nonetheless, the gains noted in his case can be
adequately explained without evoking multisensory interac-
tions as they are no greater than that predicted by probabil-
ity summation.

Discussion
To our knowledge, this is the first study to examine
multisensory processes in NPC. The observed lack of
race model violation in NPC suggests compromised con-
nectivity between auditory and visual areas of the brain,
possibly at both sub-cortical and cortical levels. It is
likely that these inter-sensory connections develop very
early in life, strengthen across childhood, and stabilize
during adolescence [26,34,47,48].
Understanding when exactly during the progression of
NPC that MSI becomes compromised will require fur-
ther investigation and will be crucial to maximizing the
clinical usefulness of this measure in the NPC population.
Two possible scenarios are that; 1) MSI-induced behav-
ioral facilitation never quite reaches “healthy” levels in
these individuals or 2) that like many of the other symp-
toms exhibited in this population, NPC patients experi-
ence a degradation of MSI function with progression of
the disease state. In either case, this metric of MSI presents
a behavioral marker against which to measure improved
neurocognitive function due to experimental treatment
interventions.
In terms of everyday functioning, an obvious question is

what impact deficits in multisensory processing will have
on the abilities of NPC children to effectively navigate
their environment. For example, effective MSI leads to im-
proved speech perception when a listener has the benefit
of watching the facial articulations of a speaker, especially
if the fidelity of the auditory input is affected by noisy
background environmental conditions [17,22,23,49,50].
Thus, one implication is that these children may find com-
munication more difficult in challenging multi-speaker
scenarios, not uncommon in classrooms or other social
settings. MSI is also vital to more basic functions, such as
maintaining balance through visuo-vestibular and visual-
somatosensory integration [15] and in speeded orienting
to reliable multisensory events, whether it be for object
identification or cueing initiation of approach/avoidance be-
haviors [16,18-21,24]. A more comprehensive understand-
ing of the multisensory integration abilities of these children
is clearly called for, and it will be of significant interest to as-
sess the underlying neurophysiology in turn [51,52].
Another obvious outcome of the current study is that the

NPC children show basic motor deficits. While it is true
that there are neurotypical participants who are as slow to
respond to unisensory inputs, and others who show simi-
larly high variance in RTs, no neurotypical children show
the poor response rates we see in the NPC children. Simply
put, the NPC children are slow, variable and inaccurate and
this triumvirate of issues clearly points to fundamental
sensory-motor issues. That said, we do not believe that the
MSI deficits observed here are primarily due to these issues,
since these issues apply equally to all the experimental
conditions (both unisensory and multisensory; also see
Additional file 1). As the race model analysis is conducted
at the individual participant level, where the cumulative
probability distributions are calculated for each participant
and within-subject RTs are compared to determine the mul-
tisensory benefit, general motor delays are accounted for. It
could reasonably be asked, though, whether simple tests of
motor speed, variance and accuracy might not prove equally
useful biomarkers for NPC. However, it bears re-
emphasizing that while the NPC children do show these is-
sues, their performance levels do not fall completely outside
the normal distribution for these measures, whereas for the
measures of multisensory integration, they clearly do.
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It is worth pointing out that these children with NPC
are, at some basic level, benefitting from multisensory
stimulation, even if not in an integrative manner. The fact
that mean RTs and hits are improved in some cases, even
in the absence of significant multisensory integration,
when patients are exposed to stimulation in two sensory
streams is promising, especially in terms of sensory train-
ing. This may have implications for the development of as-
sistive technologies used for communication, particularly
during the more progressed phases of the disease.
A natural question that arises is whether the multisen-

sory deficit we observe in NPC can be meaningfully im-
pacted through intervention. The landscape is actually
quite promising in this regard since several studies now
point to multisensory and unisensory gain with repeated
training. These studies show that training can lead to
improvement in MSI-dependent tasks such as speech-
perception [53], that training can narrow the time window
during which two sensory inputs are seen as “synchron-
ous” and thus integrated [54], and that MSI networks can
be engaged and enhanced in training activities where ab-
stract stimuli are paired, such as specific sounds with ab-
stract shapes, or musical tones with symbols [55,56].
Work in animal models also supports the notion that sen-
sory integration abilities can be impacted through practice
with training-induced multisensory enhancement noted in
both behavior and activity patterns at the single cell level
in the superior colliculus, in both juvenile [57] and adult
cats [58].
An obvious limitation of the current work is the rela-

tively small cohort of three patients with NPC that we
were able to test. Ideally, one would like to have greater
numbers. However, the disease prevalence rate for NPC
is estimated at 1-in-120,000 [6,8,59], so recruitment of
larger populations is extremely challenging. It is worth
emphasizing that the atypical multisensory integration
pattern noted here is highly consistent across the 3 NPC
patients in our sample and the findings are strength-
ened by comparison of these 3 patients to large existing
datasets of neurotypical age-matched children. In all 3
cases, the performance metrics of the NPC patients
fall completely outside the “normative” curve for MSI
development.

Conclusions
This study uncovered clear multisensory deficits in
three patients with NPC. The simple-to-acquire mea-
sures of multisensory response speed described here
may prove to be useful endpoints against which to track
disease progression and to assess the efficacy of thera-
peutic interventions. Specific environmental accommo-
dations should be considered to address the potential
impact of deteriorating multisensory mechanisms in
these children.
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