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1 Introduction

Over the last few years there has been increasing interest in defining and studying super-

symmetric gauge theories on curved backgrounds. Such constructions lead to interesting

classes of observables that can be computed exactly, which may in turn be used to test and

explore conjectured dualities. In this paper we focus on the case of five-dimensional gauge

theories. These have been defined on round spheres [1–5], as well as on certain continu-

ous deformations thereof [6, 7], referred to as squashed five-spheres. The main observable

that can be computed exactly in these theories is the partition function Z, which depends

non-trivially on the background geometry. A particular class of five-dimensional supercon-

formal gauge theories, with gauge group USp(2N) and arising from a D4−D8-system, is

expected to have a large N description in terms of massive type IIA supergravity [8–10].

In [5] the large N limit of the partition function of these theories on the round sphere

was computed and successfully compared to the entanglement entropy of the dual warped

AdS6 × S4 supergravity solution.

In this paper we shall present the first construction of gravity duals to gauge the-

ories on non-conformally flat backgrounds (specifically, certain families of squashed five-

spheres). As we shall explain, we may effectively work in six-dimensional Romans F (4)

supergravity [11], which is a consistent truncation of massive IIA supergravity on S4 [12].

In particular the computation of [5] effectively determines the six-dimensional Newton con-

stant. Having constructed supergravity solutions that have squashed five-sphere conformal

boundaries, we compute the holographic free energy F = − logZ by holographically renor-

malizing the on-shell Euclidean action. More specifically, we construct families of solutions

with different numbers of preserved supercharges. Two of these families are shown to be

dual to the 1/4 BPS and 3/4 BPS gauge theories defined in [7]. The perturbative partition

function for these theories has been computed in [6] and we explicitly show that the large N

limit of these partition functions is in precise agreement with the holographic free energies

of our supergravity solutions. We also present more general solutions (and in particular a

1/2 BPS solution) which have not previously been considered from the gauge theory side.

From the Killing spinors of a supersymmetric supergravity solution one can always con-

struct a certain Killing vectorK. For all solutions found in this paper the free energy is only

sensitive to this Killing vector F = F(K), and not to other parameters of the solution. It

is natural to conjecture that this is also the case for more general solutions, extending what

happens in four dimensions [13]. In addition we compute the expectation values of BPSWil-

son loops in these backgrounds, both in supergravity and in the large N matrix model, find-

ing precise agreement. Again the expectation value depends only on the Killing vector K.

The rest of this paper is organized as follows. In section 2 we discuss supersymmetric

gauge theories defined on squashed five-spheres, their exact partition function and the large

N limit. In section 3 we change focus and describe the Romans F (4) supergravity theory
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we will work with. Then in section 4 we present our supergravity solutions dual to the

squashed five-sphere backgrounds. In section 5 we apply holographic renormalization to

the Romans F (4) supergravity theory and use this to compute the holographic free energy

of our solutions. In section 6 we examine the supersymmetry conditions which arise at the

conformal boundary for the Romans supergravity theory. Another exact observable that

can be computed both in supersymmetric gauge theories and in supergravity are Wilson

loops, which are the subject of section 7. Finally, we end in section 8 with some discussion

and possible future problems to explore. We also include appendices A, B and C, which

expand upon some of the elements in the main body of the paper.

2 Supersymmetric gauge theories on squashed five-spheres

We begin in section 2.1 by describing the squashed five-sphere backgrounds of interest [6].

One can define a supersymmetric gauge theory with general matter content on such a

background, and in [7] the perturbative partition function was computed via a twisted

reduction of the supersymmetric index in six dimensions,1 that we summarize in section 2.2.

A particular class of five-dimensional gauge theories, with gauge group USp(2N) and arising

from a D4 −D8 system in massive type IIA string theory, is expected to have a large N

limit with a gravity dual. In section 2.3 we compute the large N limit of the partition

function for these theories using matrix model techniques.

2.1 SU(3) × U(1) squashed five-sphere

The squashed S5 backgrounds of interest are homogeneous spaces with symmetry SU(3)×
U(1). In particular this is the isometry group of the metric

ds25 =
1

s2
(dτ + C)2 + dσ2 +

1

4
sin2 σ(dθ2 + sin2 θdϕ2)

+
1

4
cos2 σ sin2 σ(dψ + cos θdϕ)2 , (2.1)

where we have defined the (local) one-form

C = −1

2
sin2 σ(dψ + cos θdϕ) . (2.2)

We refer to the parameter s as a squashing parameter, and note that s = 1 is the round

sphere. The coordinates in (2.1) realize the five-sphere as the total space of the Hopf circle

bundle over CP2, where τ is a 2π-period coordinate along the circle fibre. The coordinates

σ, ψ, θ, ϕ are then coordinates on the base CP
2, with ψ having period 4π, ϕ having period

2π, while σ ∈ [0, π2 ], θ ∈ [0, π]. The local one-form C in (2.2) satisfies

dC ≡ 2ω = − sinσ cosσdσ ∧ (dψ + cos θdϕ) +
1

2
sin2 σ sin θdθ ∧ dϕ, (2.3)

where ω is the Kähler two-form on CP
2.

1See also [14].
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In order to preserve supersymmetry one must also turn on other backgrounds fields.

In particular in [6] it was shown that one can define general supersymmetric gauge theories

on the above squashed five-sphere, provided one turns on a background SU(2)R gauge field

A =
(1 +Q

√
1− s2)

√
1− s2

s2
(dτ + C) , (2.4)

where we have embedded U(1)R ⊂ SU(2)R. More precisely, writing the SU(2)R ∼ SO(3)R
gauge field as a triplet of one-forms Ai, i = 1, 2, 3, we have A1 = A2 = 0, while A3 = A is

given by (2.4). For supersymmetric backgrounds the parameter Q takes the values Q = 1

and Q = −3, which lead to 3/4 BPS and 1/4 BPS solutions, respectively. Notice that the

gauge field (2.4) is also invariant under SU(3)×U(1), and is real when |s| < 1 but complex

for |s| > 1.

A supersymmetric background of course admits an appropriate Killing spinor, which

then enters the supersymmetry transformations of a supersymmetric gauge theory defined

on the background. Recall that a Killing spinor χ on the round S5 with s = 1, solving

∇mχ = − i
2γmχ where γm generate the Clifford algebra Cliff(5, 0) in an orthonormal frame,

transforms in the 4 of the SU(4) ∼ SO(6) isometry. The squashing breaks this symmetry

to SU(3) × U(1), and for Q = 1 the resulting Killing spinor transforms as 3+1, while for

Q = −3 the resulting Killing spinor instead transforms as 1−3. Similarly, solutions to

∇mχ = i
2γmχ transform in the 4̄ of SU(4), which is broken to 3̄−1 and 1+3 in the two

cases, respectively.

The corresponding Killing spinor equation for the squashed S5 was obtained in [6] via

a twisted reduction (described in the next subsection) of a standard Killing spinor equation

in six dimensions. In order to write this down, we first introduce an orthonormal frame for

the metric (2.1)

e1(5) =
1

s
(dτ + C) , e2(5) = dσ , e3(5) =

1

2
sinσ cosστ3 ,

e4(5) =
1

2
sinστ2 , e5(5) =

1

2
sinστ1 , (2.5)

where τi, i = 1, 2, 3, are left-invariant one-forms on SU(2). These are parametrized in terms

of the Euler angles as

τ1 + iτ2 = e−iψ(dθ + i sin θdϕ) , τ3 = dψ + cos θdϕ . (2.6)

The Killing spinor equation then reads

∇mχI +
i

2
Ai
m(σ

i) JI χJ = −
i
(

1 +Q
√
1− s2

)

2s
(σ3) JI γmχJ

+

√
1− s2

4s
(3γm 6ω − 6ωγm)χI , (2.7)

which is supplemented by the following algebraic equation

Q
√

1− s2χI = −
√

1− s2γ1χI − i
√

1− s2(σ3) JI 6ωχJ . (2.8)
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Here χI , I = 1, 2, form a doublet under the SU(2)R symmetry, γm generate the Clifford

algebra Cliff(5, 0) in the orthonormal frame (2.5), and (σi) JI denote the Pauli matrices.

Recall also that ω denotes the Kähler form on CP
2, given by (2.3), and if α is a p-form we

denote 6α ≡ 1
p!αm1···mpγ

m1···mp .
Of course in the case at hand we have that the SU(2)R gauge field Ai is only turned on

in the i = 3 direction, with A3 = A given by (2.4), and we may also write (2.7) and (2.8) as

∇mχ± ± i

2
Amχ± = ∓

i
(

1 +Q
√
1− s2

)

2s
γmχ± +

√
1− s2

4s
(3γm 6ω − 6ωγm)χ± , (2.9)

Q
√

1− s2χ± = −
√

1− s2γ1χ± ∓ i
√

1− s2 6ωχ± , (2.10)

where χ+ = χ1, χ− = χ2. Provided the background fields are real, meaning in particular

that the metric and A are real and |s| < 1, then notice that the equations for χ− are simply

the charge conjugates of the χ+ equations, where we define the charge conjugate as

χc ≡ C5χ∗ , (2.11)

and the charge conjugation matrix C5 satisfies C−1
5 γmC5 = γ∗m. In particular it is then consis-

tent to impose the symplectic Majorana condition χ− = χc+, or equivalently ε
J
I χJ = C5χ∗

I ,

as we shall see below.

Notice that in setting s = 1 to obtain the round sphere one has that (2.8) is trivially

satisfied, while the Killing spinor equation (2.7) implies that χ1 and χ2 transform in the

4 and 4̄ of the enhanced SU(4) ∼ SO(6) symmetry, respectively. In order to present the

general solution to (2.7), (2.8) (which is not written in [6]), we first introduce the following

basis of Cliff(5, 0)

γ1 =

(

12 0

0 −12

)

, γ2 =

(

0 12

12 0

)

, γ3 =

(

0 iσ3

−iσ3 0

)

,

γ4 =

(

0 iσ2

−iσ2 0

)

, γ5 =

(

0 iσ1

−iσ1 0

)

, (2.12)

where as above σi, i = 1, 2, 3 denote the Pauli matrices, and 12 is the 2×2 identity matrix.

A choice of the charge conjugation matrix in this basis is

C5 =
(

−iσ2 0

0 −iσ2

)

. (2.13)

Then for the 1/4 BPS background we find the general solution to (2.7), (2.8) (or equiva-

lently (2.9), (2.10)) is given by

χ+ = c+e
− 3iτ

2















0

1

0

0















, χ− = c−e
3iτ
2















−1

0

0

0















, (2.14)
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where c± are integration constants. In particular then notice that the symplectic Majorana

condition χ− = χc+ simply imposes c− = c∗+.
For the 3/4 BPS background the solution is a little more complicated. One finds

χ+ = a
(1)
+ ei

τ
2















cosσ + iλ+(s)e
iψ
2 S

(1)
+ sinσ

0

iλ−(s) sinσ − ei
ψ
2 S

(1)
+ cosσ

−ie−iψ
2 S

(2)
+















, (2.15)

where

S
(1)
± = S

(1)
± (θ, ϕ) = a

(3)
± e±iϕ

2 cos
θ

2
− a

(2)
± e∓iϕ

2 sin
θ

2
,

S
(2)
± = S

(2)
± (θ, ϕ) = a

(2)
± e∓iϕ

2 cos
θ

2
+ a

(3)
± e±iϕ

2 sin
θ

2
, (2.16)

and where we have introduced λ±(s) ≡ (±1 +
√
1− s2)/s. As expected, the solution

depends on three integration constants a
(1)
+ , a

(2)
+ , a

(3)
+ . Similarly, one finds

χ− = a
(1)
− e−i τ

2















0

cosσ − iλ+(s)e
−iψ

2 S
(1)
− sinσ

−iei
ψ
2 S

(2)
−

−iλ−(s) sinσ − e−iψ
2 S

(1)
− cosσ















, (2.17)

where a
(i)
− are integration constants. One can once again impose the symplectic Majorana

condition, which leads to the relation (a
(i)
− )∗ = a

(i)
+ for i = 1, 2, 3.

2.2 Twisted reduction and the partition function

The backgrounds above may be obtained via a twisted reduction of R× S5, starting from

the round metric on S5. This is important, as the perturbative partition function on the

squashed five-spheres was computed in [7] indirectly, by taking a limit of the supersym-

metric index of a corresponding six-dimensional theory on R× S5.

We thus begin with the product metric on R times the round S5

ds2
R×S5 = dt2 +

3
∑

i=1

|dwi|2 , (2.18)

where the complex coordinates wi on C
3 ∼= R

6, i = 1, 2, 3, satisfy the constraint
∑3

i=1 |wi|2 = 1. We then compactify this space by identifying

(t, wi) ∼ (t+ β, eiµiβwi) , (2.19)

where β > 0 and the µi are also sometimes referred to as squashing parameters. Notice

that (2.19) is an isometry for µi ∈ R. We may then change coordinates

ρie
iϕi ≡ e−iµitwi , (2.20)
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where ρi ≥ 0 and the ϕi have period 2π. In terms of these new coordinates the identi-

fication (2.19) reads (t, ρi, ϕi) ∼ (t + β, ρi, ϕi). We then dimensionally reduce along the

t-direction to obtain the five-dimensional metric

ds25 =

3
∑

i=1

(dρ2i + ρ2i dϕ
2
i )−

1

1 +
∑3

i=1 µ
2
i ρ

2
i

(

3
∑

i=1

µiρ
2
i dϕi

)2

. (2.21)

Notice that, via the constraint
∑3

i=1 ρ
2
i = 1, the first term in (2.21) is the round metric on

S5.

One then makes contact with the previous section by choosing

−µ1 = µ2 = µ3 = i
√

1− s2 , 3/4 BPS ,

µ1 = µ2 = µ3 = −i
√

1− s2 , 1/4 BPS . (2.22)

Notice these are real only if |s| ≥ 1. The metric (2.21) then agrees with the metric (2.1)

on making the standard polar coordinate identifications

ρ1 = cosσ , ρ2 = sinσ cos
θ

2
, ρ3 = sinσ sin

θ

2
, (2.23)

together with

ϕ1 = −τ , ϕ2 = τ − 1

2
(ψ + ϕ) , ϕ3 = τ − 1

2
(ψ − ϕ) , 3/4 BPS ,

ϕ1 = τ , ϕ2 = τ − 1

2
(ψ + ϕ) , ϕ3 = τ − 1

2
(ψ − ϕ) , 1/4 BPS . (2.24)

The Killing spinor equation (2.7) and algebraic equation (2.8) were then obtained in [6] by

dimensionally reducing a standard Killing spinor equation on the R×S5 background (2.18).

In practice the perturbative contribution to the squashed S5 partition function, with

more general squashed metric (2.21), was computed in [7] by dimensionally reducing the

superconformal index of a corresponding six-dimensional theory on the R × S5 back-

ground (2.18) with twisted identification (2.19), and then taking the limit β → 0, so

that the radius of the circle we reduced on to obtain (2.21) is sent to zero. For a gauge

theory with gauge group G, prepotential F , which is a cubic polynomial in the scalar σ in

the vector multiplet, and matter in the real representation R⊕ R̄ of G, the result is

Zpert = C(b)
rank G
∏

a=1

∫ ∞

−∞
dσa e

− (2π)3

b1b2b3
F (σ)

∏

α S3 (−iα(σ) | b)
∏

ρ S3
(

−iρ(σ) + 1
2(b1 + b2 + b3) | b

) . (2.25)

Here we have introduced

b = (b1, b2, b3) , where bi = 1 + iµi , (2.26)

and the prefactor C(b) in (2.25) depends only on (b1, b2, b3), and in particular will not

contribute to the large N limit of interest in the next section.2 The perturbative partition

2The precise formula for C(b) may be found in [7].
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function thus localizes onto field configurations in which the only non-zero field is a constant

mode for the scalar σ in the vector multiplet, and this is then integrated over in (2.25).

As usual in such expressions the product over α in the numerator is over roots of G, while

the product over ρ in the denominator is over weights in a weight space decomposition of

R. Finally, S3 (z | b) is the triple sine function, which is a special case of the multiple sine

functions defined by

SN (z | b) ≡ ΓN (z | b)−1 ΓN (btot − z | b)(−1)N (2.27)

=
∞
∏

n1,...,nN=0

[ N
∑

i=1

nibi + z

] ∞
∏

n1,...,nN=1

[ N
∑

i=1

nibi − z

](−1)N−1

, (2.28)

where we have written b = (b1, . . . , bN ) and defined btot =
∑N

i=1 bi. The function ΓN (z | b)
is the so-called Barnes’ multiple gamma function

ΓN (z | b) ≡
∞
∏

n1,...,nN=0

[ N
∑

i=1

nibi + z

]−1

. (2.29)

We conclude this section by noting from (2.22) and (2.26) that for the SU(3) × U(1)

squashed five-spheres in section 2.1

b1 = 1 +
√

1− s2 , b2 = b3 = 1−
√

1− s2 , 3/4 BPS ,

b1 = b2 = b3 = 1 +
√

1− s2 , 1/4 BPS . (2.30)

In particular it is straightforward to see [7] that in the 1/4 BPS case the perturbative

partition function (2.25) is independent of the squashing parameter s.

It is interesting to note that (2.19) is an isometry of the original six-dimensional R×S5

background only for real µi, which via (2.22) one sees corresponds to |s| ≥ 1. On the other

hand from (2.30) we see that the parameters bi are real (and then positive) only if |s| ≤ 1.

The dual six-dimensional supergravity backgrounds we shall construct in section 4 will

correspondingly be real for |s| ≤ 1.

2.3 The large N limit

The result for the perturbative partition function (2.25) in the previous section is valid for

a general supersymmetric gauge theory in five dimensions, but we now focus on a particular

class of theories with gauge group G = USp(2N), that arises from a system of N D4-branes

and some number of D8-branes and orientifold planes in massive type IIA string theory.

These theories are expected to have a large N limit that has a dual description in massive

type IIA supergravity [8–10]. Indeed, in [5] the large N limit of the partition function of

these theories on the round five-sphere was computed and successfully compared to the

entanglement entropy of the dual warped AdS6×S4 supergravity solution. Here the gauge

theories flow to a UV superconformal fixed point, and in particular the localization compu-

tation in the IR supersymmetric Yang-Mills theory coupled to matter theory successfully

reproduces the expected N5/2 scaling of the number of degrees of freedom.
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In general one certainly expects non-perturbative contributions to the full partition

function Z, in addition to the perturbative result (2.25). In particular in the localization

computation of [3] on the round five-sphere one finds that the gauge multiplet localizes

onto instanton configurations on CP
2. There is thus a non-perturbative contribution to Z

involving a sum over the instanton number. For fixed instanton number n 6= 0 and fixed

choice of instanton, in addition to the classical instanton action there will also be one-loop

determinant contributions around that instanton, plus an integral over the instanton moduli

space with fixed n. In general this expression will be very difficult to evaluate. However,

in [5] it was argued that in the large N limit these instanton contributions should be

suppressed. We shall also assume this to be the case on the squashed five-sphere, although

clearly this issue deserves further study. In particular, for general choice of the vector

b = (b1, b2, b3) we expect to find instantons not on CP
2, but rather instantons transverse

to the Killing vector K =
∑3

i=1 bi∂ϕi , as in [15]. These contact instantons were discussed

in the latter reference in the context of the partition function on Sasaki-Einstein manifolds.

In any case, we leave this issue open for future investigation.

Our task thus reduces to computing the large N limit of the perturbative result (2.25),

for the USp(2N) gauge theories of interest. This may be carried out using the matrix

model saddle point method originally introduced in [16], and subsequently applied to the

round S5 partition function in [5]. As in the latter reference, we also set the Chern-Simons

level for the theory k = 0 (thus setting the cubic terms in the prepotential F (σ) to zero).

The quadratic and linear terms of F (σ) will only contribute to subleading order in the

large N limit. This is because the leading contribution to the free energy arises from the

scaling σ = O(N1/2). Such a behaviour for σ leads to an O(N2) contribution for the

classical parts in the perturbative partition function (2.25). Thus in the limit of large N

we only have to analyse the behaviour of the two one-loop determinants from the vector

and matter multiplets. In particular, for a given theory we will have to find the expansion

of the logarithm of the triple sine function entering (2.25).

The USp(2N) gauge theories have Nf matter fields in the fundamental and a sin-

gle hypermultiplet in the antisymmetric representation of the gauge group. Let us de-

note an element in the Cartan subalgebra for USp(2N) as {λ1, . . . , λN}, so that σ =

diag(λ1, . . . , λN ,−λ1, . . . ,−λN ). The Weyl group acts as λi → −λi for each i, and also

permutes the λi. If the normalized weights of the fundamental representation are given

by ±ei, where {e1, . . . , eN} is a basis of RN , then the antisymmetric representation has

weights {ei ± ej}i 6=j and the adjoint representation has weights {ei ± ej}i 6=j ∪ {±2ei}Ni=1.

Therefore we can write the free energy for this theory as

F(λi) =
N
∑

i,j=1
i 6=j

GV (λi + λj | b) +GV (λi − λj | b) +GH(λi + λj | b) +GH(λi − λj | b)

+
N
∑

i=1

GV (2λi | b) +GV (−2λi | b) +Nf [GH (λi | b) +GH (−λi | b)] , (2.31)

where GV and GH are the logarithms of the triple sine functions in the numerator and de-

nominator of (2.25) for the vector and the hypermultiplets, respectively. We are interested
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in their asymptotics for large λi only, because we assume that the eigenvalues scale with

Nα for some α > 0. These asymptotics are explicitly computed in appendix C, and here

we simply quote the results:

GV (x | b) +GV (−x | b) = − logS3 (−ix | b)− logS3 (ix | b)

∼ π

3 b1b2b3
|x|3 − π

(

b2tot + b1b2 + b1b3 + b2b3
)

6 b1b2b3
|x| , (2.32)

where we have expanded in the limit |x| → ∞. Here we have assumed that bi > 0 for each

i = 1, 2, 3, as this is the case of interest — see equation (2.30) and the discussion after it.

Similarly, for the free energy contribution of the hypermultiplet we obtain

GH(x | b) = logS3

(

1

2
btot − ix | b

)

∼ − π

6 b1b2b3
|x|3 − π

(

b21 + b22 + b23
)

24 b1b2b3
|x| , (2.33)

in the asymptotic limit |x| → ∞.

Using the Weyl symmetry of USp(2N) we may take λi ≥ 0, and we shall furthermore

assume that these eigenvalues scale as λi = Nαxi to leading order in the large N limit,

with α > 0. We next introduce the density

ρ(x) =
1

N

N
∑

i=1

δ (x− xi) , (2.34)

which becomes an L1 function with
∫

ρ(x)dx = 1 , (2.35)

once we take N → ∞. In that limit, the discrete sums in (2.31) become Riemann integrals

1

N

N
∑

i=1

−→
∫ x⋆

0
ρ(x)dx . (2.36)

Hence taking the large N limit of (2.31), we obtain to leading order

F ≈ N2

∫ x⋆

0
ρ(x)

∫ x⋆

0
ρ(y)

[

GV (λ(x)± λ(y) | b) +GH(λ(x)± λ(y) | b)
]

dy dx

+N

∫ x⋆

0
ρ(x)

[

GV (±2λ(x) | b) +Nf GH(±λ(x) | b)
]

dx . (2.37)

By assumption we have λ(x) = Nαx to leading order in the continuum limit, and hence we

may use the above expansions for the vector and hypermultiplet contributions (2.32), (2.33)

respectively. Then the leading order term in the first line of (2.37) scales as N2+α, because

the cubic terms in the asymptotic expansion of GH and GV cancel. The leading order term

of the second line in (2.37) however does not cancel, and is given by N1+3α. In order to

obtain a non-trivial saddle point, both terms must contribute and we deduce that α = 1/2.
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Putting everything together we obtain

F = −N5/2

∫ x⋆

0
ρ(x)

∫ x⋆

0
ρ(y)

[

πb2tot
8b1b2b3

(|x+ y|+ |x− y|)

−(8−Nf )π

3 b1b2b3
|x|3
]

dy dx+O
(

N3/2
)

. (2.38)

It thus remains to solve a simple variational problem for ρ(x) extremizing the free

energy. We add a Lagrange multiplier term to impose the constraint (2.35), namely

µ
(∫ x⋆

0 ρ(x)dx− 1
)

, and then solve ∂F
∂ρ = 0 for ρ(x). Doing so we find (with Nf < 8)

ρ(x) =
4(8−Nf )

b2tot
|x| , (2.39)

inside the interval [0, x⋆], with ρ identically zero outside this interval, and where extremizing

F over the end-point x⋆ gives

x2⋆ =
b2tot

2(8−Nf )
. (2.40)

We may then evaluate the free energy by substituting these saddle point configurations

back into (2.37) to obtain

F = −
√
2πb3tot

15
√

8−Nf b1b2b3
N5/2 +O

(

N3/2
)

, (2.41)

which may be rewritten as (where recall we have assumed that bi > 0 for each i = 1, 2, 3)

F =
(b1 + b2 + b3)

3

27b1b2b3
FS5

round
, (2.42)

where FS5
round

is the large N limit of the free energy on the round five-sphere computed in

reference [5]

FS5
round

= − 9
√
2πN5/2

5
√

8−Nf

+O
(

N3/2
)

. (2.43)

We note that the above result has a very similar structure to that obtained in three di-

mensions [17]. Also notice that we get the same result, (2.42), for the orbifold theories

discussed in [5, 10].

We conclude this section by noting that for the SU(3) × U(1) squashed five-spheres,

with the vector b = (b1, b2, b3) given by (2.30), we obtain the large N free energies

F =











1

27s2
(3−

√
1− s2)3

1−
√
1− s2

FS5
round

, 3/4 BPS ,

FS5
round

, 1/4 BPS .

(2.44)
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3 Romans F (4) supergravity

When the USp(2N) superconformal theories discussed in section 2 are put on the round S5,

they are conjectured to be dual in the large N limit to the AdS6 × S4 solution of massive

type IIA supergravity [8–10]. In order to find gravity duals to the same superconformal

theories put on different background five-manifolds, it is then natural to work in the six-

dimenional Romans F (4) supergravity theory [11]. The key here is that, as shown in [12],

the Romans theory is a consistent truncation of massive type IIA supergravity on S4. In

the next subsection we shall review this uplift to ten dimensions, and then present the

Romans theory in Euclidean signature in section 3.2.

3.1 Uplift to massive type IIA

The Romans theory [11] is a six-dimensional gauged supergravity that admits an AdS6
vacuum. The bosonic fields consist of the metric, a dilaton φ, a two-form potential B,

a one-form potential A, together with an SU(2) ∼ SO(3) gauge field Ai, i = 1, 2, 3. It is

convenient to introduce the scalar fieldX ≡ exp(−φ/2
√
2), and we define the field strengths

as H = dB, F = dA+ 2
3gB, F i = dAi− 1

2gεijkA
j ∧Ak. Here g denotes the gauge coupling

constant. Notice that B appears in the field strength for A.

As shown in [12], this Romans theory is a consistent truncation of massive type IIA

supergravity on S4. This means that any solution to the Romans theory automatically

uplifts, via the non-linear Kaluza-Klein ansatz of [12] presented in (3.1) below, to a solution

of massive type IIA. Moreover, the AdS6×S4 solution of the latter is the uplift of the AdS6
vacuum of the Romans theory.

We shall later need some details of how the six-dimensional solutions uplift to ten di-

mensions. The gauge coupling constant g is related to the ten-dimensional mass parameter

by mIIA =
√
2
3 g, while the remaining fields uplift via

ds210 = (sin ξ)
1
12X

1
8

[

∆
3
8ds26 + 2g−2∆

3
8X2dξ2 +

1

2
g−2∆− 5

8X−1 cos2 ξ
3
∑

i=1

(τ̂ i − gAi)2

]

,

F(4) = −
√
2

6
g−3s1/3c3∆−2U dξ ∧ vol3 −

√
2g−3s4/3c4∆−2X−3 dX ∧ vol3

+
√
2g−1s1/3cX4 ∗H ∧ dξ − 1√

2
s4/3X−2∗F +

1√
2
g−2s1/3c F ihi ∧ dξ

− 1

4
√
2
g−2s4/3c2∆−1X−3F i ∧ hj ∧ hk εijk ,

F(3) = s2/3H + g−1s−1/3c F ∧ dξ ,

F(2) =
1√
2
s2/3F , eΦ = s−5/6∆1/4X−5/4 , (3.1)

where

∆ ≡ X cos2 ξ +X−3 sin2 ξ ,

U ≡ X−6s2 − 3X2c2 + 4X−2c2 − 6X−2 . (3.2)
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Here ds210 is the ten-dimensional metric in Einstein frame, Φ is the ten-dimensional dilaton,

F(3) is the NS-NS three-form field strength, while F(4) and F(2) are the RR four-form and

two-form field strengths, respectively. The τ̂ i, i = 1, 2, 3, are left-invariant one-forms on a

copy of SU(2) ∼= S3. These are defined precisely as in (2.6), except here this S3 is in the

internal space (hence the hats). We have also defined hi ≡ τ̂ i − gAi, vol3 ≡ h1 ∧ h2 ∧ h3,
and s = sin ξ and c = cos ξ. The Hodge duals in (3.1) are computed with respect to the six-

dimensional metric ds26. This is defined on some six-manifold M6, and the ten-dimensional

metric in (3.1) then describes a warped product M6×S4. More precisely, the solution only

describes “half” of a four-sphere, where the coordinate ξ ∈ (0, π2 ] is a polar coordinate for

which constant ξ ∈ (0, π2 ) slices are three-spheres, parametrized by Euler angles on S3 as

in (2.6). The solution is smooth at the north pole ξ = π
2 , where the S

3 slices of S4 collapse

to zero size, but singular on the equator ξ = 0. Nevertheless, it is argued in [9, 10] that

the supergravity solution (3.1) can be trusted away from this singularity.

3.2 Euclidean theory

The equations of motion and action for the Romans theory in Lorentz signature appear

in [11, 12]. However, the gravity duals to the large N field theories on the squashed

five-sphere of section 2 will be constructed in Euclidean signature. The corresponding

Wick rotation is not entirely straightforward because the Romans theory contains Chern-

Simons-type couplings, that become purely imaginary in Euclidean signature in order that

the theory is gauge invariant. The associated factors of i are also crucial for supersymmetry

in Euclidean signature. The Euclidean equations of motion for the Romans supergravity

fields are

d
(

X4 ∗H
)

=
i

2
F ∧ F +

i

2
F i ∧ F i + 2

3
gX−2 ∗ F ,

d(X−2 ∗ F ) = −iF ∧H ,

D(X−2 ∗ F i) = −iF i ∧H ,

d
(

X−1 ∗ dX
)

= −g2
(

1

6
X−6 − 2

3
X−2 +

1

2
X2

)

∗ 1

−1

8
X−2

(

F ∧ ∗F + F i ∧ ∗F i
)

+
1

4
X4H ∧ ∗H . (3.3)

Here Dωi = dωi − gεijkA
j ∧ ωk is the SO(3) covariant derivative, and our convention for

the Hodge duality operator is fixed via

α ∧ ∗β =
1

p!
αµ1···µpβ

µ1···µp ∗ 1 , (3.4)

where α and β are p-forms.3 The Einstein equation is

Rµν = 4X−2∂µX∂νX + g2
(

1

18
X−6 − 2

3
X−2 − 1

2
X2

)

gµν +
1

4
X4

(

H2
µν −

1

6
H2gµν

)

+
1

2
X−2

(

F 2
µν −

1

8
F 2gµν

)

+
1

2
X−2

(

(F i)2µν −
1

8
(F i)2gµν

)

, (3.5)

where F 2
µν = FµρFν

ρ, H2
µν = HµρσH

ρσ
ν .

3In particular this convention differs from that in [12].
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The Euclidean action which gives rise to these field equations is

IE = − 1

16πGN

∫ [

R ∗ 1− 4X−2dX ∧ ∗dX − g2
(

2

9
X−6 − 8

3
X−2 − 2X2

)

∗ 1

− 1

2
X−2

(

F ∧ ∗F + F i ∧ ∗F i
)

− 1

2
X4H ∧ ∗H (3.6)

− iB ∧
(

1

2
dA ∧ dA+

1

3
B ∧ dA+

2

27
g2B ∧B +

1

2
F i ∧ F i

)]

.

In particular notice that the final term is a Chern-Simons-type coupling, and is accompanied

by a factor of i. This is required for gauge-invariance in the path integral with Euclidean

measure exp(−IE). It is also implied by supersymmetry. Indeed, a solution to the above

equations of motion is supersymmetric provided the following Killing spinor equation and

dilatino equation hold:

DµǫI =
i

4
√
2
g(X +

1

3
X−3)ΓµΓ7ǫI −

i

16
√
2
X−1Fνρ(Γµ

νρ − 6δµ
νΓρ)ǫI (3.7)

− 1

48
X2HνρσΓ

νρσΓµΓ7ǫI +
1

16
√
2
X−1F iνρ(Γµ

νρ − 6δµ
νΓρ)Γ7(σ

i)I
JǫJ ,

0 = −iX−1∂µXΓµǫI +
1

2
√
2
g
(

X −X−3
)

Γ7ǫI +
i

24
X2HµνρΓ

µνρΓ7ǫI

− 1

8
√
2
X−1FµνΓ

µνǫI −
i

8
√
2
X−1F iµνΓ

µνΓ7(σ
i)I

JǫJ . (3.8)

Here ǫI , I = 1, 2, are two Dirac spinors, Γµ generate the Clifford algebra Cliff(6, 0) in an

orthonormal frame, and we have defined the chirality operator Γ7 = iΓ012345, which satisfies

Γ2
7 = 1. The SO(3) ∼ SU(2) gauge field Ai is an R-symmetry gauge field, with the spinor

ǫI transforming in the two-dimensional representation via the Pauli matrices (σi)I
J . Thus

the covariant derivative acting on the spinor is DµǫI = ∇µǫI +
i
2gA

i
µ(σ

i)I
JǫJ .

Returning to the equations of motion (3.3), notice that the exterior derivative of the

first equation (the equation of motion for B) implies the second equation on using the

Bianchi identities for F and F i, where note that dF = 2
3gH. This is related to the fact that

the theory possesses a gauge invariance A→ A+ 2
3gλ, B → B−dλ, where λ is an arbitrary

one-form. Using this freedom one can then gauge away A = 0, leaving F = 2
3gB. The

kinetic term for F in the action (3.6) then becomes a mass term for the B-field; that is, the

B-field “eats” the U(1) gauge field A in a Higgs-like mechanism. Notice that there is also a

cubic Chern-Simons coupling for B in (3.6), making it a somewhat exotic field. We may also

make a simple rescaling of the fields via gµν → 1
g2
gµν , B → 1

g2
B, A→ 1

gA, A
i → 1

gA
i, after

which one sees that the coupling constant g only appears in the action as an overall constant

1/g4 factor. Thus we may without loss of generality set g = 1, which we henceforth will do.

In appendix A we compute the integrability conditions for the Killing spinor equa-

tion (3.7) and dilatino equation (3.8), and show that these are compatible with the equa-

tions of motion (3.3), (3.5).
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3.3 Killing vector bilinear

Given a supersymmetric solution to the Euclidean Romans theory, one can verify that the

bilinear

Kµ ≡ εIJǫTI CΓµǫJ , (3.9)

is a Killing one-form. Here C is the charge conjugation matrix, satisfying ΓTµ = C−1ΓµC
and in our conventions is antisymmetric satisfying C2 = −1. If we also impose a symplectic

Majorana condition

Cǫ∗I = ε J
I ǫJ , (3.10)

then this Killing one-form may be rewritten as

Kµ = ǫ†IΓµǫI , (3.11)

which is then manifestly real. In particular we will be able to impose this symplectic Ma-

jorana condition for the solutions we construct in section 4. In this “real” case the Killing

spinors ǫI define an SU(2) structure onM6. One could similarly analyse the differential con-

ditions on the corresponding SU(2) structure bilinears, but we shall leave this for the future.

4 Supergravity solutions

In this section we present supergravity duals to the SU(3)×U(1) squashed five-sphere back-

grounds of section 2. Via the consistent truncation to the Romans theory in the previous

section, this effectively becomes a filling problem in six-dimensional gauged supergravity:

one seeks a smooth, asymptotically locally Euclidean AdS6 supersymmetric supergravity

solution, with conformal boundary data given by the squashed five-sphere background

in section 2. In particular this means the bulk supergravity solution is equipped with an

SU(2)R doublet of Killing spinors ǫI , I = 1, 2, solving (3.7) and (3.8), which should suitably

approach the boundary Killing spinors in section 2.1. We shall indeed find such fillings for

both the 3/4 BPS and 1/4 BPS solutions. In the process shall extend the 1/4 BPS solution

to a two-parameter family of solutions, containing a one-parameter 1/2 BPS subfamily of

new solutions.

4.1 SU(3) × U(1) invariant ansatz

The squashed five-sphere backgrounds of section 2.1 have SU(3) × U(1) symmetry, and

one expects this symmetry to be preserved by the bulk supergravity filling. Indeed, for

asymptotically locally Euclidean AdS solutions of the vacuum Einstein equations this is a

theorem [18]. This leads to the following ansatz for the Romans supergravity fields

ds26 = α2(r)dr2 + γ2(r)(dτ + C)2 + β2(r)

[

dσ2 +
1

4
sin2 σ(dθ2 + sin2 θdϕ2)

+
1

4
cos2 σ sin2 σ(dψ + cos θdϕ)2

]

,

B = p(r)dr ∧ (dτ + C) +
1

2
q(r)dC ,

Ai = f i(r)(dτ + C) , i = 1, 2, 3 , (4.1)
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together with X = X(r). Recall here that we have used the gauge freedom to set the U(1)

gauge field (which is really a Stueckelberg field) to A = 0. The additional coordinate r is a

radial coordinate, and we shall choose a parametrization in which the conformal boundary

is at r = ∞. For fixed r, provided γ(r) and β(r) are non-zero the constant r surfaces

in (4.1) are squashed five-spheres. We shall seek solutions with the topology of a ball, so

that r ∈ [r0,∞) with r = r0 being the origin. At this point the squashed five-spheres must

become round in order that the metric extends smoothly to the origin of the ball. Similarly,

in order for the gauge fields B, Ai in (4.1) to be non-singular at the origin they must tend

to zero sufficiently quickly at r = r0. In writing the ansatz (4.1) we have used the fact that

the only SU(3)×U(1) invariant one-form on the squashed five-sphere is the global angular

form dτ + C for the Hopf fibration S1 →֒ S5 → CP
2, while the only invariant two-form is

the pull-back 1
2dC = ω of the Kähler form on CP

2.

Substituting the cohomogeneity one ansatz (4.1) into the equations of motion (3.3)

and Einstein equation (3.5) leads to a rather complicated coupled system of ODEs. The

equations of motion for the background SU(2)R gauge field imply f i(r) = κif(r), i = 1, 2, 3.

The equations for the other fields then depend only on the SU(2) ∼ SO(3) invariant

κ21 + κ22 + κ23, which we can set to one by rescaling f(r). The equations of motion then

result in the coupled ODEs for the functions α(r), β(r), γ(r), p(r), q(r), f(r), X(r), which

can be found in appendix B.1.

Since the solutions we find are continuously connected to Euclidean AdS6, we first

present the latter in these coordinates:

α(r) =
3
√
3√

6r2 − 1
, β(r) = γ(r) =

3
√
6r2 − 1√

2
,

p(r) = q(r) = f(r) = 0 , X(r) = 1 . (4.2)

Here only the metric is non-trivial, and (4.2) realizes Euclidean AdS6 as a hyperbolic ball

with radial coordinate r ∈ [ 1√
6
,∞), with the conformal boundary at infinity r = ∞. Thus

the origin is at r0 = 1√
6
. Notice in particular that the conformal boundary at r = ∞

is equipped with a round metric on S5, which is conformally flat. We would like to find

families of solutions that generalize (4.2) by allowing for a squashed five-sphere boundary,

keeping the metric asymptotically locally Euclidean AdS near r = ∞. That is, near r = ∞
the metric should approach

ds26 ≃
9dr2

2r2
+ 27r2ds25 , (4.3)

where ds25 is the squashed five-sphere (2.1). For such solutions we may thus define the

squashing parameter by

lim
r→∞

γ(r)

r
= 3

√
3
1

s
, (4.4)

so that s = 1 for the round sphere. Even though we did not manage to find supersymmetric

solutions in closed form, the solutions can nevertheless be given as expansions around

different limits. In general notice that we can use reparametrization invariance to set

β(r) =
3
√
6r2 − 1√

2
, (4.5)

which we assume henceforth. In particular this fixes the origin of the ball to be at r0 =
1√
6
.
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In the following we summarize the various families of supersymmetric solutions we

have constructed with the ansatz (4.1). Details of the computations may be found in

appendix B.

4.2 3/4 BPS solutions

There is a one-parameter family of 3/4 BPS solutions parametrized by the squashing pa-

rameter s. The solution expanded around the conformal boundary is given by

α(r) =
3√
2

1

r
+

8 + s2

36
√
2s2

1

r3
+ . . . , (4.6)

γ(r) =
3
√
3

s
r +

−16 + 7s2

12
√
3s3

1

r
− −1280 + 1120s2 + 241s4

2592
√
3s5

1

r3
+ . . . ,

X(r) = 1 +
1− s2 − 3

√
1− s2

54s2
1

r2
+

s2
√
1− s2κ

12
(

1− s2 +
√
1− s2

)

1

r3
+ . . . ,

p(r) = −
i
√

2
3

(

s2 + 3
√
1− s2 − 1

)

s3
1

r2
+ . . . ,

q(r) = −
3i
(√

6
√
1− s2

)

s
r +

√

2
3 i
√
1− s2

(

5s2 + 9
√
1− s2 − 5

)

3s3
1

r
+ . . . ,

f(r) =
1− s2 +

√
1− s2

s2
+

2
(

−2 + 2s2 − (2 + s2)
√
1− s2

)

9s4
1

r2
+
κ

r3
+ . . . ,

where we have computed this expansion up to O(1/r9). The extra parameter κ is fixed by

requiring regularity at the origin r = 1√
6
(see (4.8) below). Notice that the SU(2)R gauge

field at the conformal boundary agrees with the gauge field (2.4) with Q = 1. We may also

expand the solution around Euclidean AdS6, which has s = 1:

α(r) =
3
√
3√

6r2 − 1
+

(

− 5
√
6 + 330

√
6r2 − 3744r3 + 1620

√
6r4

9
√
2r2 (6r2 − 1)9/2

+8640r5 − 7560
√
6r6 + 5184

√
6r8
)

9
√
2r2 (6r2 − 1)9/2

(1− s) + . . . ,

γ(r) =
3
√
6r2 − 1√

2
−

(

55
√
2− 384

√
3r + 1080

√
2r2 + 768

√
3r3

6 (6r2 − 1)7/2

−5400
√
2r4 + 11232

√
2r6 − 11664

√
2r8
)

6 (6r2 − 1)7/2
(1− s) + . . . ,

X(r) = 1−
(√

2
(

1− 2
√
6r + 6r2

))

3 (6r2 − 1)2
√
1− s+ . . . ,

p(r) =
18i

√
2
(√

6− 16r + 12
√
6r2 − 12

√
6r4
)

(6r2 − 1)3
√
1− s+ . . . ,

– 17 –



J
H
E
P
0
9
(
2
0
1
4
)
0
6
7

q(r) = −3i
√
2
(

−4 + 9
√
6r − 24r2 − 12

√
6r3 + 36

√
6r5
)

(6r2 − 1)2
√
1− s+ . . . ,

f(r) =

√
2
(

−3 + 8
√
6r − 36r2 + 36r4

)

(6r2 − 1)2
√
1− s+ . . . . (4.7)

In particular one can check that these functions lead to a regular solution at the origin

r = 1√
6
, although this is not manifest in the formulas presented above. Indeed, we have

computed this expansion up to sixth order, and by comparing the two expansions we find

that regularity at the origin fixes the parameter κ in (4.6) via

3
√
3

4
κ = δ +

√
2

3
δ2 +

113

36
δ3 +

25

9
√
2
δ4 +

1127

288
δ5 +

35

9
√
2
δ6 + . . . , (4.8)

where we have introduced

δ2 ≡ 1

s
− 1 . (4.9)

The explicit solution ǫI to the Killing spinor (3.7) and dilatino equation (3.8) for this

solution may be found in appendix B. In particular there are three independent constants

of integration after imposing the symplectic Majorana condition (3.10). Using this solution

one can compute the Killing vector bilinear (3.9). Requiring that this Killing vector lies

in the Lie algebra of the maximal torus U(1)3 ⊂ SU(3) × U(1) fixes the constants of

integration, up to an overall irrelevant scaling. In this case we obtain

K = b1∂ϕ1 + b2∂ϕ2 + b3∂ϕ3 , (4.10)

where b1 = 1 +
√
1− s2, b2 = b3 = 1−

√
1− s2 and the coordinates ϕi are related to τ , ψ

and ϕ via (2.24).

4.3 1/4 BPS solutions

We also find a two-parameter family of 1/4 BPS solutions, parametrized by the squash-

ing parameter s and the background SU(2)R field at the conformal boundary, which is

parametrized by f0. The solution expanded around the conformal boundary is given by

α(r) =
3√
2

1

r
− f20 s

2 + 9
(

−2 + s2
)

− 6f0
(

−1 + s2
)

36
√
2

1

r3
+ . . . ,

γ(r) =
3
√
3

s
r +

2f20 s
2 − 12f0

(

−1 + s2
)

+ 9
(

−3 + 2s2
)

12
√
3s

1

r
+ . . . ,

X(r) = 1 +
18− 3f0 − 18s2 + 12f0s

2 − 2f20 s
2

54

1

r2
+ . . . ,

p(r) =
i
√

2
3(−3 + f0)

(

3 + (−3 + f0)s
2
)

s

1

r2
+ . . . ,

q(r) = −3i
√
6
(

3 + (−3 + f0)s
2
)

s
r

+
i
(

3 + (−3 + f0)s
2
) (

f20 s
2 + 9

(

−1 + s2
)

− 6f0
(

1 + s2
))

6
√
6s

1

r
+
ξ1
r2

+ . . . ,
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f(r) = f0 +
2(−3 + f0)f0

9

1

r2
+
ξ2
r3

+ . . . . (4.11)

Again, we have found this solution up to O(1/r9). The constants ξ1 and ξ2 are again fixed

by requiring regularity at the origin.

There are a number of interesting special cases. First, we obtain the one-parameter

family of 1/4 BPS squashed five-spheres of section 2.1 by choosing the constant f0 so as to

reproduce (2.4) with Q = −3. That is, f0 = (1 − 3
√
1− s2)

√
1− s2/s2. We show explic-

itly in appendix B that the supergravity Killing spinor matches onto the five-dimensional

spinors in section 2.1. Another interesting case is f0 = 0. In this case the SU(2)R back-

ground gauge field is completely switched off, but the solution is still supersymmetric with

a squashed five-sphere at the conformal boundary. This solution has enhanced supersym-

metry — as we show in appendix B it is 1/2 BPS. On the other hand we may also set

s = 1, so that the conformal boundary is the round five-sphere, but keep the parameter

f0. This shows that one can define non-trivial Killing spinors on the round S5 by turning

on other fields.

We may also expand the solution around Euclidean AdS6 with s = 1:

α(r) =
3
√
3√

6r2 − 1
+

√
3
(

1− 54r2 + 96
√
6r3 − 324r4 + 216r6

)

2r2 (6r2 − 1)7/2
(1− s) + . . . ,

γ(r) =
3
√
6r2 − 1√

2
+

(

15− 48
√
6r + 270r2 − 540r4 + 648r6

)

√
2 (6r2 − 1)5/2

(1− s) + . . . ,

X(r) = 1 +

(

1− 2
√
6r + 6r2

)

(4 + ω)

(6r2 − 1)2
(1− s) + . . . ,

p(r) = −18i
√
2
(

−
√
3 + 8

√
2r − 12

√
3r2 + 12

√
3r4
)

(6 + ω)

(6r2 − 1)3
(1− s) + . . . ,

q(r) = −3i
(

−4 + 9
√
6r − 24r2 − 12

√
6r3 + 36

√
6r5
)

(6 + ω)

(6r2 − 1)2
(1− s) + . . . ,

f(r) =

(

−3 + 8
√
6r − 36r2 + 36r4

)

ω

(6r2 − 1)2
(1− s) + . . . , (4.12)

where we have introduced the parameter ω via (1− s)ω = f0. As before it can be checked

explicitly that the solution is regular at r = 1√
6
, and we have checked this up to fourth

order in the expansion variable

δ ≡ 1

s
− 1 . (4.13)

Comparing this expansion with the expansion around the conformal boundary we deduce

ξ1 = 2i(6 + ω)δ − i
(

144 + 98ω + 13ω2
)

5
δ2

+
i
(

307719 + 209547ω + 41094ω2 + 1282ω3
)

9450
δ3

− i
(

26693550 + 21683700ω + 6126111ω2 + 771474ω3 + 51568ω4
)

623700
δ4 + . . . ,
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ξ2 =
2

3

√

2

3
ωδ − 2

(

−
√
6ω + 2

√
6ω2

)

45
δ2 +

(

−999
√
6ω − 594

√
6ω2 + 244

√
6ω3

)

42525
δ3

+

(

32724
√
6ω + 26082

√
6ω2 + 6105

√
6ω3 + 935

√
6ω4

)

1403325
δ4 + . . . . (4.14)

The explicit solution ǫI to the dilatino and Killing spinor equation (3.8), (3.7) for this

solution may also be found in appendix B. In this case there is a single integration constant

(for generic f0, or equivalently ω). The Killing vector automatically lies in the Lie algebra

of the torus U(1)3 ⊂ SU(3)×U(1), and with an appropriate scaling we obtain

K = ∂τ = b1∂ϕ1 + b2∂ϕ2 + b3∂ϕ3 , (4.15)

where b1 = b2 = b3 = 1 and the coordinates ϕi are related to τ , ψ and ϕ via (2.24).

5 Holographic free energy

In this section we describe how the on-shell action for the Euclidean Romans theory de-

tailed in section 3 can be computed, and for asymptotically locally Euclidean AdS solutions

holographically renormalized by adding boundary counterterms [19–21]. For the supersym-

metric solutions presented in section 4 we evaluate the renormalized on-shell action and

determine the holographic free energies.

5.1 On-shell action

We will work in the gauge A = 0. Starting from the Euclidean action (3.6) and using the

equations of motion (3.3) together with the Einstein equation (3.5) and its trace, we find

the following for the on-shell action defined on a manifold M6 with boundary ∂M6

Ion−shell = Ibulk + Iboundary , (5.1)

where

Ibulk =
1

16πGN

∫

M6

4

9
X−2

(

2 + 3X4
)

∗ 1 + 1

3
X−2F i ∧ ∗F i + i

3
B ∧ F i ∧ F i , (5.2)

Iboundary =
1

16πGN

∫

∂M6

2

3

(

X−1 ∗ dX
)

+
1

3
(B ∧X4 ∗H) . (5.3)

Here we have used Stokes’ theorem to write a total derivative as a boundary integral. In

particular this assumes that the potentials B and Ai are globally defined, which is the

case for our supergravity solutions. The Hodge duals in (5.3) are defined on M6, and then

restricted to the boundary. The on-shell action is divergent due to the infinite volume of

M6 and ∂M6, and from divergences in the supergravity fields as the conformal boundary

r → ∞ is approached. Consequently, Ibulk should be understood as integrated up to a

finite cut-off which is then sent to infinity only after adding counterterms which regularize

the divergences. In addition, because of the presence of boundary terms in the on-shell

action, one should add a Gibbons-Hawking term [22]

IGH = − 1

8πGN

∫

∂M6

K
√
deth d5x . (5.4)
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This involves the trace K of the extrinsic curvature of the boundary, and where hmn is the

induced boundary metric, and also leads to divergences. Hence the finite on-shell action is

Irenormalized = Ion−shell + IGH + Icounterterms . (5.5)

In the next subsection we determine the precise form of the counterterms.

5.2 Boundary counterterms

The counterterms needed to regularize the action of the Euclidean Romans F (4) theory

were stated without derivation in [23]. Here we provide a full account of their construction.

We assume a general expansion of the fields for an asymptotically locally Euclidean AdS6
solution. In particular, we take the metric to be given in Fefferman-Graham form [24, 25]

ds26 =
ℓ2

z2
dz2 +

1

z2
γmn(z, x)dx

mdxn , (5.6)

where ℓ = 3/
√
2 is the AdS6 radius, and in turn

γmn(z, x) = γ0mn + z2γ2mn + z4γ4mn +O(z5) . (5.7)

Here γ0mn(x) is the metric induced on the conformal boundary which, due to the radial

coordinate transformation r → 1
z , is now at z = 0. The Gibbons-Hawking term is then

IGH =
1

8πGN

∫

∂M6

z

ℓ
∂z
√
deth d5x , (5.8)

and hmn = 1
z2
γmn is the induced metric on the boundary.

The Ricci tensor of the six-dimensional metric (5.6) is

Rzz = − 5

z2
− 1

2

[

Tr
(

γ−1∂2zγ
)

− 1

z
Tr
(

γ−1∂zγ
)

− 1

2
Tr
(

γ−1∂zγ
)2
]

,

Rmn = − 5

ℓ2z2
γmn −

1

ℓ2

[

1

2
∂2zγ − 2

z
∂zγ − 1

2
(∂zγ)γ

−1(∂zγ) +
1

4
(∂zγ)Tr

(

γ−1∂zγ
)

−ℓ2R(γ)− 1

2z
γTr

(

γ−1∂zγ
)

]

mn

,

Rzm =
1

2
(γ−1)np [∇mγnp,z −∇pγmn,z] , (5.9)

with ∇ being the covariant derivative for γ(z, x). We also assume an asymptotic expansion

for bulk scalar and gauge fields, namely

X = 1 + zX1 + z2X2 + · · · ,
B =

1

z
b+ dz ∧A0 +B0 + zdz ∧A1 + zB1 + · · · ,

H = dB = − 1

z2
dz ∧ b+ 1

z
db− dz ∧ dA0 + dB0 + dz ∧B1 − zdz ∧ dA1 · · · ,

F i = f i + dz ∧Ai0 + zdz ∧Ai1 + zF i1 + · · · . (5.10)
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The 1/z term appearing in the B-field expansion is non-standard but is justified by being

compatible with the equations of motion as we will see below.

It is useful to establish some formulas. We write (in general)

α ∧ ∗α = ‖α‖2vol , (5.11)

to define the norm ‖ · ‖ of a p-form. The inner product of two p-forms α, β is denoted

〈α, β〉. First we compute

∗αp = −ℓz2p−6 (∗γαp) ∧ dz ,

∗(dz ∧ αp−1) =
1

ℓ
z2p−6 ∗γ αp−1 , (5.12)

where αp represents a general p-form that is orthogonal to ∂z. Here the volume forms are

related as

vol6 =
ℓ

z6
dz ∧ volγ =

ℓ

z6
dz ∧

√

det γ dx1 ∧ · · · ∧ dx5 . (5.13)

We will need the expansion of the determinant and Hodge dual for γmn. The former is

√

det γ =
√

det γ0
[

1 +
z2

2
Tr
[

γ2(γ0)−1
]

+
z4

2
Tr
[

γ4(γ0)−1
]

− z4

4
Tr
[

γ2(γ0)−1
]2

+
z4

8

(

Tr
[

γ2(γ0)−1
])2

+O(z5)

]

, (5.14)

whilst the latter may be computed similarly as

∗γ αp = ∗γ0αp + z2
[

1

2
Tr
[

γ2(γ0)−1
]

∗γ0 αp − p ∗γ0 (γ2 ◦ αp)
]

+O(z4) . (5.15)

Here we have defined the p-form

(γ2 ◦ αp)m1···mp ≡ (γ2)[m1

n(αp)|n|m2···mp] , (5.16)

and indices are always raised with γ0, so (γ2)m
n ≡ (γ2)mp(γ

0)pn.

The idea now is to substitute these expansions into the Romans field equations and

then on-shell action. We first look at the lowest order term in z in each of the X, B and

Einstein equations. The leading order term in the X equation of motion dictates

X1 = 0 . (5.17)

Specifically, the term 1
z5
dz∧volγ0 has a coefficient proportional toX1 times a non-zero num-

ber, thus forcing X1 = 0. Next one finds that the leading order term in the B equation of

motion, which is proportional to 1
z3
dz∧∗γ0b, has a coefficient that is zero if and only if ℓ2 =

9/2. Similarly, the leading order term in themn component of the Einstein equation, which

is O(1/z2), is satisfied if and only if ℓ2 = 9/2. We will substitute ℓ = 3/
√
2 from now on.

The first divergence we encounter, which is at order O(1/ǫ5) where z = ǫ is the finite

cut-off, comes from expanding the 4
9X

−2
(

2 + 3X4
)

∗1 integrand in Ibulk and the Gibbons-

Hawking term. It is

IdivO(1/ǫ5) =
1

8πGN

1

ǫ5

∫

∂M6

−4
√
2

3

√

det γ0 d5x , (5.18)
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and is simply cancelled by adding the counterterm

Icounterterm5 =
1

8πGN
· 4

√
2

3

∫

∂M6

√
deth d5x . (5.19)

We write the counterterm action in terms of the induced boundary metric hmn as the

divergences most naturally appear in this form [26]. There is no divergence at O(1/ǫ4) as

a consequence of X1 = 0. The divergence at O(1/ǫ3) has contributions from each of Ibulk,

Iboundary, IGH and the expansion of Icounterterm5 , and is

IdivO(1/ǫ3) =
1

8πGN

1

ǫ3

∫

∂M6

[

4
√
2

9
Tr
[

γ2(γ0)−1
]

+
1

9
√
2
‖b‖2γ0

]

√

det γ0 d5x . (5.20)

Clearly we will need some control on γ2, and this comes from the O(1) term in the mn

direction of the Einstein equation. Carefully expanding we find this fixes

γ2mn = −3

2

[

R(γ0)mn −
1

8
R(γ0)γ0mn

]

+
1

2
b2mn −

3

16
‖b‖2γ0γ0mn . (5.21)

Here R(g)mn = Ric(g)mn denotes the Ricci tensor of a metric gmn, with R(g) the Ricci

scalar. The curvature terms in γ2mn are standard [19], while the terms involving b are

specific to the Romans theory and boundary conditions we are considering. Taking the

trace of (5.21), or alternatively examining the zz component of the Einstein equation at

order O(1), gives

Tr
[

γ2(γ0)−1
]

= − 9

16
R(γ0) +

1

16
‖b‖2γ0 . (5.22)

This expression will need to be used extensively due to its appearance in the Hodge dual

and metric determinant. Substituting Tr
[

γ2(γ0)−1
]

into the right hand side of IdivO(1/ǫ3)

leads to

IdivO(1/ǫ3) =
1

8πGN

1

ǫ3

∫

∂M6

[

− 1

2
√
2
R(γ0) +

1

6
√
2
‖b‖2γ0

]

√

det γ0 d5x , (5.23)

and the appropriate counterterm is therefore

Icounterterm3 =
1

8πGN

∫

∂M6

[

1

2
√
2
R(h)− 1

6
√
2
‖B‖2h

]√
deth d5x . (5.24)

A priori there is also an O(1/ǫ2) divergence, but one easily sees from the various

expansions that only the scalar field contributes to it. This term (temporarily reinstating

the AdS length scale) is

IdivO(1/ǫ2) =
1

8πGN

(

4ℓ

9
· 1
2
− 1

ℓ

)

1

ǫ2

∫

∂M6

X3

√

det γ0 d5x = 0 , (5.25)

where the first term comes from expanding the bulk integral (5.2), while the second (which

cancels it) comes from the boundary X−1∗dX term in (5.3). Thus this potential divergence

is zero, without needing a counterterm or indeed even needing to use any of the equations

of motion.
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Continuing we find there are many terms that contribute at O(1/ǫ) including A1 and

B0 from the asymptotic expansion of the B-field. It is prudent to look at higher orders of z

in the equations of motion for simplifications along the lines of X1 = 0. Indeed by looking

at the z−2dz ∧ α3 coefficient of the B-field equation of motion we find

B0 = 0 . (5.26)

The z−1α4 coefficient similarly implies

A1 = 0 . (5.27)

With these simplifications the O(1/ǫ) divergence becomes

IdivO(1/ǫ) =
1

8πGN

1

ǫ

∫

∂M6

[

29
√
2

9
(X2)

2 +
2
√
2

9
X4 +

2
√
2

9
X2Tr

[

γ2(γ0)−1
]

+

√
2

4
‖f i‖2γ0

−
√
2

72
Tr
[

γ2(γ0)−1
]

‖b‖2γ0 +
√
2

18
〈b, γ2 ◦ b〉+ 2

√
2

9
X2 ‖b‖2γ0 +

√
2

18
〈b, dA0〉

+
4
√
2

3
Tr
[

γ4(γ0)−1
]

− 2
√
2

3
Tr
[

γ2(γ0)−1
]2

+

√
2

3

(

Tr
[

γ2(γ0)−1
])2

−
√
2

4
R(γ0)ij(γ

2)ij +

√
2

8
R(γ0)Tr

[

γ2(γ0)−1
]

]

√

det γ0 d5x . (5.28)

We now seek to determine A0, X4 and γ4 in terms of lower order boundary quantities such

as b. Examination of the z−2α4 coefficient of the B-field equation of motion gives

d ∗γ0 b = − i
√
2

3
b ∧ b− 4

9
∗γ0 A0 , (5.29)

which we should regard as fixing A0 in terms of the boundary field b. Specifically, since

∗25 = 1 on any form, we solve this as

A0 = −9

4
∗γ0

(

d ∗γ0 b+
i
√
2

3
b ∧ b

)

. (5.30)

Note we may also write ∗γ0d ∗γ0 b = δγ0b in terms of the adjoint δγ0 of d with respect to

γ0. The z−1dz ∧ α3 coefficient determines B1 to be

B1 = ∗γ0
(

9

4
d ∗γ0 db−

i
√
2

3
b ∧A0

)

+ 2bX2 −
1

2
Tr
[

γ2(γ0)−1
]

b+ 2γ2 ◦ b , (5.31)

which may be rewritten as

B1 =
9

4
∗γ0

[

d ∗γ0 db+
i
√
2

3
b ∧ δγ0b−

2

9
b ∧ ∗γ0(b ∧ b)

]

+ 2bX2

−1

2
Tr
[

γ2(γ0)−1
]

b+ 2γ2 ◦ b . (5.32)
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The next coefficient we need is X4, the coefficient of z4 in the expansion of X(z, xm)

and is found from the z−2dz ∧ volγ0 terms in the X field equation

X4 = −9

4
∆γ0X2 −X2Tr

[

γ2(γ0)−1
]

− 11

2
(X2)

2 +
3

4
X2‖b‖2γ0

+
9

16
‖db‖2γ0 −

1

36
‖A0‖2γ0 −

1

2
〈B1, b〉+

1

4
〈b, dA0〉 −

9

32
‖f i‖2γ0 . (5.33)

Here ∆γ0 = δγ0d acting on functions but will not contribute for a compact boundary (after

integrating by parts).

We also need γ4mn, which comes from expanding the zz component of the Einstein

equation at O(z2):

Tr
[

γ4(γ0)−1
]

= +
1

4
Tr
[

γ2(γ0)−1
]2 − 5

2
(X2)

2 − 1

24
‖A0‖2γ0 +

9

32
‖db‖2γ0 −

3

8
X2‖b‖2γ0

+
1

4
〈b, B1〉 −

1

8
〈b, dA0〉+

9

64
‖f i‖2γ0 . (5.34)

Next we record some intermediate formulae which follow from the expression for γ2mn
in (5.21):

Tr
[

γ2(γ0)−1
]2

=
9

4

[

R(γ0)mnR(γ
0)mn − 11

64
R(γ0)2

]

+
1

4
Trγ0b

4 (5.35)

−3〈Ric(γ0) ◦ b, b〉γ0 +
75

128
R(γ0)‖b‖2γ0 −

51

256
‖b‖4γ0 ,

R(γ0)mn(γ
2)mn = −3

2
R(γ0)mnR(γ

0)mn +
3

16
R(γ0)2 + 〈Ric(γ0) ◦ b, b〉γ0

− 3

16
R(γ0)‖b‖2γ0 ,

〈γ2 ◦ b, b〉 = −3

2
〈Ric(γ0) ◦ b, b〉γ0 +

1

4
Trγ0b

4 +
3

16
R(γ0)‖b‖2γ0 −

3

16
‖b‖4γ0 .

Here we have defined Trγ0b
4 ≡ bm

nbn
pbp

qbq
m. Notice that Trγ0b

2 = −2‖b‖2γ0 , with this

notation.

We now have all that we need to compute the O(1/ǫ) counterterm. Inserting all our

intermediate results along with the newfound expressions for X4 etc. into IdivO(1/ǫ) in (5.28)

leads to

IdivO(1/ǫ) =
1

8πGN

1

ǫ

∫

∂M6

{

[

− 3

4
√
2
R(γ0)mnR(γ

0)mn +
15

64
√
2
R(γ0)2

+
3

4
√
2
‖f i‖2γ0 −

1

12
√
2
Trγ0b

4 +
13

192
√
2
‖b‖4γ0 +

1√
2
‖db‖2γ0

− 5

8
√
2
‖d ∗γ0 b+

i
√
2

3
b ∧ b‖2γ0 +

1

4
√
2
〈b, dδγ0b+

i
√
2

3
d[∗γ0b ∧ b]〉

−4
√
2

3
(X2)

2 +
1√
2
〈Ric(γ0) ◦ b, b〉γ0 −

9

32
√
2
R(γ0)‖b‖2γ0

]

√

det γ0 d5x

+
1

4
√
2
〈b, ∗γ0

[

d ∗γ0 db+
i
√
2

3
b ∧ δb− 2

9
b ∧ ∗γ0(b ∧ b)

]

〉
}

. (5.36)
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The corresponding counterterm is hence

Icounterterm1 =
1

8πGN

∫

∂M6

{

[

3

4
√
2
R(h)mnR(h)

mn − 15

64
√
2
R(h)2

− 3

4
√
2
‖F i‖2h +

1

12
√
2
TrhB

4 − 13

192
√
2
‖B‖4h −

1√
2
‖dB‖2h

+
5

8
√
2
‖d ∗h B +

i
√
2

3
B ∧B‖2h −

1

4
√
2
〈B, dδhB +

i
√
2

3
d ∗h B ∧B〉h

+
4
√
2

3
(1−X)2 − 1√

2
〈Ric(h) ◦B,B〉h +

9

32
√
2
R(h)‖B‖2h

]√
deth d5x

− 1

4
√
2
B ∧

[

d ∗h dB +

√
2i

3
B ∧ δhB − 2

9
B ∧ ∗h(B ∧B)

]

}

. (5.37)

Once again the pure gravity terms found in the first line agree with the literature [19].

A priori the bulk integral in (5.2) is logarithmically divergent. Of course a log diver-

gence should not appear, as the boundary is odd-dimensional and on general grounds one

does not expect local anomalies. In keeping with this argument the equations of motion

at even higher order in z constrain the fields such that the potential log divergence cancels

without the need for a counterterm.

Collating all the expressions for the counterterms we finally arrive at [23]

Icounterterms =
1

8πGN

∫

∂M6

{

[

4
√
2

3
+

1

2
√
2
R(h)− 1

6
√
2
‖B‖2h

+
3

4
√
2
R(h)mnR(h)

mn − 15

64
√
2
R(h)2

− 3

4
√
2
‖F i‖2h +

1

12
√
2
TrhB

4 − 13

192
√
2
‖B‖4h −

1√
2
‖dB‖2h

+
5

8
√
2
‖d ∗h B +

i
√
2

3
B ∧B‖2h −

1

4
√
2
〈B, dδhB +

i
√
2

3
d ∗h B ∧B〉h

+
4
√
2

3
(1−X)2 − 1√

2
〈Ric(h) ◦B,B〉h +

9

32
√
2
R(h)‖B‖2h

]√
deth d5x

− 1

4
√
2
B ∧

[

d ∗h dB +

√
2i

3
B ∧ δhB − 2

9
B ∧ ∗h(B ∧B)

]

}

. (5.38)

5.3 Free energy of the solutions

The renormalized on-shell action determined in the previous subsection holds for all Ro-

mans supergravity solutions which are asymptotically locally AdS. In particular we may

use these results to compute the holographic free energy for the supersymmetric solutions

of section 4. In order to present the results, we first split the renormalized action as

Irenormalized = Ibulk + Inon−bulk , (5.39)

where Ibulk is the bulk integral given by (5.2), while

Inon−bulk = Iboundary + IGH + Icounterterms , (5.40)
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where Iboundary is the boundary contribution to the on-shell action (5.3), IGH is the

Gibbons-Hawking term, while Icounterterms is the full counterterm (5.38). For our SU(3)×
U(1) ansatz (4.1), with f1(r) ≡ f2(r) ≡ 0 and f3(r) = f(r), we have in particular

Ibulk =
π2

36GN

∫ Λ

r= 1√
6

[

3X2(r)α(r)β4(r)γ(r) + 6if(r)
[

f(r)p(r) + q(r)f ′(r)
]

+
24f2(r)α2(r)γ2(r) + 8α2(r)β4(r)γ2(r) + 3β4(r)(f ′(r))2

4X2(r)α(r)γ(r)

]

dr , (5.41)

where Λ is the cut-off for the r coordinate.

3/4 BPS solution. For the one-parameter family of 3/4 BPS solutions in section 4.2 we

obtain

Ibulk =
π2

36GN

[

6561
√

3
2

s
Λ5 −

243
√

3
2

(

3 + 12s2 +
√
1− s2

)

s3
Λ3

−
2187

√
6κ
(

−1 +
√
1− s2

)

8s
Λ2 (5.42)

+
27
[
√

3
2

(

74 + 66s4 − 14
√
1− s2 − s2

(

5 + 4
√
1− s2

))]

4s5
Λ

−243 +
81δ

2
√
2
− 1377δ2 − 1467δ3

8
√
2

− 6693δ4

2
− 44073δ5

64
√
2

− 4482δ6 +O(δ7)

]

+O
(

1

Λ

)

,

together with

Inon−bulk =
π2

36GN

[

−
6561

√

3
2

s
Λ5 +

243
√

3
2

(

3 + 12s2 +
√
1− s2

)

s3
Λ3

+
2187

√
6κ
(

−1 +
√
1− s2

)

8s
Λ2 (5.43)

−
27
[
√

3
2

(

74 + 66s4 − 14
√
1− s2 − s2

(

5 + 4
√
1− s2

))]

4s5
Λ

+
81
√

3
2

(

−16 + 16
√
1− s2 + 13s2

(

1 + 3
√
1− s2

))

κ

8s3

]

+O
(

1

Λ

)

,

where recall that κ is given as a series in δ in (4.8). Adding the two contributions and taking

the cut-off Λ → ∞, the divergences cancel and we are left with the following finite result

Irenormalized = −27π2

4GN

(

1 +
8

3
δ2 +

16
√
2

27
δ3 +

68

27
δ4 +

28
√
2

27
δ5 +

32

27
δ6 + . . .

)

, (5.44)
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where the six-dimensional Newton constant is given by4

GN =
15π

√

8−Nf

4
√
2N5/2

. (5.45)

The holographic free energy is identified with Irenormalized and agrees precisely with the

series expansion of the large N field theory result (2.44)

F =
1

27s2
(3−

√
1− s2)3

1−
√
1− s2

FroundS5 , (5.46)

where recall that s = 1/(1 + δ2).

1/4 BPS solution. We may similarly compute the holographic free energy of the two-

parameter family of 1/4 BPS solutions in section 4.3. Again we obtain two divergent

contributions whose divergences cancel. The finite piece may be computed as an expansion

in δ = 1
s − 1 using the series expansions of the parameters ξ1, ξ2 in (4.14). Putting

everything together we obtain

Irenormalized = −27π2

4GN

(

1 +O(δ5)
)

. (5.47)

This again agrees with largeN field theory result (2.44). Of course the latter field theory re-

sult was computed for a one-parameter subfamily of boundary conditions in section 2, while

here we have a more general two-parameter family. We shall elaborate on this in section 8.

6 Boundary supersymmetry conditions

In this section we determine the form of the Euclidean Romans supersymmetry conditions,

given in section 3, near the five-dimensional conformal boundary. Closely related work

has appeared in [27]. Our conventions are the following: we use xµ = (r, xm) to denote

six-dimensional coordinates, so that the indices µ, ν, . . . ∈ {0, 1, 2, 3, 4, 5}. Six-dimensional

frame indices are indexed by A,B, . . . ∈ {0, 1, 2, 3, 4, 5} and five-dimensional frame indices

by early Roman letters a, b etc.

We continue to use the Fefferman-Graham coordinates outlined in subsection 5.2, al-

though compared to that section we change coordinates z → 1/r so that the conformal

boundary is now at r = ∞. We can then scale the r coordinate r → λr without changing

the position of the conformal boundary or modifying the five-dimensional boundary metric

γ0. After this scaling the asymptotic six-dimensional metric is now

ds26 =
ℓ2

r2
dr2 + λ2r2γmndx

mdxn , (6.1)

where

γmn = γ0mn +
1

λ2r2
γ2mn +

1

λ4r4
γ4mn +

1

λ5r5
γ5mn +O

(

1

r6

)

. (6.2)

4This was effectively calculated in [5] by identifying the holographic free energy of Euclidean AdS6 with

an entanglement entropy. The N
5/2 scaling of the free energy had previously been predicted in [9].
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We introduce a six-dimensional vielbein eA such that

ds26 = eAeA = e0e0 + eaea . (6.3)

If we denote by ea(5) the vielbein for γ0, then the six-dimensional frame components may

be written as

e0r =
ℓ

r
, e0m = 0 , ear = 0 , eam(r, x) = λrea(5)m(x) + · · · , (6.4)

where the ellipsis denotes subleading powers of r which will not play a part in what follows.

The inverse frame is

er0 =
r

ℓ
, em0 = 0 , era = 0 , (eam)

−1 = ema =
1

λr
em(5)a + . . . . (6.5)

The six-dimensional spin connection is given by ωµ
AB = eν[A∂µeν

B] − eν[A∂νeµ
B] −

e
[A
ν e

B]
σ eCµ ∂

νeσC and from this expression it is easy to show that

ωr
bc = 0 = ωr

0b , ωa
0c = −1

ℓ
δca + . . . , ωa

bc =
1

λr
ω(5d)
a

bc + . . . , (6.6)

where ω
(5d)
a

bc is the spin connection associated with the 5d boundary metric γ0.

Incorporating some of the results from the holographic renormalization in subsec-

tion 5.2, the asymptotic bulk field expansions in the local six-dimensional coordinates are5

X = 1 +
1

r2
X2 + · · · ,

F =
2

3
B =

2r

3
b− 2

3r2
dr ∧A0 + · · · ,

H = dB = dr ∧ b+ rdb+ · · · ,
F i = f i + · · · ,
Ai = ai + · · · . (6.7)

Note that not all the fields appearing on the right hand side are independent. For example

f i = dai − 1
2ε
ijkaj ∧ ak and A0 was found in subsection 5.2 to be given by

A0 = −9

4
∗γ0

(

d ∗γ0 b+
i
√
2

3
b ∧ b

)

. (6.8)

However, for simplicity we keep A0 and substitute in terms of b only at the end of our

computation. Converting the bulk field expansions first into the six-dimensional frame

and then into the 5d frame using (6.5) we can read off the following components for the

asymptotic fields

H0ab =
r

ℓ(λr)2
bab +O

(

1

r3

)

, Habc =
r

(λr)3
(db)abc +O

(

1

r4

)

,

F0a = − 2

3ℓλr2
(A0)a +O

(

1

r3

)

, Fab =
2r

3(λr)2
bab +O

(

1

r3

)

,

5In this section we use a calligraphic font Ai to denote the SU(2) gauge field so that there is no confusion

with other notation.
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X +
1

3
X−3 =

4

3
+O

(

1

r4

)

, X −X−3 =
4

r2
X2 +O

(

1

r3

)

,

X−1∂0X = − 2

ℓr2
X2 +O

(

1

r3

)

, X−1∂aX = O
(

1

r3

)

,

F iab =
1

(λr)2
f iab +O

(

1

r3

)

, F i0a = O
(

1

r3

)

,

Ai
a =

1

λr
aia +O

(

1

r3

)

, Ai
0 = O

(

1

r3

)

. (6.9)

The full six-dimensional Killing spinor equation for the Euclidean Romans theory,

where all indices are orthonormal frame indices, is

DAǫI =
i

4
√
2

(

X +
1

3
X−3

)

ΓAΓ7ǫI −
1

48
X2HBCDΓ

BCDΓAΓ7ǫI

− i

16
√
2
X−1FBC(ΓA

BC − 6δA
BΓC)ǫI

+
1

16
√
2
X−1F iBC(ΓA

BC − 6δA
BΓC)Γ7(σ

i)I
JǫJ , (6.10)

where DAǫI = ∂AǫI +
1
4ωA

BCΓBCǫI +
i
2Ai

A(σ
i)I

JǫJ . Taking the free index to be A = 0 and

substituting the field components (6.9) leads to

∂rǫI = +
i

2r
Γ0Γ7ǫI +O

(

1

r2

)

. (6.11)

Similarly, if we take the free index in the Killing spinor equation to be A = a then we find

∇aǫI =
λ

3
√
2
rΓa(iΓ7 − Γ0)ǫI −

i

2
aia(σ

i)I
JǫJ (6.12)

− i

24λ
√
2
bbcΓa

bc(1 + iΓ0Γ7)ǫI +
i

4λ
√
2
babΓ

b

(

1 +
i

3
Γ0Γ7

)

ǫI +O
(

1

r

)

,

with ∇a being the covariant derivative with respect to the 5d spin connection.

Now we decompose the six-dimensional gamma matrices and spinors. We take our

coordinate independent Cliff(6, 0) gamma matrices to be

Γ0 =

(

0 14

14 0

)

, Γa =

(

0 iγa

−iγa 0

)

, Γ7 =

(

−14 0

0 14

)

, (6.13)

where γa are a Hermitian basis of Cliff(5, 0). The six-dimensional spinor ǫI is decomposed as

ǫI =

(

ǫ+I

ǫ−I

)

, (6.14)

where ǫ±I are 4-component spinors.

With this basis of gamma matrices and splitting of the spinors, the r direction of the

Killing spinor equation (6.11), to lowest order in r, is
(

∂rǫ
+
I

∂rǫ
−
I

)

=
i

2r

(

ǫ−I
−ǫ+I

)

. (6.15)
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The general solution determines the asymptotic dependence on r:

ǫI =

(

ǫ+I

ǫ−I

)

=
√
r

(

χI

−iχI

)

+
1√
r

(

ϕI

iϕI

)

+ · · · , (6.16)

where χI , ϕI depend only on the boundary coordinates xm. Having found the asymptotic

dependence on r for the spinors ǫI we can then substitute into the remaining components

of the Killing spinor equation (6.12). Taking only the lowest terms in r gives two copies of

∇aχI = −λ
√
2i

3
γaϕI −

i

2
aia(σ

i)I
JχJ − i

12λ
√
2
bbcγa

bcχI +
i

3λ
√
2
babγ

bχI . (6.17)

This is the five-dimensional boundary Killing spinor equation.

Now recall that the six-dimensional dilatino condition in the frame reads

0 = −iX−1∂AXΓAǫI +
1

2
√
2

(

X −X−3
)

Γ7ǫI +
i

24
X2HABCΓ

ABCΓ7ǫI

− 1

8
√
2
X−1FABΓ

ABǫI −
i

8
√
2
X−1F iABΓ

ABΓ7(σ
i)I

JǫJ . (6.18)

We may follow precisely the same steps as for the Killing spinor equation to determine the

asymptotic form of the dilatino equation. Doing so we find the five-dimensional constraint

0 = − 1

6
√
2
babγ

abϕI −
√
2

3
λ2X2χI +

i

24λ
(db)abcγ

abcχI +
λi

8
∇bbabγ

aχI

+
λ

48
√
2
babbcdγ

abcdχI +
i

8
√
2
f iabγ

ab(σi)I
JχJ . (6.19)

We would prefer to have five-dimensional supersymmetry conditions which are homo-

geneous in the spinor χI instead of the current dependence on both χI and ϕI . To remove

ϕI we contract (6.17) with γa. This gives

ϕI =
i

5

3

λ
√
2

[

γa
(

δJI∇a +
i

2
aia(σ

i)I
J +

i

12λ
√
2
bbc(γa

bc − 4δbaγ
c)δJI

)]

χJ

≡ i

5

3

λ
√
2
DI

JχJ . (6.20)

We may then write the boundary Killing spinor equation in the form

(

∇̃I
J
a −

1

5
γaDI

J

)

χJ = 0 , (6.21)

where ∇̃I
J
a = δJI∇a +

i
2a

i
a(σ

i)I
J + i

12λ
√
2
bbc(γa

bc − 4δbaγ
c)δJI . The boundary dilatino con-

straint reads

0 = − i

20λ
babγ

abDI
JχJ −

√
2

3
λ2X2χI +

i

24λ
(db)abcγ

abcχI +
λi

8
∇bbabγ

aχI

+
λ

48
√
2
babbcdγ

abcdχI +
i

8
√
2
f iabγ

ab(σi)I
JχJ . (6.22)
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For vanishing b-field, solutions of (6.21) are known as charged conformal Killing spinors

(CCKS), or twistor spinors. Within the current context of gauge/gravity duality, CCKS

have been classified for 3-manifolds and 4-manifolds in both Euclidean and Lorentzian sig-

nature in [28–31]. More recently, solutions in five dimensions (with arbitrary signature)

have been studied in [32]. To our knowledge the more general charged conformal Killing

spinor equation, where the charge is with respect to both the triplet of one-forms ai and the

two-form b, has not been studied in the literature. It would be interesting to understand the

relationship between the five-dimensional conditions found here from the Romans super-

gravity theory and the rigid limit of five-dimensional N = 1 Poincaré supergravity [33, 34]

studied in [35, 36].

Finally, whilst we do not yet understand the general properties of a solution to (6.21),

we are able to state the precise relation between the spinors ϕI and χI for our supersym-

metric solutions (for which λ = 3
√
3). For the 3/4 BPS solution we find

ϕI = (−1)I
3−

√
1− s2

6
√
6s

χI − (−1)I
4
√
1− s2

6
√
6s

γ1χI , (6.23)

and for the two-parameter family of 1/4 BPS solutions

ϕI =
(f0 − 3)s

6
√
6

χI . (6.24)

In appendix B we give further details of the explicit six-dimensional Killing spinors and

their relation to the five-dimensional spinors of section 2.

7 Wilson loops

In this section we compute the expectation values of certain BPS Wilson loops, both in

the large N matrix model of section 2.3 and also in the supergravity dual solutions of

section 4. More precisely it will be important to uplift these solutions to massive type

IIA supergravity, where the Wilson loop in the fundamental representation is dual to a

fundamental string. Minus the action of this string precisely matches the logarithm of the

Wilson loop VEV in the large N limit, as a function of the parameters of the solutions.

7.1 Large N field theory

An interesting observable to consider is the VEV of the Wilson loop in a representation R

of the gauge group G:

〈WR 〉 = 1

dimR

〈

TrR P exp

∫

(Amẋ
m + σ|ẋ|) dt

〉

. (7.1)

Here A denotes the dynamical gauge field for the gauge group G, σ is the scalar in the

corresponding vector multipet, and the worldline is parametrized by xm(t). It is straight-

forward to see that (7.1) is invariant under the supersymmetry transformations for the
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squashed five-sphere (2.21) appearing in section 3.3 of [6] provided the Wilson loop wraps

an orbit of the Killing vector bilinear6

Km = εIJχI
TC(5)γmχJ . (7.2)

That is, we take xm(t) to be an integral curve of K. The supersymmetry variations of the

two terms in (7.1) then cancel each other.

The large N limit of (7.1) for the USp(2N) gauge theories described in section 2.3 was

computed for the round five-sphere in [37]. It is straightforward to extend this to the more

general squashed sphere matrix model in section 2.3. The key point is that the insertion of

the Wilson loop into the path integral does not affect the leading order saddle point config-

uration because its logarithm scales as N1/2, while the free energy instead scales as N5/2.

The dynamical gauge field A localizes to zero, so only the constant scalar σ contributes to

the Wilson loop (7.1) in the localization computation. Thus the VEV (7.1), for the funda-

mental representation of USp(2N), is effectively computed in the large N matrix model as

〈Wfund 〉 =
∫ x⋆

0
e2πL λ(x) ρ(x)dx , (7.3)

where ρ(x) is the saddle point eigenvalue density (2.39), with the eigenvalues supported

on [0, x⋆] with x⋆ given by (2.40). We have also denoted by 2πL =
∫

|ẋ| dt the length of

the integral curve of K that is wrapped by the Wilson loop, and recall that λ(x) = N1/2x

to leading order. Thus we find the large N result

log 〈Wfund 〉 =
(b1 + b2 + b3)

√
2πL

√

8−Nf

N1/2 + o(N1/2) . (7.4)

Relative to the round sphere result we thus have

log 〈Wfund 〉 =
(b1 + b2 + b3)L

3
log 〈Wfund 〉round . (7.5)

Indeed, recalling that

K = b1∂ϕ1 + b2∂ϕ2 + b3∂ϕ3 , (7.6)

in terms of the standard U(1)3 action on S5 ⊂ R
2 ⊕ R

2 ⊕ R
2, then the orbits of K are

always closed circles at the origins of any two copies of R2. If we call these U(1)3 invariant

circles S1
i , i = 1, 2, 3, then L = 1/bi and we may write

log 〈Wfund, S1
i
〉 = (b1 + b2 + b3)

3bi
log 〈Wfund 〉round . (7.7)

Notice that this formula is invariant under a constant rescaling K → c · K. We now

explain how to reproduce this large N result from the dual supergravity solutions.

6Of course we have similarly defined a Killing vector K in the six-dimensional bulk as (3.9). The latter

restricts to (7.2) on the conformal boundary, so this is only a slight abuse of notation.
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7.2 Dual fundamental strings

The supergravity dual of the Wilson loopWfund was studied in [37] for the round five-sphere.

The supergravity background is in this case the massive type IIA uplift AdS6 × S4 of the

AdS6 vacuum of the Romans theory of section 3. The Wilson loop maps to a fundamental

string sitting at the north pole ξ = π
2 of the internal S4, in the notation of section 3.1.

The string then wraps a copy of R2 ⊂ AdS6 parametrized by the radial direction r in AdS

together with the Wilson loop curve S1 ⊂ S5.

We now generalize this to our supergravity backgrounds in section 4. Here the type

IIA background is a warped and fibred product M6 ×S4, together with various non-trivial

background fluxes. However, M6 still has the topology of a ball, with a natural radial

direction r. Thus the candidate dual of the Wilson loops computed in the previous section

is a fundamental string sitting at ξ = π
2 in the internal S4 of (3.1), together with the Wilson

loop curve S1 ⊂ S5
squashed and the radial direction r. This is then a copy of Σ2

∼= R
2 ⊂M6,

and we would like to compute the regularized action of a fundamental string wrapping this

submanifold.

In order to compute the string action we must first convert to the string frame metric

in (3.1), which introduces a factor of eΦ/2, where Φ is the ten-dimensional dilaton. The

induced string frame metric on M6 at the north pole ξ = π
2 of S4 is then

ds2M6
|ξ=π

2
, string= X−2ds26 , (7.8)

where ds26 is the Romans supergravity metric. The B-field then uplifts to the type IIA

B-field with curvature F(3) = H = dB via (3.1) at the north pole ξ = π
2 . In section 3

we have set most of the physical scaling parameters to specific numerical values — for

example the Romans mass is set to mIIA =
√
2
3 , while the correctly normalized value for

the supergravity dual to the USp(2N) gauge theories is (8 − Nf )/(2πℓs) where ℓs is the

string length. In particular restoring the AdS radius to its physical value

L4 =
8π2N

9(8−Nf )
ℓ4s , (7.9)

(as in [37]) the string frame action is

S =
N1/2

√
2

3
√

(8−Nf )

∫

Σ2

X−2
√

det γ d2x+ iB , (7.10)

where γab is the metric induced on Σ2 via its embedding into the Romans metric ds26 on

M6, and we have included the usual Wess-Zumino coupling to the ten-dimensional B-field.

More precisely, (7.10) is divergent, and as usual one may regularize it by cutting off the r

integral at some r = Λ, and including a boundary counterterm given by the length of the

boundary S1 ⊂ S5 at r = Λ. Thus the regularized action reads

Sstring =
N1/2

√
2

3
√

(8−Nf )

[∫

Σ2

(

X−2
√

det γ d2x+ iB
)

− 3√
2
length(∂Σ2)

]

, (7.11)

where this is understood to mean the limit as one takes the cut-off Λ → ∞. We now

compute this for our various solutions.
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1/4 BPS background. We begin with the 1/4 BPS background, as in this case the

supersymmetric Killing vector bilinear is simply K = ∂τ (up to an irrelevant constant

rescaling). Via the SU(3) symmetry of the background all orbits of K are equivalent, and

thus there is effectively only one Wilson loop to compute. This wraps the τ and r directions

at, say, σ = 0 (which is a point on the base CP
2 of S1

Hopf →֒ S5 → CP
2, all points being

equivalent under SU(3)). The regularized string action (7.11) is

Sstring = lim
Λ→∞

N1/22
√
2π

3
√

(8−Nf )

[

∫ Λ

r= 1√
6

[

X−2(r)α(r)γ(r) + i p(r)
]

dr − 3√
2
γ(Λ)

]

, (7.12)

where we have used that τ has period 2π. Evaluating this for the two-parameter family of

1/4 BPS solutions, as a series in the parameter δ, we find

− Sstring =
3
√
2π

√

8−Nf

N1/2 +O(δ5) , (7.13)

which agrees precisely with the large N field theory result (7.4) since K = ∂τ = ∂ϕ1 +

∂ϕ2 + ∂ϕ3 so that b1 = b2 = b3 = 1.

3/4 BPS background. For the 3/4 BPS solution recall that the supersymmetric Killing

vector K has b1 = 1+
√
1− s2, b2 = b3 = 1−

√
1− s2. For generic values of the squashing

parameter s the generic orbit of K will be open. However, the orbits always close over the

circles S1
i defined in section 7.1, which have lengths L = 2π/bi. Since b2 = b3 these circles

give rise to two distinct Wilson loop VEVs:

log 〈Wfund, S1
i
〉

log 〈Wfund 〉round
=























3−
√
1− s2

3(1 +
√
1− s2)

, i = 1 ,

3−
√
1− s2

3(1−
√
1− s2)

, i = 2, 3 .

(7.14)

We may then compare these results to the regularized string action (7.11), where for S1
i

the fundamental string wraps the circle ϕi together with the r direction. More precisely,

S1
1 is located at σ = 0 in the coordinates (2.1), while S1

2 is located at {σ = π
2 , θ = 0}, as

one sees from (2.23). The result for S1
3 is the same as that for S1

2 due to the SU(2) ⊂ SU(3)

symmetry preserved by the bosonic solution and supersymmetric Killing vector. On the

other hand, due to the signs in (2.24) the relevant string actions to compute are then

N1/22
√
2π

3
√

(8−Nf )

[

∫ Λ

r= 1√
6

[

X−2(r)α(r)γ(r)± i p(r)
]

dr − 3√
2
γ(Λ)

]

, (7.15)

respectively. Evaluating this for the one-parameter family of 3/4 BPS solutions, as a series

in the parameter δ up to sixth order where δ2 = 1
s − 1, we find

Sstring,S1
1

Sstring |δ=0
= 1− 4

√
2

3
δ +

8

3
δ2 − 5

√
2

3
δ3 +

4

3
δ4 − 7

12
√
2
δ5 + 0 · δ6 + . . . , (7.16)
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while

Sstring,S1
2

Sstring |δ=0
= 1 +

2
√
2

3
δ +

4

3
δ2 +

5

3
√
2
δ3 +

2

3
δ4 +

7

24
√
2
δ5 + 0 · δ6 + . . . . (7.17)

These agree precisely with the series expansions of (7.14) computed in field theory.

8 Discussion and conjectures

In this paper we have constructed supergravity duals to the USp(2N) superconformal gauge

theories on SU(3)×U(1) squashed five-spheres. These constitute a one-parameter family of

3/4 BPS solutions, and a two-parameter family of generically 1/4 BPS. The latter include

new supersymmetric squashed five-sphere geometries with the background SU(2)R gauge

field turned off, and moreover these have enhanced 1/2 BPS supersymmetry. By holo-

graphically renormalizing the Euclidean Romans supergravity theory, we have computed

the holographic free energy for our solutions. We then compared this to the large N limit of

the partition function of the gauge theories, and found perfect agreement. Given a super-

symmetric supergravity solution one can construct the Killing vector Kµ = εIJǫTI CγµǫJ ,
where ǫI , I = 1, 2, is the SU(2)R doublet of Killing spinors. For our solutions the free

energy takes the form

F =
(|b1|+ |b2|+ |b3|)3

27|b1b2b3|
FAdS6 , (8.1)

where we write the supersymmetric Killing vector as K =
∑3

i=1 bi∂ϕi , and ∂ϕi are stan-

dard generators of U(1)3 ⊂ SU(3) × U(1) acting on S5 ⊂ R
2 ⊕ R

2 ⊕ R
2. Given the

corresponding 4d/3d results of [13, 38], it is then natural to conjecture that (8.1) holds for

any supersymmetric supergravity solution with the topology of a six-ball and for which the

supersymmetric Killing vector K may be written as K =
∑3

i=1 bi∂ϕi . In the present paper

we chose orientation conventions so that bi > 0 for i = 1, 2, 3. More generally we expect

the orientations of ∂ϕi to be fixed as in [13], leading to the modulus signs in (8.1). We

shall comment further on this below. We also conjecture that any supersymmetric gauge

theory, with finite N , defined on the conformal boundary of such a supergravity solution

depends only on b1, b2, b3.

We have also computed certain BPS Wilson loops, both in supergravity and in the

large N gauge theories, again finding agreement. In this case we find that one can write

the Wilson loop VEV as

log 〈W 〉 = |b1|+ |b2|+ |b3|
3|bi|

log 〈W 〉AdS6 , (8.2)

where the Wilson loop wraps the ϕi circle. Again, it is natural to conjecture that (8.2)

holds for general supergravity backgrounds with U(1)3 symmetry and the topology of a

six-ball. A general proof of the analogous formula to (8.2) for the Wilson loop VEV in four

dimensions appears in [39].

There are many natural directions which one could follow up. Firstly, it would be inter-

esting to study supersymmetric gauge theories on a general class of supersymmetric back-

ground five-manifolds, generalizing the work done in lower dimensions in [28, 38, 40, 41].
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One should then be able to prove (or disprove) the conjectures made above. In partic-

ular it would be interesting to study five-manifolds with different topology. Some work

in this direction appears in [15], where the authors studied the case where the boundary

is a Sasaki-Einstein manifold. It would also be very interesting to study systematically

the geometry of Euclidean Romans supergravity backgrounds, as alluded to in section 3.3.

Here it is natural to expect that general supersymmetric solutions on the six-ball have a

canonical complex structure, so that M6
∼= C

3. If this is the case, then introducing stan-

dard complex coordinates zi = ρie
iϕi , i = 1, 2, 3, fixes the relative orientations of ∂ϕi . In

analysing the asymptotic expansion of the bulk Killing spinor equation, we have obtained

a boundary charged conformal Killing spinor equation, where the charge is with respect

to both a one-form and also a two-form. To our knowledge, this type of equation has not

been studied in the literature. In particular, it is an open problem to relate this equation

to a more standard Killing spinor equation, of the type (6.17), in general.

Acknowledgments

The work of L. F. A., M. F. and P. R. is supported by ERC STG grant 306260. L. F. A. is

a Wolfson Royal Society Research Merit Award holder. J. F. S. is supported by the Royal

Society. C. M. G. is supported by a CNPq scholarship.

A Integrability conditions

Here we compute the integrability conditions for the Killing spinor equation (3.7) and

dilatino equation (3.8) of the Euclidean Romans theory.

Recall that a supersymmetric solution must satisfy

DµǫI =
i

4
√
2
g(X +

1

3
X−3)ΓµΓ7ǫI −

1

48
X2HνρσΓ

νρσΓµΓ7ǫI (A.1)

− i

16
√
2
X−1Fνρ(Γµ

νρ − 6δµ
νΓρ)ǫI +

1

16
√
2
X−1F iνρ(Γµ

νρ − 6δµ
νΓρ)Γ7(σ

i)I
JǫJ ,

δλI = 0 = −iX−1∂µXΓµǫI +
1

2
√
2
g
(

X −X−3
)

Γ7ǫI +
i

24
X2HµνρΓ

µνρΓ7ǫI

− 1

8
√
2
X−1FµνΓ

µνǫI −
i

8
√
2
X−1F iµνΓ

µνΓ7(σ
i)I

JǫJ , (A.2)

where λI is the dilatino field. Let us also record the component form of the Romans field

equations in (3.3) and (3.5)

(Eg)µν ≡ Rµν − 4X−2∂µX∂νX − g2
(

1

18
X−6 − 1

2
X2 − 2

3
X−2

)

gµν

−1

4
X4(Hµ

ρσHνρσ −
1

6
gµνH

ρστHρστ )−
1

2
X−2(Fµ

ρFνρ −
1

8
gµνF

ρσFρσ)

−1

2
X−2(F i ρµ F iνρ −

1

8
gµνF

iρσF iρσ) ,
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(EX) ≡ ∇µ(X−1∂µX) + g2
(

1

2
X2 − 2

3
X−2 +

1

6
X−6

)

− 1

24
X4HµνρHµνρ

+
1

16
X−2(FµνFµν + F iµνF iµν) ,

(EA)
µ ≡ ∇ν(X

−2F νµ)− i

12
εµνρστκFνρHστκ ,

(EAi)
µ ≡ Dν(X

−2F iνµ)− i

12
εµνρστκF iνρHστκ ,

(EB)
µν ≡ ∇ρ(X

4Hρµν)− 2

3
gX−2Fµν − i

8
εµνρστκ(FρσFτκ + F iρσF

i
τκ) . (A.3)

The equations of motion are then Efield = 0. In addition, the gauge fields satisfy Bianchi

identities Bfield = 0, where we define

(BF )µνρ ≡ ∇[µFνρ] −
2

9
gHµνρ ,

(BF i)µνρ ≡ D[µF
i
νρ] ,

(BH)µνρσ ≡ ∇[µHνρσ] . (A.4)

Taking the commutator of the Killing spinor equation (A.1) we find the integrability

condition to be

IµνIJǫJ = 0 , (A.5)

where

IµνIJǫJ =
1

4
RµνρσΓ

ρσǫI +
i

2
gF iµν(σ

i)I
JǫJ +

[

− i

4
√
2
g(1−X−4)∂µXΓνΓ7ǫI

+
1

24
X∂µXH

ρστΓρστΓνΓ7ǫI +
1

48
X2∇µH

ρστΓρστΓνΓ7ǫI

− i

16
√
2
X−2∂µXFρσJν

ρσǫI +
i

16
√
2
X−1∇µFρσJν

ρσǫI

+
1

16
√
2
X−2∂µXF

i
ρσJν

ρσΓ7(σ
i)I

JǫJ − 1

16
√
2
X−1∇µF

i
ρσJν

ρσΓ7(σ
i)I

JǫJ

− 1

32
g2(

1

9
X−6 +

2

3
X−2 +X2)ΓνΓµǫI −

1

2304
X4HλωθHρστΓλωθΓνΓρστΓµǫI

+
1

512
X−2FωθFρσJν

ωθJµ
ρσǫI +

1

512
X−2F iωθF

i
ρσJν

ωθJµ
ρσǫI

+
i

512
X−2εijkF

i
ωθF

j
ρσJν

ωθJµ
ρσ(σk)I

JǫJ

+
i

192
√
2
g(X3 +

1

3
X−1)Hρστ

(

ΓνΓρστΓµ − ΓρστΓνΓµ

)

ǫI

+
1

128
gX−1(X +

1

3
X−3)Fρσ

(

ΓνJµ
ρσ − Jν

ρσΓµ

)

Γ7ǫI

+
i

128
gX−1(X +

1

3
X−3)F iρσ

(

ΓνJµ
ρσ + Jν

ρσΓµ

)

(σi)I
JǫJ

+
i

768
√
2
XFρσH

λωθ
(

ΓλωθΓνJµ
ρσ − Jν

ρσΓλωθΓµ

)

Γ7ǫI
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− 1

768
√
2
XF iρσH

λωθ
(

ΓλωθΓνJµ
ρσ − Jν

ρσΓλωθΓµ

)

(σi)I
JǫJ

+
i

512
X−2(FρσF

i
ωθ − FωθF

i
ρσ)Jν

ρσJµ
ωθΓ7(σ

i)I
JǫJ − (µ↔ ν)

]

, (A.6)

and we have defined the Clifford algebra element

Jµ
ρσ ≡ Γµ

ρσ − 6δµ
ρΓσ . (A.7)

Taking the covariant derivative of the dilatino equation (A.2) and contracting with Γµ

leads to

ΓµDµ(δλI)−
i

2
√
2
g

(

X − 7

3
X−3

)

Γ7δλI +
1

24
X2HµνρΓ

µνρΓ7δλI (A.8)

+
i

8
√
2
X−1FµνΓ

µνδλI +
1

8
√
2
X−1F iµνΓ

µνΓ7(σ
i)I

JδλJ

= i (EX) ǫI −
1

4
√
2
X (EA)µ Γ

µǫI −
i

4
√
2
X (EAi)µ Γ

µΓ7(σ
i)I

JǫJ +
i

8
X−2 (EB)µν Γ

µνΓ7ǫI

− 1

8
√
2
X−1 (BF )µνρ Γ

µνρǫI −
i

8
√
2
X−1 (BF i)µνρ Γ

µνρΓ7(σ
i)I

JǫJ

+
i

24
X2 (BH)µνρσ Γ

µνρσΓ7ǫI .

We may similarly contract IµνIJǫJ with Γν . After a very lengthy calculation we find

ΓνIµνIJǫJ +
i

2
ΓµΓνD

ν(δλI) + 2iX−1∂µXδλI +
1

2
√
2
g

(

X − 5

3
X−3

)

ΓµΓ7δλI

− i

16
X2HµνρΓ

νρΓ7δλI +
i

16
X2HνρσΓµνρσΓ7δλI −

1

8
√
2
X−1F νρΓµνρδλI

+
1

4
√
2
X−1FµνΓ

νδλI −
i

4
√
2
X−1F iµνΓ

νΓ7(σ
i)I

JδλJ +
i

8
√
2
X−1F iνρΓµνρΓ7(σ

i)I
JδλJ

=
1

2
(EX) ΓµǫI −

1

2
(Eg)µν Γ

νǫI −
1

8
X−2 (EB)

νρ ΓµνρΓ7ǫI

− i

2
√
2
X (EA)µ ǫI +

1

2
√
2
X (EAi)µ Γ7(σ

i)I
JǫJ − 1

24
X2 (BH)

νρστ ΓµνρστΓ7ǫI

− 3i

4
√
2
X−1 (BF )µνρ Γ

νρǫI +
3

4
√
2
X−1 (BF i)µνρ Γ

νρΓ7(σ
i)I

JǫJ . (A.9)

B Supersymmetric supergravity solutions

B.1 The equations

The solutions found in this paper arise from the following SU(3)×U(1) symmetric ansatz

for the supergravity fields

ds26 = α2(r)dr2 + γ2(r)(dτ + C)2 + β2(r)

[

dσ2 +
1

4
sin2 σ(dθ2 + sin2 θdϕ2)

+
1

4
cos2 σ sin2 σ(dψ + cos θdϕ)2

]

,
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B = p(r)dr ∧ (dτ + C) +
1

2
q(r)dC ,

Ai = f i(r)(dτ + C) , (B.1)

together with X = X(r). The equations of motion for the background SU(2)R gauge field

imply

f i(r) = κif(r) . (B.2)

The equations for the other fields then depend only on the SU(2) ∼ SO(3) invariant

κ21+κ
2
2+κ

2
3, which we can set to one by rescaling f(r). Explicitly, one finds that substituting

the ansatz (B.1) into the equations of motion (3.3) and Einstein equation (3.5) leads to

following coupled system of ODEs:

λγX4

α
= if2 + i

q2

9
+

pβ4

9αγX2
, (B.3)

(

λγX4

α

)′
= 2iff ′ + i

(

2

3

)2

pq +

(

2

3

)2 qαγ

X2
, (B.4)

(

β4f ′

2αγX2

)′
− 4αγf

X2
= −2ifλ , (B.5)

α

γβ4

(

γβ4X ′

αX

)′
= − 1

8X2

(

f ′2

γ2
+

8α2f2

β4

)

−
(

2

3

)2 1

8X2

(

p2

γ2
+ 2

α2q2

β4

)

+
X4λ2

2β4
− α2

6X6
+

2α2

3X2
− α2X2

2
, (B.6)

−β
′′

β
+
β′

β

(αγ)′

αγ
− (αγ)2

β4
=

(

X ′

X

)2

+
X4λ2

4β4
, (B.7)

−γ
′′

γ
+
β′′

β
+
α′

α

(

γ′

γ
− β′

β

)

− 3
β′

β

(

γ′

γ
− β′

β

)

+
6α2

β4
(γ2 − β2)

= −X
4λ2

2β4
+

1

2X2

(

f ′2

γ2
− 4α2f2

β4

)

+

(

2

3

)2 1

2X2

(

p2

γ2
− α2q2

β4

)

, (B.8)

−γ
′′

γ
+
α′

α

γ′

γ
− 4

β′

β

γ′

γ
+ 4

(αγ)2

β4
=

α2

18X6
− 2α2

3X2
− α2X2

2
− X4λ2

2β4

+
1

2X2

[

f ′2

γ2
− 1

4

(

f ′2

γ2
+

8α2f2

β4

)]

(B.9)

+

(

2

3

)2 1

2X2

[

p2

γ2
− 1

4

(

p2

γ2
+

2α2q2

β4

)]

.

where we have introduced λ = q′ − 2p. These are seven equations for seven functions. In

addition one can explicitly check that the equations are invariant under changes in the

parametrization r → ρ(r).
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B.2 General solutions

Before writing the general series solutions to the above coupled system of ODEs, let us

present the solution for Euclidean AdS6 in these coordinates:

α(r) =
3
√
3√

6r2 − 1
, β(r) = γ(r) =

3
√
6r2 − 1√

2
,

p(r) = q(r) = f(r) = 0 , X(r) = 1 . (B.10)

Here only the metric is non-trivial, and the above realizes Euclidean AdS6 as a hyperbolic

ball with radial coordinate r ∈ [ 1√
6
,∞), with the conformal boundary at infinity r = ∞.

The point r = 1√
6
is the origin of the ball, where the transverse copies of S5 collapse

smoothly to zero. Notice in particular that the conformal boundary at r = ∞ is equipped

with a round metric on S5, which is conformally flat. We would like to find families of

solutions that generalize (B.10) by allowing for a squashed five-sphere boundary, keeping

the metric asymptotically locally Euclidean AdS near r = ∞. We define the squashing

parameter by:

lim
r→∞

γ(r)

r
= 3

√
3
1

s
, (B.11)

so that s = 1 for the round sphere. Even though we did not manage to find solutions in

closed form, the solutions can nevertheless be given as expansions around different limits.

In general notice that we can use reparametrization invariance to set

β(r) =
3
√
6r2 − 1√

2
, (B.12)

which we assume henceforth. In particular we shall only seek solutions with the topology of

a ball, so that from (B.12) necessarily r = 1√
6
is the origin of the ball. Correspondingly, the

fields must satisfy certain boundary conditions at this point in order that the full solution

is smooth at the origin.

B.2.1 Expansion around the conformal boundary

When finding gravity duals to a given boundary theory, it is natural to perform an ex-

pansion around the conformal boundary at r = ∞. This also has the advantage that

the squashing parameter can be explicitly seen in the solution. Starting from a general

expansion and imposing the equations of motion in section B.1 we find

α(r) =
3√
2

1

r
+

486 + q20s
2

1944
√
2s2

1

r3
+ . . . ,

γ(r) =
3
√
3

s
r +

−486 +
(

243− q20
)

s2

324
√
3s3

1

r
+ . . . ,

X(r) = 1 +
−486q0 + 72i

√
6q20s+ 486q0s

2 + 7q30s
2 + 5832s2q2

11664q0s2
1

r2
+
x3
r3

+ . . . ,

p(r) =
q0
(

54−
√
6iq0s

)

162s2
1

r2
+ . . . ,
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q(r) = q0r +
q2
r

+
q3
r2

+ . . . ,

f(r) = f0 −
f0
(

54−
√
6iq0s

)

81s2
1

r2
+
f3
r3

+ . . . . (B.13)

In addition to the squashing parameter s, the solution depends on q0, f0, f3, q2, q3, x3 and

an extra parameter α5, which appears at higher order in the expansion for α(r). All other

coefficients in the expansion are fixed in terms of these constants. Of course, some of these

parameters will be fixed in the full solution by requiring the correct boundary conditions

at the origin r = 1√
6
, but at this point they are arbitrary.

B.2.2 Expansion around Euclidean AdS

The family of solutions we seek should approach Euclidean AdS6 (B.10) as we take the

squashing parameter s → 1. Hence it should be possible to expand the solutions around

this limit in terms of a perturbation parameter δ. Thus we make the ansatz

α(r) =
3
√
3√

6r2 − 1
+ δ α(1)(r) + δ2 α(2)(r) + . . . ,

γ(r) =
3
√
6r2 − 1√

2
+ δ γ(1)(r) + δ2 γ(2)(r) + . . . ,

X(r) = 1 + δ X(1)(r) + δ2 X(2)(r) + . . . ,

p(r) = δ p(1)(r) + δ2 p(2)(r) + . . . ,

q(r) = δ q(1)(r) + δ2 q(2)(r) + . . . ,

f(r) = δ f (1)(r) + δ2 f (2)(r) + . . . . (B.14)

Substituting this expansion into the equations of motion and expanding in powers of δ, at

each order we obtain a system of linear differential equations which can be solved in closed

form with some effort. For instance, at first order we find

α(1)(r) = −cγ
(

1− 54r2 + 96
√
6r3 − 324r4 + 216r6

)

√
6r2 (6r2 − 1)7/2

,

γ(1)(r) = cγ

(

−5 + 16
√
6r − 90r2 + 180r4 − 216r6

)

(6r2 − 1)5/2
,

X(1)(r) = cx

(

1− 2
√
6r + 6r2

)

(6r2 − 1)2
,

p(1)(r) = cq

(√
6− 16r + 12

√
6r2 − 12

√
6r4
)

3 (6r2 − 1)3
,

q(1)(r) = −cq
(

−4 + 9
√
6r − 24r2 − 12

√
6r3 + 36

√
6r5
)

18 (6r2 − 1)2
,

f (1)(r) = cf

(

−3 + 8
√
6r − 36r2 + 36r4

)

(6r2 − 1)2
. (B.15)
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The constants of integration have been partially fixed by requiring regularity at the origin

r = 1√
6
. In particular we have

α(1)(r) ∼
(

r − 1√
6

)1/2

, γ(1)(r) ∼
(

r − 1√
6

)3/2

,

p(1)(r) ∼ 1 ∼ X(1)(r) , q(1)(r) ∼
(

r − 1√
6

)

∼ f (1)(r) . (B.16)

Here ρ ∼ (r− 1√
6
)1/2 is geodesic distance from the origin at ρ = 0. We can furthermore fix

an extra constant of integration by fixing a relation between δ and the squashing parameter

s (such that δ → 0 as s → 1). As seen in the next section it will be convenient not to do

this uniformly.

B.3 Imposing supersymmetry

We are interested in solutions that preserve some supersymmetry. In order for this to

happen, there should exist non-trivial eight-component Killing spinors ǫ1, ǫ2 solving the

Killing spinor equation (3.7) and dilatino equation (3.8). We choose the frame

e0 = α(r)dr , e1 = γ(r)(dτ + C) , e2 = β(r)dσ , (B.17)

e3 =
1

2
β(r) sinσ cosστ3 , e4 =

1

2
β(r) sinστ2 , e5 =

1

2
β(r) sinστ1 ,

and the following basis for six-dimensional gamma matrices

Γ0 =

(

0 14

14 0

)

, Γm =

(

0 iγm

−iγm 0

)

, m = 1, . . . , 5 ,

Γ7 =

(

−14 0

0 14

)

, (B.18)

where 14 is the 4 × 4 unit matrix and γm are the five-dimensional gamma matrices given

explicitly in section 2.1.

The vanishing of the dilatino variation as well as each component of the integrability

condition (A.6) for the Killing spinor equation have the following general structure

Pǫ1 +Qǫ2 = 0 ,

Rǫ1 + Sǫ2 = 0 , (B.19)

where P,Q,R, S are 8×8 matrices, whose components are in general complicated functions

of the fields. After setting fi(r) = κif(r) we observe the following SU(2)R structure
(

A+ κ3B (κ1 − iκ2)B

(κ1 + iκ2)B A− κ3B

)(

ǫ1

ǫ2

)

= 0 , (B.20)

in terms of 8 × 8 matrices A,B. We can then diagonalize the block matrix and consider

the equivalent problem
(

A+B 0

0 A−B

)(

ǫ1

ǫ2

)

= 0 , (B.21)
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where we have without loss of generality set κ21 + κ22 + κ23 = 1. There are four independent

conditions. One of these arises from the dilatino variation, whose matrices we denote by

A0, B0, and the other three conditions arise from integrability of the Killing spinor equation,

whose matrices we denote by AM , BM with M ∈ {12, 13, 34} (all other components of the

integrability condition (A.6) are equivalent to one of these). The dilatino condition as well

as M = 12 and M = 34 have the following structure:

A±B =





































∗ 0 0 0 ∗ 0 0 0

0 ∗ 0 0 0 ∗ 0 0

0 0 ∗ 0 0 0 ∗ 0

0 0 0 ∗ 0 0 0 ∗
∗ 0 0 0 ∗ 0 0 0

0 ∗ 0 0 0 ∗ 0 0

0 0 ∗ 0 0 0 ∗ 0

0 0 0 ∗ 0 0 0 ∗





































. (B.22)

The existence of a non-trivial solution requires, for instance, det(A + B) = 0. The above

structure implies the determinant factorizes into four factors

det(A+B) = F1F2F3F4 = 0 , (B.23)

where the factors Fi are complicated functions of the supergravity fields α(r), β(r), γ(r),

p(r), q(r), f(r), X(r). F1 and F3 differ only by a change of sign in f(r), and the same

happens for F2 and F4. We find two distinct classes of solutions which we describe in the

following.

B.3.1 3/4 BPS solutions

There is a class of solutions that satisfies

F1 = F2 = F3 = 0 , F4 6= 0 . (B.24)

These are a one-parameter family of solutions parametrized by the squashing parameter s.

The solution expanded around the conformal boundary is given by

α(r) =
3√
2

1

r
+

8 + s2

36
√
2s2

1

r3
+ . . . , (B.25)

γ(r) =
3
√
3

s
r +

−16 + 7s2

12
√
3s3

1

r
− −1280 + 1120s2 + 241s4

2592
√
3s5

1

r3
+ . . . ,

X(r) = 1 +
1− s2 − 3

√
1− s2

54s2
1

r2
+

s2
√
1− s2κ

12
(

1− s2 +
√
1− s2

)

1

r3
+ . . . ,

p(r) = −
i
√

2
3

(

s2 + 3
√
1− s2 − 1

)

s3
1

r2
+ . . . ,
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q(r) = −
3i
(√

6
√
1− s2

)

s
r +

√

2
3 i
√
1− s2

(

5s2 + 9
√
1− s2 − 5

)

3s3
1

r
+ . . . ,

f(r) =
1− s2 +

√
1− s2

s2
+

2
(

−2 + 2s2 − (2 + s2)
√
1− s2

)

9s4
1

r2
+
κ

r3
+ . . . .

The extra parameter κ is fixed by requiring regularity at the origin. The solution expanded

around Euclidean AdS6 has cγ = 0, hence it is convenient to set the relation between the

expansion parameter and the squashing parameter to be

1

s
= 1 + δ2 . (B.26)

With this choice the solution is given by

α(r) =
3
√
3√

6r2 − 1
+

(

− 5
√
6 + 330

√
6r2 − 3744r3 + 1620

√
6r4 + 8640r5

9
√
2r2 (6r2 − 1)9/2

−7560
√
6r6 + 5184

√
6r8
)

9
√
2r2 (6r2 − 1)9/2

δ2 + . . . ,

γ(r) =
3
√
6r2 − 1√

2
−

(

55
√
2− 384

√
3r + 1080

√
2r2 + 768

√
3r3

6 (6r2 − 1)7/2

−5400
√
2r4 + 11232

√
2r6 − 11664

√
2r8
)

6 (6r2 − 1)7/2
δ2 + . . . ,

X(r) = 1−
(√

2
(

1− 2
√
6r + 6r2

))

3 (6r2 − 1)2
δ + . . . ,

p(r) =
18i

√
2
(√

6− 16r + 12
√
6r2 − 12

√
6r4
)

(6r2 − 1)3
δ + . . . ,

q(r) = −3i
√
2
(

−4 + 9
√
6r − 24r2 − 12

√
6r3 + 36

√
6r5
)

(6r2 − 1)2
δ + . . . ,

f(r) =

√
2
(

−3 + 8
√
6r − 36r2 + 36r4

)

(6r2 − 1)2
δ + . . . . (B.27)

We have computed the solution up to sixth order in δ. Comparing this expansion with

the expansion around the conformal boundary we can compute the coefficient κ as a series

expansion in δ. We obtain

3
√
3

4
κ = δ +

√
2

3
δ2 +

113

36
δ3 +

25

9
√
2
δ4 +

1127

288
δ5 +

35

9
√
2
δ6 + . . . . (B.28)

B.3.2 1/4 BPS solutions

There is another class of supersymmetric solutions that satisfies

F1 , F2 , F3 6= 0 , F4 = 0 . (B.29)
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These are a two-parameter family of solutions and are parametrized by the squash-

ing parameter s and the background SU(2)R field at the conformal boundary, which is

parametrized by f0. The solution expanded around the conformal boundary is given by

α(r) =
3√
2

1

r
− f20 s

2 + 9
(

−2 + s2
)

− 6f0
(

−1 + s2
)

36
√
2

1

r3
+ . . . ,

γ(r) =
3
√
3

s
r +

2f20 s
2 − 12f0

(

−1 + s2
)

+ 9
(

−3 + 2s2
)

12
√
3s

1

r
+ . . . ,

X(r) = 1 +
18− 3f0 − 18s2 + 12f0s

2 − 2f20 s
2

54

1

r2
+ . . . ,

p(r) =
i
√

2
3(−3 + f0)

(

3 + (−3 + f0)s
2
)

s

1

r2
+ . . . ,

q(r) = −3i
√
6
(

3 + (−3 + f0)s
2
)

s
r

+
i
(

3 + (−3 + f0)s
2
) (

f20 s
2 + 9

(

−1 + s2
)

− 6f0
(

1 + s2
))

6
√
6s

1

r
+
ξ1
r2

+ . . . ,

f(r) = f0 +
2(−3 + f0)f0

9

1

r2
+
ξ2
r3

+ . . . . (B.30)

The constants ξ1 and ξ2 are fixed by requiring regularity at the origin. Note that a partic-

ular case corresponds to f0 = 0. In this case the SU(2)R background field is turned off, but

the solution is still supersymmetric with a squashed five-sphere at the conformal boundary.

In this case F4 = F2 = 0, so we have enhanced supersymmetry; that is, this one-parameter

family of solutions with f0 = 0 is 1/2 BPS.

As an expansion around Euclidean AdS we parametrize the solution in terms of the

expansion parameter δ and an extra parameter ω, related to s and f0 above by

1

s
= 1 + δ , f0 = δ ω . (B.31)

With this choice the solution is given by

α(r) =
3
√
3√

6r2 − 1
+

√
3
(

1− 54r2 + 96
√
6r3 − 324r4 + 216r6

)

2r2 (6r2 − 1)7/2
δ + . . . ,

γ(r) =
3
√
6r2 − 1√

2
+

(

15− 48
√
6r + 270r2 − 540r4 + 648r6

)

√
2 (6r2 − 1)5/2

δ + . . . ,

X(r) = 1 +

(

1− 2
√
6r + 6r2

)

(4 + ω)

(6r2 − 1)2
δ + . . . ,

p(r) = −18i
√
2
(

−
√
3 + 8

√
2r − 12

√
3r2 + 12

√
3r4
)

(6 + ω)

(6r2 − 1)3
δ + . . . ,

q(r) = −3i
(

−4 + 9
√
6r − 24r2 − 12

√
6r3 + 36

√
6r5
)

(6 + ω)

(6r2 − 1)2
δ + . . . ,

f(r) =

(

−3 + 8
√
6r − 36r2 + 36r4

)

ω

(6r2 − 1)2
δ + . . . . (B.32)
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As before it can be checked explicitly that the solution is regular at r = 1√
6
. We have

computed this solution explicitly up to fourth order in δ. Comparing this expansion with

the expansion around the conformal boundary we deduce

ξ1 = 2i(6 + ω)δ − 1

5
i
(

144 + 98ω + 13ω2
)

δ2 (B.33)

+
i
(

307719 + 209547ω + 41094ω2 + 1282ω3
)

9450
δ3

− i
(

26693550 + 21683700ω + 6126111ω2 + 771474ω3 + 51568ω4
)

623700
δ4 + . . . ,

ξ2 =
2

3

√

2

3
ωδ − 2

45

(

−
√
6ω + 2

√
6ω2

)

δ2 +

(

−999
√
6ω − 594

√
6ω2 + 244

√
6ω3

)

42525
δ3

+

(

32724
√
6ω + 26082

√
6ω2 + 6105

√
6ω3 + 935

√
6ω4

)

1403325
δ4 + . . . . (B.34)

B.4 Killing spinors

Having found the above supersymmetric solutions we now proceed to solve the dilatino

equation (3.8) and Killing spinor equation (3.7) for the Killing spinors ǫI , I = 1, 2.

3/4 BPS solution. For the 3/4 BPS solution we find

ǫ1 = a
(1)
+ ei

τ
2







































k2(r)
[

cosσ + iλ+(s)e
iψ
2 S

(1)
+ sinσ

]

0

ik3(r)
[

sinσ − iλ+(s)e
iψ
2 S

(1)
+ cosσ

]

ik3(r)λ+(s) e
−iψ

2 S
(2)
+

−ik4(r)
[

cosσ + iλ+(s)e
iψ
2 S

(1)
+ sinσ

]

0

k1(r)
[

sinσ − iλ+(s)e
iψ
2 S

(1)
+ cosσ

]

k1(r)λ+(s)e
−iψ

2 S
(2)
+







































, (B.35)

ǫ2 = a
(1)
− e−i τ

2







































0

ik4(r)
[

cosσ − iλ−(s)e−iψ
2 S

(1)
− sinσ

]

−k1(r)λ−(s) ei
ψ
2 S

(2)
−

k1(r)
[

sinσ + iλ−(s)e−iψ
2 S

(1)
− cosσ

]

0

k2(r)
[

cosσ − iλ(s)e
−iψ

2 S
(1)
− sinσ

]

ik3(r)λ−(s)ei
ψ
2 S

(2)
−

−ik3(r)
[

sinσ + iλ−(s)e−iψ
2 S

(1)
− cosσ

]







































, (B.36)

where we have introduced

S
(1)
± = S

(1)
± (θ, ϕ) = a

(3)
± e±iϕ

2 cos
θ

2
− a

(2)
± e∓iϕ

2 sin
θ

2
,
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S
(2)
± = S

(2)
± (θ, ϕ) = a

(2)
± e∓iϕ

2 cos
θ

2
+ a

(3)
± e±iϕ

2 sin
θ

2
,

λ±(s) =
±1 +

√
1− s2

s
. (B.37)

The Killing spinors contain in total six constants of integration a
(i)
± , i = 1, 2, 3. These

constants of integration are generically complex, but imposing the symplectic Majorana

condition Cǫ∗I = εI
JǫJ enforces certain reality conditions. The functions ki(r) are functions

of the radial coordinate only and can be expanded either around Euclidean AdS or around

the boundary. For instance, expanding around the conformal boundary we obtain

k1(r) =
−1 +

√
1− s2

s

√
r +

1

2
√
6

1√
r
+ . . . ,

k2(r) =
√
r − 5

√
1− s2 − 3

6
√
6s

1√
r
+ . . . ,

k3(r) =
−1 +

√
1− s2

s

√
r − 1

2
√
6

1√
r
+ . . . ,

k4(r) =
√
r +

5
√
1− s2 − 3

6
√
6s

1√
r
+ . . . ,

(B.38)

Notice that the expansion of the Killing spinor around the boundary is precisely of the

form

ǫI =

(

ǫ+I

ǫ−I

)

=
√
r

(

χI

−iχI

)

+
1√
r

(

ϕI

iϕI

)

+ · · · , (B.39)

which arises from the general analysis of section 6 and should of course hold for our partic-

ular solution. This allows us to immediately identify the boundary five-dimensional Killing

spinor χI corresponding to our bulk solution. Note that this precisely agrees with (2.15).

1/4 BPS solution. For the 1/4 BPS solution we find

ǫ1 = c+ e−
3iτ
2





































0

k2(r)

0

0

0

−i k1(r)

0

0





































, ǫ2 = −c− e
3iτ
2





































k1(r)

0

0

0

−i k2(r)

0

0

0





































. (B.40)

The solution depends now on two constants of integration c±. The functions of the radial

coordinate admit the following expansion around the conformal boundary

k1(r) =
√
r +

(f0 − 3)s

6
√
6

1√
r
+

5(f0 − 3)2s2 + 6(4f0 − 9)

432

(

1

r

)3/2

+ . . . ,
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k2(r) =
√
r − (f0 − 3)s

6
√
6

1√
r
+

5(f0 − 3)2s2 + 6(4f0 − 9)

432

(

1

r

)3/2

+ . . . . (B.41)

As before, the corresponding Killing spinors at the boundary can be identified. In this

case they are indeed of the form (2.14), as expected. Finally, let us mention that the

supersymmetry gets enhanced for the case f0 = 0 (or equivalently ω = 0). In this limit the

gauge field vanishes and so the two Killing spinors ǫI for I = 1, 2 decouple and have the

same structure. They read

ǫI =





































c
(2)
I k1(r)e

3iτ
2

c
(1)
I k2(r)e

− 3iτ
2

0

0

−i c
(2)
I k2(r)e

3iτ
2

−i c
(1)
I k1(r)e

− 3iτ
2

0

0





































, (B.42)

where c
(j)
I for j = 1, 2 are the integration constants and where the r-dependent functions

ki(r) are the same as in the 1/4 BPS case, with f0 = 0. This solution may thus be referred

to as a 1/2 BPS solution.

C Asymptotics of multiple sine functions

Let us start by defining Barnes’ multiple zeta function,

ζN (s, w | a) ≡
∞
∑

m1,...,mN=0

(w +m1a1 + · · ·mNaN )−s , (C.1)

where a = (a1, . . . , aN ), Rew > 0, Re s > N and a1, . . . , aN > 0. This function is

meromorphic in s, with simple poles at s = 1, . . . ,N . One can then define the Barnes

multiple gamma function ΓN (w | a) ≡ exp [ΨN (w | a)], where

ΨN (w | a) ≡ d

ds
ζN (s, w | a) |s=0 . (C.2)

In order to compute the asymptotics of the multiple gamma function, and the closely

related multiple sine function, we have to express this function in a more convenient way.

In [42], it was observed that there is an expansion of ΨN (w) of the form

ΨN (w | a) =
(−1)N+1

N !
BN ,N (w) logw + (−1)N

N−1
∑

k=0

BN ,k(0)w
N−k

k!(N − k)!

N−k
∑

ℓ=1

1

ℓ

+
M
∑

k=N+1

(−1)k

k!
BN ,k (0)w

N−k(k −N − 1)! +RN ,M(w) , (C.3)
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where

RN ,M(w) ≡
∫ ∞

0

dt

t
e−wt





N
∏

j=1

(

1− e−ajt
)−1 −

M
∑

k=0

(−1)k

k!
BN ,k(0)t

k−N



 , (C.4)

and M ≥ N as well as Rew > 0. The functions BN ,M (w) are the so-called multiple

Bernoulli polynomials and can be determined by expanding and solving the following re-

lation
tN ext

∏N
j=1 (e

ajt − 1)
=

∞
∑

n=0

tn

n!
BN ,n (x) , (C.5)

for BN ,M (w). It was further shown in [42] that in the asymptotic limit |w| → ∞ and

| argw| < π the remainder RN ,M(w) behaves as

RN ,M(w) = O
(

wN−M−1
)

, (C.6)

and hence in the asymptotic limit is suppressed by the first three terms in (C.3). Similarly,

the third term in (C.3) behaves as

M
∑

k=N+1

(−1)k

k!
BN ,k (0)w

N−k(k −N − 1)! = O
(

w−1
)

, (C.7)

in the asymptotic limit |w| → ∞. Hence for our purposes we shall only focus on the

asymptotics of the first two contributions to ΨN .

We are interested in the asymptotic expansion of the so-called multiple sine function,

which is defined in terms of the Gamma function as

SN (w | a) ≡ ΓN (w | a)−1 ΓN (atot − w | a)(−1)N , (C.8)

where atot =
∑N

i=1 ai. To compute the large N limit of the free energy, we are interested

in the asymptotics of the logarithm of these functions

logSN (w | a) = −ΨN (w | a)−ΨN (atot − w | a)(−1)N . (C.9)

Focusing on the case N = 3, we find the following Bernoulli polynomials

B3,0(x) =
1

a1a2a3
,

B3,1(x) =
x

a1a2a3
− atot

2a1a2a3
,

B3,2(x) =
x2

a1a2a3
− atot
a1a2a3

x+
a2tot + (a1a2 + a1a3 + a2a3)

6a1a2a3
,

B3,3(x) =
x3

a1a2a3
− 3atot

2a1a2a3
x2 +

a2tot + (a1a2 + a1a3 + a2a3)

6a1a2a3
x

−atot (a1a2 + a1a3 + a2a3)

4a1a2a3
. (C.10)
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We can then compute (C.3) and take the asymptotic limit of the logarithm of the triple

sine function to obtain

logS3(w | a) = signRew

[

iπ

6a1a2a3
w3 − iπatot

4a1a2a3
w2 +

iπ
(

a2tot + a1a2 + a1a3 + a2a3
)

12a1a2a3

− iπatot (a1a2 + a1a3 + a2a3)

24a1a2a3
+O

(

w−1
)

]

. (C.11)

This procedure generalizes to any choice of N , and gives a straightforward method to

obtain the asymptotics of these functions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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