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1 Introduction

Simulations with Wilson fermions at light quark masses are nowadays feasible thanks to
considerable algorithmic improvements [1–5] developed in the last years. Since chiral sym-
metry is explicitly broken, the spectrum of the Wilson Dirac operator is not protected from
arbitrarily small eigenvalues, which might induce instabilities in numerical simulations [6].
It is therefore very important to have a theoretical understanding of the properties of the
low-end spectrum of the Wilson Dirac operator. Moreover, spectral observables can be
efficiently used to extract relevant quantities such as the quark condensate, like recently
implemented in [7], yielding a further strong motivation to investigate the impact of lattice
artefacts on the eigenvalues spectrum.

In the continuum and in an infinite volume, the (renormalised) spectral density of the
massive Dirac operator has a threshold given by the (renormalised) quark mass. Lattice
artefacts are expected to change both the location of the threshold and the shape of the
spectral density close to the threshold. Moreover, in a finite box of volume V one expects
that when γΣV ' 1, where γ is an eigenvalue of the massless Dirac operator and Σ
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the chiral condensate, finite-size effects become important and can also induce relevant
deformations of the spectral density with respect to the infinite-volume case.

From the numerical point of view, some information about the low-end spectrum is
provided by lattice simulations with Wilson fermions carried out in the past years. For
Nf = 2 unimproved Wilson fermions, empirical observations [6] indicate that the median of
the spectral gap distribution is linearly proportional to the quark mass m, while the width
is basically independent on m and scales like ∼ a/

√
V , where a is the lattice spacing.

On the other hand, for the O(a)-improved theory, the situation is less clear [8] and those
properties have not been confirmed. In [7] the mode number of the O(a)-improved Wilson
Dirac operator is computed, finding a nearly linear behavior up to ' 100 MeV above the
threshold. At the low end of the spectrum, a significant deviation from the continuum
expectation is observed.

From the theoretical side, Wilson chiral perturbation theory [9, 10] (WχPT) is the tool
which provides a systematic description of low-energy properties of lattice Wilson QCD
including the leading discretisation effects. When approaching the chiral limit at finite
lattice spacing, one enters in the regime where m ∼ a2Λ3

QCD, which is where discretisation
effects compete with the quark mass to the explicit breaking of chiral symmetry. Lattice
artefacts induce a non-trivial phase diagram, and two different scenario have been foreseen:
in the so-called Aoki scenario there is a range of quark masses (in the Aoki phase [11])
where there are two massless pions. On the other hand, in the so-called Sharpe-Singleton
scenario [9] there is a first-order phase transition, and the three pions remain massive in
the chiral limit. From the point of view of WχPT, in this regime the discretisation effects
appear already at leading order in the chiral expansion. Lattice artefacts in the infinite
volume spectrum of the Hermitean Wilson Dirac operator have been computed in this
regime in [12], although a working framework has been only found by assuming additional
conditions on the couplings of WχPT associated to discretization effects.

In a recent study [13, 14] the same power counting for a has been adopted, but in a
finite-box in the ε-regime.1 In this case the LO predictions of WχPT can be obtained also
by means of a “modified” Random Matrix Theory which includes O(a2) effects. The main
difficulty of this computation is that it involves exact integrals over the zero modes which
must be defined at fixed topological charge introduced via the number of real modes of the
Dirac operator, which nevertheless has an intrinsic ambiguity for Wilson fermions at finite
lattice spacing.

In this work we will study the discretisation effects in the spectrum of the Dirac
operator in a different regime. We consider WχPT with the power counting m ∼ aΛ2

QCD

(GSM regime), where lattice artefacts appear only at next-to-leading order in the chiral
effective theory, and can hence be treated as a perturbation. This simplifies considerably
the computation; it allows nevertheless to extract important information about the impact
of lattice artefacts in the spectral density.

This paper is structured as follows: in section 2 we recall definitions and properties
of the spectral density of the Wilson Dirac operator; in section 3 we present the setup for
WχPT needed for the computation; in section 4 we give the details about the calculation of

1Standard WχPT has been extended to the ε-regime in [15–17].
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the spectral density, including the finite-volume corrections (in the p-regime); in section 5
we discuss our results and show a comparison with numerical data. All technical details
about the computation are deferred in the appendices.

2 Spectral density for the Wilson Dirac operator

We start considering QCD for Nf = 2 degenerate quarks in infinite volume with current
quark mass m. The average spectral density of the massless Hermitian Dirac operator −iD
can be defined as

ρD(γ,m) ≡ lim
V→∞

1
V

∑
k

〈δ (γ − γk)〉, (2.1)

where γk are the eigenvalues of the massless Hermitian Dirac operator and 〈. . .〉 indicates
the usual path-integral average. The Banks-Casher relation [18] tells us that the spectral
density is related to the chiral condensate Σ in the following way

ρD (γ,m) =
Σ
π

[1 +O({|γ|,m}/ΛQCD)] . (2.2)

One useful way to determine this relation in continuum QCD [19, 20] consists in adding
a valence quark ψv of mass mv to the theory. Using the spectral decomposition for the
valence chiral condensate one obtains

〈ψvψv〉 = −
∫
dγ
ρD(γ,m)
iγ +mv

. (2.3)

This relation can be inverted because the spectral density is independent on the valence
quark mass

Disc
[
〈ψvψv〉

] ∣∣
mv=−iγ = −2πρD(γ,m), (2.4)

where Disc indicates the discontinuity across the imaginary valence quark mass. Strictly
speaking eq. (2.3) is ultraviolet divergent also after renormalisation of the quark masses and
the gauge coupling constant and one must introduce a cutoff in the integration range. The
ultraviolet divergences turn out to cancel when computing the discontinuity of the valence
scalar condensate in eq. (2.4). Thus it is enough to compute the valence condensate for real
masses and analytically continuing the resulting expression for complex masses. Eq. (2.4)
can be used naturally in chiral perturbation theory and one obtains [20] the Banks-Casher
relation (2.2) and the NLO corrections [7, 21].

We now discretise our Nf = 2 continuum QCD action on a lattice of spacing a and
we consider Wilson fermions. All our considerations can be generalised to the case of
Wilson twisted mass. To study the spectral density of the Wilson operator one has to take
into account that the Wilson operator DW is neither Hermitian nor anti-Hermitian and
it has complex eigenvalues. It is thus advantageous to define the Hermitian Wilson-Dirac
operator Qm

Qm = γ5 (DW +m) = Q†m. (2.5)

We indicate now the spectral density of Qm as ρQ(λ,m) and the one of Q2
m as ρ(α,m),

where λ and α label the eigenvalues of the corresponding operators.
If the continuum theory has been regulated on a lattice the ultraviolet divergences

of the chiral condensate appear as power law and logarithmic divergences in the lattice
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spacing a. Moreover, when using Wilson fermions the lack of chiral symmetry implies that
the scalar condensate is not directly related to the spectral density as in the continuum.
It is thus not obvious how to work out the renormalisation and O(a) improvement of the
spectral density starting from eq. (2.4) or from the corresponding version for Wilson lattice
QCD. To study the renormalisation and the O(a) improvement of the spectral density one
needs to relate it to correlation functions of local operators where standard arguments on
renormalisability and O(a) improvement can be applied.

It has been shown in ref. [7], using chain correlators of scalar and pseudoscalar densities
how the spectral density of Q2

m renormalises. In the following we will be mostly interested
in the spectral density of Qm that renormalises as follows

[ρQ]R (λ,mR) = ZPρQ(ZPλ,m), (2.6)

where mR is the renormalised quark mass. Moreover, additionally to the standard im-
provement of the action and local operators there are O(am) cutoff effects which need to
be removed to fully improve the spectral density [7]. This analysis guarantees that with
Wilson fermions the spectral density is a well defined renormalisable quantity and with a
well defined Symanzik expansion. We can thus compute the spectral density in the chiral
effective theory using a generalisation of eq. (2.4) for Wilson chiral perturbation theory.

A further spectral observable which can be defined and measured in a lattice simulation
is the integrated spectral density

N(Λ1,Λ2,m) =
∫ Λ2

Λ1

dλ ρQ(λ,m), Λ2 ≥ Λ1 ≥ m, (2.7)

which represents the density of modes in the interval between Λ1 and Λ2; it contains
the same physical information as the spectral density and satisfies NR(Λ1,R,Λ2,R,mR) =
N(Λ1,Λ2,m), i.e. it is a renormalisation-group invariant [7].

To relate a partially quenched condensate with the spectral density of Qm it is con-
venient to introduce a doublet of degenerate twisted mass fermions χv with a mass term
iµvγ5τ

3, where τ3 is the third Pauli matrix. The relation between the condensate and the
spectral density is now different but can be worked out and it reads [12]

〈χvγ5τ
3χv〉 =

∫ ∞
−∞

dλ
ρQ(λ,m) + ρQ(−λ,m)

λ+ iµv
. (2.8)

The need to symmetrise in λ the spectral density in the numerator of (2.8) can be under-
stood from the lack of chiral symmetry of the Wilson operator which renders the spectral
density not symmetric when λ→ −λ. Inverting eq. (2.8) one obtains

Disc
[
〈χvγ5τ

3χv〉
]
|µv=iλ = 2iπ [ρQ(λ,m) + ρQ(−λ,m)] (2.9)

where the untwisted mass in the valence sector coincides with the sea quark mass m.
Eq. (2.9) is our starting point for the computation of the spectral density in Wilson chiral
perturbation theory.

We stress that in chiral perturbation theory the problem of power law divergences is
absent because those are mapped to the presence of the so called high-energy constants
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usually indicated with H. As we will see in section 4 this is indeed the case for the
expectation value of the pseudoscalar condensate in the chiral effective theory. This implies
that in the effective theory the computation of the discontinuity is a well defined procedure.
It remains to make sure that the spectral density computed in the effective theory through
the discontinuity of the partial quenched chiral condensate does not overlook additional
cutoff effects which go beyond the standard O(a) corrections stemming from the action
or the local operators. Our previous discussion and the results of ref. [7] guarantees that
the only additional cutoff effects are of O(am) and as we will see in section 3 these cutoff
effects are of subleading order in our power counting of Wilson chiral perturbation theory.

3 Spectral density in Wilson Chiral perturbation theory

In order to investigate the discretisation effects in the spectral density of the Hermitian
Wilson Dirac operator we compute the valence pseudoscalar density in the framework of
Partially Quenched Wilson chiral perturbation theory (PQWχPT). According to eq. (2.8),
we consider Nf = 2 sea quarks with bare mass m and a doublet of valence twisted mass
quarks with (m + iµvτ

3). We formulate the effective theory on a finite volume V = L3T

and we keep the quark masses in the p-regime, corresponding to the power counting

m,µv ∼ O(p2), 1/L, 1/T ∼ O(p) (3.1)

in terms of the momenta p. The extension of the effective theory to the case of non-
zero lattice spacing is done in two steps: after matching the lattice QCD action with
the appropriate Symanzik continuum effective action [22, 23], one writes down a chiral
Lagrangian which contains the standard continuum terms plus additional operators that
transform under chiral symmetry as the operators of the Symanzik effective theory. For the
Wilson action, this has been studied in [9, 10]. When introducing lattice artefacts in the
chiral effective theory, we have to define as usual the relative power counting between the
quark mass and the lattice spacing a. In this work we adopt a counting corresponding to
the so-called GSM (Generically Small quark Mass) regime [24, 25], where m,µv ∼ aΛ2

QCD:
in this case the explicit breaking of chiral symmetry is dominated by the quark mass, and
lattice artefacts can be treated as perturbations.

Partially quenching can be implemented in the Chiral Effective theory by means of
two techniques, namely the graded-symmetry method [26, 27] and the replica method [28].
In the first one, one introduces “ghost” quarks, whose determinant cancels the one of the
valence quarks. In the second one, one enlarges the valence sector to Nr flavors and one
eliminates the corresponding determinant by sending Nr → 0. The equivalence of the two
methods has been shown at the perturbative level in [28]. In this section we will focus on the
graded-symmetry method; we checked nevertheless that the same results can be obtained
with the replica method, which we summarise in appendix B. For our specific case we have
to consider a chiral Effective Theory with a graded symmetry group SU(4|2)L×SU(4|2)R
spontaneously broken to SU(4|2)R+L. The formulation we adopt for our computation using
the SU(4|2) effective theory is based on an extension of the framework proposed in [29] for
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the SU(3|1) case. We consider a mass matrix of the form

M = diag( m︸︷︷︸
2×2 sea

,m+ iµvτ
3︸ ︷︷ ︸

2×2 val

,m+ iµvτ
3︸ ︷︷ ︸

2×2 ghost

). (3.2)

The quark mass in the ghost sector has been already set equal to the mass in the valence
sector. Moreover, the untwisted part of the valence quark mass has to be equal to the
sea quark mass. We parametrise the pseudo Nambu-Goldstone bosons by the field U ∈
SU(4|2)

U(x) = uV e
2iξ(x)/FuV , ξ =

∑
a

ξaT a, (3.3)

where F is as usual the pseudoscalar decay constant, and T a, a = 1, . . . , 35 represent the
generators of the corresponding Lie algebra, which satisfy

Str(T aT b) =
gab

2
. (3.4)

We refer to appendix A for the explicit form of gab (eq. (A.15)), and for a summary of
conventions and properties of the SU(m|n) group. The constant field uV represents the
ground state of the theory, which can be obtained by minimising the potential in the LO
Chiral Lagrangian. The solution of the potential minimisation yields2

uV = diag( 1︸︷︷︸
2×2 sea

, eiτ
3ω0/2︸ ︷︷ ︸

2×2 val

, eiτ
3ω0/2︸ ︷︷ ︸

2×2 ghost

), (3.5)

where
sinω0 =

µv
mP

, cosω0 =
m

mP
, mP =

√
m2 + µ2

v. (3.6)

In the language of twisted mass Wilson theory, mP is the so-called polar mass.
Taking into account our power counting, the full NLO Chiral Lagrangian in PQWχPT

can be written as
L = L2 + L4 + La. (3.7)

In the GSM regime, the LO Lagrangian can be written in the same form as the continuum
one

L2 =
F 2

4

{
Str(∂µU∂µU †)− 2BStr(MU † + UM†)

}
, (3.8)

provided we substitute the quark mass with the so-called shifted mass [9], which incorpo-
rates the leading O(a) corrections. In the following we assume that m in eq. (3.2) includes
already this shift. The coupling B is related to the chiral condensate Σ, B = Σ/F 2.

From L2 we can extract the propagator

〈ξa(x)ξb(y)〉 = gabG1
V (x− y;M2

a ) + 2B(mP −m)habG2
V (x− y;M2

a ), (a, b = 1, . . . , 35),
(3.9)

2In the graded symmetry formulation of PQχPT there are subtleties concerning the minimisation of the

potential. We will discuss them in more detail in section 4.
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with

GrV (x,M2) ≡ 1
V

∑
p

eipx

(p2 +M2)r
, (r ≥ 1), p = 2π

(n1

L
,
n2

L
,
n3

L
,
n4

T

)
, n1,2,3,4 ∈ Z.

(3.10)
We recall that [30]

GrV (0,M2) = Gr(0,M2) + gr(M2), (3.11)

where

Gr(x,M2) =
1

(2π)4

∫
d4p

eipx

(p2 +M2)r
, (3.12)

is the infinite-volume contribution, while gr(M2) represents the finite-volume correction
and is UV-finite. A specific representation of gr(M2) will be considered in appendix C.
The matrix hab is defined in appendix A, eq. (A.17). The mass term M2

a appearing in the
propagator is given by

M2
a =


M2
ss = 2mB, a = 1, . . . , 3

M2
sv = (m+mP )B, a = 4, . . . , 11, 16, . . . , 23

M2
vv = 2mPB, a = 12, . . . , 15, 24, . . . , 35.

(3.13)

The continuum NLO PQ Lagrangian reads [31]

L4 = 2BL4Str(∂µU †∂µU)Str(MU † +M†U) + 2BL5Str(∂µU †∂µU(MU † +M†U))

−4B2L6Str(U †M+M†U)Str(U †M+M†U) (3.14)

−4B2L7Str(M†U −MU †)Str(M†U −MU †)

−4B2L8Str(MU †MU † +M†UM†U)− 4B2H2Str(M†M),

where we have written down only terms which can enter in our specific computation.
The PQ Chiral Lagrangian encoding discretisation effects up to O(a2) can be written
as [10, 32, 33]

La = −2BâW6Str(MU † +M†U)Str(U + U †)− 2BâW7Str(M†U −MU †)Str(U − U †)
−2BâW8Str(MU †2 +M†U2)− â2W ′6(Str(U + U †))2 − â2W ′7(Str(U − U †))2

−â2W ′8Str(U2 + U †2), (3.15)

where â = 2W0a has dimension [energy]2 and W0 is the LO low-energy coupling absorbed
in the shifted mass m. Also in this case we have disregarded terms which are not relevant
for our computation.

4 Calculation of the spectral density with SU(4|2) graded group method

In this section we compute the spectral density at NLO in WχPT, making use of the
definitions and assumptions introduced in the previous section. The observable from which
we start is the partially quenched twisted pseudoscalar condensate made of valence quarks

– 7 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
1

defined in eq. (2.8). In order to extract it we have to introduce source terms in the Chiral
Lagrangian by means of

M→Mp3 =M+ p3τ̂
3, M† →M†p3 =M† − p3τ̂

3, (4.1)

whereM is the mass matrix introduced in eq. (3.2), and τ̂3 has non-zero components only
in the valence sector

τ̂3 = diag( 0︸︷︷︸
2×2 sea

, τ3︸︷︷︸
2×2 val

, 0︸︷︷︸
2×2 ghost

). (4.2)

The pseudoscalar density is obtained by deriving the action associated to the Chiral La-
grangian in eq. (3.7) with respect to p3

P3(x) =
δ

δp3(x)
S|p3=0. (4.3)

At LO (O(p0)) we obtain the (continuum) expectation value

〈P3〉LO = 2iΣ sinω0. (4.4)

The NLO result is

〈P3〉NLO = 2iΣ sinω0

{
1 + δ cotω0 +

1
F 2

[
1
2
G1
V (0,M2

vv)− 2G1
V (0,M2

sv) + 32L6M
2
ss

− 1
2

(M2
vv −M2

ss)G
2
V (0,M2

vv) + 4M2
vv(H2 + 2L8) + 8â (2W6 +W8 cosω0)

]}
,

(4.5)

where δ is an O(p2) quantity that represents the correction to the ground state angle ω0 due
to lattice artefacts. In the following subsection we discuss the computation of this effect.

4.1 NLO correction to the vacuum

The O(p2) terms in the chiral Lagrangian give rise to a shift in the vacuum angle ω0 [25],
which must be computed by minimising the NLO potential. An important fact is that at
this order the continuum Li do not contribute to this realignment, and only the discretisa-
tion effects must be taken into account. Since this is an important point of the calculation,
we start by recalling how the continuum ground state given in eq. (3.5) is obtained. Using
the equations of motions one can show that uV has to commute with the matrix M†M,
which implies that uV is diagonal. Therefore we can parametrise it as

uV = diag
(
ei
φ1
2 , ei

φ2
2 , ei

φ3
2 , ei

φ4
2 , ei

φ5
2 , ei

φ6
2

)
, (4.6)

where π < φ1, . . . , φ4 ≤ π are standard phase factors. The condition Sdet(uV ) = 1 requires

φ1 + φ2 + φ3 + φ4 − φ5 − φ6 = 0. (4.7)

As suggested in [34], we perform an analytic continuation for the ghost components

φ5 = iφ̂5, φ6 = iφ̂6, (4.8)

– 8 –
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where now φ̂5,6 are real variables taking values along the real axis. The LO potential can
be separated in quark and ghost components

VLO = Vq,LO + Vg,LO, (4.9)

with

Vq,LO = 2[mP (cos(ω0 − φ3) + cos(ω0 + φ4)) +m(cosφ1 + cosφ2)], (4.10)

Vg,LO = −2mP [cos(ω0 − iφ̂5) + cos(ω0 + iφ̂6)]. (4.11)

The potential is complex, and a minimisation procedure in the usual sense is not applicable.
The minimisation of the potential in Euclidean field theory is equivalent to perform a
saddle-point expansion of the functional integral, and the saddle-point expansion can be
performed even if the potential is complex. Our prescription, following [35], is to find the
saddles for complex φ̂5,6 and then deform the contour of integration for each field variable
in order to pass through the saddle points. The saddle points are chosen following two
criteria: a) in order to maximise the value of the real part of the potential at the saddle;
b) in order to have the direction where the real part of the potential rises more steeply
consistent with the possibility of deforming the contour integration without encountering
the other saddle points. This procedure has been discussed in detail in [35] in the context
of the phase diagram of quenched Wilson ChPT. We find that both criteria for the choice
of the appropriate saddle points are fulfilled by φ5 = −φ6 = ω0. In this way one obtains
the expected result given in eq. (3.5).

We now repeat this procedure including the NLO lattice artefacts. We consider a
ground state uV, NLO of the form given in eq. (4.6) and we perturb the LO solution by
choosing

φ1 = φ2 = δs, (4.12)

φ3 = ω0 + δv, φ4 = −(ω0 + δv), (4.13)

φ5 = ω0 + δg, φ6 = −(ω0 + δg), (4.14)

where δs,v,g are corrections of O(p2). We then perform the same analytic continuation on
the ghost components,

φ5 = iφ̂5 = i(ω0 + δ̂g), φ6 = iφ̂6 = −i(ω0 + δ̂g). (4.15)

By expanding the NLO potential at O(p4) we obtain

VNLO = a0 + a1δs + a2δ
2
s + a3δv + a4δ

2
v + a5δ̂g + a6δ̂

2
g + . . . = Vq,NLO + Vg,NLO, (4.16)

with

a0 = −2
(
2â2(4W ′6 +W ′8) +m(4âB(4W6 +W8) + Σ)

)
, (4.17)

a1 = 0

a2 = mΣ,

a3 = ia5 = 16â sinw0(âW ′8 cosw0 + 2âW ′6 +BmPW8 + 2BmW6),

a4 = a6 = mPΣ.

– 9 –



J
H
E
P
0
4
(
2
0
1
1
)
0
3
1

Also in this case the potential can be split in a real (sea + valence) part Vq,NLO and a
complex (ghost) part Vg,NLO. The saddle point expansion yields

δs = 0, δv = − a3

2a4
, δ̂g = − a5

2a6
= −iδv. (4.18)

The ground state of the theory at NLO is then given by

uV, NLO = ( 1︸︷︷︸
2×2 sea

, eiτ
3(ω0+δ)/2︸ ︷︷ ︸
2×2 val

, eiτ
3(ω0+δ)/2︸ ︷︷ ︸

2×2 ghost

), (4.19)

with

δ = δv = δg = −16â sinw0

F 2

{(
W6 cosw0 +

W8

2

)
+

2â
M2
vv

(
W ′6 +

W ′8
2

cosw0

)}
. (4.20)

Since the discretisation effects represent a perturbation in our power counting, this solution
does not impose constrictions on the absolute value or the sign of the LECs W6,W8,W

′
6,W

′
8.

4.2 Spectral density in infinite volume

The spectral density can be computed from 〈P3〉 by taking the discontinuity along imagi-
nary µv, as given in eq. (2.9). At LO we obtain the known result

[ρQ(λ,m) + ρQ(−λ.m)]LO =
2Σλ

π
√
λ2 −m2

, (4.21)

which does not depend on the volume and on the lattice spacing in our specific regime.
The NLO result in infinite volume is given by

[ρQ(λ,m) + ρQ(−λ,m)]NLO =
2Σλ

π
√
λ2 −m2

{
1 +

m2∆̃
λ2 −m2

+
Σ

(4π)2F 4

[
− π

√
λ2 −m2

+m(3L̄6 − 1) + 2
√
λ2 −m2 arctan

(√
λ2 −m2

m

)
(4.22)

− 2m ln
(

Σ|λ|
F 2µ2

)
−m ln

(
2Σ
√
λ2 −m2

F 2µ2

)]
+

16â
F 2

W6

}
,

where ∆̃ arises from the correction to the ground state and is given by

∆̃ =
16â
F 2

(
W6 +

2âW ′6
M2
ss

)
. (4.23)

If we define a shifted sea quark mass as follows

m̂ = m
(

1 + ∆̃
)
, (4.24)

under the condition that λ � m̂, the correction proportional to ∆̃ can be resummed. In
this case one could then rewrite eq. (4.22) by omitting the term proportional to ∆̃ and
substituting m → m̂ everywhere. This resummed formula would be equivalent to the one
in eq. (4.22) up to higher order corrections.
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Notice that the term â/M2
ss in eq. (4.23) is not singular in the GSM regime. The

UV divergences arising from G1(0,M2) and G2(0,M2) have been cancelled by defining
renormalised couplings [36]. Using dimensional regularisation in 4 − 2ε dimensions and
adopting the convention of [7] we define

L6 =
3µ−2ε

64(4π)2

{
L̄6 −

1
ε

+ γ − ln 4π − 1
}
, (4.25)

where µ is a renormalisation scale.
The integrated spectral density N(Λ1,Λ2,m) defined in eq. (2.7) can then be computed

straightforwardly. For better readability we report it in appendix C, eq. (C.1). We stress
that in the continuum these expressions coincides with the ones computed in [7].

It is useful to express our results for the spectral density in terms of the PCAC quark
mass. The NLO lattice corrections to the PCAC mass can be computed in the conventional
WχPT for Nf = 2. The result is [25]

mPCAC = m

{
1 +

16â
F 2

(
W6 +

W8

2
+
W10

4
+

2â
M2
ss

(
W ′6 +

W ′8
2

))}
, (4.26)

where W10 is an extra LEC. Eq. (4.22) can be then rewritten by substituting everywhere
m→ mPCAC and ∆̃→ ∆, with

∆ = −16â
F 2

(
W8

2
+
W10

4
+
âW ′8
M2
ss

)
. (4.27)

As before, the correction given by ∆ can be resummed; the shift in the quark mass given
in eq. (4.24) can be rewritten as a shift in the PCAC mass:

m̂ = m
(

1 + ∆̃
)

= mPCAC (1 + ∆) . (4.28)

Notice that at NLO we can consistently substitute m→ mPCAC in M2
ss.

In figure 1 we plot [ρQ(λ,m) + ρQ(−λ,m)]NLO in the continuum theory and in the
discretised case with W6 = W8 = W10 = 0, corresponding to a non-perturbatively O(a)-
improved theory. We consider in particular a quark mass mPCAC = 26.5 MeV; the values of
other parameters used in this plot are specified in the caption and justified by our numerical
analysis discussed in section 5.

The central black curve corresponds to the continuum case; W ′8 > 0 (∆ < 0) gives
rise to the red curve, while W ′8 < 0 (∆ > 0) corresponds to the blue curve. The dashed
lines for λ . 40 MeV are a reminder that our result is not expected to be valid close to the
threshold. This issue will be discussed in more details in section 5.

4.3 Finite volume corrections

Finite-volume effects arise at NLO and can be computed by taking into account the cor-
rections to the propagators given in eq. (3.11). We can write down the spectral density as
sum of the infinite volume and finite-volume corrections:

ρVQ(λ,m) + ρVQ(−λ,m) = ρQ(λ,m) + ρQ(−λ,m) + ∆ρVQ(λ,m) + ∆ρVQ(−λ,m). (4.29)
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Figure 1. The spectral density [ρQ(λ,m) + ρQ(−λ,m)]NLO in the infinite volume. We used the
parameters Σ = (275 MeV)3, mPCAC = 26.5 MeV,F = 90 MeV, L̄6 = 5, µ = 139.6 MeV. The solid
black line corresponds to the continuum χPT prediction, while the red (blue) lines correspond to the
lattice WχPT prediction (O(a)-improved) on eq. (4.22) with â2W ′

8 = ±5 ·106 MeV4, corresponding
to ∆ = ∓0.53.

The explicit expression for the finite-volume correction ∆ρVQ(λ,m) + ∆ρVQ(−λ,m) is given
in appendix C, eq. (C.4). By integrating over λ we obtain the corresponding finite-volume
corrections for the integrated density

NV (Λ1,Λ2,m) = N(Λ1,Λ2,m) + ∆NV (Λ1,Λ2,m). (4.30)

In eq. (C.5) we give the formula for ∆NV (Λ1,Λ2,m) for the particular case Λ1 = m.
We stress that in our power counting finite-volume effects are insensitive to lattice

artefacts at NLO, and these results are the one of the continuum theory already obtained
in [7].3 In figure 2 we show the relative correction ∆NV (m,Λ,m)NLO/N(m,Λ,m)NLO as a
function of Λ, for two different volumes with T = 3.84 fm and L = 1.92 (red dashed curve)
and L = 2.56 fm (black solid curve).

Notice that the finite-volume correction NV (Λ1,Λ2,m) diverges at the threshold (Λ1 =
Λ2 = m): this could be interpreted as a signal that, even if the quark mass is in the p-
regime, another scale comes into play in this problem, namely

√
λ2 −m2, and it needs to be

treated with a different power counting when approaching the threshold at finite volume.
Since in the ε-expansion of the chiral theory divergences naturally appear when taking the
chiral limit at finite volume, this might be the correct power counting to adopt for this

3The formulae for finite-volume effects are not given explicitly in [7]; we checked nevertheless that our

results are in agreement with them [29] and we decided to report them in the present work for completeness.
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Figure 2. The finite-size effects for the (continuum) integrated spectral density,
∆NV (m,Λ,m)NLO/N(m,Λ,m)NLO as a function of Λ. We used the parameters Σ = (275 MeV)3,
m = mPCAC = 26.5 MeV, F = 90 MeV, L̄6 = 5, µ = 139.6 MeV. The black solid line corresponds
to L = 2.56 fm, T = 3.84 fm, while the red dashed line corresponds to L = 1.92 fm, T = 3.84 fm.

additional scale when
√
λ2 −m2ΣV ∼ 1. Having said that, for L & 2.0 fm and sufficiently

far from the threshold, finite-volume corrections amount to few percents.

5 Discussion of the results and conclusions

The important results of this paper are the expression of the spectral density eq. (4.22)
and its integrated form (C.1). They are both obtained in the p-regime of WχPT at
NLO. Eq. (4.22) shows that the spectral density, when computed on a lattice with Wilson
fermions, is modified in two aspects with respect to the NLO continuum formula (see for
example refs. [7, 37] or simply set all the W s in eq. (4.22) to zero). The lattice artefacts
modify the behaviour of the spectral density near the threshold, i.e. the term propor-
tional to ∆̃ in (4.22), and and its absolute normalisation, i.e. the term proportional to W6

in (4.22). The absolute normalisation correction proportional to W6 vanishes if the the-
ory is non-perturbatively O(a)-improved. If the theory is not improved, beside the term
proportional to W6, the correction to the normalisation contains in principle an additional
O(a) term stemming from the renormalisation constant ZP . We prefer to omit in our final
formula (4.22) this term because it strictly depends on the way ZP is computed and only
in very few cases we can have a suitable representation in WχPT [38]. We stress never-
theless that when analysing the spectral density computed in the unimproved theory using
eq. (4.22) the O(a) cutoff effects of ZP have to be taken into account in some way.

More interestingly the cutoff effects modify, the λ and m dependence of the continuum
formula. These corrections, expressed in terms of the PCAC mass (see eqs. (4.26)–(4.28)),
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depends on the following LECs: W8, W10 and W ′8. The modifications induced by cutoff
effects to the continuum formula are plotted in figure 1. To simplify the discussion we have
chosen a lattice setup where the theory has been non-perturbatively improved, thus we set
all the O(a) LECs W6 = W8 = W10 = 0. With the black curve we plot the λ dependence of
the spectral density in the continuum as given by NLO χPT [7, 37] at given values for m,
Σ and F (see the caption of the plot). In the same plot we also show the modifications to
the continuum formula induced by WχPT at NLO. The first observation we make is that
the way the spectral density depends on λ, close to the threshold, is rather different from
the continuum formula. The second observation we make is that the WχPT formula has a
rather different behaviour depending on the sign of W ′8, especially close to the threshold.
If ∆ > 0 when λ→ mPCAC the WχPT formula has a non-integrable singularity, while the
continuum formula has an integrable singularity. If ∆ < 0 the spectral density goes to zero
for a value of λ > mPCAC. These behaviours are shown in figure 1. This λ dependence of
the spectral density near the threshold is totally dominated by the lattice NLO corrections
induced by the vacuum realignment, indicating that our expansion cannot be trusted for
too small λ. Our power counting breaks down near the threshold: more specifically, it is
valid only when

√
λ2 −m2 ∼ aΛ2

QCD, i.e. when the scale
√
λ2 −m2 obeys a GSM power

counting. By moving towards the threshold at finite lattice spacing one enters in the
region where

√
λ2 −m2 ∼ a2Λ3

QCD (Aoki regime), and lattice spacing corrections can not
be treated in a perturbative way as it is done in this work. In figure 1 we draw dashed
line where we assume our formula for the spectral density to break down. The minimal
λ ' 40 MeV is just an estimate obtained fitting the available numerical data, as we will
discuss futher on. It seems a reasonable estimate given the fact that for λ ' 40 MeV the
relative lattice spacing NLO corrections are still sufficiently small. Of course this is just an
estimate based on the value of ∆ we input, i.e. from the size of the lattice artefacts. Only
a thorough analysis of the numerical data can determine the value of ∆, thus the range of
validity of our results.

Thus we can try to use our formula (C.1) to fit the available numerical data and see
if we obtain reasonable estimates of Σ and ∆. To compare our formula with the available
numerical data from ref. [7] we decided to integrate the spectral density from λ = Λ1

and λ = Λ2, taking Λ1 = 40 MeV, in order to avoid the small λ region where the lattice
corrections to the χPT formula dominate. In order to compare with the results of [7] we
use the mode number defined as ν(Λ1,Λ2,m) = V N(Λ1,Λ2,m) and we subtract the value
ν(0,Λ1,m) from the numerical data. In figure 3 we show a typical fit of the numerical
data of ref. [7] using the infinite volume formulæ of continuum χPT and WχPT in the
range Λ2 ∈ [40 : 60] MeV. The numerical data are obtained at a value of the renormalised
PCAC mass mR ' 26 MeV. We have performed fits using the both the NLO formulæ of
χPT and WχPT.4 With the continuum χPT formula we have fit Σ and fixed the following
parameters: µ = 139.6 MeV, F = 80, 90 MeV, L̄6 = 3, 4, . . . , 7 and mPCAC = 26.5 MeV.
With the WχPT formula we have set all the O(a) LECs W6 = W8 = W10 = 0 because
the numerical data are non-perturbatively O(a)-improved. Additionally we have fixed the

4A LO fit with χPT does not perform better in any range of Λ where the numerical data are available.
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Figure 3. Comparison of the numerical data (red curve) for the mode number ν(0,Λ2,m) and
the NLO fit results using continuum χPT (black curve) and WχPT (blue curve). The fits are
obtained using the following parameters: Λ1 = 40 MeV µ = 139.6 MeV, F = 90 MeV, L̄6 = 5 and
mPCAC = 26.5 MeV. The fit range is Λ2 ∈ [40 : 60] MeV.

value of Σ1/3 within the range 250− 300 MeV and we have fit ∆. We have performed fits
with several forms for the WχPT formula, all differing by NNLO terms. We have observed
that the best fits are obtained with eq. (C.1). In order to decide on the ’best fits’ we have
selected the fit results that gives small values of the squared differences between the input
data points and the theoretical formula evaluated at the same points.

A summary of the fit results, satisfying our criterion is given in figure 4. The plot shows
the parameter space of the fit results in the ∆, Σ1/3 plane. Each coloured band represents
a fixed value of L̄6 and the lower and upper borders of each band represent respectively
F = 80 MeV and F = 90 MeV. The two most important observations are that reasonable
fits are obtained only for 4 . L̄6 . 7 and for almost the whole parameter space we obtain
a negative value of ∆. Our best fit result shown in figure 3 gives ∆ = −0.55 with a value
of Σ1/3 = 273 MeV, which is in the right ballpark. We will come back to the consequences
of this result at the end of this section. We remark that while the fit results obtained using
the continuum NLO formula are not disastrous always a better agreement is found using
our WχPT result. The WχPT formula is able to describe well the numerical data also in a
larger Λ2 range, i.e. [40 : 100] MeV, with reasonable values of the chiral condensate. Even
if our analysis is rather qualitative and more numerical data are needed, we can try to
draw some conclusions. WχPT describes the numerical data better than continuum χPT
in the range of applicability of our results, i.e. sufficiently away from the threshold, but
we cannot exclude that adding NNLO terms in the continuum formula would improve the
quality of the fits.
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Figure 4. Parameter space of the results obtained fitting the numerical data of ref. [7] using
eq. (C.1). See the main text for details on the fit performed. Only results where a reasonable fit is
obtained are showed.

Our fit results seem to prefer a negative value for ∆ implying a positive value for W ′8.
In the literature, the LECs W ′6 and W ′8 are often found combined as [39]

â2

(
W ′6 +

W ′8
2

)
≡ −F

2c2a
2

16
, (5.1)

which is the combination appearing in quantities computed in full Nf = 2 WχPT. The
chiral phase diagram for Wilson-type fermions depends on the LEC c2 (5.1) and in partic-
ular two scenarios can take place depending on its sign. In our case only one of the two
LECs appears in the discretisation correction to the spectral density. For large number of
colours Nc, one finds W ′6/W

′
8 ∼ 1/Nc [12], indicating that W ′8 is the dominant contribution

in the coefficient c2. This implies that independently on the sign of W ′6 a positive value
for W ′8 would suggest a negative value for c2.5 Assuming for instance W ′6 = W ′8/3, then
the results we obtain from the fit ∆ = −0.55 imply that â2W ′8 = 5.4 · 106 MeV4 which for
a = 0.08 fm would correspond to c2 ' −(473 MeV)4. It would be interesting to extend
the numerical data in order to establish more accurately the sign of and the absolute value
of W ′8. This will give us valuable informations on the behaviour of the spectrum of the
Hermitean Wilson operator and a hint on the scenario for the chiral phase diagram that
takes place with clover fermions and Wilson gauge action.6

5While for other discretisations existing numerical results of refs. [40–42] are consistent with c2 < 0, for

non-perturbative O(a)-improved Wilson fermions and Wilson gauge action the value of c2 is still unknown.
6If the negative sign of c2 found in this work will be confirmed by other studies, it will imply that the

pion mass never vanishes. With our numerical estimate of c2, the minimal pion mass at a = 0.08 fm would

be around 130 MeV, which is well below the values actually simulated with this action.
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We close this section by stressing again an important remark. Our results seem to
indicate that apart from the quark mass, the lattice spacing and the lattice size, there is
an additional scale entering in this problem, namely the eigenvalues of the massless Dirac
operator. In particular, after the analytic continuation of eq. (2.9) the mass

√
m2 + µ2

v

becomes
√
λ2 −m2, which parametrizes the “distance” from the threshold of the spectral

density. Even if we assume, as it is done in this work, that all masses are in the p−regime
the value of this additional scale can be arbitrarily small. In order to get meaningful
results we have to implicitly assume that this parameter obeys the same power counting
as the quark masses with respect to the lattice spacing a and the lattice size L. While
this fact seems trivial at this stage, it is not totally obvious to infer it from the partially
quenched initial setup, where valence quarks are introduced as probes to obtain the spectral
density. This implies that, at fixed a and L, our results will not be valid in the vicinity
of the threshold, since from one side the p-regime expansion will fail, and from the other
side the GSM counting will not be valid anymore, because close to the threshold, as we
have discussed before, the NLO corrections induced by the finite lattice spacing dominate
the LO result.

We stress that these two effects are decoupled: close to the threshold, there is a scale
which in continuum χPT at finite volume needs to be treated with the ε-expansion, and
which in WχPT in infinite volume needs to be treated with the Aoki power counting.
The way the two effects combine close to threshold is a not trivial issue and it deserves
further investigations.

We conclude that our formula is a useful tool, combined with numerical data, to un-
derstand the behaviour of the spectral density of the Hermitean Wilson operator. We also
consider this work a necessary and important step towards a complete theoretical under-
standing of the behaviour close to the threshold of the spectral density of the Hermitean
Wilson operator.
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A SU(m|n) graded group: conventions and properties

In this appendix we collect conventions and properties related to SU(m|n) [29, 43] which are
relevant for the partially quenched Chiral Effective Theory in the graded-group formulation.

A.1 Supermatrices

For n,m positive integers, a square even supermatrix is defined as a (m + n) × (m + n)
matrix with the structure

U =

(
Am×m Bn×m
Cm×n Dn×n.

)
, (A.1)
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where A and D have elements in the even subspace of the Grassmann algebra, while B
and C have elements belonging to the odd subspace of the Grassmann algebra (see [43]
for definitions and properties of the Grassmann algebras). We define the supertrace of a
supermatrix

Str(U) ≡ Tr(A)− Tr(D), (A.2)

and the superdeterminant of an invertible supermatrix as

Sdet(U) ≡ Det(A−BD−1C)/Det(D). (A.3)

A.2 Superalbegras

We now consider a square (m+n)× (m+n) matrix with complex entries and the structure

M =

(
Am×m Bn×m
Cm×n Dn×n.

)
. (A.4)

M is said to be even if B = C = 0, whereas it is odd if A = D = 0. The degree or parity
of M is defined to be

deg M =

{
0 if M is even
1 if M is odd

(A.5)

One can show that set of all complex linear combinations of these matrices form an asso-
ciative superalgebra. The supertrace can be defined analogously as in the case of superma-
trices,

Str(M) ≡ Tr(A)− Tr(D). (A.6)

A.3 Lie supergroups and superalgebras

The Lie Supergroup SU(m|n) is the set of (m+n)×(m+n) even supermatrices U satisfying
the conditions

U †U = 1, Sdet(U) = 1. (A.7)

By parametrizing U as
U ≡ eiφ, (A.8)

these conditions convert into
φ = φ†, Str(φ) = 0. (A.9)

The Lie superalgebra associated to SU(m|n) can be constructed by supplementing the
associative superalgebra of (m + n) × (m + n) complex matrices defined in the previous
subsection with the generalised commutators

[M,N ] = MN − (−1)(deg M)(deg N)NM, (A.10)

and by requiring the conditions

M = M †, Str(M) = 0. (A.11)
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A basis for the Lie superalgebra of SU(m|n) can be chosen to be a set of Hermitian matrices
T a = (T a)† (a = 1, . . . , (m+ n)2 − 1), with a definite parity

deg(a) ≡ degT a, (A.12)

and zero supertrace
Str(T )a = 0. (A.13)

The normalisation is given by

Str(T aT b) =
gab

2
, (A.14)

where

gab =



1
. . .

1
−τ2

. . .
−τ2

−1
. . .
−1



}
1, . . . ,m2 − 1

}
m2, . . . ,m2 + 2mn− 1

}
m2 + 2mn, . . . , (m+ n)2 − 1,

(A.15)

with gab = (−1)deg(a)deg(b)gba. The elements from m2 to m2 + 2mn − 1 are odd matrices,
while the remaining ones are even.

In this work we consider the particular case of SU(4|2). With our conventions,
T 1, . . . , T 15 are the (even) generators of the SU(4) subgroup that includes sea and va-
lence quarks, T 32, . . . , T 34 (even) are associated with the SU(2) ghost sector, T 16, . . . , T 31

(odd) mix the ghosts and the quarks, and finally T 35 (even) is a diagonal matrix with
components in both quark and ghost sectors.

For the computation of the propagator it is convenient to introduce the tensors

kab =
(

1√
3
ga14 +

1√
6
ga15 − 1√

2
ga35

)(
1√
3
gb14 +

1√
6
gb15 − 1√

2
gb35

)
, (A.16)

hab =
(

1√
3
ga14 +

1√
6
ga15 +

1√
2
ga35

)(
1√
3
gb14 +

1√
6
gb15 +

1√
2
gb35

)
(A.17)

which satisfy
35∑
c=1

hackcb = 0. (A.18)

B The spectral density in WχPT with the replica method

In this appendix we present the same calculation done in section 4 applying the replica
method [28] in alternative to the graded group method. We consider a partially quenched
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theory with Ns sea quarks of mass ms and Nv quenched valence quarks of mass mv. For
simplicity we set the volume to infinity; finite-volume corrections can be computed in a
standard procedure, like explained in section 4.3. The replica method consists in enlarging
the valence sector to k replica of Nv valence quarks. The full symmetry group at zero
quark mass is therefore SU(Ns+Nr)L×SU(Ns+Nr)R, with Nr = kNv, and the generating
functional at the quark level is given by

ZPQ,replica(J) =
∫

[dAµ]Det(D +mv + J)NvDet(D +mv)Nr−NvDet(D +ms)Nse−Sg(Aµ),

(B.1)
where we have introduced source terms J . In the limit Nr = 0 one reproduces the gener-
ating functional in the graded group method [26, 27]

ZPQ,graded(J) =
∫

[dAµ]
Det(D +mv + J)Nv

Det(D +mv)Nv
Det(D +ms)Nse−Sg(Aµ), (B.2)

which is obtained in a SU(Ns+Nv|Nv)L×SU(Ns+Nv|Nv)R theory, where internal valence
quark loops are cancelled by introducing quarks with the wrong statistics (ghosts). This
equivalence is translated into the chiral effective theory and has been verified at the per-
turbative level [28]. In this appendix we explicitly show how this equivalence is realised for
the computation of the spectral density starting from the partially quenched pseudoscalar
density.

For our specific computation we consider the case Ns = 2, with a doublet of twisted
valence quarks. The chiral Lagrangian is the same as in eq. (3.7), with the “Supertrace”
replaced by the conventional trace over the group SU(Ns +Nr). The mass matrix has the
form

M = diag( m︸︷︷︸
2×2 sea

,m+ iµvτ
3︸ ︷︷ ︸

Nv=2

, . . . ,m+ iµvτ
3

︸ ︷︷ ︸
Nr=kNv

). (B.3)

The pseudo Nambu-Goldstone fields are parametrised by

U(x) = uV e
2iξ(x)/FuV , ξ =

∑
a

ξaT a, (B.4)

where now T a, a = 1, . . . , (2 +Nr)2− 1 are the generators of SU(2 +Nr), with the normal-
isation convention

Tr(T aT b) =
δab

2
, (B.5)

while uV represents the ground state of the theory. By minimising the LO potential we
obtain

uV = diag( 1︸︷︷︸
2×2 sea

, eiτ
3ω0/2︸ ︷︷ ︸
Nr

), (B.6)

with the definitions already given in eq. (3.6)

sinω0 =
µv
mP

, cosω0 =
m

mP
, mP =

√
m2 + µ2

v. (B.7)
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In this framework it is convenient to write down the pseudo Nambu-Goldstone propagator
in explicit components

〈ξca(x)ξdb(y)〉 =
1
2
[
δcbδdaG

1(x− y,M2
ab)− δcaδdbE(x− y,M2

aa,M
2
cc)
]
, (B.8)

with a, b, c, d = 1, . . . , (2 + Nr). The infinite-volume scalar propagator is defined in
eq. (3.12), while

E(x− y,M2
aa,M

2
cc) ≡

1
(2π)4

∫
d4p

eipx

(p2 +M2
aa)(p2 +M2

cc)F (p)
, (B.9)

F (p) ≡ 2
p2 +M2

ss

+
Nv

p2 +M2
vv

, (B.10)

with

M2
ab = B(ma +mb) =


M2
ss = 2mB if a, b = 1, 2

M2
vv = 2mPB if a, b = 3, . . . , Nr

M2
sv = (m+mP )B if a(b) = 1, 2; b(a) = 3, . . . , Nr.

(B.11)

The observable we have to consider in order to extract the spectral density is the expec-
tation value of the pseudoscalar density defined in eq. (2.8). The pseudoscalar density can
be obtained by taking the functional derivative of the action with respect to appropriate
sources, which are introduced by the following procedure:

M→M+ τ̂3p3(x), M† →M† − τ̂3p3(x), (B.12)

where τ̂3 has non-zero elements only in one of the replica of the valence sector

τ̂3 = diag( 0︸︷︷︸
2×2 sea

, τ3︸︷︷︸
Nv=2

, 0

︸ ︷︷ ︸
Nr

). (B.13)

At LO we obtain the (continuum) expectation value

〈P3〉LO = 2iΣ sinω0. (B.14)

This result is independent on Nr, and coincide with the one obtained with the graded
group method, eq. (4.4). At O(p2) we obtain

〈P3〉NLO = 2iΣ sin(ω0)

{
1 + δ cotω0 −

1
F 2

[
2G1(0,M2

sv) +NrG
1(0,M2

vv)

− E(0,M2
vv,M

2
vv)− 16L6(2M2

ss +NrM
2
vv)− 4M2

vv(H2 + 2L8) (B.15)

− 8â (W6 (2 +Nr cosω0) +W8 cosω0)

]}

The shift δ is the O(p2) correction to the ground state angle ω0 that must be computed by
minimising the NLO potential. Unlike the graded group case discussed in section 4.1, with
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the replica method the minimisation is trivial, since the fields belong to the conventional
SU(Ns +Nr) group. By taking only the linear term in Nr we get

δ = −16â sinω0

F 2

{(
W6 cosω0 +

W8

2

)
+

2â
M2
vv

(
W ′6 +

W ′8
2

cosω0

)}
, (B.16)

which coincides with the shift calculated with the graded groups in section 4.1, eq. (4.20).
The final result in the limit Nr → 0 for the partially quenched pseudoscalar density at
NLO is then

〈P3〉NLO = 2iΣ sinω0

{
1 + δ cotω0 +

1
F 2

[
1
2
G1(0,M2

vv)− 2G1(0,M2
sv) + 32L6M

2
ss (B.17)

− 1
2

(M2
vv −M2

ss)G
2(0,M2

vv) + 4M2
vv(H2 + 2L8) + 8â (2W6 +W8 cosω0)

]}
,

where we have used

E(0,M2
vv,M

2
vv)|Nr→0 =

1
2
G1(0,M2

vv)−
1
2

(M2
vv −M2

ss)G
2(0,M2

vv). (B.18)

This result for the pseudoscalar density is fully equivalent to the one obtained with the
graded groups, eq. (4.5), as expected.

C Some explicit formulae

In this appendix we collect some explicit formulae which we omitted in the main text for
clarity reasons.

C.1 Integrated spectral density at NLO

We report the integrated spectral density computed at NLO in WχPT. Starting from the
result presented in eq. (4.22) for the spectral density, we obtain:

N(Λ1,Λ2,m)NLO ≡
∫ Λ2

Λ1

dλ [ρQ(λ,m) + ρQ(−λ,m)]NLO = (C.1)

=
2Σ
π

{(√
Λ2

2 −m2 −
√

Λ2
1 −m2

)(
1 +

16â
F 2

W6

)

− ∆̃m2

(
1√

Λ2
2 −m2

− 1√
Λ2

1 −m2

)

+
Σ

(4π)2F 4

[
− π

2
(Λ2

2 − Λ2
1) +m(1 + 3L̄6)

(√
Λ2

2 −m2 −
√

Λ2
1 −m2

)

+(Λ2
2−2m2) arctan

(√
Λ2

2−m2

m

)
−(Λ2

1−2m2) arctan

(√
Λ2

1−m2

m

)

−m
√

Λ2
2 −m2

(
2 log

(
ΣΛ2

F 2µ2

)
+ log

(
2Σ
√

Λ2
2 −m2

F 2µ2

))

+m
√

Λ2
1 −m2

(
2 log

(
ΣΛ1

F 2µ2

)
+ log

(
2Σ
√

Λ2
1 −m2

F 2µ2

))]}
,

where ∆̃ is given in eq. (4.23).
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C.2 Finite volume corrections

In this section we give explicit expressions for the finite volume corrections defined in
eqs. (4.29), (4.30). It is convenient to represent the finite-volume propagator gr(M2) [30]
defined in eq. (3.11) as sum over modified Bessel functions Kν :

gr(M2) =
1

Γ(r)(4π)2

∑
{n1,n2,n3,n4}6=0

Fr−2

(
q2
n

4
,M2

)
, (C.2)

with q2
n =

(
(n2

1 + n2
2 + n2

3)L2 + n2
4T

2
)

and

Fν(a, z) = 2
(a
z

)ν/2
Kν(2

√
az). (C.3)

Using this representation one obtains the finite-volume correction to the spectral density

[∆ρVQ(λ,m) + ∆ρVQ(−λ,m)]NLO =
Σ
π

Σ
F 4(4π)2

2λ√
λ2 −m2

∑
{n1,n2,n3,n4}6=0

(C.4)

{
Re
[
F−1

(
Σq2

n

2F 2
, i
√
λ2 −m2

)]
− 2Re

[
F−1

(
Σq2

n

4F 2
,m+ i

√
λ2 −m2

)]
+
√
λ2 −m2Im

[
F0

(
Σq2

n

2F 2
, i
√
λ2 −m2

)]
+mRe

[
F0

(
Σq2

n

2F 2
, i
√
λ2 −m2

)]}
.

The corresponding correction for the integrated spectral density NV (Λ1,Λ2,m)NLO for
Λ1 = m is given by

∆NV (m,Λ2,m)NLO =
∫ Λ2

m
[∆ρVQ(λ,m) + ∆ρVQ(−λ,m)]NLOdλ =

2Σ2

π

√
Λ2

2 −m2

(4π)2F 4
(C.5)

∑
{n1,n2,n3,n4}6=0

{
2√

Λ2
2 −m2

Im
[
F−2

(
Σq2

n

4F 2
, i
√

Λ2
2 −m2 +m

)]

− m√
Λ2

2 −m2
Im
[
F−1

(
Σq2

n

2F 2
, i
√

Λ2
2 −m2

)]
+ Re

[
F−1

(
Σq2

n

2F 2
, i
√

Λ2
2 −m2

)]}
.
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