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Romans theory, and use our general result to compute the renormalized on-shell actions
for the solutions. The results agree perfectly with the large N limit of the dual gauge
theory partition function, which we compute using large N matrix model techniques. In
addition we compute BPS Wilson loops in these backgrounds, both in supergravity and
in the large N matrix model, again finding precise agreement. Finally, we conjecture a
general formula for the partition function on any five-sphere background, which for fixed
gauge theory depends only on a certain supersymmetric Killing vector.
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1 Introduction

Over the last few years there has been increasing interest in defining and studying super-
symmetric gauge theories on curved backgrounds. Such constructions lead to interesting
classes of observables that can be computed exactly, which may in turn be used to test and
explore conjectured dualities. In this paper we focus on the case of five-dimensional gauge
theories. These have been defined on round spheres [1-5], as well as on certain continu-
ous deformations thereof [6, 7], referred to as squashed five-spheres. The main observable
that can be computed exactly in these theories is the partition function Z, which depends
non-trivially on the background geometry. A particular class of five-dimensional supercon-
formal gauge theories, with gauge group USp(2N) and arising from a D4 — D8-system, is
expected to have a large N description in terms of massive type IIA supergravity [8-10].
In [5] the large N limit of the partition function of these theories on the round sphere
was computed and successfully compared to the entanglement entropy of the dual warped
AdSg x S* supergravity solution.

In this paper we shall present the first construction of gravity duals to gauge the-
ories on non-conformally flat backgrounds (specifically, certain families of squashed five-
spheres). As we shall explain, we may effectively work in six-dimensional Romans F'(4)
supergravity [11], which is a consistent truncation of massive IIA supergravity on S* [12].
In particular the computation of [5] effectively determines the six-dimensional Newton con-
stant. Having constructed supergravity solutions that have squashed five-sphere conformal
boundaries, we compute the holographic free energy F = — log Z by holographically renor-
malizing the on-shell Euclidean action. More specifically, we construct families of solutions
with different numbers of preserved supercharges. Two of these families are shown to be
dual to the 1/4 BPS and 3/4 BPS gauge theories defined in [7]. The perturbative partition
function for these theories has been computed in [6] and we explicitly show that the large N
limit of these partition functions is in precise agreement with the holographic free energies
of our supergravity solutions. We also present more general solutions (and in particular a
1/2 BPS solution) which have not previously been considered from the gauge theory side.

From the Killing spinors of a supersymmetric supergravity solution one can always con-
struct a certain Killing vector K. For all solutions found in this paper the free energy is only
sensitive to this Killing vector F = F(K), and not to other parameters of the solution. It
is natural to conjecture that this is also the case for more general solutions, extending what
happens in four dimensions [13]. In addition we compute the expectation values of BPS Wil-
son loops in these backgrounds, both in supergravity and in the large N matrix model, find-
ing precise agreement. Again the expectation value depends only on the Killing vector K.

The rest of this paper is organized as follows. In section 2 we discuss supersymmetric
gauge theories defined on squashed five-spheres, their exact partition function and the large
N limit. In section 3 we change focus and describe the Romans F'(4) supergravity theory



we will work with. Then in section 4 we present our supergravity solutions dual to the
squashed five-sphere backgrounds. In section 5 we apply holographic renormalization to
the Romans F'(4) supergravity theory and use this to compute the holographic free energy
of our solutions. In section 6 we examine the supersymmetry conditions which arise at the
conformal boundary for the Romans supergravity theory. Another exact observable that
can be computed both in supersymmetric gauge theories and in supergravity are Wilson
loops, which are the subject of section 7. Finally, we end in section 8 with some discussion
and possible future problems to explore. We also include appendices A, B and C, which
expand upon some of the elements in the main body of the paper.

2 Supersymmetric gauge theories on squashed five-spheres

We begin in section 2.1 by describing the squashed five-sphere backgrounds of interest [6].
One can define a supersymmetric gauge theory with general matter content on such a
background, and in [7] the perturbative partition function was computed via a twisted
reduction of the supersymmetric index in six dimensions,! that we summarize in section 2.2.
A particular class of five-dimensional gauge theories, with gauge group USp(2/N) and arising
from a D4 — D8 system in massive type IIA string theory, is expected to have a large N
limit with a gravity dual. In section 2.3 we compute the large N limit of the partition
function for these theories using matrix model techniques.

2.1 SU(3) x U(1) squashed five-sphere

The squashed S° backgrounds of interest are homogeneous spaces with symmetry SU(3) x
U(1). In particular this is the isometry group of the metric

1

2 _
d85— 3

1
(dr + C)? +do? + 1 sin? o(d#? + sin? 6dp?)

V)

1
+ cos® o sin? o(dep + cos fdyp)? (2.1)
where we have defined the (local) one-form
1.,
C= —5sin o(dy + cos Ody) . (2.2)

We refer to the parameter s as a squashing parameter, and note that s = 1 is the round
sphere. The coordinates in (2.1) realize the five-sphere as the total space of the Hopf circle
bundle over CP?, where 7 is a 2m-period coordinate along the circle fibre. The coordinates
0,1,0, ¢ are then coordinates on the base CP?, with ¢ having period 4, ¢ having period
27, while o € [0, 5], 6 € [0, 7]. The local one-form C in (2.2) satisfies

1
dC =2w = —sinocosado A (dy + cosfdy) + 5 sin® o sin 0df A dep, (2.3)

where w is the Kihler two-form on CIP2.

!See also [14].



In order to preserve supersymmetry one must also turn on other backgrounds fields.
In particular in [6] it was shown that one can define general supersymmetric gauge theories
on the above squashed five-sphere, provided one turns on a background SU(2)p gauge field

A !

(dr+0C), (2.4)

where we have embedded U(1)r C SU(2)g. More precisely, writing the SU(2)r ~ SO(3)r
gauge field as a triplet of one-forms A’, i = 1,2,3, we have A' = A% =0, while A% = A is
given by (2.4). For supersymmetric backgrounds the parameter @ takes the values Q = 1
and @@ = —3, which lead to 3/4 BPS and 1/4 BPS solutions, respectively. Notice that the
gauge field (2.4) is also invariant under SU(3) x U(1), and is real when |s| < 1 but complex
for |s| > 1.

A supersymmetric background of course admits an appropriate Killing spinor, which
then enters the supersymmetry transformations of a supersymmetric gauge theory defined
on the background. Recall that a Killing spinor y on the round S°® with s = 1, solving
VX = —%’me where 7, generate the Clifford algebra Cliff(5,0) in an orthonormal frame,
transforms in the 4 of the SU(4) ~ SO(6) isometry. The squashing breaks this symmetry
to SU(3) x U(1), and for @ = 1 the resulting Killing spinor transforms as 3,1, while for
@ = —3 the resulting Killing spinor instead transforms as 1_g. Similarly, solutions to
VimX = 39mx transform in the 4 of SU(4), which is broken to 3_; and 143 in the two
cases, respectively.

The corresponding Killing spinor equation for the squashed S® was obtained in [6] via
a twisted reduction (described in the next subsection) of a standard Killing spinor equation
in six dimensions. In order to write this down, we first introduce an orthonormal frame for
the metric (2.1)

1 1
e%5) = ;(dT + C) > 6%5) = do, 6?5) = 5 sino cos 073,

1 1
6?5) = 5 sin a1, 6?5) = 5 sin oT1 , (25)

where 7;, i = 1,2, 3, are left-invariant one-forms on SU(2). These are parametrized in terms
of the Euler angles as

T 4 iy = e ¥(df + isin Ody) , 13 = dip + cosfdyp . (2.6)
The Killing spinor equation then reads

i<1+Qm)

Voot + 5 An(0) ) =~ 2 (0%) s
+\/14;782 (Ym0 — ym) X1 » (2.7)
which is supplemented by the following algebraic equation
QV1—s2xr = —V1—s>yxs —iv1—s2(c) wxs . (2.8)



Here x7, I = 1,2, form a doublet under the SU(2)gr symmetry, v, generate the Clifford
algebra Cliff(5,0) in the orthonormal frame (2.5), and (o?);” denote the Pauli matrices.
Recall also that w denotes the Kihler form on CP?, given by (2.3), and if « is a p-form we
denote ¢ = ﬁaml...mp'yml"'mp.

Of course in the case at hand we have that the SU(2) g gauge field A" is only turned on
in the i = 3 direction, with A% = A given by (2.4), and we may also write (2.7) and (2.8) as

i<1+Qm) i

i s
vmX:I: + iAmX:t =+ 2 YmX+ + T (3'7m¢) - ¢7m) X+ (2'9)

QV1—s?yL =—V1—82yx+ FiV1l—s2dx+, (2.10)

where x4+ = x1, X— = x2. Provided the background fields are real, meaning in particular

that the metric and A are real and |s| < 1, then notice that the equations for y_ are simply
the charge conjugates of the y1 equations, where we define the charge conjugate as

X° = Csx*, (2.11)

and the charge conjugation matrix Cs satisfies C5 LymCs = vr.. In particular it is then consis-
tent to impose the symplectic Majorana condition x - = x, or equivalently & IJ XJ = C5X7>
as we shall see below.

Notice that in setting s = 1 to obtain the round sphere one has that (2.8) is trivially
satisfied, while the Killing spinor equation (2.7) implies that x; and x2 transform in the
4 and 4 of the enhanced SU(4) ~ SO(6) symmetry, respectively. In order to present the
general solution to (2.7), (2.8) (which is not written in [6]), we first introduce the following
basis of Cliff(5,0)

1, 0 0 1 0 io?
m= ; Y2 = ; v3 = . ;
0 —1s 15 0 —ig3 0
0 io? 0 iot (2.12)
Y4 = 3 V5 = 5 .
—io? 0 —iel 0

where as above ¢, i = 1,2,3 denote the Pauli matrices, and 1 is the 2 x 2 identity matrix.
A choice of the charge conjugation matrix in this basis is

O . (2.13)
0 —ioo

Then for the 1/4 BPS background we find the general solution to (2.7), (2.8) (or equiva-
lently (2.9), (2.10)) is given by

0 -1

X+ = c+e_3iTT ! , X— = c_es 0 , (2.14)
0 0
0 0



where c4 are integration constants. In particular then notice that the symplectic Majorana
condition x_ = x4 simply imposes ¢ = ¢,
For the 3/4 BPS background the solution is a little more complicated. One finds

cos o + iy (s)ei% S(j) sino

o —all i3 " 1 , (2.15)
iA_(s)sino —e'2 SSF) cos o
1671%553)

where

Si) S(l)( 0,p) = ag)eiig cosg —af)ejﬁ% simg7

Si) 5(2)(6, p) = af)eﬁg cosg + af)eii% sing , (2.16)

and where we have introduced Ai(s) = (£1 + v1 —s2)/s. As expected, the solution

depends on three integration constants aS:) , asr), af) Similarly, one finds

0
ig g
() iz | coso—iAi(s)e2 S sino
X—=a’’e it 5@ , (2.17)

—iA_(s)sino — e i55W cos o

(@)

where a
condition, which leads to the relation (a(f))* = aSi) fori=1,2,3.

are integration constants. One can once again impose the symplectic Majorana

2.2 Twisted reduction and the partition function

The backgrounds above may be obtained via a twisted reduction of R x S°, starting from
the round metric on S°. This is important, as the perturbative partition function on the
squashed five-spheres was computed in [7] indirectly, by taking a limit of the supersym-
metric index of a corresponding six-dimensional theory on R x S°.

We thus begin with the product metric on R times the round S°

3
dsh ge = dt? + ) [dwi]?, (2.18)
i=1
where the complex coordinates w; on C3 = RS ¢ = 1,2,3, satisfy the constraint

Z?:l |w;|?> = 1. We then compactify this space by identifying
(t,w;) ~ (t + B, e Puy), (2.19)

where 5 > 0 and the p; are also sometimes referred to as squashing parameters. Notice
that (2.19) is an isometry for p; € R. We may then change coordinates

piel¥i = e ity (2.20)



where p; > 0 and the ¢; have period 27. In terms of these new coordinates the identi-
fication (2.19) reads (¢, pi, i) ~ (t + B, pi,i). We then dimensionally reduce along the
t-direction to obtain the five-dimensional metric

3 3 ’

1

dsi = (dp} + pidg}) - ——5—5 <§ mpgd%) : (2.:21)
i=1 N D YT i=1 Z

Notice that, via the constraint Z?Zl p? = 1, the first term in (2.21) is the round metric on
So.
One then makes contact with the previous section by choosing

—p1 = pp = pg =iV'1 — 5%, 3/4 BPS,
1 = po = pg = —iv/1 — s2, 1/4 BPS . (2.22)

Notice these are real only if |s| > 1. The metric (2.21) then agrees with the metric (2.1)
on making the standard polar coordinate identifications

p1 = COSO, P2 = sinacosi, p3 = sinasing, (2.23)

together with

1 1
o1 = —T, 902=T—§(¢+90), s03=7—§(w—s0), 3/4 BPS,

1 1
o1 =T, w2=f—§(¢+s0), 903=T—§(w—<p), 1/4 BPS . (2.24)

The Killing spinor equation (2.7) and algebraic equation (2.8) were then obtained in [6] by
dimensionally reducing a standard Killing spinor equation on the R x S° background (2.18).

In practice the perturbative contribution to the squashed S° partition function, with
more general squashed metric (2.21), was computed in [7] by dimensionally reducing the
superconformal index of a corresponding six-dimensional theory on the R x S° back-
ground (2.18) with twisted identification (2.19), and then taking the limit 5 — 0, so
that the radius of the circle we reduced on to obtain (2.21) is sent to zero. For a gauge
theory with gauge group GG, prepotential .%, which is a cubic polynomial in the scalar ¢ in
the vector multiplet, and matter in the real representation R @ R of G, the result is

rank G

o0 _@en® g —1i b
Zoet = C(b) [] / dog e bitara 7 ) Lo 55 (Zia(o) | b) . (2.25)
0oy J-oo Hp S3 (—1p(0) + 5([)1 + by + bg) ’ b)
Here we have introduced
b = (bl, bg, bg) s where bz =1+ 1/11 ; (226)

and the prefactor C'(b) in (2.25) depends only on (by, b2, b3), and in particular will not
contribute to the large N limit of interest in the next section.? The perturbative partition

2The precise formula for C(b) may be found in [7].



function thus localizes onto field configurations in which the only non-zero field is a constant
mode for the scalar ¢ in the vector multiplet, and this is then integrated over in (2.25).
As usual in such expressions the product over « in the numerator is over roots of GG, while
the product over p in the denominator is over weights in a weight space decomposition of
R. Finally, S5 (z | b) is the triple sine function, which is a special case of the multiple sine
functions defined by

Sy (2| b) =Ta(z | b)~! Tar(bos — 2 | b)Y (2.27)
oo N 0o N (=N
= H [Z n;b; + z H [Z nib; — z , (2.28)
ni,....,na=0 Li=1 ni,...,nny=1 Li=1

where we have written b = (b1, ..., by) and defined by, = Zﬁl b;. The function T'z(z | b)
is the so-called Barnes’ multiple gamma function

oo N
Ca(z | b) = H [Z n;b; + z

ni,...,nxy=0 Li=1

—1
(2.29)

We conclude this section by noting from (2.22) and (2.26) that for the SU(3) x U(1)
squashed five-spheres in section 2.1

61:1+\/1—82, bg:b:),:l—\/l—82, 3/4BPS,

b1:b2:b3:1—|—\/1—82, 1/4BPS. (2.30)

In particular it is straightforward to see [7] that in the 1/4 BPS case the perturbative
partition function (2.25) is independent of the squashing parameter s.

It is interesting to note that (2.19) is an isometry of the original six-dimensional R x S°
background only for real u;, which via (2.22) one sees corresponds to |s| > 1. On the other
hand from (2.30) we see that the parameters b; are real (and then positive) only if |s| < 1.
The dual six-dimensional supergravity backgrounds we shall construct in section 4 will
correspondingly be real for |s| < 1.

2.3 The large N limit

The result for the perturbative partition function (2.25) in the previous section is valid for
a general supersymmetric gauge theory in five dimensions, but we now focus on a particular
class of theories with gauge group G = USp(2N), that arises from a system of N D4-branes
and some number of D8-branes and orientifold planes in massive type IIA string theory.
These theories are expected to have a large N limit that has a dual description in massive
type ITA supergravity [8-10]. Indeed, in [5] the large N limit of the partition function of
these theories on the round five-sphere was computed and successfully compared to the
entanglement entropy of the dual warped AdSg x S* supergravity solution. Here the gauge
theories flow to a UV superconformal fixed point, and in particular the localization compu-
tation in the IR supersymmetric Yang-Mills theory coupled to matter theory successfully
reproduces the expected N°/2 scaling of the number of degrees of freedom.



In general one certainly expects non-perturbative contributions to the full partition
function Z, in addition to the perturbative result (2.25). In particular in the localization
computation of [3] on the round five-sphere one finds that the gauge multiplet localizes
onto instanton configurations on CP2. There is thus a non-perturbative contribution to Z
involving a sum over the instanton number. For fixed instanton number n # 0 and fixed
choice of instanton, in addition to the classical instanton action there will also be one-loop
determinant contributions around that instanton, plus an integral over the instanton moduli
space with fixed n. In general this expression will be very difficult to evaluate. However,
in [5] it was argued that in the large N limit these instanton contributions should be
suppressed. We shall also assume this to be the case on the squashed five-sphere, although
clearly this issue deserves further study. In particular, for general choice of the vector
b = (by, ba, b3) we expect to find instantons not on CP?, but rather instantons transverse
to the Killing vector K = 3% | b;0,,, as in [15]. These contact instantons were discussed
in the latter reference in the context of the partition function on Sasaki-Einstein manifolds.
In any case, we leave this issue open for future investigation.

Our task thus reduces to computing the large N limit of the perturbative result (2.25),
for the USp(2N) gauge theories of interest. This may be carried out using the matrix
model saddle point method originally introduced in [16], and subsequently applied to the
round S° partition function in [5]. As in the latter reference, we also set the Chern-Simons
level for the theory k& = 0 (thus setting the cubic terms in the prepotential .# (o) to zero).
The quadratic and linear terms of .% (o) will only contribute to subleading order in the
large N limit. This is because the leading contribution to the free energy arises from the
scaling 0 = O(N'/2). Such a behaviour for o leads to an O(N?) contribution for the
classical parts in the perturbative partition function (2.25). Thus in the limit of large N
we only have to analyse the behaviour of the two one-loop determinants from the vector
and matter multiplets. In particular, for a given theory we will have to find the expansion
of the logarithm of the triple sine function entering (2.25).

The USp(2N) gauge theories have Ny matter fields in the fundamental and a sin-
gle hypermultiplet in the antisymmetric representation of the gauge group. Let us de-
note an element in the Cartan subalgebra for USp(2N) as {A1,...,An}, so that o =
diag(A1, ..., AN, —A1, ..., —An). The Weyl group acts as \; — —\; for each i, and also
permutes the ;. If the normalized weights of the fundamental representation are given
by =+e;, where {ej,...,en} is a basis of RY, then the antisymmetric representation has
weights {e; +-¢;},,; and the adjoint representation has weights {e; £ ¢;}, ,; U {£2e, 1Y .
Therefore we can write the free energy for this theory as

N

F(N) = Z Gv(Ai+ X[ b)+Gy(N\i—Aj | b)+Gu(Xi+Aj | b)+Gu(Ai —Aj | b)
ij=1
ij;féj
N
+) Gy (2N | b) + Gy (=2Xi | b) + Ny [Grr (\i | b) + G (=Ai | )], (2.31)
i=1

where Gy and Gy are the logarithms of the triple sine functions in the numerator and de-
nominator of (2.25) for the vector and the hypermultiplets, respectively. We are interested



in their asymptotics for large A; only, because we assume that the eigenvalues scale with
N¢ for some o > 0. These asymptotics are explicitly computed in appendix C, and here
we simply quote the results:

Gy(z|b)+ Gv(—z | b) = —log S5 (—iz [ b) —log S3 (iz | b)

o (b2, + b1ba + bybg + babs)
6 b1b2b3

[, (2.32)

where we have expanded in the limit x| — oo. Here we have assumed that b; > 0 for each
i =1,2,3, as this is the case of interest — see equation (2.30) and the discussion after it.
Similarly, for the free energy contribution of the hypermultiplet we obtain

0 | P_W(b%—i-b%—i-b%)

2.33
G bybobs 94 by bybs ol (2:33)

1
GH(LU | b) = 10g53 <2bt0t —ix ‘ b) ~ —
in the asymptotic limit |z| — oo.
Using the Weyl symmetry of USp(2N) we may take A; > 0, and we shall furthermore
assume that these eigenvalues scale as \; = N%z; to leading order in the large N limit,
with o > 0. We next introduce the density

(x —x;) , (2.34)

||Mz

which becomes an £ function with
/p(m)dx =1, (2.35)

once we take N — oo. In that limit, the discrete sums in (2.31) become Riemann integrals

1 o
NZZ; —>/0 p(x)dz . (2.36)

Hence taking the large N limit of (2.31), we obtain to leading order

F~ N? /x p(z) /az p(y) [Gv()\(x) £ \(y) | b) + Gr(A@) £ A\() | b)] dy dz

N / )[Gv(E2M@) | B) + Ny Gu(A() | b)] e (2.37)

By assumption we have A(z) = Nz to leading order in the continuum limit, and hence we
may use the above expansions for the vector and hypermultiplet contributions (2.32), (2.33)
respectively. Then the leading order term in the first line of (2.37) scales as N2+, because
the cubic terms in the asymptotic expansion of G and Gy cancel. The leading order term
of the second line in (2.37) however does not cancel, and is given by N'*3¢ In order to
obtain a non-trivial saddle point, both terms must contribute and we deduce that @ = 1/2.

,10,



Putting everything together we obtain

F = —N°2 /m p(x) /w p(y) iy
0 0 8b1babs

8— N
_( f)7T|x‘3

3 b1babs

(lz +yl + |z —yl)

dy dz + O <N3/2) L (2.38)

It thus remains to solve a simple variational problem for p(z) extremizing the free
energy. We add a Lagrange multiplier term to impose the constraint (2.35), namely
1 ( [y p(z)dz — 1), and then solve %—i = 0 for p(x). Doing so we find (with Ny < 8)

_ 48— Ny)

pla) = ==z—"al, (2:39)
tot

inside the interval [0, z,], with p identically zero outside this interval, and where extremizing
F over the end-point x, gives

2 b,
= ot 2.40
T8 - Ny) (2.40)

We may then evaluate the free energy by substituting these saddle point configurations
back into (2.37) to obtain

3
F= Vol 2o (v, (2.41)

T 15./8 = Ny biboby

which may be rewritten as (where recall we have assumed that b; > 0 for each i = 1,2,3)

3
7o (bl—f—bg—‘rbg) o

2.42
27b1 b2 b3 Sround ’ ( )

where Fgs is the large IV limit of the free energy on the round five-sphere computed in

round

reference [5]

9\@77]\75/2
F =V Lo (N¥?2). 2.43
Sr50und 5 \/m + ( ) ( )

We note that the above result has a very similar structure to that obtained in three di-
mensions [17]. Also notice that we get the same result, (2.42), for the orbifold theories
discussed in [5, 10].

We conclude this section by noting that for the SU(3) x U(1) squashed five-spheres,
with the vector b = (b, by, bg) given by (2.30), we obtain the large N free energies

1 (3—V1-s2)3
B-VI-#P 3/4 BPS,
f — 2752 1 _ m round (244)
Fgs 1/4 BPS.

)
round
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3 Romans F(4) supergravity

When the USp(2N) superconformal theories discussed in section 2 are put on the round S°,
they are conjectured to be dual in the large N limit to the AdSg x S* solution of massive
type ITA supergravity [8-10]. In order to find gravity duals to the same superconformal
theories put on different background five-manifolds, it is then natural to work in the six-
dimenional Romans F'(4) supergravity theory [11]. The key here is that, as shown in [12],
the Romans theory is a consistent truncation of massive type IIA supergravity on S*. In
the next subsection we shall review this uplift to ten dimensions, and then present the
Romans theory in Euclidean signature in section 3.2.

3.1 Uplift to massive type ITA

The Romans theory [11] is a six-dimensional gauged supergravity that admits an AdSg
vacuum. The bosonic fields consist of the metric, a dilaton ¢, a two-form potential B,
a one-form potential A, together with an SU(2) ~ SO(3) gauge field A%, i = 1,2,3. It is
convenient to introduce the scalar field X = exp(—¢/2v/2), and we define the field strengths
as H=dB, F =dA+ %gB7 Fi=dA" — %gsijkAj A AF. Here g denotes the gauge coupling
constant. Notice that B appears in the field strength for A.

As shown in [12], this Romans theory is a consistent truncation of massive type ITA
supergravity on S%. This means that any solution to the Romans theory automatically
uplifts, via the non-linear Kaluza-Klein ansatz of [12] presented in (3.1) below, to a solution
of massive type IIA. Moreover, the AdSg x S* solution of the latter is the uplift of the AdSg
vacuum of the Romans theory.

We shall later need some details of how the six-dimensional solutions uplift to ten di-
mensions. The gauge coupling constant ¢ is related to the ten-dimensional mass parameter

by mia = % g, while the remaining fields uplift via

3
1 . .
ds?y = (sinf)%X% Agdsg + 2g_2A§X2d§2 + 59_2A_3X_1 cos? 52(%1 —gAH? |,

i=1
2
Fuay = —\6[9381/ SEATU AE Avoly — V29 PAATEX TR AX A voly

1 1 o
V29 s Be X xH AN dE — —sY3XT2F + ﬁg—%”% F'RY A dE

V2
L 0 43 an—1y—3i x 17 A 1K
———q ‘s ATXTPF AN AR e,
4\/§g ijk
Fi3) = s*PH —i—g_ls_l/?’cF/\df,
1

_ \/532/3F, e® = §TB/6AL/AX5/4 (3.1)

A = X cos?¢ + X 3sin?¢,
U=X52-3X22+4X322-6X2. (3.2)
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Here ds%o is the ten-dimensional metric in Einstein frame, ® is the ten-dimensional dilaton,
F(3) is the NS-NS three-form field strength, while F(4) and F{, are the RR four-form and
two-form field strengths, respectively. The 7°, ¢ = 1,2, 3, are left-invariant one-forms on a
copy of SU(2) = S3. These are defined precisely as in (2.6), except here this S? is in the
internal space (hence the hats). We have also defined h? = 7' — gA?, vol3 = h' A h? A h3,
and s = sin ¢ and ¢ = cos¢. The Hodge duals in (3.1) are computed with respect to the six-
dimensional metric ds3. This is defined on some six-manifold Mg, and the ten-dimensional
metric in (3.1) then describes a warped product Mg x S*. More precisely, the solution only
describes “half” of a four-sphere, where the coordinate £ € (0, 5] is a polar coordinate for
which constant £ € (0, §) slices are three-spheres, parametrized by Euler angles on S3 as
n (2.6). The solution is smooth at the north pole { = 7, where the 53 slices of S* collapse
to zero size, but singular on the equator £ = 0. Nevertheless, it is argued in [9, 10] that

the supergravity solution (3.1) can be trusted away from this singularity.

3.2 Euclidean theory

The equations of motion and action for the Romans theory in Lorentz signature appear
in [11, 12]. However, the gravity duals to the large N field theories on the squashed
five-sphere of section 2 will be constructed in Euclidean signature. The corresponding
Wick rotation is not entirely straightforward because the Romans theory contains Chern-
Simons-type couplings, that become purely imaginary in Euclidean signature in order that
the theory is gauge invariant. The associated factors of i are also crucial for supersymmetry
in Fuclidean signature. The Euclidean equations of motion for the Romans supergravity

fields are
i i 9
d(X' % H) = SFAF+SF AF 4+ 29X 2% F,
d(X2%F)=—iFNH,
D(X 2% F') = —-iF'ANH,
1 2 1
d(X '+dX) = —g* (X - SX 2+ X% ) 1
6 3 2
1 : N
—§X*2 (F A*F + F'AF') + ZX4H AxH . (3.3)

Here Dw’ = dw' — ge;jp A7 A wF is the SO(3) covariant derivative, and our convention for
the Hodge duality operator is fixed via

1
aN*f = Ham..ﬂpﬁm'”’@ x1, (3.4)

where o and 8 are p-forms.? The Einstein equation is

1 2 1 1 1
_ ] 2 —6 -2 2 4 2 2
R, = 4X20,X0,X + g (18)( - XX > g + 7 X (HW - oH gW>
1 -2 2 1 2 1 -2 7\ 2 1 7\ 2
+§X F;UJ - gF my + §X (F )ul/ - g(F ) Guv | (35)

2 _ 2 _ po
where F,, = F,,F,°, H,,, = Hypo H) .

3In particular this convention differs from that in [12].
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The Euclidean action which gives rise to these field equations is

1 2 8
Ip=— 14X 2dX A#dX —g* [ ZX 0 — X2 —2X? ) x1
E 16TFGN/[R* Axed =g (9 3 i
-~ %X‘Q (FA*F +F'AF") — %X“H AxH (3.6)

, 1 1 2
—iB A <2dA/\dA+3B/\dA+27

¢*B A B+ %F’ /\FZ>] .

In particular notice that the final term is a Chern-Simons-type coupling, and is accompanied
by a factor of i. This is required for gauge-invariance in the path integral with Euclidean
measure exp(—Ig). It is also implied by supersymmetry. Indeed, a solution to the above
equations of motion is supersymmetric provided the following Killing spinor equation and
dilatino equation hold:

! —1 v v
Dyer = 4\[ g(X + X I, Tre — TV Fup(T,7P = 65,"TP)es (3.7)

1 .
—ZSXQHVPUF”"”FHDQ + mx—lF;p(r —60,"T")T7 (0" ey,

1
0= —iX 10, XTFe; + ——=g (X — X ) Tres +
I 2\f( )71

——X lp THve ——X_IFZ e Je 3.8
35 wt™ e =25 701 7es . (3.8)

inHWpF“”"De ;

Here €7, I = 1,2, are two Dirac spinors, I', generate the Clifford algebra Cliff(6,0) in an
orthonormal frame, and we have defined the chirality operator I'; = il"g12345, which satisfies
I'2 = 1. The SO(3) ~ SU(2) gauge field A’ is an R-symmetry gauge field, with the spinor
¢r transforming in the two-dimensional representation via the Pauli matrices (o%);/. Thus
the covariant derivative acting on the spinor is D,er = V er + 2gAz (o )1 €J.

Returning to the equations of motion (3.3), notice that the exterior derivative of the
first equation (the equation of motion for B) implies the second equation on using the
Bianchi identities for F' and F*, where note that dF = % gH. This is related to the fact that
the theory possesses a gauge invariance A — A+ % g\, B — B—d)\, where X is an arbitrary
one-form. Using this freedom one can then gauge away A = 0, leaving F' = %gB. The
kinetic term for F' in the action (3.6) then becomes a mass term for the B-field; that is, the
B-field “eats” the U(1) gauge field A in a Higgs-like mechanism. Notice that there is also a
cubic Chern-Simons coupling for B in (3.6), making it a somewhat exotic field. We may also
make a simple rescaling of the fields via g, — g% s B — g%B ,A— %A, Al — éAi, after
which one sees that the coupling constant g only appears in the action as an overall constant
1/g* factor. Thus we may without loss of generality set g = 1, which we henceforth will do.

In appendix A we compute the integrability conditions for the Killing spinor equa-
tion (3.7) and dilatino equation (3.8), and show that these are compatible with the equa-
tions of motion (3.3), (3.5).
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3.3 Killing vector bilinear

Given a supersymmetric solution to the Euclidean Romans theory, one can verify that the
bilinear
K, =eeler ey, (3.9)

is a Killing one-form. Here C is the charge conjugation matrix, satisfying FZ = C_lfuC
and in our conventions is antisymmetric satisfying C? = —1. If we also impose a symplectic
Majorana condition

Cei =c/ey, (3.10)

then this Killing one-form may be rewritten as
K, =€, (3.11)

which is then manifestly real. In particular we will be able to impose this symplectic Ma-
jorana condition for the solutions we construct in section 4. In this “real” case the Killing
spinors €7 define an SU(2) structure on Mg. One could similarly analyse the differential con-
ditions on the corresponding SU(2) structure bilinears, but we shall leave this for the future.

4 Supergravity solutions

In this section we present supergravity duals to the SU(3) x U(1) squashed five-sphere back-
grounds of section 2. Via the consistent truncation to the Romans theory in the previous
section, this effectively becomes a filling problem in six-dimensional gauged supergravity:
one seeks a smooth, asymptotically locally Euclidean AdSg supersymmetric supergravity
solution, with conformal boundary data given by the squashed five-sphere background
in section 2. In particular this means the bulk supergravity solution is equipped with an
SU(2) g doublet of Killing spinors €, I = 1,2, solving (3.7) and (3.8), which should suitably
approach the boundary Killing spinors in section 2.1. We shall indeed find such fillings for
both the 3/4 BPS and 1/4 BPS solutions. In the process shall extend the 1/4 BPS solution
to a two-parameter family of solutions, containing a one-parameter 1/2 BPS subfamily of
new solutions.

4.1 SU(3) x U(1) invariant ansatz

The squashed five-sphere backgrounds of section 2.1 have SU(3) x U(1) symmetry, and
one expects this symmetry to be preserved by the bulk supergravity filling. Indeed, for
asymptotically locally Euclidean AdS solutions of the vacuum Einstein equations this is a
theorem [18]. This leads to the following ansatz for the Romans supergravity fields

1
ds% = a?(r)dr? + ¥%(r)(dT + C)? + ?(r) |do? + 1 sin? o(d#? + sin? 6dp?)
1
+Z cos? o sin’ o (dap 4 cos Ody)? | ,
1
B = p(r)dr A(dr+C) + §q(r)dC,
Al = fi(r)dr+0C), i = 1,2,3, (4.1)
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together with X = X (r). Recall here that we have used the gauge freedom to set the U(1)
gauge field (which is really a Stueckelberg field) to A = 0. The additional coordinate r is a
radial coordinate, and we shall choose a parametrization in which the conformal boundary
is at » = oo. For fixed r, provided v(r) and $(r) are non-zero the constant r surfaces
in (4.1) are squashed five-spheres. We shall seek solutions with the topology of a ball, so
that r € [rg, 00) with r = ry being the origin. At this point the squashed five-spheres must
become round in order that the metric extends smoothly to the origin of the ball. Similarly,
in order for the gauge fields B, A® in (4.1) to be non-singular at the origin they must tend
to zero sufficiently quickly at r = rg. In writing the ansatz (4.1) we have used the fact that
the only SU(3) x U(1) invariant one-form on the squashed five-sphere is the global angular
form dr + C for the Hopf fibration S' < S® — CP?, while the only invariant two-form is
the pull-back %dC = w of the Kihler form on CP2.

Substituting the cohomogeneity one ansatz (4.1) into the equations of motion (3.3)
and Einstein equation (3.5) leads to a rather complicated coupled system of ODEs. The
equations of motion for the background SU(2) z gauge field imply fi(r) = x; f(r), i = 1,2,3.
The equations for the other fields then depend only on the SU(2) ~ SO(3) invariant
k7 + K3 + K3, which we can set to one by rescaling f(r). The equations of motion then
result in the coupled ODEs for the functions a(r), 8(r), v(r), p(r), q(r), f(r), X (r), which
can be found in appendix B.1.

Since the solutions we find are continuously connected to Euclidean AdSg, we first
present the latter in these coordinates:
~3V3 B C3V6erz—1

Nk B(T)—’Y(r)—Ta
p(r) =q(r) = f(r) =0, X(r)=1. (4.2)

Here only the metric is non-trivial, and (4.2) realizes Euclidean AdSg as a hyperbolic ball
with radial coordinate r € [%, o0), with the conformal boundary at infinity » = oo. Thus
the origin is at rg = %. Notice in particular that the conformal boundary at r = oo
is equipped with a round metric on S°, which is conformally flat. We would like to find
families of solutions that generalize (4.2) by allowing for a squashed five-sphere boundary,
keeping the metric asymptotically locally Euclidean AdS near r = co. That is, near r = oo

the metric should approach
9dr?

2r2

where ds? is the squashed five-sphere (2.1). For such solutions we may thus define the

ds? ~ + 27r?ds?, (4.3)

squashing parameter by

im 20— 33 % (4.4)

r—00 'S
so that s = 1 for the round sphere. Even though we did not manage to find supersymmetric
solutions in closed form, the solutions can nevertheless be given as expansions around
different limits. In general notice that we can use reparametrization invariance to set

3vV6r2 — 1
\/i ;
1

which we assume henceforth. In particular this fixes the origin of the ball to be at rg = NG

plr) = (4.5)
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In the following we summarize the various families of supersymmetric solutions we
have constructed with the ansatz (4.1). Details of the computations may be found in

appendix B.

4.2 3/4 BPS solutions

There is a one-parameter family of 3/4 BPS solutions parametrized by the squashing pa-
rameter s. The solution expanded around the conformal boundary is given by
) 31+8+521+ (4.6)
ar)= ——+ ————5+..., .
V2r o 36v2s2r?
3v3 L 16+ 721 —1280 + 1120s? + 241s* 1
= T —

r - )
() s 124/3s3 1 25921/355 r3
1—-s2-3V/1-521 21 — $2k 1
X(’I“) = 1+ 2 724- *3“‘ 5
54s r 12(1—s2+‘/1—32>r
i/2 (2 +3vT=s2 - 1)
p(r) = — 83 ﬁ—i—... 5
3 (VOVT—s2)  \JEVT= 5 (552 +9VT =52 —5)
Q(T):_ s r+ 383 ;—'—,
1-s2+V1—-s2 2<_2+252_(2+82)V1_82)1 K
f(T'): 82 + 934 7’72—’_7‘73—’_7

where we have computed this expansion up to O(1/r?). The extra parameter & is fixed by
requiring regularity at the origin r = % (see (4.8) below). Notice that the SU(2)r gauge
field at the conformal boundary agrees with the gauge field (2.4) with @ = 1. We may also
expand the solution around Euclidean AdSg, which has s = 1:

5v3 (= 5V6+330v6r2 - 3744r% 4 1620V/6r*
6r2 — 1 9v2r2 (6r2 — 1)%/2
+8640r° — 7560v/6r° + 5184v/6r%)
9v2r2 (6r2 — 1)%/?
3v6rZ=T  (55v2 - 334V/3r + 1080v/2r? + 76831
V(r) = V2 - 6 (672 — 1)7/2
~5400v/2r! + 11232v/2r — 11664v/2r°)
6 (6r2 — 1)/
(V2 (1 —2V6r + 6r?))

a(r) =

(I—=s)+...,

(I—=s)+...,

X(r)y=1- 3(6r2 _ 1)° Vi—s+...,
p(r) = 18iv/2 (V6 — 1(656Trj_121\)/i36r2 - 12\/6r4)\/ﬁ+... |
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3iV2 (=4 4 9v6r — 24r% — 12/6r% 4 36v/6r°)

q(r) = (61“2—1)2 V1i—s+...,
_ — 362 4 364
iy = Y2 3+i£_1?)’§ T360) s (4.7)

In particular one can check that these functions lead to a regular solution at the origin
r = %, although this is not manifest in the formulas presented above. Indeed, we have
computed this expansion up to sixth order, and by comparing the two expansions we find
that regularity at the origin fixes the parameter x in (4.6) via

3v3 V2 113 25 1127 35
SR ST Sl © I R & 54 5° 84+, 4.8
LT e ot Tass? Toet T (48)
where we have introduced 1
P=-—1. (4.9)
S

The explicit solution €; to the Killing spinor (3.7) and dilatino equation (3.8) for this
solution may be found in appendix B. In particular there are three independent constants
of integration after imposing the symplectic Majorana condition (3.10). Using this solution
one can compute the Killing vector bilinear (3.9). Requiring that this Killing vector lies
in the Lie algebra of the maximal torus U(1)? C SU(3) x U(1) fixes the constants of
integration, up to an overall irrelevant scaling. In this case we obtain

K = bl&pl + b28902 + bgﬁ% , (4.10)

where by = 1+ V1 — 82, by = b3 =1 — /1 — s2 and the coordinates ¢; are related to 7, v
and ¢ via (2.24).
4.3 1/4 BPS solutions

We also find a two-parameter family of 1/4 BPS solutions, parametrized by the squash-
ing parameter s and the background SU(2)g field at the conformal boundary, which is
parametrized by fy. The solution expanded around the conformal boundary is given by

il_f0232+9(_2+32)_Gfo(_1+32)l+

a(r):\/ir 263 S
C3V3 2f3s —12fo (—1+5%) +9(-3+25%) 1
y(r) = ——r+ TN —+e,
2 2 2.2
X(T):1+18—3f0—183 5212]003 —2f2s 712+
i\/2(=3+ fo) B+ (=3 + fo)s?) 1
p(r) = \/; . T—Q—l—...,
: N 2
q(r) = —31\/6(3+(8 3+ fo)s )r
134 (=34 fo)s?) (f3s>+9(-1+s%) —6fo(1+5%))1 &
+ -+ =4,
6/65 ro 72
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f(r)zfo+2<3W):2+%+.... (4.11)
Again, we have found this solution up to O(1/7?). The constants & and & are again fixed
by requiring regularity at the origin.

There are a number of interesting special cases. First, we obtain the one-parameter
family of 1/4 BPS squashed five-spheres of section 2.1 by choosing the constant fy so as to
reproduce (2.4) with Q@ = —3. That is, fo = (1 — 3v/1 — s2)v/1 — s2/s%2. We show explic-
itly in appendix B that the supergravity Killing spinor matches onto the five-dimensional
spinors in section 2.1. Another interesting case is fy = 0. In this case the SU(2)r back-
ground gauge field is completely switched off, but the solution is still supersymmetric with
a squashed five-sphere at the conformal boundary. This solution has enhanced supersym-
metry — as we show in appendix B it is 1/2 BPS. On the other hand we may also set
s = 1, so that the conformal boundary is the round five-sphere, but keep the parameter
fo. This shows that one can define non-trivial Killing spinors on the round S° by turning
on other fields.

We may also expand the solution around Euclidean AdSg with s = 1:

3v/3 N V3 (1 —54r% + 96v/6r® — 3247 + 216r°)

olr) = = 22 (62— 1) (I—s)+...,

) = 3\/6\;;——1 N (15— 48\/67;/; (267T02r2_—1)554/13r4 + 648r%) Qo).
X(r) =1+ ( _N(iijfi)z@w)(l—sw... ,
pw):_?&V2Gw@+8¢%@;%f¥”+UVﬁAH6+wQ1_Sy+”W

o) = 3i(—4+9V6r - 247“?6;213\:)627‘3 +36v6r°) (6 +w) Aot

fr) = (=3+ 8\/(6grgf617;22+ 36r1) 1—8)+..., (4.12)

where we have introduced the parameter w via (1 — s)w = fy. As before it can be checked
explicitly that the solution is regular at r = %, and we have checked this up to fourth

order in the expansion variable
0

®» | =

—1. (4.13)
Comparing this expansion with the expansion around the conformal boundary we deduce

i (144 + 98w + 13w?
§1:2i(6+w)5—1( 5“ <) g2
L (307719 + 209547w 4 41094w? + 1282w?) 5

9450
i (26693550 + 21683700w + 6126111w? + 771474w® + 51568w*) 5y

623700 Y
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2 2 2 (V6w + 2v6w?) ,  (—999v6w — 594v/6w? + 244/6w?)

2= 3\/;‘”5 - 15 o 42525 ’

32724/6w + 26082v/6w? + 6105v/6w® + 9351/6w?)
1403325

The explicit solution €; to the dilatino and Killing spinor equation (3.8), (3.7) for this

+( M (4.14)

solution may also be found in appendix B. In this case there is a single integration constant
(for generic fy, or equivalently w). The Killing vector automatically lies in the Lie algebra
of the torus U(1)? € SU(3) x U(1), and with an appropriate scaling we obtain

K=0, = bla(pl + anﬁM + b3(94p3 s (4.15)

where by = by = bg = 1 and the coordinates ¢; are related to 7, ¥ and ¢ via (2.24).

5 Holographic free energy

In this section we describe how the on-shell action for the Euclidean Romans theory de-
tailed in section 3 can be computed, and for asymptotically locally Euclidean AdS solutions
holographically renormalized by adding boundary counterterms [19-21]. For the supersym-
metric solutions presented in section 4 we evaluate the renormalized on-shell action and
determine the holographic free energies.

5.1 On-shell action

We will work in the gauge A = 0. Starting from the Euclidean action (3.6) and using the
equations of motion (3.3) together with the Einstein equation (3.5) and its trace, we find
the following for the on-shell action defined on a manifold Mg with boundary dMg

Ionfshell = Ibulk + Iboundary ’ (51)
where
1 4 1 . o . .
Touk = X 72(243XY %1+ X 2FIA«F '+ —BAF' A F? 5.2
bulk 167Gy s, 9 ( + )* + 3 LA 3 , (5.2)
1 2 1
I = (X xdX)+ S(BAX < H). .
boundary 167G N /BMe 3 ( * ) + 3( A * ) (5 3)

Here we have used Stokes’ theorem to write a total derivative as a boundary integral. In
particular this assumes that the potentials B and A’ are globally defined, which is the
case for our supergravity solutions. The Hodge duals in (5.3) are defined on Mg, and then
restricted to the boundary. The on-shell action is divergent due to the infinite volume of
Mg and OMg, and from divergences in the supergravity fields as the conformal boundary
r — oo is approached. Consequently, I, should be understood as integrated up to a
finite cut-off which is then sent to infinity only after adding counterterms which regularize
the divergences. In addition, because of the presence of boundary terms in the on-shell
action, one should add a Gibbons-Hawking term [22]

1
87TGN OMg

KvVdet hddz . (5.4)

Igy = —
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This involves the trace K of the extrinsic curvature of the boundary, and where hy,, is the
induced boundary metric, and also leads to divergences. Hence the finite on-shell action is

Irenormalized = Ion—shell + IGH + Icounterterms . (55)

In the next subsection we determine the precise form of the counterterms.

5.2 Boundary counterterms

The counterterms needed to regularize the action of the Euclidean Romans F'(4) theory
were stated without derivation in [23]. Here we provide a full account of their construction.
We assume a general expansion of the fields for an asymptotically locally Euclidean AdSg
solution. In particular, we take the metric to be given in Fefferman-Graham form [24, 25|

2 1 o
ds? = ?dz2 + Z—2fymn(z, x)dz™dx", (5.6)
where ¢ = 3/+/2 is the AdSg radius, and in turn

Y (2,8) = Y + 22V + 2 + O(2%) - (5.7)

Here 79, () is the metric induced on the conformal boundary which, due to the radial
coordinate transformation r — %, is now at z = 0. The Gibbons-Hawking term is then

1 z
Icy = 29.Vdeth dz, 5.8
= SrGy /aMG gevesh (58)

and hy,, = Z%an is the induced metric on the boundary.
The Ricci tensor of the six-dimensional metric (5.6) is

R === 5 [T (78 = ST (710) - 5 (7 12.0)")

2 1

50 )7 1) + %((‘M)Tr (v10.7)

) 111
Rmn - _Wan - ﬁ |:2837 - ;azfy -

1 -
~*R(7) - 3T (v 10,27)] :
1 — n,
Fam 5(7 O™ Vo Yap,s = Vi Ymn,s] 5 (5-9)

with V being the covariant derivative for v(z,z). We also assume an asymptotic expansion
for bulk scalar and gauge fields, namely

X =142X14+22X9+--,
1
B=-b+dzNAg+By+zdzANA1+zB1+---,
z

1 1
H=dB = ——2dz/\b—|—fdb—dz/\dAo—i-dBo—i—dz/\Bl—zdz/\dA1~~,
z z
Fi=fipdz ANAL+2dz ANAL 4 2F) + - (5.10)
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The 1/z term appearing in the B-field expansion is non-standard but is justified by being
compatible with the equations of motion as we will see below.
It is useful to establish some formulas. We write (in general)

a A xa = ||al/?vol, (5.11)
to define the norm || - || of a p-form. The inner product of two p-forms «, 8 is denoted
(o, B). First we compute

sy = L2770 (x,0p) Ndz,

*(dz A ap—1) = %22;076 *y Qlp—1 (5.12)

where a, represents a general p-form that is orthogonal to 0,. Here the volume forms are

related as ’ ’
volg = —dz Avol, = —dzAy/dety dz' Ao Ada® . (5.13)
z z
We will need the expansion of the determinant and Hodge dual for 7,,,. The former is
2 2/,.0y—1 2 40,.0y—1
Vdety = /det~0|1 + ETr V(") + ?Tr [v*(v") ]
2 2, 0N-172 , 2 2/.0\—17)2 5
—ZTr[fy ()] +§(Tr[fy )+ 0], (5.14)
whilst the latter may be computed similarly as
1
foy Q= * 00y, + 27 {QTr [Y?(°) 7] %50 ap —pjo (4P 0 ap)} + 0% . (5.15)
Here we have defined the p-form
(’72 © ap)ml”'mp = (’72)[m1n(ap)|n|m2-~mp] ) (5'16)
and indices are always raised with 7%, so (72);," = (V%) mp(7°)P".

The idea now is to substitute these expansions into the Romans field equations and
then on-shell action. We first look at the lowest order term in z in each of the X, B and
Einstein equations. The leading order term in the X equation of motion dictates

X, =0. (5.17)

Specifically, the term z%dz/\vol,yo has a coefficient proportional to X; times a non-zero num-
ber, thus forcing X; = 0. Next one finds that the leading order term in the B equation of
motion, which is proportional to Z%dz/\ *,0b, has a coefficient that is zero if and only if 2 =
9/2. Similarly, the leading order term in the mn component of the Einstein equation, which
is O(1/2?%), is satisfied if and only if 2 = 9/2. We will substitute ¢ = 3/1/2 from now on.

The first divergence we encounter, which is at order O(1/€°) where z = € is the finite
cut-off, comes from expanding the %X -2 (2 +3X 4) x 1 integrand in [, and the Gibbons-
Hawking term. It is

: 1 1 4/2
div _ _ 0 4°
IoG ey = 8iCn &5 /8 T3 VdetH? d°x, (5.18)
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and is simply cancelled by adding the counterterm

1 4+/2
peowterterm _ L AV2 [ mm (5.19)

STFGN 3 Mg

We write the counterterm action in terms of the induced boundary metric h,,, as the
divergences most naturally appear in this form [26]. There is no divergence at O(1/e*) as
a consequence of X; = 0. The divergence at O(1/€3) has contributions from each of I,
Ihoundarys Igu and the expansion of [goUnterterm and ig

PR O 4 gl VA s G

Idiv . 1 1/
O(1/e) ™ Gy €3 ontg | 9
Clearly we will need some control on v%, and this comes from the O(1) term in the mn
direction of the Einstein equation. Carefully expanding we find this fixes

3
’Y?nn = 5 [R(’Yo)mn -

1 0yA,0 1 2 3 2 .0
R v, -+ — Y, . 21
] (’Y ) mn:| 2bmn 16HbH70 mn (5 )

Here R(g)mn = Ric(g)mn denotes the Ricci tensor of a metric gy, with R(g) the Ricci
scalar. The curvature terms in v2,, are standard [19], while the terms involving b are
specific to the Romans theory and boundary conditions we are considering. Taking the
trace of (5.21), or alternatively examining the zz component of the Einstein equation at
order O(1), gives

T [12(6%) ) = = 1RO + 16 bR (522)

This expression will need to be used extensively due to its appearance in the Hodge dual
and metric determinant. Substituting Tr [72(70)_1} into the right hand side of I O(1/63)
leads to

: 1 1 1 1
v — / [—R ) p— ] det 70 d°z, 5.23
OW/) = 5rCn @ Jous | 2v3 ) 6@” 2 | v/det A0 (5.23)

and the appropriate counterterm is therefore

1 1
Icounterterm — / |: R B :| \/CF d5 5.24
; G o |37~ GBI (5.24)

A priori there is also an O(1/€?) divergence, but one easily sees from the various
expansions that only the scalar field contributes to it. This term (temporarily reinstating
the AdS length scale) is

. 1 40 1 1\ 1
v = e X3v/det70 d®z = 0, 5.25
O(1/€2) 817Gy <9 9 5) 2 /8M6 3 eLy x ( )
where the first term comes from expanding the bulk integral (5.2), while the second (which
cancels it) comes from the boundary X ~'*dX term in (5.3). Thus this potential divergence
is zero, without needing a counterterm or indeed even needing to use any of the equations
of motion.
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Continuing we find there are many terms that contribute at O(1/¢) including A; and
By from the asymptotic expansion of the B-field. It is prudent to look at higher orders of z
in the equations of motion for simplifications along the lines of X; = 0. Indeed by looking
at the 272dz A ag coefficient of the B-field equation of motion we find

By =0. (5.26)
The z 'y coefficient similarly implies
A =0. (5.27)

With these simplifications the O(1/¢) divergence becomes

e 260 2 + f@ ot + Qfxzubu% =2 0.aay)
AV )] = 22 2012 4 Y2 (1 2001
_\fR(’YO)ij(VZ)ij + \fR(vO)Tr [(")7] [V det1? &z (5.28)

We now seek to determine Ay, X4 and v* in terms of lower order boundary quantities such
as b. Examination of the 272y coefficient of the B-field equation of motion gives

4
d*ﬂ{ob:—ib/\b—f %0 Ay, (5.29)

which we should regard as fixing Ap in terms of the boundary field b. Specifically, since
*2 = 1 on any form, we solve this as

9 iv2
Ag == (d %0 b+ “be A b) . (5.30)

Note we may also write *,od *,0 b = d,0b in terms of the adjoint d,0 of d with respect to
7. The z~'dz A az coefficient determines B; to be

1
By = %0 (Zd odb— ib A A0> + 26X — STr [ b +29% 00, (5.31)

which may be rewritten as

Ne}

iv2
312*70[ lf

2
d *,0 db + TbA d0b — §b/\ *,0(b A D) | + 20X

B

1
—§Tr [Y() b+ 297 0b. (5.32)
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The next coefficient we need is Xy, the coefficient of z* in the expansion of X (z,2™)
and is found from the z72dz A vol,o terms in the X field equation

9

_ 11 3
X, = _ZAWOXQ — XoTr [v*(y°) 7] - ?(XQ)Q +

S AR
9 o, 1 | 1 9. i
+ll@bl2, — Aol — S(B1 B + (b ddo) — I F % (5.33)

Here Ao = d,0d acting on functions but will not contribute for a compact boundary (after
integrating by parts).

We also need 72, , which comes from expanding the zz component of the Einstein
equation at O(z?):

_ 1 172 5 3
Tr [y = 4T [ (0N 7] = 5(X2)” - *HAollzo + 2\|de§0 — X2l
1 1 9 e
(0. B1) — 2 (b, dAo) + LI 1[5 - (5.34)

Next we record some intermediate formulae which follow from the expression for v2,,
n (5.21):

1
Tr [72(70)*1]2 - Z R(Y")mnR(7%)™" — 6—4R( A2 + ETW)# (5.35)
, 75 4
—3(Ric(y") o b, b),o + ﬁR(’YO)Hszo - %HbH 0,

R(Y)mn (7)™ = —gR(’yO)mnR(’yo)mn + %R(WO)Q + (Ric(7°) 0 b, b)-0

3 0 2
—Z RO Bl

3 1 3 3
2 _ : (0 4 ONTTATE: 4
(4 0b,8) = —(Ric(r%) o b, blyo + 1 Toyob! + ~-R(O)blZ0 — < [b]%
Here we have defined Trob* = b,,"b,Pby%b,™. Notice that Tr,ob® = —2||bH30, with this
notation.
We now have all that we need to compute the O(1/¢€) counterterm. Inserting all our

intermediate results along with the newfound expressions for Xy etc. into [ dl("l /e) in (5.28)

leads to
1 1 15
dlv - . 0\ymn 02
Io(1/¢) = 87TGN€/BM6{[ 74\TR( V) mnR(") +764f R(v7)
2 4 4 2
- b b db
I = o Teb + ool + = bl
l\f ) l\f
_Wnd* ob+—b/\b|| O+F<b d6 ob+—d 7ob/\b]>
—ﬁ(Xg) —(Ric(fyo) 0b,b)0 Hb|| 0] v/ det~0 Aoz
3 \/Q T 3002
1
+m<b,>k7 d * odb—i-ib/\&)—*b/\* b/\b } (5.36)
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The corresponding counterterm is hence

1 1
Ifounterterm — / { |:3R(h)mnR(h)mn - 75R(h)2
OMg

871G N 44/2 64v/2
13 1
F|? + —Tr,B* — B} — —||dB||?
151+ s o2 1Bl = 5 1Bl
iv2 1 iv2
d+, B+ —-"BAB B,dép B+ ——dx*, BAB
8[” %1 3 7 — 4\/§< h 5 d*n )k
+4\—f(1 - X)? - —(Ric(h) oB,B), + 9R(h)HB||2] Vdet hd®z
3 V2 ’ 32v/2 h
——BA d*th+£B/\5hB—fB/\*h(B/\B) (5.37)
4{ 3 9

Once again the pure gravity terms found in the first line agree with the literature [19].

A priori the bulk integral in (5.2) is logarithmically divergent. Of course a log diver-
gence should not appear, as the boundary is odd-dimensional and on general grounds one
does not expect local anomalies. In keeping with this argument the equations of motion
at even higher order in z constrain the fields such that the potential log divergence cancels
without the need for a counterterm.

Collating all the expressions for the counterterms we finally arrive at [23]

1 42 1
Icounerermszi — +—=R
- 87TGN/8M6{[3 SR~ Bl

3 15
+—R(h)pmnR(D)™ — —=_R(h)?
4\f (h) () 6473 (h)
1 1
FU? + ——Tv,B* — B|* — —||dBJ?
\fH 1% 12f 192\/§H I3 \/5” I

iv2 1 iv2

+——||d*, B+ —BAB B,déyB+ —-d*, BAB

8[” % 3 7 - 4\@( h 5 d*n )h
+£(1 - X)? - —(Ric(h) oB,B), + 9R(h)HB||ﬂ Vdet hd®z

3 V2 32v/2

V21 2
—_BA|d*,dB+ ~=-BA§B—-BA*,(BAB . 5.38
4\f nAET nB =GB Al )] (5.38)

5.3 Free energy of the solutions

The renormalized on-shell action determined in the previous subsection holds for all Ro-
mans supergravity solutions which are asymptotically locally AdS. In particular we may
use these results to compute the holographic free energy for the supersymmetric solutions
of section 4. In order to present the results, we first split the renormalized action as

Irenormalized = Ibulk + Inon—bulk ’ (539)

where Iy is the bulk integral given by (5.2), while

Thon—bulk = Iboundary + Igu + lcounterterms , (540)
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where Ihoundary is the boundary contribution to the on-shell action (5.3), Igu is the
Gibbons-Hawking term, while I.ounterterms is the full counterterm (5.38). For our SU(3) x
U(1) ansatz (4.1), with f1(r) = f2(r) =0 and f3(r) = f(r), we have in particular

2 A
/ [3X 2(r)a(r) B (r)y(r) + 6if (r) [f(r)p(r) + a(r) f'(1)]

1
6

24f2(r)a®(r)y?(r) + 8a*(r) B (r)y*(r) + 38 (r) (f'(r))?
4X2(r)a(r)y(r)

+ ]dr, (5.41)

where A is the cut-off for the r coordinate.

3/4 BPS solution. For the one-parameter family of 3/4 BPS solutions in section 4.2 we

obtain
3 3 2 2
Lo 6561\£A5 ) 243,/3 (34125 + V=5 )A3
T 36G N s 3
2187+/6x (—1 i m) e
_ 42
33 (5.42)
27 [1/3 (74 -+ 665" — 14VT =52 = 5 (54 4vT =52 )]
+ ’ A
45
816 14678%  66935*  440738°
—243 + —= — 13776% — — - — 448265 + O(57
21/2 8v2 2 64v/2 (9
1
+0 <A) ,
together with
2 65614/2 243,/2 (3 + 1252 + /1 — 52
Lon—bulk = u - \/;AE) + \/g < ) AS
36G N 5 53
2187+/6% (—1 LIz 32)
+ A? (5.43)
8s
27 [1/3 (74+ 665" — 14vT =52 — 5 (54 4VT—2) )|
— A
45
81\/5 (—16 4 16v/1 = 52 + 1352 (1 43V s2>) K .
+ +0|(—
83 A

where recall that k is given as a series in § in (4.8). Adding the two contributions and taking
the cut-off A — oo, the divergences cancel and we are left with the following finite result

2772 8 1642 68 28+v/2 32
Irenormalized — _4GN <1 + *(52 + 753 + 754 + 7(55 + —

6
e 44
3 27 27 27 27(S * > , (544)
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where the six-dimensional Newton constant is given by*
15m,/8 — N
Gy = il " (5.45)
4v/2N5/2

The holographic free energy is identified with l.enormalized @and agrees precisely with the
series expansion of the large N field theory result (2.44)

1 (3—+V1—s2)3
F = ‘FroundSF’ ;
2752 1 — /1 — §2

where recall that s = 1/(1 + §2).

(5.46)

1/4 BPS solution. We may similarly compute the holographic free energy of the two-
parameter family of 1/4 BPS solutions in section 4.3. Again we obtain two divergent
contributions whose divergences cancel. The finite piece may be computed as an expansion
in 6 = % — 1 using the series expansions of the parameters &1, & in (4.14). Putting
everything together we obtain

272
Irenormalized = _@ (1 + 0(55)) . (5.47)

This again agrees with large N field theory result (2.44). Of course the latter field theory re-
sult was computed for a one-parameter subfamily of boundary conditions in section 2, while

here we have a more general two-parameter family. We shall elaborate on this in section 8.

6 Boundary supersymmetry conditions

In this section we determine the form of the Euclidean Romans supersymmetry conditions,
given in section 3, near the five-dimensional conformal boundary. Closely related work
has appeared in [27]. Our conventions are the following: we use z* = (r,2") to denote
six-dimensional coordinates, so that the indices p,v,... € {0,1,2,3,4,5}. Six-dimensional
frame indices are indexed by A, B, ... € {0,1,2,3,4,5} and five-dimensional frame indices
by early Roman letters a, b etc.

We continue to use the Fefferman-Graham coordinates outlined in subsection 5.2, al-
though compared to that section we change coordinates z — 1/r so that the conformal
boundary is now at r = co. We can then scale the r coordinate » — Ar without changing
the position of the conformal boundary or modifying the five-dimensional boundary metric
~0. After this scaling the asymptotic six-dimensional metric is now

52
ds? = T—er2 + A2y da™da™ (6.1)
where ) . ) )
_ .0 2 4 5
TYmn = Vmn + W’Ymn + >\4T47mn + )\5T5fymn +0 <T‘6> . (62)

4This was effectively calculated in [5] by identifying the holographic free energy of Euclidean AdSs with
an entanglement entropy. The N°/? scaling of the free energy had previously been predicted in [9].
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We introduce a six-dimensional vielbein e such that
ds? = efte? = el 4 e, (6.3)

If we denote by 6?5) the vielbein for 4°, then the six-dimensional frame components may
be written as

3O
~

e = —, el =0, er =0, em(r, @) = Arefs), () +---, (6.4)

where the ellipsis denotes subleading powers of r which will not play a part in what follows.
The inverse frame is

r B 1
66227 €6n = O, 62 = 0, (egn) 1 — 621 = ;eg)a—i—.... (65)
The six-dimensional spin connection is given by wMAB = e”[AaueVB] — e”[AE)VeMB} —
e,[,Aef ] ef@” el and from this expression it is easy to show that
bc _ n_, 6 0b Oc __ _1 c be __ i (5d)be
W =0=w", We < = E(Sa—i_”" Wa' = - Wa +..., (6.6)

(5d)

where wg “'’¢ is the spin connection associated with the 5d boundary metric 4°.
Incorporating some of the results from the holographic renormalization in subsec-

tion 5.2, the asymptotic bulk field expansions in the local six-dimensional coordinates are®

1
X=1+5Xo+ -,
T

2 2r 2
F=B=2b— " drndg+--

3 3b 37,2dTA 0o+ ,
H=dB=drAb+rdb+---,

Fi:fi_|_...’

Al =al ..., (6.7)

Note that not all the fields appearing on the right hand side are independent. For example
fi=da' — %Eij kai A a* and Ag was found in subsection 5.2 to be given by

9 iv2
Ao = —1 *'YO <d *'YO b+ Tb/\ b) . (68)

However, for simplicity we keep Ay and substitute in terms of b only at the end of our
computation. Converting the bulk field expansions first into the six-dimensional frame
and then into the 5d frame using (6.5) we can read off the following components for the
asymptotic fields

r 1 r 1
Hoqp = Wbab +0 <T3> ) Hape = W(db)abc +0 (704) )
2 1 2r 1
Foo = —W(Ao)a +0 <T3> ; Fop = Wbab +0 (7”3> )

®In this section we use a calligraphic font A to denote the SU(2) gauge field so that there is no confusion
with other notation.
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X+;X_3:§+O<:4>, X—X‘3:;12X2+O<:3>,
X 19X = -7 X+ 0 <:3> , X 19, X=0 <:3> ,
b= et 0 () Fa=0(%)
Ag:;a%o(;) , g:0<:3> . (6.9)

The full six-dimensional Killing spinor equation for the Euclidean Romans theory,
where all indices are orthonormal frame indices, is

1 1 1
Daer = —— | X + =X 3| Tal7e; — — X?HpoplBEPT LT
A€ 4\/§< +3 ) Al7er T BCD Alrer

1
- X Fpo(T4PC — 664519
TG Bc(Ta AT )er
1
+WX LFLo(DABY — 65,4517 (0%) ey, (6.10)

where D qe; = Oq€r + ZwABCFBce[ + %qu(ai)[‘]ﬁj. Taking the free index to be A = 0 and
substituting the field components (6.9) leads to

i 1
8r€[ == +§FOF7€[ + O (102) . (611)
Similarly, if we take the free index in the Killing spinor equation to be A = a then we find
\Y% €] = LT’F (iF7 — F0)€[ — iai (O’i>1J6J (6 12)
‘ 3V2 ¢ 2°¢ '
i 1
———bp D" (1 + il )er + ——= rb<1+rr>e+0<>,
24A\[ bc ( 0 7) I )\\[ ab 3 oL 7 I r

with V, being the covariant derivative with respect to the 5d spin connection.
Now we decompose the six-dimensional gamma matrices and spinors. We take our
coordinate independent Cliff(6,0) gamma matrices to be

01 0 i —14 0
Iy = Yl T = Te) o, = ! : (6.13)
1, 0 —iy, 0 0 14

where 7, are a Hermitian basis of Cliff(5,0). The six-dimensional spinor €; is decomposed as

.
e = (?) , (6.14)

With this basis of gamma matrices and splitting of the spinors, the r direction of the

where e% are 4-component spinors.

Killing spinor equation (6.11), to lowest order in r, is
Oref i €

A [ A (6.15)
Ore; 2r —e}'
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The general solution determines the asymptotic dependence on r:

et
() n) )

where X7, 7 depend only on the boundary coordinates ™. Having found the asymptotic
dependence on 7 for the spinors €; we can then substitute into the remaining components
of the Killing spinor equation (6.12). Taking only the lowest terms in r gives two copies of

/21 i i i
va = — a — 70/2 O—Z J - b C abc + ba b . 617
X1 5 Va5 (")’ xJ Toaga e X s ba (6.17)

This is the five-dimensional boundary Killing spinor equation.
Now recall that the six-dimensional dilatino condition in the frame reads

1 i
0=—iX"'o,xT4 — (X - X371 — X2H ApoTABCT
1 A 61+2\/§( ) 761+24 ABC 7€1

. WX L, pTABe; — 8—\;§X—1FABFABF7(ai)1J6J. (6.18)

We may follow precisely the same steps as for the Killing spinor equation to determine the
asymptotic form of the dilatino equation. Doing so we find the five-dimensional constraint

1 V2 Ai
0= ———bu o — —)\QX —(db) ape v ba
6v2 by PI 2XI+24)\( )abe Y™ X1 + bV X1
A .
+ 7ba bc abcd + —fi ab ot J ] 6.19
1gyawbeat™ 8f 10X (6.19)

We would prefer to have five-dimensional supersymmetry conditions which are homo-
geneous in the spinor y; instead of the current dependence on both x; and ¢;. To remove
w1 we contract (6.17) with v®. This gives

i 3
= a5v+ ~at (o) 7 + by (7, —4536&’)]
PrI 5/\\/§{V< 9 ()1 12)\\[b( )07 ) [ X
i 3
= _—"_D/'x;. 6.20
5 w2 I XJ ( )
We may then write the boundary Killing spinor equation in the form
=g 1 J
Vi a_g’YaDI XJ = 0, (621)
where V7, = §/V, + sal (o)) + 12)\\/51)0( — 46%4°)87. The boundary dilatino con-
straint reads
\f i
= Dy — YN ——(db)ape ba
0 a0 ab? DX 2XI+24)\( JabeY X1 + V Y X1
A
+ ——bapbeqy?? @y (6.22)

+
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For vanishing b-field, solutions of (6.21) are known as charged conformal Killing spinors
(CCKS), or twistor spinors. Within the current context of gauge/gravity duality, CCKS
have been classified for 3-manifolds and 4-manifolds in both Euclidean and Lorentzian sig-
nature in [28-31]. More recently, solutions in five dimensions (with arbitrary signature)
have been studied in [32]. To our knowledge the more general charged conformal Killing
spinor equation, where the charge is with respect to both the triplet of one-forms a’ and the
two-form b, has not been studied in the literature. It would be interesting to understand the
relationship between the five-dimensional conditions found here from the Romans super-
gravity theory and the rigid limit of five-dimensional A" = 1 Poincaré supergravity [33, 34]
studied in [35, 36].

Finally, whilst we do not yet understand the general properties of a solution to (6.21),
we are able to state the precise relation between the spinors ¢; and x for our supersym-
metric solutions (for which A = 3v/3). For the 3/4 BPS solution we find

= (- — (-1 , 6.23
SOI()GGSXI()6\/6871XI (6.23)
and for the two-parameter family of 1/4 BPS solutions
—3)s
pr = MXI- (6.24)

6v6

In appendix B we give further details of the explicit six-dimensional Killing spinors and
their relation to the five-dimensional spinors of section 2.

7 Wilson loops

In this section we compute the expectation values of certain BPS Wilson loops, both in
the large N matrix model of section 2.3 and also in the supergravity dual solutions of
section 4. More precisely it will be important to uplift these solutions to massive type
ITA supergravity, where the Wilson loop in the fundamental representation is dual to a
fundamental string. Minus the action of this string precisely matches the logarithm of the
Wilson loop VEV in the large N limit, as a function of the parameters of the solutions.

7.1 Large N field theory
An interesting observable to consider is the VEV of the Wilson loop in a representation R

of the gauge group G:

(Wr) = (man<TrR73exp/(&%mim+a|$)dt> . (7.1)

Here o7 denotes the dynamical gauge field for the gauge group G, o is the scalar in the
corresponding vector multipet, and the worldline is parametrized by =™ (t). It is straight-
forward to see that (7.1) is invariant under the supersymmetry transformations for the
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squashed five-sphere (2.21) appearing in section 3.3 of [6] provided the Wilson loop wraps

an orbit of the Killing vector bilinear®

K =" x1"Cisyvmx - (7.2)

That is, we take ™ (t) to be an integral curve of K. The supersymmetry variations of the
two terms in (7.1) then cancel each other.

The large N limit of (7.1) for the USp(2/N) gauge theories described in section 2.3 was
computed for the round five-sphere in [37]. It is straightforward to extend this to the more
general squashed sphere matrix model in section 2.3. The key point is that the insertion of
the Wilson loop into the path integral does not affect the leading order saddle point config-
uration because its logarithm scales as N'/2, while the free energy instead scales as N°/2.
The dynamical gauge field &7 localizes to zero, so only the constant scalar o contributes to
the Wilson loop (7.1) in the localization computation. Thus the VEV (7.1), for the funda-
mental representation of USp(2V), is effectively computed in the large N matrix model as

(Wiana) = /0 PN () d, (7.3)

where p(x) is the saddle point eigenvalue density (2.39), with the eigenvalues supported
on [0, z,] with z, given by (2.40). We have also denoted by 272 = [ |z|dt the length of
the integral curve of K that is wrapped by the Wilson loop, and recall that A(z) = N 124,
to leading order. Thus we find the large N result

(by + by + b3)V21.L

log (Wiuna ) = N2 4 o(NY?) . (7.4)
/8 — Ny
Relative to the round sphere result we thus have
b1 + by + b3).L
IOg ( qund > - ( ! 23 3) IOg < qund >round . (75)
Indeed, recalling that
K = bldpl + bgam + b38@3 , (7.6)

in terms of the standard U(1)? action on S° C R? @ R? @ R?, then the orbits of K are
always closed circles at the origins of any two copies of R?. If we call these U(1)? invariant
circles S}, i = 1,2,3, then % = 1/b; and we may write

b1 + ba + b3
log ( Whina, s} ) = (?)b) log ( Wiund )round - (7.7)
(3
Notice that this formula is invariant under a constant rescaling K — c¢- K. We now
explain how to reproduce this large N result from the dual supergravity solutions.

60f course we have similarly defined a Killing vector K in the six-dimensional bulk as (3.9). The latter
restricts to (7.2) on the conformal boundary, so this is only a slight abuse of notation.
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7.2 Dual fundamental strings

The supergravity dual of the Wilson loop Wing was studied in [37] for the round five-sphere.
The supergravity background is in this case the massive type IIA uplift AdSg x S* of the
AdSg vacuum of the Romans theory of section 3. The Wilson loop maps to a fundamental
string sitting at the north pole £ = 7 of the internal 5S4, in the notation of section 3.1.
The string then wraps a copy of R? C AdSg parametrized by the radial direction r in AdS
together with the Wilson loop curve S' C S°.

We now generalize this to our supergravity backgrounds in section 4. Here the type
ITA background is a warped and fibred product Mg x S*, together with various non-trivial
background fluxes. However, Mg still has the topology of a ball, with a natural radial
direction r. Thus the candidate dual of the Wilson loops computed in the previous section
is a fundamental string sitting at { = 7 in the internal S4 of (3.1), together with the Wilson
loop curve S C quuashed and the radial direction r. This is then a copy of ¥y =2 R? C Ms,
and we would like to compute the regularized action of a fundamental string wrapping this
submanifold.

In order to compute the string action we must first convert to the string frame metric

®/2

in (3.1), which introduces a factor of e®/*, where ® is the ten-dimensional dilaton. The

induced string frame metric on Mg at the north pole § = 5 of S4 is then
sty le=7 string= X “dsg, (7.8)

where ds? is the Romans supergravity metric. The B-field then uplifts to the type ITA
B-field with curvature F(3y = H = dB via (3.1) at the north pole { = 5. In section 3

we have set most of the physical scaling parameters to specific numerical values — for
example the Romans mass is set to ma = %, while the correctly normalized value for

the supergravity dual to the USp(2N) gauge theories is (8 — Nf)/(27/,s) where £ is the
string length. In particular restoring the AdS radius to its physical value

812N
Y= —— 4 (7.9)
9(8 — Ny)
(as in [37]) the string frame action is
N1/2\/2
V2 X72\/detyd®z +iB, (7.10)

W = Ny Jss

where 7, is the metric induced on Y5 via its embedding into the Romans metric dsZ on
Mg, and we have included the usual Wess-Zumino coupling to the ten-dimensional B-field.
More precisely, (7.10) is divergent, and as usual one may regularize it by cutting off the r
integral at some r = A, and including a boundary counterterm given by the length of the
boundary S' c S® at » = A. Thus the regularized action reads

N'/2y/2 3
Sitring = ———— X2, /detyd?z +iB) — ——length(9%9)| , 7.11
string = (8_Nf)[/22( g ) 7 gth(0%2) (7.11)

where this is understood to mean the limit as one takes the cut-of A — oco. We now
compute this for our various solutions.
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1/4 BPS background. We begin with the 1/4 BPS background, as in this case the
supersymmetric Killing vector bilinear is simply K = 0, (up to an irrelevant constant
rescaling). Via the SU(3) symmetry of the background all orbits of K are equivalent, and
thus there is effectively only one Wilson loop to compute. This wraps the 7 and r directions
at, say, o = 0 (which is a point on the base CP? of Sll{opf < S% — CP?, all points being
equivalent under SU(3)). The regularized string action (7.11) is

N1/22\fﬂ'

Ss rin, li
trine %msm

where we have used that 7 has period 27. Evaluating this for the two-parameter family of

[/ [X2(r)a(r)y(r) +ip(r)] dr—\zy(A) . (7.12)

1/4 BPS solutions, as a series in the parameter ¢, we find

- 3V2r
string — \/m

which agrees precisely with the large N field theory result (7.4) since K = 0, = 0,, +
Oypy + Oy, so that by = by = bz = 1.

N2 4067, (7.13)

3/4 BPS background. For the 3/4 BPS solution recall that the supersymmetric Killing
vector K has by = 1++v/1 — 82, by = b3 =1 —+/1 — s2. For generic values of the squashing
parameter s the generic orbit of K will be open. However, the orbits always close over the
circles Sil defined in section 7.1, which have lengths . = 27/b;. Since by = b3 these circles
give rise to two distinct Wilson loop VEVs:

3—V1—s2

—7 Z - 17
log (Wiund, 1 ) 31+ V1=s?) (7.14)
log < qund >r0und B 3 —+v1—352 ) 5 3 '
_— 1= 2,3.

We may then compare these results to the regularized string action (7.11), where for S}
the fundamental string wraps the circle ¢; together with the r direction. More precisely,
Si is located at o = 0 in the coordinates (2.1), while Sj is located at {o = 5, § = 0}, as
one sees from (2.23). The result for S} is the same as that for S3 due to the SU(2) C SU(3)
symmetry preserved by the bosonic solution and supersymmetric Killing vector. On the
other hand, due to the signs in (2.24) the relevant string actions to compute are then

N1/22\/o7 A B ‘ 3
3\/(87——]\6:) [/’":\}a [X2(r)a(r)y(r) £ip(r)] dr — ﬁfy(A) , (7.15)

respectively. Evaluating this for the one-parameter family of 3/4 BPS solutions, as a series
in the parameter § up to sixth order where 6% = % — 1, we find

Sstring,S% 4\/> 5\/> 5 7

1——5+ 52

SN ——— 0400+, 7.16
Sstring ‘6:0 3 3 3 12\/§ ( )
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while

Sstring S 2\[
e e 52 ——5+ 54+755+0 O 7.7
Sstring ’6:0 3[ 24[ ( )

These agree precisely with the series expansions of (7.14) computed in field theory.

8 Discussion and conjectures

In this paper we have constructed supergravity duals to the USp(2N) superconformal gauge
theories on SU(3) x U(1) squashed five-spheres. These constitute a one-parameter family of
3/4 BPS solutions, and a two-parameter family of generically 1/4 BPS. The latter include
new supersymmetric squashed five-sphere geometries with the background SU(2)r gauge
field turned off, and moreover these have enhanced 1/2 BPS supersymmetry. By holo-
graphically renormalizing the Euclidean Romans supergravity theory, we have computed
the holographic free energy for our solutions. We then compared this to the large N limit of
the partition function of the gauge theories, and found perfect agreement. Given a super-
symmetric supergravity solution one can construct the Killing vector K* = ¢!/ E?C’V“E T
where €7, I = 1,2, is the SU(2)r doublet of Killing spinors. For our solutions the free

energy takes the form
(101] + [b2] + ‘bng]:AdS

F= |
27|bybabs| 6

(8.1)

where we write the supersymmetric Killing vector as K = Z?:l b;0y,;, and O, are stan-
dard generators of U(1)3 C SU(3) x U(1) acting on S° C R? @ R? ® R%  Given the
corresponding 4d/3d results of [13, 38], it is then natural to conjecture that (8.1) holds for
any supersymmetric supergravity solution with the topology of a six-ball and for which the
supersymmetric Killing vector K may be written as K = Z?:l b;O,,. In the present paper
we chose orientation conventions so that b; > 0 for ¢ = 1,2,3. More generally we expect
the orientations of d,, to be fixed as in [13], leading to the modulus signs in (8.1). We
shall comment further on this below. We also conjecture that any supersymmetric gauge
theory, with finite NV, defined on the conformal boundary of such a supergravity solution
depends only on by, bo, bs.

We have also computed certain BPS Wilson loops, both in supergravity and in the
large N gauge theories, again finding agreement. In this case we find that one can write
the Wilson loop VEV as

|b1] + |ba2| + [bs]
3104

log (W) = log (W) Adsg » (8.2)
where the Wilson loop wraps the ¢; circle. Again, it is natural to conjecture that (8.2)
holds for general supergravity backgrounds with U(1)? symmetry and the topology of a
six-ball. A general proof of the analogous formula to (8.2) for the Wilson loop VEV in four
dimensions appears in [39].

There are many natural directions which one could follow up. Firstly, it would be inter-
esting to study supersymmetric gauge theories on a general class of supersymmetric back-
ground five-manifolds, generalizing the work done in lower dimensions in [28, 38, 40, 41].
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One should then be able to prove (or disprove) the conjectures made above. In partic-
ular it would be interesting to study five-manifolds with different topology. Some work
in this direction appears in [15], where the authors studied the case where the boundary
is a Sasaki-Einstein manifold. It would also be very interesting to study systematically
the geometry of Euclidean Romans supergravity backgrounds, as alluded to in section 3.3.
Here it is natural to expect that general supersymmetric solutions on the six-ball have a
canonical complex structure, so that Mg = C3. If this is the case, then introducing stan-
dard complex coordinates z; = p;e'?i, i = 1,2, 3, fixes the relative orientations of Op;- In
analysing the asymptotic expansion of the bulk Killing spinor equation, we have obtained
a boundary charged conformal Killing spinor equation, where the charge is with respect
to both a one-form and also a two-form. To our knowledge, this type of equation has not
been studied in the literature. In particular, it is an open problem to relate this equation
to a more standard Killing spinor equation, of the type (6.17), in general.
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A Integrability conditions

Here we compute the integrability conditions for the Killing spinor equation (3.7) and
dilatino equation (3.8) of the Euclidean Romans theory.

Recall that a supersymmetric solution must satisfy

1

i 1.
Duer = —=g(X + - X )0, Tres — 5

127 T
i 1 . .
X'F,, (1,7 — 66, T )er + —2X—1F;p(rﬂ”f’ —60,"TP)T7 (0% ey,

X?H,pe 77T\ Tre; (A1)
1
16v/2 16v/2

- 1 _ i
SAr =0 = —iX"19,XT"e; + PNGL (X = X7) Trer + ﬂﬁﬂwrwnq

1 -1 i —17 i J
_87\/§X F;WF#VGI - 87\/§X FZ“,F’LWF7(OJ)] €J, (AQ)

where A; is the dilatino field. Let us also record the component form of the Romans field
equations in (3.3) and (3.5)

1 1 2
— -2 2 —6 2 -2
(Eg);w = Ry —4X770, X0, X — g <18X — §X — §X ) Guv
Ly mom L HPTH L x2(FrF,, - L9
_Z ( N vpo 69/11/ pO’T) - 5 ( w tvp — gg,ulz pcr)
1

—2 T
—§X (F; pFﬁp—gguyF“’ F;)o),
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1 2 1 1
(Ex) = VM(X'9,X) + ¢* <2X2 - gX_2 + 6X_6> - ﬂx‘*HWpHW,)

+ 16X 2(FMF,, + F"™FL),

(EA)" = V, (X 2F") — éswmmﬂ,pﬂm,
E )" = D, (X 2FWH — ieﬂ”fmei Hory
A 12

(EB)MV = VP(X4HPMV) 39X QFMV _ 8 ,ul/po-m(FpaFTH + Fz Fz ) ) (A.3)

pot TR

The equations of motion are then Egqgq = 0. In addition, the gauge fields satisfy Bianchi
identities Bgelq = 0, where we define

2
(BF)p,Vp = v[,uFI/p] - §gH

HUp
(Bpi) p = D[MFlfp],
(Bi) po = ViuHypo) - (A.4)

Taking the commutator of the Killing spinor equation (A.1) we find the integrability
condition to be

I;UJIJGJ =0, (A5)

where

1 1 . : 1 _
ZRMV/JO'FPUEI + 79F;V(O-Z)IJ6J + |- Fg(l -X 4)aMXFVF7€I

+33 X8 W XHPTT 0 T Tres + = X2V, HPT 0 T, Ty

J
I,uu[ €J =

4
i -2 o 1
— (9XFUJ'D —l—iX VFUJ
16[ p €r 16\/’ p

1
+——X729 XF’ J,P°T - 7X 'V, FZ J,P°T
673 " CAI, 707y

1,1 2
3 (9X g 3X 24 XH0,T her — mX“H’\”eHP‘”FMaF TporLper

1
+mX_2Fw9FpoJ,,WOJH”UeI+ 5@X SO0 O Bl S

+EX el g Fly J, 0 1,27 (o)1 e

192 f g(X3 + X )HW(F,,FWPH—rpmr,,ru)q

1
+1—289X (X X TE, o (Tu g = 2,/7T, ) Trey

1. . > o .
gt 4 XTI (L7 + I, ) (e

Aw o o
o fXFp(,H (T ol = TP Tsoly ) Tres
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1
7682

i A . A
e X By Bl — Bl 17 1,0 e — (5 uﬂ | (A.6)

X Fl, B (r ©wt T P7 — J,P°T Mu) ()€

and we have defined the Clifford algebra element

JP7 =T, —65,°T7 (A7)
Taking the covariant derivative of the dilatino equation (A.2) and contracting with T'*
leads to
i 7 1
T¥D,(6Ar) — X — X ) T8 + = X2H,, ,THPT 76\ A8
1w (OAT) 2\@9( 5 )7 1+5 wwp 70T (A.8)
i 1 . .
+——= X" E, TN + —= X E T T (0%) 1 oA
Wi s 37 L 7(0" )1 0Ny
1 i : i
=i(Ex)e; — —=X (Ea),THe; — —=X (Eq:), TFT7(0%) T ey + < X2 (Eg),,, T"Tre
(Ex)er 4\@(A),L 14\@(,4)” (o) e + g X7 (EB),, 7€l
1 _ i _ ;
_@X Y (BF),u,, THPer — 8\@)( Y(Bri) ,, T*PT7(0") 1 €
i
+ﬂx2 (Bi) o T#P Ty

We may similarly contract Z,,, 17€e; with T¥. After a very lengthy calculation we find

v J i v Y 1 b -
T Tr’ ey + 5Ly D" (6A1) + 21X Y0, X 6N + 573" (X —3X 3)FMF75/\1
1

8v2

1 i ) ) i ) )

+MX*1FWPV5AI — %L@X*lF;Vryn(al)HaAJ + SLﬁX*lFWPrWn(aZ)HaAJ
1 1 1 Y

=3 (Ex)Ter — 5 (Eg),, Ter — §X*2 (E)"’ T ,l7er

1 1 ,
(EA)'U, €r + ﬁX (EAi>u F7(0—Z)1J€J - ﬂXZ (BH) poT F;Ll/p(m'r7€[

3 -1 i\ J
wwp IPer + mx (BFi)#Vp FVpF7(0'l)[ €J . (Ag)

— L X2H,,,TT70M; + 1—16X2H”f’°'l“wpaf75/\1 -

T X FUPT 000

1
——X
22

3i
-——X'B
e (B

B Supersymmetric supergravity solutions

B.1 The equations

The solutions found in this paper arise from the following SU(3) x U(1) symmetric ansatz
for the supergravity fields

1
ds% = a?(r)dr? + 42(r)(dr + C)% + 5%(r) |do? + 1 sin? o(d#? + sin? 6dp?)
1
+1 cos? o sin? o (dep + cos fdy)? | ,
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B = p(r)dr A (dr +C) + %q(r)dC,
Al = fi(r)(dr + ),

(B.1)

together with X = X (r). The equations of motion for the background SU(2)r gauge field

imply '
fir) = rif(r).

(B.2)

The equations for the other fields then depend only on the SU(2) ~ SO(3) invariant
Kk7+K3+K3, which we can set to one by rescaling f(r). Explicitly, one finds that substituting

the ansatz (B.1) into the equations of motion (3.3) and Einstein equation (3.5) leads to

following coupled system of ODEs:
A"}/X4 2 pﬂ4

a2, 4
=t X

Ay X4 ' P 2 2 2qory
:2 —_— —
< a ) Ur+ilg ) rty) X2

BN dayf
<2a’yX2> ~xr A

o (BN 1 sl (N 1 (P
v\ aX T 8X2 \ 42 B4 3/ 8X2 \ A2

Jr)(4)\2 a? . 202 a?X?
234 6X6  3X? 2 7’

B 8 ay p

B B an) (e _ (X XN
5 -G - (5) e

LS (LY (2 8) S

y B alny B) B

_XW L7 el (2 L
2Bt 2X2 \ 42 34 3) 2X2 \ 42

a2q

ﬁ4

,Y// a/ ")/ B/ ,.y/ (a,y)2 a2 2a2 O[2)(2 X4)\2

LA A R
v oay By

B4 T 18XS  3X2 2 2p4
1 12 1 12 8 2 £2

L[ (? ) sa¥

2X2 ’Y2 4 72 64

(Y L[
3) 2X2 |42 4\ 42

2

|

20[2(]2

ﬂ4

2.2

a~q
/84

).

)

)]

(B.3)

where we have introduced A = ¢/ — 2p. These are seven equations for seven functions. In

addition one can explicitly check that the equations are invariant under changes in the

parametrization r — p(r).
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B.2 General solutions

Before writing the general series solutions to the above coupled system of ODEs, let us
present the solution for Euclidean AdSg in these coordinates:

-2 8r) =) = 21

p(r) =q(r) = f(r) =0, X(r)=1. (B.10)

Here only the metric is non-trivial, and the above realizes Euclidean AdSg as a hyperbolic

ball with radial coordinate r € [%, o0), with the conformal boundary at infinity r = oo.

The point 7 = iﬁ is the origin of the ball, where the transverse copies of S° collapse

smoothly to zero. Notice in particular that the conformal boundary at r = oo is equipped
with a round metric on S°, which is conformally flat. We would like to find families of
solutions that generalize (B.10) by allowing for a squashed five-sphere boundary, keeping
the metric asymptotically locally Euclidean AdS near r = co. We define the squashing
parameter by:

tim 20 _ 3[%, (B.11)

=00 '

so that s = 1 for the round sphere. Even though we did not manage to find solutions in
closed form, the solutions can nevertheless be given as expansions around different limits.
In general notice that we can use reparametrization invariance to set

3v6r2 —1
\/§ ;

which we assume henceforth. In particular we shall only seek solutions with the topology of

Br) = (B.12)

a ball, so that from (B.12) necessarily r = % is the origin of the ball. Correspondingly, the
fields must satisfy certain boundary conditions at this point in order that the full solution
is smooth at the origin.

B.2.1 Expansion around the conformal boundary

When finding gravity duals to a given boundary theory, it is natural to perform an ex-
pansion around the conformal boundary at » = oo. This also has the advantage that
the squashing parameter can be explicitly seen in the solution. Starting from a general
expansion and imposing the equations of motion in section B.1 we find

31 486+ ¢3s? 1

or) = ———+ —————+...,
) V27 1944y/24% 1
3v3 486+ (243 — ¢5) 7 1
f)/(r) - r 3 - )
s 324V/3s r
X(r) = 14 18000 +72VGabs + 486005° + Tais” +5832°qp 1 @y
11664¢gs?2 r2 g3
qo (54 — \/6qu3 1
p(r) = ( )1,

16252 rz
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a2 | 43
q(r) =qr+—+-5+...,
roor

_ fo (54— V6igos) 1 fy
f(r) = fo— 3152 7'72—1_7'734_“' . (B.13)

In addition to the squashing parameter s, the solution depends on qo, fo, f3, ¢2, g3, z3 and
an extra parameter as, which appears at higher order in the expansion for a(r). All other
coefficients in the expansion are fixed in terms of these constants. Of course, some of these
parameters will be fixed in the full solution by requiring the correct boundary conditions

at the origin r = %, but at this point they are arbitrary.

B.2.2 Expansion around Euclidean AdS

The family of solutions we seek should approach Euclidean AdSg (B.10) as we take the
squashing parameter s — 1. Hence it should be possible to expand the solutions around
this limit in terms of a perturbation parameter 6. Thus we make the ansatz

a(r) = ﬂ +0aM(r)+02 @)+ ...,

6r2 — 1
y(r) = 3ver® —1 +0 YD)+ 62D () + ...,

V2

X(r) =146 XDr)+62 XO@) +...,
p(r) =6 pV(r)+6% pP(r)+ ...,
g(r) = 6 ¢V )+ ¢D () + ...,
fy =6 O +6* Ay +... . (B.14)

Substituting this expansion into the equations of motion and expanding in powers of 9, at
each order we obtain a system of linear differential equations which can be solved in closed
form with some effort. For instance, at first order we find

(1 — 5472 + 96v/6r® — 324r* + 216r°)
V6712 (6r2 — 1)7/2
(=5 + 16/6r — 90r% + 180r* — 2161°)

oMy = —Cy

)

W (p) =
yH(r) =c ;
( ) Y (67“2 B 1)5/2
XO@) = ¢, (1 —2v6r + 6r?)
(6r2 — 1)2 7
P = ¢ (V6 — 16r + 12v/6r? — 12/6r)
! 3(6r2 — 1) ’
o (=44 9v6r — 24r% — 12/6r3 + 361/61°)
r) = —¢ R
E I 18 (6r2 — 1)?
—3 + 861 — 3672 + 3614
FO@) = cf( 6717 ) : (B.15)
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The constants of integration have been partially fixed by requiring regularity at the origin
r= %. In particular we have

al(r) ~ (r ~ %)1/2 , A () ~ (r B \}6)3/2 |

W) o 1o XD W) o (= ) o D) ‘
P () ~ 1~ XO(r) () ( \/a> 7 (B.16)
1

Here p ~ (r — \/6)1/ 2 is geodesic distance from the origin at p = 0. We can furthermore fix
an extra constant of integration by fixing a relation between ¢ and the squashing parameter
s (such that 6 — 0 as s — 1). As seen in the next section it will be convenient not to do
this uniformly.

B.3 Imposing supersymmetry

We are interested in solutions that preserve some supersymmetry. In order for this to
happen, there should exist non-trivial eight-component Killing spinors €;, €5 solving the
Killing spinor equation (3.7) and dilatino equation (3.8). We choose the frame

¥ = a(r)dr, el =~(r)(dr + 0), e? = B(r)do, (B.17)
1 1 1
e = 55(7‘) sino cosoTy, et = 56(7“) sinory, e’ = 56(1") sinoTy ,

and the following basis for six-dimensional gamma matrices

0 14 0 iym
Ty = , r,, — , m=1,...,5,
(14 0) " (—i%n 0 )

—14 0
r;=| * : (B.18)
0 14

where 14 is the 4 X 4 unit matrix and -, are the five-dimensional gamma matrices given
explicitly in section 2.1.

The vanishing of the dilatino variation as well as each component of the integrability
condition (A.6) for the Killing spinor equation have the following general structure

Pep +Qey =0,
Rey + Ses =0, (B.lg)

where P, Q, R, S are 8 x 8 matrices, whose components are in general complicated functions
of the fields. After setting f;(r) = ki f(r) we observe the following SU(2) g structure

A 3B —1iKk9)B
FrsB (kL — k) ) —o, (B.20)
(k1 +ik2)B A — k3B €

in terms of 8 x 8 matrices A, B. We can then diagonalize the block matrix and consider
A+B 0
- “) <o, (B.21)
0 A-B €9
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where we have without loss of generality set k2 + k3 + Ii% = 1. There are four independent
conditions. One of these arises from the dilatino variation, whose matrices we denote by
Ap, By, and the other three conditions arise from integrability of the Killing spinor equation,
whose matrices we denote by Ay, By with M € {12,13,34} (all other components of the
integrability condition (A.6) are equivalent to one of these). The dilatino condition as well
as M = 12 and M = 34 have the following structure:

000000

0%x000x00

00%000=x0

Aip_|000x000x | B.22)
000000

0x000x00

000000

000000 x

The existence of a non-trivial solution requires, for instance, det(A + B) = 0. The above
structure implies the determinant factorizes into four factors

det(A+B) = FF3F, = 0, (B23)

where the factors F; are complicated functions of the supergravity fields a(r), B(r), vy(r),
p(r), q(r), f(r), X(r). Fy and F3 differ only by a change of sign in f(r), and the same
happens for F5 and Fy. We find two distinct classes of solutions which we describe in the
following.

B.3.1 3/4 BPS solutions

There is a class of solutions that satisfies
F, = F, = F3 = 0, Fy # 0. (B.24)

These are a one-parameter family of solutions parametrized by the squashing parameter s.
The solution expanded around the conformal boundary is given by
31 8+s2 1
alr) = —=—+ ————=5+..., B.25
(r) Jar V36/me 1 (B.25)
3V3 %_——164—7321 —1280 + 112052 + 241s* 1
= r

T - — ) 3
() 5 12¢/3s3 7 2592+/3s° rs
1-s2-3V1-s21 21— s2 1
X(r)=14-—2 5 8—2+ i or =+...,
bds (-2 VIo )T
iv%(}2+3V1—s2—1)1
p(r) = — = +...,

353 r2
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K (\/wﬁ)r+ VEVI=3 (52 + VT =52 -5)

() = : 3 FAR
1—524—\/@ 2(_2+252_(2+82)V1_32)1 K
flr) = 2 + o5 St

The extra parameter k is fixed by requiring regularity at the origin. The solution expanded
around Euclidean AdSg has ¢, = 0, hence it is convenient to set the relation between the
expansion parameter and the squashing parameter to be

- =146 (B.26)

S

With this choice the solution is given by

3v3 (= 5V6+330v6r? - 37447° 1 1620v/6r" + 8640,
+ 9/2
672 — 1 9v/2r2 (612 — 1)
7560V + 5184V )
9v/2r2 (612 — 1)9/2
SVGE=T  (55V2— 384v/3r + 1080v2r2 + 7683
v(r) = - 7/2
V2 6(6r2 —1)
—5400/2r + 11232y/2r6 — 11664\@7“8)
6 (6r2 — 1)/
(V2 (1~ 2V6r 1 62))

a(r) =

*

24,

X(r)=1- 0
3(6r2—1)
i — 167 r? — r4
p(r) = iV (\/6 1(667“;__121\)/36 126 )5 T
o) = 3ivV2 (4 4+ 9V6r (—672;17 1_)212\/@3 1 36V6r°) i
_ V2(=348v6r —36r* + 36r*)
f(r) = 62 _1)° S+.... (B.27)

We have computed the solution up to sixth order in §. Comparing this expansion with
the expansion around the conformal boundary we can compute the coefficient  as a series
expansion in 4. We obtain
3V3 V2 135 25
4

2 1127 . 35
= 0+ -0 5 §°
" Tt TR’ Tkt Toa

B.3.2 1/4 BPS solutions

O (B.28)

There is another class of supersymmetric solutions that satisfies

F,F,Fy #0, F =0. (B.29)
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These are a two-parameter family of solutions and are parametrized by the squash-
ing parameter s and the background SU(2)g field at the conformal boundary, which is
parametrized by fy. The solution expanded around the conformal boundary is given by

i}_f332+9(—2+52)—6f0(—1+s2)i+

a(r):\/ir 363 3t
C3VB 2fFs® —12fp (—1+5%) +9(-3+2s%) 1
W) = = 12/3s o
X(r) =1+ 18—3f0—18325—2 12f032—2f3327}2+m,
i\/2(=3+ fo) (3+ (=3 + fo)s?
p(?")z \/; 0 (S 0 ):2—|—,
. . 2
o) = _31\/6(3+(S 3+ fo)s )r
P34 (=34 fo)s?) (f3s2+9(-1+8%) —6fo(1+s2))1 &
+ - =
61/65s r o or2
f(r):f0+2(_3—|9—fo)ﬁ):2+%+.... (B.30)

The constants £; and & are fixed by requiring regularity at the origin. Note that a partic-
ular case corresponds to fo = 0. In this case the SU(2)r background field is turned off, but
the solution is still supersymmetric with a squashed five-sphere at the conformal boundary.
In this case Fy = F> = 0, so we have enhanced supersymmetry; that is, this one-parameter
family of solutions with fp =0 is 1/2 BPS.

As an expansion around Euclidean AdS we parametrize the solution in terms of the
expansion parameter ¢ and an extra parameter w, related to s and fy above by

L oits, = bw. (B.31)

S

With this choice the solution is given by

3v/3 N V3 (1 —54r2 + 96v/6r3 — 324r + 216r5)

= S+...,
(r) 6r2 — 1 2r2 (6r2 — 1)7/2
3v6r2 —1 (15— 48V/6r + 270r? — 540r* + 648r6)
v(r) = + 5/2 040,
V2 V2 (6r2 —1)
1 —26r +67%) (4
X(r):1—|—( vor + r)g( +w)5+...,
(6r2 —1)
18iv/2 (—V/3 4+ 8v2r — 12v/3r? + 12v/3r?) (6 + w)
p(r) = — 5 S+ ...,
(6r2 —1)
- 31 (—4 + 9v6r — 24r% — 12¢/6r° + 361/6r°) (6 + w) 5 N
P = — -
I (6r2 — 1)
—3 + 8v/6r — 3612 + 367r*
Flr) = (=3 +8vor v )95 (B.32)
(6r2 —1)
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As before it can be checked explicitly that the solution is regular at r = %. We have

computed this solution explicitly up to fourth order in §. Comparing this expansion with
the expansion around the conformal boundary we deduce

1
& = 2i(6+w)d — = (144 + 98w + 13w?) 62 (B.33)
i (307719 + 209547w + 41094w? + 1282w*) 5
* 9450
1 (26693550 + 21683700w + 6126111w? + 771474w® + 51568w?) 5
- 623700 T
2 /2 2 (—999v/6w — 594v/6w? + 244+/6w3)
. —5——(—6 262>52 e
£2=3 \[3“) 15 (VO +2V6u7) 0% 42525
(32724v/6w + 26082v/6w? + 6105v/6w® + 935v/6w?) ,
+ 103325 o+ (B.34)

B.4 Killing spinors
Having found the above supersymmetric solutions we now proceed to solve the dilatino

equation (3.8) and Killing spinor equation (3.7) for the Killing spinors €7, [ =1, 2.

3/4 BPS solution. For the 3/4 BPS solution we find

ko(r) [cos o+ i)\+(8)ei% Sﬂrl) sin g}
0
ik (1) [sin o — ix (s)e'2 51 cos o]
1) i1 ik (r) A4 (s) e 12 5
—iky(r) [cos o+ i)\+(s)ei% Ssrl) sin 0‘]
0
k() [sino - i)\+(8)ei% S(j) cos a}

ke (r) Ay (s)e 2 50

, (B.35)

0
iky(r) [cosa - i/\_(s)e*i%S(_l) sin 0':|
—k1(r)A_(s) 7 5P
. . —i% o(1)
ki(r) [San’ +iA_(s)e 2.5 " cos 0]

e = aM eiE . : (B.36)

ka(r) [cos o—i\s)e SW gin U:|
iks(r) )\,(s)ei% 5
—iks(r) [sin o+ i)\_(s)efi% SW cos a]

—i%

where we have introduced
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. 2] . 0
Sf) = sf)(a, ) = agf)e$1§ cos 3 + ag’)ei‘% sin 7

e RV

S

As(8) (B.37)
The Killing spinors contain in total six constants of integration ag?, i = 1,2,3. These
constants of integration are generically complex, but imposing the symplectic Majorana
condition Ce} = ¢ 1”7€; enforces certain reality conditions. The functions ki(r) are functions
of the radial coordinate only and can be expanded either around Euclidean AdS or around
the boundary. For instance, expanding around the conformal boundary we obtain
BN NI
s 2v6 V1
5v1—s2-3 1

kQ(T):\/'F——i—F...,

6v6s V1 (B.38)
B —1—1—\/1—52\[_ 1 L—F
= . r AR
5v/1—s2-3 1

= Y4,
6165 N

Notice that the expansion of the Killing spinor around the boundary is precisely of the

()l a(g)
! (61_ vr —ixs +\/77 ipr - 7 (B-39)

which arises from the general analysis of section 6 and should of course hold for our partic-

ky(r)

ks(r)

ka(r) = /r +

form

ular solution. This allows us to immediately identify the boundary five-dimensional Killing
spinor x7 corresponding to our bulk solution. Note that this precisely agrees with (2.15).

1/4 BPS solution. For the 1/4 BPS solution we find

—~ O
o
—
—~
=3
~

S
T o o o

|
o

o o o 3 o o o
—~
=
SN—

=
~—

€1 =cCye 2 , €g = —C_e 2

(B.40)

—~
=
~—

|
.

o O

The solution depends now on two constants of integration c.. The functions of the radial
coordinate admit the following expansion around the conformal boundary

(fo=3)s 1 5(fo =3P +6(4fo —9) <1>3/ ",

ki(r) = vr+ 66 F 132 .
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_3)s _3)242 _ 3/2
kZ(r):\/;(f%\/g) \};+5(f0 3) 43Z6(4f0 9) (i) . (B.41)

As before, the corresponding Killing spinors at the boundary can be identified. In this
case they are indeed of the form (2.14), as expected. Finally, let us mention that the
supersymmetry gets enhanced for the case fo = 0 (or equivalently w = 0). In this limit the
gauge field vanishes and so the two Killing spinors e¢; for I = 1,2 decouple and have the
same structure. They read

052) k1 (r)emTT

cgl) kQ(r)ef&TT
0
0

€ = —10(1 ) Fa(r)e s | (B.42)
—i CE— )y (r)e” o

0
0

()

where ¢;’ for j = 1,2 are the integration constants and where the r-dependent functions
k;(r) are the same as in the 1/4 BPS case, with fop = 0. This solution may thus be referred
to as a 1/2 BPS solution.

C Asymptotics of multiple sine functions

Let us start by defining Barnes’ multiple zeta function,

o0

v (s,w]|a)= Z (w+miay + - -mpran) (C.1)
mi,...,ma =0
where a = (a1,...,ay), Rew > 0, Res > N and ay,...,an > 0. This function is
meromorphic in s, with simple poles at s = 1,...,N. One can then define the Barnes
multiple gamma function I'x/(w | a) = exp [ (w | @)], where

Uy (w|a)= %CN (s,w]|a)l|s=o - (C.2)

In order to compute the asymptotics of the multiple gamma function, and the closely
related multiple sine function, we have to express this function in a more convenient way.
In [42], it was observed that there is an expansion of Wxr(w) of the form

_ 1NV
o (0| 8) = R B logw + (-1)" Z Bﬁfk/v B Z
' k=0
(D Nk
) g Bra @t k=N =D Ry m(w),(C3)
k=N+1 )
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where

00 M k
RN,M(w)E/O dt - H ety -3 H EprrV ], (ca

j=1 k=0

and M > N as well as Rew > 0. The functions By aq (w) are the so-called multiple
Bernoulli polynomials and can be determined by expanding and solving the following re-

lation
tN xt

A : C.5
TR Z (©3)

for By (w). It was further shown in [42] that in the asymptotic limit |w| — oo and
|argw| < 7 the remainder Ry a(w) behaves as

Ry m(w) = O (wN=M1) | (C.6)

and hence in the asymptotic limit is suppressed by the first three terms in (C.3). Similarly,
the third term in (C.3) behaves as

o~ (=D*
> Bk (0) wNTEe =N -1 =0 (w™!), (C.7)
k=N+1 ’

in the asymptotic limit |w| — oo. Hence for our purposes we shall only focus on the
asymptotics of the first two contributions to Ws.

We are interested in the asymptotic expansion of the so-called multiple sine function,
which is defined in terms of the Gamma function as

Sy(w|a)=Tpn(w|a)™ Ta(aw: —w | a)(_l)N7 (C.8)

where ao; = Zi\il a;. To compute the large N limit of the free energy, we are interested
in the asymptotics of the logarithm of these functions

log Sy(w | a) = —Wnr(w | a) — Upr(ags —w | a) . (C.9)

Focusing on the case N' = 3, we find the following Bernoulli polynomials

Bso(x) = ! :
a1a2as
B3,1($) _ Y _ Otot :
ajagas 2a1a2a3
Byo(z) = ® g - ato + (a1a2 + aras + azas) |
’ aj1a2as3 ajagasg 6a1a2a3
By s(z) = a3 B 3aiot 2 afot + (a1a2 + araz + agag)m
’ aiasaz  2aiaoas 6aiasas
_ atot (@102 + a1a3 + asas) (C.10)
4&1&2&3 ' '
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We can then compute (C.3) and take the asymptotic limit of the logarithm of the triple
sine function to obtain

im 3 irater o I (afot + ajaz + arasz + a2a3)
W — w
6@1&2&3 4(11&2(13 12&1(12&3

log S3(w | a) = sign Rew

1T atot (a1a2 + ajasz + a2a3)
24a1a2a3

+0(w )| . (C.11)

This procedure generalizes to any choice of N, and gives a straightforward method to
obtain the asymptotics of these functions.
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