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Introduction

Entanglement entropy (EE) plays an important rule in the fields of gravity [1] and quantum

many-body physics [2, 3]. It is non-local and provides a useful tool to probe the quantum

correlations. EE can be calculated by applying the holographic method [4, 5] and the

perturbative approach [6]. The holographic entanglement entropy is a rapidly developing

field. Recently, the Ryu-Takayanagi conjecture [4, 5] has been proved by Lewkowycz and

Maldacena [7]. See also [8, 9] for some early tries. Later, the approach of [7] is generalized

to higher curvature gravity [10, 11] and the most general higher derivative gravity [12, 13].



See also [14-19] for the study of holographic entanglement entropy and the differential
entropy of a holographic hole [20-23]. Other interesting developments include the cor-
respondence between bulk locality and quantum error correction [24, 25|, the quantum
Bousso bound [26, 27], the RG flow of entanglement entropy [28, 29], quantum entangle-
ment of local operators [30], the relation between quantum dimension and entanglement
entropy [31] and the holographic three point functions of stress tensor [32].

In this paper, we focus on the universal terms of EE. As we know, the leading term
of EE obeys the area law. However, in spacetime dimensions higher than two, it depends
on the cutoff of the system. In contrast to the leading term, the logarithmic term of EE in
even spacetime dimensions is universal and thus is of great interest. The logarithmic term
of EE for 2d CFTs is given by [33, 34]

L . l
S5 llog = glog (775 sin <72)> (1.1)

where [ and L are the length of the subsystem and total system, respectively. § denotes
the cutoff and c is the central charge of the CFT.
In 4-dimensional space-time, the logarithmic term of EE is proposed by [35]

1 . 1
Ssliog = log(€/5)% /E [c (C”klhikhjk —trk? + 2(trk)2> — aRg], (1.2)

where Cjjp; is the Weyl tensor, k is the extrinsic curvature and Ry is the intrinsic Ricci
scalar, a and c are the central charges of 4d CFTs. Eq. (1.2) is firstly derived by using
the holographic entanglement entropy (HEE) of Einstein gravity [35]. Later, by applying
Dong’s formula [10, 36] prove that the general higher curvature gravity yields the same
results.

So far, not much is known about the logarithmic term of EE for 6d CFTs except [37, 38].
In [37], Hung, Myers and Smolkin (HMS) obtain the logarithmic term of EE for 6d CFTs
in case of zero extrinsic curvatures. Because the condition k4;; = 0 breaks the conformal

invariance, their formulas are not conformal invariant. In [38], Safdi studies the cases with
B

_°1
By = B 5= in flat space, where B; are the central charges of 6d CFTs. Since the ‘flat-
space condition’ is imposed, the results of [38] are not conformal invariant either. Now let

us briefly review their works.

HMS derive the universal terms of EE for CEFTs as the ‘entropy’ of its Weyl
anomaly [37, 39]. Take the Weyl anomaly as a gravitational action and then calculate
the ‘entropy’ of this ‘action’. It turns out that this ‘entropy’ equals to the logarithmic term
of EE for CFTs. In six dimensions, the trace anomaly takes the following form

3
(T';) = Bnl,+2AEs, (1.3)

n=1

where Ejg is the Euler density and I; are conformal invariants defined by

o y 3
I = CpigC"™™C, ", I =C;"Cy™ 07



I3 = Ciim <v2 & +4R'j — §35;> caktm (1.4)

For entangling surfaces with the rotational symmetry, only Wald entropy contributes to
the holographic entanglement entropy. Thus, we have

Sen = log(t/9) [ atovh |2m ZB S G AR | (15)
b
where

ol ~ij = mn il x = 1kim P 1 j

alekl g Ekl = 3 (C] k Cm lnz’fij Ekl — C ikl Cjklm fj' 2*() C gkl Cijkl) N (1.6)
0 iz _ 4 CHmn o G g 5 oim ol Gl 4 Lok o (1.7)

BR, Kkl = ij €kl — kim i + 5 igkl | > :
oI ~1J x i 7 mj 7 ij ~

8R;kl E9 gy =2 <D(JW + 4 Rl CMIR RC ]k,> Eij E — 4CM Ry i

+4 O I, CW Cijhi - (1.8)

For entangling surfaces without the rotational symmetry, the anomaly-like entropy from
C’ijleCijkl should be added to the entropy eq. (1.5). This contribution is used in [12] to
resolve the HMS puzzle [37]. See [40, 41] for an alternative try, which suggests to use the
entropy from total derivative terms to explain the HMS mismatch. However, it is found that
the entropy of covariant total derivative terms vanishes [42] by applying the Lewkowycz-
Maldacena regularization [7]. What is worse, [13] proves that proposal of [40, 41] fails in
solving the HMS puzzle [13] even if the entropy of total derivative terms was non-zero.
Now let us turn to review the work of [38], where the universal term of EE for 6d CFTs

_B
with By = B 5~ in flat space is obtained

By
SE|log = log(ﬁ/&)/ 2AFE, + 67 [3 (BQ — 4> J+ B3T3:| (1.9)
b
Here J =T} — 215 and T; are given by

T = (trk?)?, Ty = trk?, Ty = (V,k)% — %k‘* + 11k rk? — 6(trk®)? — 16ktrk® + 12trk*,

(1.10)
where k denotes the traceless part of the extrinsic curvature. For simplicity, [38] focus
on flat space and set the extrinsic curvature in the time-like direction to be zero. Since
the ‘flat-space condition’ breaks the conformal invariance, the results of [38] (73) are not
conformal invariant either.

In this paper, we investigate the most general cases. By applying the holographic and
the field theoretical methods respectively, we derive the universal terms of EE for 6d CF'Ts.
Our formulas are conformal invariant and reduce to those of [37, 38] when imposing the
conditions they use. Remarkably, we find that the holographic and the field theoretical
results match exactly for the C? and Ck? terms, where C' and k denote the Weyl tensor



and the extrinsic curvature, respectively. As for the k* terms, we have to deal with the
splitting problem of the conical metrics. The splitting problem appears because one can
not distinguish r? and 72" (n — 1) in the expansions of the conical metrics. We can fix the
splitting problem in the bulk by applying equations of motion. As for the splitting problem
on the boundary, we assume the general expressions and find that there does exist suitable
splittings which can make the holographic and the field theoretical k% terms match.

It should be mentioned that the splitting problem does not affect the logarithmic term
of EE for 4d CFTs. That is because only the O(K°) and O(K?) terms (K denote the
extrinsic curvature in the bulk) of the entropy contribute to the logarithmic term of EE for
4d CFTs [36], however these terms are irrelevant to the splitting problem [12]. As for the
6d logarithmic terms, we need to calculate the O(K*) terms of the entropy, which come
from cubic curvature terms in the action. It turns out that the only cubic curvature term
irrelevant to the splittings is the Lovelock term. However, the central charges of CFTs dual

to Lovelock gravity and the curvature-squared gravity are not independent but constrained
B

By—21 . . . .
by By = = 7. Thus, to study the most general case in 6-dimensional space-time, we

have to deal with the splitting problem.

An overview of this paper is as follows: we begin with a brief review of the holographic
entanglement entropy and the discussions of the splitting problem for the conical metrics
in section 2. In section 3, we take the general higher curvature gravity as an example to
illustrate the holographic approach for the derivations of the universal terms of EE. In
section 4, we derive the universal terms of EE for 6d CFTs by applying the holographic
method. We firstly derive the results from a smart-constructed action and then prove that
the general action produces the same results. In section 5, we use the field theoretical
method to calculate the universal terms of EE for 6d CFTs. We compare the field theoret-
ical results with the holographic ones and get good agreements. We conclude with a brief
discussion of our results in section 6.

Notations: X*, G v and Ruﬂpa are the coordinates, the metric and the curvature in the
(d + 1)-dimensional bulk, respectively. Similarly, a7, gij and R;;i; denote the coordinates,
the metric and the curvature on the d-dimensional boundary. The entangling surface
(extrinsic curvatures) in the bulk and on the boundary are labeled by m and ¥ (K and k),

(0)
respectively. h,g and hij are the induced metrics on m and X, respectively. Notice that
m is a (d — 1)-dimensional manifold while ¥ is a (d — 2)-dimensional manifold.

2 Holographic entanglement entropy

2.1 Holographic entanglement entropy

In this section, we briefly review the derivations of holographic entanglement entropy (HEE)
for the general higher curvature gravity [10]. The basic idea is to apply the replica trick
and extend it to the bulk. Let us start with the Renyi entropy

1
Sp = — log tr(p"] (log Z,, — nlog Zy) (2.1)

n—1 n—1



. p

where p is the reduced density matrix associated with the subsystem and Z,, is the partition
function of the field theory on a suitable manifold M, known as the n-fold cover. For
theories with a holographic dual we can build a suitable bulk solution B,, whose boundary
is M,,. Then the gauge-gravity duality identifies the field theory partition function on M,
with the on-shell bulk action on B,

Zn = Z|M,) = e 11Bnl, (2.3)
We can derive the HEE by taking the limit n — 1 of Renyi entropy
Supe = lim Sy, = 0, (log Tr[p"])|n—1 = =Tr[plog p]
= —8n(10g Zn — nlog Z1)|n*)1 = @n(I[Bn] — ’I’LI[Bl])|n%1

= _8eIreg|e—>07 (24)

where Loy = (nI[Bi] — I[By,)]) is the regularized action and e = 1 — 1. To derive I;¢, one
need to regularize the conical metric appropriately.
The regularized conical metric in a coordinate system adapted to a neighborhood of
the conical singularity is given by [10]:
ds? = e [dzdz + AT (2dz — 22)2] + (hij + 2Kaija + Quuigaa" ) dy'dy!
+2ie*AU; (2dz — 2dz) dy' + - - - . (2.5)

Here 2% € {z, z} denotes orthogonal directions to the conical singularity, and y* denotes
parallel directions. The regularized warp factor is

A= 7% log(2Z + b?) (2.6)
Using the replica trick, one can derive the entropy as eq. (2.4)

SHEE = _aelreg|e~>0 (27)

where ;¢ is the gravitational action got from the regularized metric (2.5). There are two
kinds of terms relevant to the entropy. The first kind is

R.ss = €240.0:A + . ..
/dzdéazagA = —Te. (2.8)

It contributes to Wald entropy. The second kind is

~ ~

Rzizj = 2Kzij8zA + ..., Rapz = 2K5500:A + ...
/ dzdz0,A0; Ae P4 = —%. (2.9)

This is the would-be logarithmic term and contributes to the anomaly-like entropy [10].



Applying egs. (2.7), (2.8), (2.9), one can derive HEE for general higher curvature
gravity f(Ruep) [10]

R T s
SHEE = SG/d y\/ﬁ[

K.ij Kz }
+16 J 2.10
Z ( zzzyaRzk’zl>ﬁ B +2 ( )

2Z2Z

0% f . . B
Here 8 come from the formula (2.9), and <7a Forsd R2k2l>ﬁ are the coefficients in the expan
sions o2
—_ —Z ﬁA( / > (2.11)
8Rzzz]aRzkzl 8Rzzz]aRzkzl

[10] proposes to regularize Q).z;; as e? ngij. However, as we find in section 4.2, this
ansatz yields inconsistent results for the universal terms of EE for 6d CFTs [12], i.e
two gravitational actions with the same holographic Weyl anomaly give different universal
terms of EE. To resolve this inconsistency, we proposes the following regularizations

T =e Ty + 1Ty,
Q szij = Qo 2z + €2Q1 1z (2.12)
How to split M into My and M; (M denotes T' and @) is the so-called the splitting problem.
It appears because one cannot distinguish 7% and r?” in the expansions of the conical metric.

It is expected that the splitting problem can be fixed by using equations of motion. As we
shall show in the next sub-section, this is indeed the case at least for Einstein gravity.

2.2 The splitting problem

Let us investigate the splitting problem in this section. As we have mentioned in the
above sub-section, the splittings of the conical metrics cannot be avoided in order to derive
consistent results for the universal terms of EE. Actually, the splitting problems appear
naturally since we can not distinguish 72 and 2" in the expansions of conical metrics. That
is because 72 and r?" become the same order in the limit n — 1 when we calculate HEE.
According to [10, 43], the general regularized conical metric takes the form

ds? = ?Adzdz + T(zdz — 2dZz)?] + 2iVi(Zdz — zdZ)dy’

—f—(hij + Qij)dyidyj, (2.13)
where h;; is the metric on the transverse space and is independent of z,2. A = —§ lg(22+b%)
is regularized warp factor. Inspired by [10, 43], we propose to split T, V;, Q;; as

o0 Pal...an+1

T = Z Z 2mATm agap XM x

n=0 m=0

(e’ Palman‘f'l

2mA a a
Vi = E g e Vin ay.anix® ...,
n=0 m=0

o0 Pal...an

Qij - Z Z QQmAQm al...anz’jxa1 coLxtn, (2.14)

n=1 m=0



Here z, z are denoted by x® and P, 4, is the number of pairs of z, zZ appearing in a; . . . ay.
For example, we have P,,; = P,z, = P5,, = 1, Pz, = 2 and P,, ., = 0. Expanding
T,V,Q to the first few terms in the notations of [10], we have

T = Ty + 24T, + O(x),
Vi=Uy;+ 62AU1 i + O(l’),
Qij = 2Kai57" + Qo abijas’ +26*AQ1 1zij 22 + O(a®) (2.15)

How to split W (W denote T,V,Q) into {Wy, W1,...,Wpy1} is an important problem.
It should be mentioned that the splitting problem is ignored in the initial works of Dong
and Camps [10, 43]. However they both change their mind and realize the splitting is
necessary later.! Recently Camps et al. generalize the conical metrics to the case without
Z,, symmetry, where the splitting problem appears naturally [44]. Our metric eq. (2.13) can
be regarded as a special case of [44] with Z,, symmetry. Inspired by [7], it is expected that
the splitting problem can be fixed by equations of motion. Let us take Einstein gravity in

vacuum as an example. We denote the equations of motion by E,,, = Ruv — MGW =0.
Focus on terms which are important near % = 0, we have
Rop = 2K(,VipA — Gy KV A + 621“[(12T1 + 4U? ) — Q1 i ']
F K K, + (12T + 8UgU1) Gap — Qo o
Rai = 3¢V + D™ Kopmi — Di K, (2.16)
Rij = rij + 8UU; — Q1%ij + @72A[2KaimKam- — KK + 16Uy Uy ) — Q" aisls

ij
R = r++16U24+24T) —2Q,%, ;+e 2 (3K ij K — KK, +24T) — 2Q .}, +32UpU7),

where A = —5logzz, e,z = 5 . and ¢,z = f. Let us firstly consider the leading term of £, .,
we get
K,

Requiring the above equation to be regular near the cone, we obtain the minimal surface
condition K, = Kz = 0 [7]. To derive Ty and Qq, we need consider the sub-leading terms
of E.z, E;; and Eﬁ We have

E.: =2 ) +[Qy L — 2K K7 + K. K; — 4UUy| = 0,
Ej=(.)+e 4 2K aim K™ — K*Kaij + 16Uy Uy ) — Qo ui;j

1
_§hij (3Kainm] KK, + 24T, — 2@0 it 32UOU1) =0,

2—-D
2

Here (...) denote the leading terms which can be used to determine 7', U1;, Q12zi; and hjj.

Ef o= () + e M BK; K9 — KOK, 4 24Ty — 2Q¢%; + 32UoU ] = 0. (2.18)

From the subleading terms of the above equations, we can derive a unique solution
1
21\

"We thank Dong and Camps for discussions on this problem.

Ty = Ko K% — K,K*),




1
Qozzij = <Kziszjm — §KzK2ij + C.C.) + 4U, (z‘Ul ) (2.19)

As we shall show below, a natural choice would be Uy; = 0. It should be mentioned

that eq. (2.19) are also solutions to the general higher derivative gravity if we require

that the higher derivative gravity has an AdS solution. In the next section, we shall use

eq. (2.19) to derive the universal terms of EE for 6d CFTs. Actually, we only need a
weaker condition near the boundary

1 g
Ty = o (Kaij K — 2 KoK*) + O(p?), (2.20)
Qozzij = Kaim K" —y K. Kzij — 2z gij K. Kz + c.c+ O(p) (2.21)

with x,y,z are some constants which are not important. Here p is defined in the
Fefferman-Graham expansion eq. (3.1) and p — 0 corresponds to the boundary. Actually,
as we shall show in section3.2, eq. (2.20) is the necessary condition that all the higher
derivative gravity in the bulk gives consistent results of the universal terms of EE.

To end this section, let us make some comments. In addition to the equations of
motion, there are several other constraints which may help to fix the splitting. Let us
discuss them one by one below.

1. The entropy reduces to Wald entropy in stationary spacetime.

Let us take V“RVPMV”R”'DM as an example. In stationary spacetime, we have
Kaij = Qz2ij = Qzzi; = 0. Applying the method of [12], we can derive the HEE as

SteR = Swald + / dyP =2V h1287(Qo22ij Qo2 +9T3 +5(Uy ;Uy")? +mixed terms of Ty, Qo, Up).

(2.22)
To be consistent with Wald entropy, we must have Ty = Up; = Qozz;; = 0 in
stationary spacetime. This implies that Ty, Up ; and Qo.z;; should be either zero
or functions of the extrinsic curvatures. This is indeed the case for the splitting
egs. (2.19). By dimensional analysis, we note that Uy ; ~ O(K). However, it is
impossible to express Up ; in terms of the extrinsic curvature K,;;. Thus, a natural
choice would be Uy ; = 0.

2. The entropy of conformal invariant action is also conformal invariant.

In the bulk, we can use gravitational equations of motion to fix the splittings of conical
metrics. However, we do not have dynamic gravitational fields on the boundary. Then
how can we determine the splittings on the boundary? For the cases with gravity
duals, in principle, we can derive the conical metric on the boundary from the one
in the bulk. As for the general cases, we do not know how to fix the splittings. If
we focus on the case of CFTs, the conformal symmetry can help. As we know, the
universal terms of EE for CFTs are conformal invariant. Recall that we can derive
the universal terms of EE as the entropy of the Weyl anomaly [35, 37, 39]. Thus, the
entropy of conformal invariants (Weyl anomaly) must be also conformal invariant.



Let us call this condition as the ‘conformal constraint’ . Expanding the Weyl tensor
in powers of €24, we have

4A 24
Cz222 =e€ Cl 2325 T € C’0 2Z2Z
24
Cizj = e C1 zizj + C0 zizjs
24
Cikjt = C1 it + e “"Co ikt (2.23)

The ‘conformal constraint’ requires that both C7 and Cy are conformal invariant.
Assuming the general splittings in 6d spacetime

Ty = 21 K gy K+ 20 K K (224)
Qo 2zij = (01K im K™ + 22 9i Komn K™ + 11 K Kzij + y2 9i K Kz) + c.c.(2.25)

By using the ‘conformal constraint’, we get

1 Y1 1 Y1
—1-2 S P A VS VA i 2.26
€1 Y1, T2 4 zZ1 3) Y2 16 22 24 ( )

Thus the ‘conformal constraint’ cannot fix the splittings on the boundary completely.

. The splittings should yield the correct universal terms of EE for CFTs.

Another natural constraint for the splittings on the boundary is that it should give
the correct universal term of EE for CFTs. By ‘correct’, we mean it agrees with
holographic results. Remarkably, the splitting problem does not affect the universal
terms of EE for 4d CFTs . From the viewpoint of CFTs, we can derive the universal
terms of EE as the entropy of the Weyl anomaly. In 4d spacetime, the Weyl anomaly
are curvature-squared terms whose entropy can not include Ty and Q)¢ by using
Dong’s formula [10]. From the viewpoint of holography, the situation is similar. For
the general higher derivative gravity S(g, R), it has been proved that Ty and Q¢ does
not contribute to the logarithmic terms of EE [36]. As for the 6d CFTs, the splitting
problems do matter. To be consistent with the holographic results, in section 4, we
shall derive the splittings eq. (2.24) with

1 1
T :1, l‘QZZ—GZl, U1 :0, ygz—ﬁ—ﬁ,@. (2.27)

This constraint is better than the ‘conformal constraint’ but still could not fix the
splittings completely. It seems that we have some freedom to split the conical metrics
on the boundary and this freedom does not affect the universal terms of EE.

. The splittings does not affect the entropy of Lovelock gravity and topological invari-
ants.

Lovelock gravity is special in several aspects. In particular, it becomes topological
invariant in critical dimensions. Thus the entropy of Lovelock gravity must be also
topological invariant in critical dimensions. This strong constrains the possible form
of the entropy of Lovelock gravity. We know the answer is the Jacobson-Myers



formula [45]. In general, we would get different entropy from the conical metrics
with different splittings. Thus, we must check if the splittings affect the entropy of
Lovelock gravity. It is clear that the splittings does not affect the Wald entropy.
Thus, we focus on the anomaly-like entropy K.;; K> 0L [10]. Note that Tj

Ml OR;0 Rz
212] zkzl
and o only appear in the curvatures RR.z.z and R.;z; but not R;;;;. While only R;jx
can appear in ﬁ for Lovelock gravity. Thus the splittings indeed do not
212] zkzl

affect the entropy of Lovelock gravity.

3 The universal terms of EE

3.1 Approach based on PBH transformation

In this subsection, we introduce an elegant approach [46], which rests on the so-called
Penrose-Brown-Henneaux (PBH) transformations, for the derivations of the universal terms
of EE for CFTs. Taking advantage of the bulk diffeomorphisms and the reparametrization
of the world volume (entropy functional), [46] finds that one do not need to solve equations
of motion and the extremal entropy surface in order to derive the universal terms of EE
for 4d CFTs. As we shall show in section 4, this is also the case for 6d CFTs. Notice that
making no use of equations of motion does not mean the approach of [46] is off-shell. Actu-
ally, [46] indeed use some on-shell conditions, which can be derived by applying either PBH
transformations or equations of motion. Below we give a brief review of the general method.

3.1.1 Fefferman-Graham expansion

For asymptotically AdS space-time, we can expand the bulk metric in the Fefferman-
Graham gauge

. 1 1 o
2 2
ds® = GdX"dX" = 20T ;gijda:’dx], (3.1)
© ) 4.9 (D .
where gij = g;; +pgij+---+p2(g+ 7ijlogp) + ... Interestingly,
1 © (]0%)
(1) (0)

L | - L 3.2
g’Lj d_2( ) 2(d_1)g2])’ ( )

can be determined completely by PBH transformation [47, 48]. Of course, one can also
derive eq. (3.2) by using equations of motion [49, 50]. The key point is that all higher

derivative gravity theories give the same (é)ij eq. (3.2), due to the symmetry near the AdS

boundary [47]. Unlike (é)ij, The higher order terms <52])ij, (E)ij ... are constrained by equations
of motion. We have

(2)” — ki C Cmnk:l (O)” ko O C klm
gz]— 1 “mnkl gzy+2 iklmj

1 1 1 1 ©
— |— V,V;R——— ORjj+—————— [OR g4
ti—a S(d—l)vvj 4(d — 2) ]+8(d—1)(d—2) 4
1 d—4 1
——  RMRy 4+ - R*Rjy+-—— RR,;
a(d—2) " kil T g gt R g g =)

,10,



KMp @ 3d 2 (O

1
THd—2)7
where we have ignored () in the above equation and k1, ko depend on the action, or equiv-
alently, equations of motion. For example, we have

3 3
kq (5)\1 -+ 14)\2), ko = Z()\l — 4)\2) (3.4)

" 80

for the action eq. (4.1).
Using the universal identity eq. (3.2), we can derive some useful formulas [36]

B~ ofp?), By ~ olp), Bip~olp),  Fpproll)
N 1 - 1
Ri ip ™~ O\ — |, Ri'kN0<>
pip (p) pij P
_ C;;
Riji = Tjkl (3.5)

where R eq. (3.23) is the difference between the curvature and a background-curvature.
The above equations imply O(R") are at least of order O(p™). For example, we have

Rupo R = p*CiyaC™ + O (p%) (3.6)
R“Vpoépaaﬁéaiu = p30ijmncm7§clcklij + O(p4) (37)

It should be stressed that the above results are on-shell, since we have used the on-shell
condition eq. (3.2).

3.1.2 Schwimmer-Theisen approach

Denote the transverse space of the cones by m. The embedding of the (d — 1)-dimensional
submanifold m into (d + 1)-dimensional bulk is described by X# = X H(c®), where XH =
{x%, p} are bulk coordinates and 0% = {y%, 7} are coordinates on m. We choose a gauge

T=p, h:=0, (3.8)

T
where h,g is the induced metric on m. Let us expand the embedding functions as

Xi(r,7) = X'() + X () + X ()7 + .. (3.9)

Diffeomorphism preserving the Fefferman-Graham gauge (3.1) and above gauge (3.8)

uniquely fixes a transformation rule of the embedding functions X*(y*, 7) [46]. From this
SO
transformation rule, we can identity X*(y’) with the extrinsic curvature of the entangling

surface % on the AdS boundary

SUAS R
X'() = gy H ). (3.10)
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(1)
Similar to (gly)ij eq. (3.2), X" is fixed by the symmetry and thus is universal [46]. Of

course, one can also get eq. (3.10) by calculating the extremum of the entropy functional.?

Actually, as we shall show below, eq. (3.10) is the perturbative counterpart of the extremal-
. ™
area-surface condition K* = 0. Similar to (g)l-j, X" with n > 2 are non-universal and depend
(n)
on the gravitational theories. Fortunately, we do not need X* with n > 2 for the derivations
of the universal terms of EE in six-dimensional space-time.

From egs. (3.9), (3.10), we can derive the induced metric on m as

A 1 1 o (0)
her = 8TXM87'XVGMV_4T2(1+M_Q)ZklkjgijT—i_'”)’ (3‘11)
1 i j 1 /0 (1)
with o o
(0) 0 O (1) 1) 1,50
Thus, we have
[0 1 p (@) d—3 . o
h=Vh 1+ hYgs — ——5 k'K gy 3.14
v 2p:< # 5 (9 g K)o (314
Using eq. (3.9), (3.10), we can also derive the extrinsic curvature K of m as
KL= (K. - K ) + (3.15)
5= k- g 5hy . .

One can check that all the other components of K zﬁ are higher order terms irrelevant to
the logarithmic terms. Notice that the leading term of KZJ eq. (3.15) is traceless, which
means eq. (3.10) yields the extremal-area-surface condition K = 0 perturbatively.

Now let us list some useful formulas in the notation of [10]

ol

\;%j oy Ko~ pP?) Koij KO = phai k™ + ... (3.16)

where l_cm-j denotes the traceless part of the extrinsic curvature.

Ky =

To derive the universal logarithmic terms of EE, we need to select the % terms in the
integrand of the entropy functional. From egs. (3.14), (3.16), it is easy to find that only
following combinations of the extrinsic curvatures contribute to logarithmic terms of EE

Vh, VhirK?, for d =4 (3.17)
Vh, VhirK?, VhirK*, Vh(trK?)?, ford =6 (3.18)

Using eq. (3.16), we obtain some very useful formulas

1. Jo
VhtrK? = 2/)\/; trk* 4 ... for d = 4. (3.19)

2Please refer to the appendix for the details.
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1. Jo
VhtrK* = 2p\/; trk* 4+ ... for d = 6. (3.20)

1 Jo
Vh(trk?)? = SV tr(k®)? 4 ... for d = 6. (3.21)
p
Notice that we have used the universal identity eq. (3.10) in the above equations. Since
eq. (3.10) is the perturbative counterpart of the extremal-area-surface condition, therefore

egs. (3.19), (3.20), (3.21) are on-shell.

3.2 Example: higher curvature gravity

Now we take the general higher curvature gravity to illustrate how to derive the universal
terms of EE in the approach of [46]. For simplicity, we focus on 4d CFTs in this subsection
and leave the study of 6d CFTs to the next section.

We use the ‘background field approach’ introduced in [36]. This method together
with [46, 47] are very useful tools to derive the holographic Weyl anomaly and universal
terms of EE [36]. Firstly, we define a ‘background-curvature’ (we set the AdS radiusl =1)

R,ul/ap = éppéua - G,u,crél/p (322)

and denote the difference between the curvature and the ‘background-curvature’ by

Ruvop = Ruvop — Ruvop- (3.23)
Then we expand the action around this ‘background-curvature’ and get
1 .
I= 167TG/dd“X\/Ef(RM,J) (3.24)
1 - - - - R . -
= oa / dHXNV G fo + VR4 (P Runop BP + ) R R + P R?) + O(RY)]

where fo = f(Ruvop) = f (R,wap)| Ads 18 the Lagrangian for pure AdS, cz(")

are some con-
stants determined by the action. We require that the higher derivative gravity has an
asymptotic AdS solution. This would impose a condition cgl) = —fo/2d [36]. Using this

condition, we can rewrite the action (3.24) as

1 = A ~ - L~ ~ -
I= / dHXVG [—gg(R+d2—d)+(c(f)RWU,JRW"PJrc?RWRW+C(32)R2)+0(RS)]
s

(3.25)
Now we focus on the case of d = 4. Applying the entropy formula (2.10), we can derive
HEE in asymptoticlly AdSs (3.1) as

S=1g [ i [—chgmmcg% (Ri—if@”) 26 (R, = Kaig K°) +O(KC, B2, RIC)
(3.26)
where a,b € {z, Z} denotes orthogonal directions to the bulk entangling surface m. From
eqs. (3.1), (3.5), (3.16), it is not difficult to find that R ~ R® ~ O(K*, R?, RK?) ~ O(p?)
are some higher order terms irrelevant to the logarithmic terms. Notice that, for 4d CFTs,
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we can ignore the splitting problem, since it only affects the entropy at order O(K*). Recall
that we have

2p = log(1/0), VhK.,K®* = Vh(trK)* ~ O(p) (3.27)
52

VhEK i K = \/htr K2 = p\/; trk* 4+ O(1) (3.28)

- 1 1 . /(0)(0)41(0)~
ab ab D Kl
— 1 == j 2
VhR® , % hC +0(1) 3 h B WM Cysr+ 0(1) (3.29)
0 1 (
\/E:vh22<1+ <h”?f —fk;w“’) >+>
P
0 1
= Vi, 2<1+4<hwhquk7—trk’ ) +> (3.30)

where Ry is the intrinsic curvature scalar on the boundary entangling surface ¥ and we
have used the variant of the Gauss-Codazzi equation in the above calculations.

ZJu)

1 .. (024 (0); - _
2h — 5 KRGy = W ROy — ik — Ry, (3.31)

Substituting egs. (3.27)-(3.30) into eq. (3.26), we can derive the universal logarithmic
terms of EE as

@ (0)n
_ 2 _JU (2) i kl ar— 2 fO
Siog 4G ; 2p/d [[( 0 42 ><h e trk)—l— RE]

log(1/6) <o (0)4+(0); _
_ log(1/0) / d2y (h” WGy — trk:2> n aRg} (3.32)
2 b))
where a and ¢ are the central charges of 4d CFTs given by [36]
Jom Jom )T
— — 407 3.33
= —fie =Gt G (3.33)

Now we finish the derivations of the universal terms of EE for 4d CFTs dual to the

general higher curvature gravity. Let us make some comments. Firstly, we have used the
(1)
universal relations for glj eq. (3.2) and X? eq. (3.10) in the above calculations. It seems

that eq. (3.2) and eq. (3.10) are off-shell, since they are obtained by making no use of
equations of motion [46]. However, this is not the case. Actually egs. (3.2), (3.10) can also
be derived from equations of motion and the extremal entropy condition (see appendix. A),
therefore the approach of [46] is indeed on-shell. Secondly, expanding the action around the
background-curvature eq. (3.22) are quite useful for the derivations of universal terms of EE.
At the leading order one can always directly replace RY o (K ai j) by p cY w (VP Eai j), which

[ R—
can simplify the calculations greatly. For example, we have v/htrK? — log(l/ 5)\/2 trk?

~ (0) _
for d = 4, and Vhtr(RK?) — log(1/6)V h tr(Ck?) for d = 6. Thirdly, the splitting problem
does not matter for the universal terms of EE in four dimensions. However, it does matter
for the case of 6d CFTs. We investigate this problem carefully in the next section.
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4 Holographic method

In this section, we derive the universal logarithmic terms of EE for 6d CFTs by using the
holographic method introduced in section 3. We firstly derive the results from a smart-
constructed bulk action and then prove that the general action produces the same results.

4.1 Logarithmic terms of EE from a smart-constructed action

For the curvature-squared gravity and Lovelock gravity, the splitting problem does not

matter. However, the central charges of the corresponding CFTs are not independent but

Bo— 2L
3

curvature term. Below we construct two special cubic curvature terms M; and Ms, which

constrained by B3 = . To cover the general CF'T's, we must consider at least one cubic

are designed to correspond to the conformal invariants I; and I3 eq. (1.4) on the boundary,

respectively. We use these smart-constructed cubic curvature terms to derive universal

terms of EE for 6d CFTs. It turns out that they help quite a lot to simplify the calculations.
Consider the following action

S = /d7X\/—G(R 430+ MM, + Ao M) (4.1)
where we have set the AdS radius [ = 1 and M;, My are constructed as
My = Ryupe REOP R0 My = R 7R, ORI (1.2)

Recall that R are defined by

~

R/u/pa Ruupa + (Gupéua - G,uaGl/p)a
Ry, = Ry, +6G,.,,
R = R+42. (4.3)

It should be mentioned that M; (i = 1,2) can be regarded as the bulk counterparts to the
conformal invariants I; eq. (1.4). They only contribute to the holographic Weyl anomaly
with respect to I; (i = 1,2). According to [36], the holographic Weyl anomaly for the above
action is

3
(T';) =) Bnln+2AEs, (4.4)
n=1

with the central charges given by

A =73,
Bi= -t 1A
1 16+ 1
1
By = ~ 61 + A,
By — é (4.5)
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It is expected that the universal terms of EE for 6d CTFs takes the following form

Spr = log(£/6) /d4x\/ [%ZB F,+2AE, (4.6)

where F), are conformal invariants need to be determined and F, is the Euler density.
From egs. (4.1), (4.5), it is clear that we can use HEE of M) and M> to derive F} and Fb,
respectively. Knowing F} and Fb, one can use HEE of Einstein gravity to obtain Fj.

4.1.1 F; and F»

Now let us start to derive the universal terms of EE by applying the approach introduced
in section 3.2. For convenience of the readers, we recall some useful formulas

% log(1/6), Vh(trK)* ~ 0(p?) (4.7)

52

Vh(trK)2(trK?) ~ O(p), Vh(trK)(trK®) ~ O(1) (4.8)
N 21/)\@ 4+ O(1), VA(trk?)? = = \f 0E? +0(1)  (4.9)

VhTr(ééRR) = 1 \fTr (e¢CC)+0(1), VhTr(K*R 1 \fTr k2C)+0(1)  (4.10)

where €, and €; are the two-dimensional volume form in the space transverse to the
entangling surfaces in the bulk and on the boundary, respectively.

Let us firstly discuss the logarithmic terms from the Wald entropy of the action
eq. (4.1). After some calculations, we get

Swald = / dpd yVh[2 + 3M1€" 50 R,"77 Ryag” + 3028 €00 R**P Rogyun

27r/dpd4y\/g[2 + p2 (3)\1€ij€lei m"lemnk + 3/\2€ij€leklmnCm” ] + irrelevant terms

= oe 27T/dpd4 [3)‘16” 1 C; ™ Cimn” + BXaE 8 CM,, C "t (41 + k2)CijaCH

—k2g35C 1 C7M ] + irrelevant terms

Sp + 2mlog(¢/6) / d*yvho {3& (ij”k Cont o Eij Ert — % O G G+ 1L gian cijk,>
>

20
+3X2 (Cklmn Cmnij gij Erl — Ciklm C]klm g” C”kl Cijkl):| s (411)

where Sp is the universal terms of EE for Einstein gravity. We leave the derivation of
SE to the next subsection. Let us discuss the above calculations briefly. The R? terms
in action eq. (4.1) gives two kinds of contributions. The first kind of contributions come
from their Wald entropy, such as the C? terms in the second and third lines of eq. (4.11).

The second kind of contributions are due to their non-trivial corrections of ?ij eq. (3.3)
@)
and X% eq. (3.9) in Vh. The ki, ko terms in the third and fourth lines of eq. (4.11) come
(2)
from corrections of gU Note that v/A contains only the linear term of X in the relevant
(2)

order 1 5 According to equations of motion 6‘;}%‘3 = 0, the linear terms of X* should vanish
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on-shell (at least for Einstein gravity). As we shall show in the next subsection, this is
indeed the case.
From eqgs. (4.5), (4.6), (4.11), we can read out Wald-entropy-part of F; and Fj as

) ) 1 . . 1 ..
Fy1 =3 (cam"’“ Cot &1 i — i cHm el G+ % Ckt cijkl) (4.12)
» . , 1 ..
Fyo =3 <C’klmn Cmnzj gij Epl — Clklm Cjklm f]ZJj' + g C”kl Cijkl) , (4.13)

which match the field theoretical results egs. (1.6), (1.7) exactly.

Now let us go on to discuss the anomaly-like entropy for the action eq. (4.1). According
to egs. (4.8), (4.9), we only need to keep trK* and (trK?)? among the K terms. In other
words, we can drop all terms including K,,7*. This helps a lot to simplify calculations.
Note also that, as we have shown in section 2, Quupij ~ O(K?), Ty ~ O(K?).

For My = RWPUR“%B"R”MP, applying the formula eq. (2.10), we can derive the
anomaly-like entropy as

S, = / dpd*yV'h| 247 K .ij Kz R — 1270 K 435 K s (K K™ — K2 0
—96m K K5 R + 48T K K (KoK 5 F — Kok L")
+96m K i K7 Rz — A8TK i KV (—3Ty) | (4.14)
— log(£/5) / Aty oo [247 i B O™ — 12T s (RO ROI™ — i )
b
—967 ki s+ A8mhahsh (ks — ko))
+967rl_czij/52”(l’zm + 2471'(]2’22']'];55”)2] —+ ... (4.15)

where kg;; is the extrinsic curvature on the entangling surface ¥ and l_cm-j is the traceless
part of kqi;. We have used eqgs. (2.20), (4.7)-(4.10) to derive eq. (4.15) from eq. (4.14).

Similarly for My = Ru,}ogépfﬁﬁa;y, by using egs. (2.10), (2.21), (4.7)—(4.10) we obtain

Sy, = / dpd*yV/h| = 3847 K K R.jzi + 192n K K7 (KL K" — Qozzi5)] (4.16)
= log(£/5) / d*yv/ho[ — 384mk ik Crimi — 1927k ik kb + .. (4.17)
)

Recall that F} and F5 can be derived from the entropy of M; and My, respectively.
Using eqgs. (4.15), (4.17), we get the anomaly-like part of F} and F» as

Sa,

Fa =5+ = 12Kk zmnC™" — 6kijkzmn (KPEI™ — ETR™) — 48k.k.5C,.Y
+24k ke (ks — Fankzi") + A8k Crzaz + 12(kijhs”)? (4.18)
Fap = 5; f;‘: = 192k 1k Cyzi — 96k ik ks (4.19)
Now we can obtain Fy = Fy1 + Fa1 and F», = Fys + Fy4o from

egs. (4.12), (4.13), (4.18), (4.19). This is one of our main results. Let us make some
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comments. Firstly, we have used the splittings egs. (2.20), (2.21), which implies that
we require that our action has an asymptotically AdS solution. Secondly, our results
eqs. (4.12), (4.13), (4.18), (4.19) are consistent with those of [37, 38]. We have shown
above that our results agree with the field theoretical results egs. (1.6), (1.7) when the
extrinsic curvature vanishes [37]. As for the case of non-zero extrinsic curvature, let us
compare our results with [38]. In [38], Safdi obtain the universal terms of EE for 6d CFTs

_B
with By = B2 5= in flat space as eq. (1.9). For simplicity Safdi takes vanishing extrinsic

curvature in the time-like direction. In our notation, we have k.;; = kz;; = %k‘” Since
now we do not know F3, we set Bs = 0, By = 2B, for simplicity (We leave the derivation
of F3 to the next subsection). Note also that we have Cjjp; = 0 in flat space. Take all the
above simplifications into account, we derive

S5 l10g = log(£/6) / 2AE, + 91 By[(trk?)? — 2trkY] (4.20)
b

which exactly agrees with the results of [38]. Thirdly, our \/hoF} and /hoFy are obvi-
ously conformal invariant. That is because, similar to Cjj, l_cmj are conformal tensors.
In other words, we have g;; — eQUgij,Cjkl — Kl and kmj — e k:m] under conformal
transformations. To end this section, we rewrite F1 and F5 in covariant expressions

Fl -3 <ijnk C il élj Eny — — Czklm Cjkzlm ~J_ % Cljkl Cijkl)

+3Eai ‘Eamncim‘jn o *Ebijlgbmn(ifinkajm . ];:ij Eamn)
+36% RairkyieC g 38 kaitkyie k. p R

3fe Rmmci s g, 4 3(k“ k02 (4.21)

g mnta ijVa
3 . 1 ..
kl ~ ~ kil ~ 1 kl
P = 3<C' " Crn? &1 Epy — OO G+ +oC0Y Cijkl)

— 128 B Cring g™ — 6k Uk R Ky
+126k Uk, CdCc]dZ+65“bk: Uy 8% ik (4.22)

4.1.2 F3

In this subsection, we derive the universal terms of EE for 6d CFTs dual to Einstein gravity.
Using the result of this sub-section together with F} and F5, we can derive F3.
Recall that the HEE of Einstein gravity is

SHEE = 47r/dpd4y\/ﬁ (4.23)

Applying the approach intruduced in section 3.1.2, we have

1 100, OO, Qo0 0o,
hop = 0+, 0K (XZngZ + XIXTXROLg 4+ AXT X g, )
; 1o, o 2 0
= pk k‘ + p Ek k:]gij +2X kjgij . (4.24)
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(1), )
Here we have used X* = %kl eq. (3.10) and the following ansatz of g(y(i;

gudaide’ = dzdz + T(2dz — 2dz)? + 2iV;(2dz — 2dz)dy’

+(g5; + Qs3)dy'dy’ (4.25)

where T, V, () are given by

(o] o0
T = ZTal...anfEal I Z Valman%xal cxtt =Us+ ..
[e.¢]
= Z Qay...anijr™ ... x"" = =22k ; 5+ x“:vanbZ] . (4.26)

Here z* denote z,z and yé are coordinates on the four-dimensional entangling surface 3.
1 1 @
Using eq. (4.25), we have XlXijﬁk%} ~ O(z*) and thus can be ignored on the entangling

surface (z® = 0). It should be mentioned that, by choosing suitable coordinates, we can
alway write the metric in the form of eq. (4.25) [10]. Note also that the extrinsic curvature
in this subsection (Schwimmer-Theisen notation [46]) is different from the one of other
sections (Dong’s notation [10]) by a minus sign.

Similarly for h%., we have

1o o . e
hi’j‘ = p|:hgj-+p<ggj- —k km]> p h%j':|’ (4.27)

(2)
with h%j given by

@ (YN CV @ © (g © @
= 0; X" 0: X" gy + 0; X" 0: X" gy + 0; X 0 X" g

Ui son O S0\ (O n O
+<8;X 0, X" + 9, X0, X )(gmn+X Ok
(Or>n (0;1 (2) l)k, (1) ;L;é)l (0) ;i
‘H%X 85X <gmn+X Ok Gmn + akalgmn+X 8k9mn>

@ © @ o
64alk;ma '+ 0, X0 X" + 0,X "9, X"

m(1> m(DA i L LT T, . 1T L.NT T,
8(8k S+ Ok >+326mn(a.k KU + 0:K™k"U;)
2 a a1,b k (0)
+G55 + /<; 0.9 +6—4k Qi + Xro, (4.28)

(2)
Let us try to simplify the above formula. Focus on the X™ terms which are relevant to
the logarithmic terms of EE, we have

(2) ¢ (0) @) (0 (0) 2 ©
Sy = 4m log(€/5)/ d4y\/h0 [XlkjgU h”(‘? Xm8 X”gmn + hm"Xkakgmn
X b
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&) © . © © © (0 © (0
= 4mlog(¢/d) / d*y\/h [XZ (K — 0p0a X + 4 a0, X —rﬂklamx’faﬁxl]

© o @
4 log(£/6) / d'yo; (\/ hoh'1 0, Xmxn “’))

(2)

= 4mlog(¢/6) /d y\ hoD; X" (4.29)

where 'y ; and D; are the Levi-Civita connection and covariant derivatives on the entan-
gling surface >, respectlvely. In the above derivations, we have used the definition of the
extrinsic curvature

} © © 0 (0 <o> (0)
Khi = 0n0n X7 = 7500, X7 + 171405, X0, X (4.30)

(2)
Now it is clear that we can drop X safely on closed entangling surfaces. Thus eq. (4.28)
can be simplified as

b= Lo K05k Gon + < Loy, . PN i e L (@KU + DK™ U
iy 64 A Gmn 8 1 7 gmz 3267"" [ J 7 7
+0+ kaaa%) +—k“k Quvi; (4.31)

© ;@ ; n (0 1 m(D) m(1) mo (D @)
= hih [ 3 (V" V3K Goin = K™K Ruving) + 5 (Vik™ g+ Vik™ g i+ K7V g 1) 4G 35
where V,; are the covariant derivatives with respect to ginwn. From eqgs. (4.24), (4.31), we
can derive the logarithm term of EE for CFTs dual to Einstein gravity as

1)

ey
o1 1 3 3
Sy = log((/9) / d'y\/ho {21# =959 S+ SRS - kg’
i ronrdh — Lo gkt T (ko) (4.32)
8 16" il 512

The definitions of (é), (f]) can be found in egs. (3.2), (3.3) with k1 = ko = 0. After some
complicated calculations, we find that eq. (4.32) is conformal invariant up to some total
derivatives. This can be regarded as a check of eq. (4.32). Please refer to appendix B for
the proof of the conformal invariance of eq. (4.32). Using eq. (4.32) together with F} and
F5 of section 2.2.1, we can derive F3.

Fy = —1927%E, + 12F; + 3F,

(2)
1oy wi 1
1192 [h’ 299

) 2 (1)
'L
29459 Ty

~(g')? + k“k Al)w——k“kag

7

k“kzb o — —k"k ik )b
16 * 1021

(kaka)2] (4.33)

This is one of our main results. Now let us consider some special cases below.
Case I: kg =0

(2) 2n (1)
© ¥ 1
Sp = mlog(£/d) /dy\/ [291— 959 +3(9 ;)2]
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3
= log(£/4) / d*y/ho [% > BnFw, +2AE; + BsAS (4.34)
by n=1

where Fyy, = ag{? £ &, denote the Wald entropy eqgs. (1.6), (1.7), (1.8). B, and A are
the central charges of CFTs dual to Einstein gravity, which can be found in eq. (4.5) with
A =0. AS is the famous HMS mismatch [37], which was firstly found by Hung, Myers and
Smolkin that the holographic universal terms of EE does not match the CF'T ones even
for entangling surface with zero extrinsic curvature. Recently, the authors of [12] find that
HMS have ignored the anomaly-like entropy of I3. Taking into account such contributions,
the holographic and CFT results indeed match. After some tedious calculations, we derive

AS as

sl

AS = —4r ( Corn"*C™"™ G757, — Crane*C™ 3
+2Cmnrscmkrlgnsgkl 2C«mnrscmkrl nlgks

4 4 . .
+5 gz]gklgrtngrsclkmrcjlns - giégkllg#mnclkmscjlns> (435)

3 3

Note that the first two lines of eq. (4.35) was derived by HMS [37] under the conditions

kaij = 0 and Rgpe; = 3€apVe; = 0. If we drop the second condition, we get some new terms

in the last line of eq (4.35). Actually, these new terms are proportional to Rgpe; R,
Case II: flat gw and zero gij = g(ﬁ; = 0. Note that this means the bulk spacetime is

pure AdS.

In the above derivations, we have used the flat condition R,;;; = 0. For simplicity, we set
U; = 0. This is also the case studied in [38]. Compare eq. (4.36) with

Sslog = log(£/5) / do/ho |2 4B, +27rZB 7, (4.37)
we can derive Fj as
Fy = 136(166 KO K" G + T(K k) — 16k K5 kok7) — 192724 + 12F) + 3F,  (4.38)
with E4 and F, given by
By = L givisivis phi2, | pivis, 1 4K KDY K],

1287T2 J1J27374

= _§kbijkbmn(k2“’5“jm — kT + 36abkail%b§'66d%ck%djk i(kawkmj )

39772 J1J27374 i1'va 12
Fy = 6k, kW kyuk? [ * + 62k k) ek ik (4.39)

To derive F4 in the above equation, we have used the ‘flat-space condition’ Rllj o = Bsijri—
(k:m-kkajl - k‘ailkajk) = 0. F; and F5 are obtained from egs. (4.21), (4.22) with Cjji = 0.
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Eqgs. (4.38), (4.39) apply to the case with flat space-time on the boundary. This is also
the case studied in [38]. Recall that the author of [38] makes two further assumptions [38].

_bB
The first one is By = B2~73 . And the second assumption is zero extrinsic curvature in the
time-like direction. So we can drop the indices (a, b, ¢, d) in egs. (4.38), (4.39). We get

Slios =10g(£/8) / dha/ho
>

3
2AE4 +37TBl (2T1 —Tg) —127TBQ(T2)+67TB3(T3 +9T1 —12T2) 5

(4.40)
where the definitions of T, can be found in eq. (1.10). Note that eq. (4.40) reduces to the

_B
result of [38] eq. (1.9) when B3 = b 5= This is a non-trivial check of our results.

4.2 Logarithmic terms of EE from a general action

In this sub-section, we investigate the universal terms of EE by using the general higher
curvature gravity. We prove that it yields the same results as the above section. Our main
method is the background-field approach developed in [36]. For simplicity, we focus on the
action without the derivatives of the curvature S (GMV,RMVJP). Besides, we assume this
action has an asymptotically AdS solution.

We firstly expand the action around a referenced curvature RWW = —(G’WGW —
Gwél/p)- According to [36], only the first few terms are relevant to the holographic Weyl

anomaly and the logarithmic term of EE. We have

3 mn

>2> MK+ 0o

S(Guvs Ruvop) = / d'X\/ -G
n=0 i=1

(1)
A c » 2) 5 DUV po 3)HP DUV PO 3) 5 D PUpPo
= /d7X —G[— 11—2(R+30)+c§ ) Rivpr R+ Ry R+ Ry R RVP7P
+ My + Oy + O(p4)} (4.41)

(n)

where ¢; ' are some constants determined by the action and m,, is the number of inde-

pendent scalars constructed from appropriate contractions of n curvature tensors. For
example, mi; = 1,mg = 3, m3 = 8. K]' = thé_}(}?_é)} with K}* the independent scalars
constructed from n curvature tensors. For example, we have

~

Ki =R,
K? = (Rupe R™P°, R, R"™, R?),
K} = (R, RRyB*™  RRyype R'P7, RERORY, RMY RP Ry poy, Ry RMPTORY
Ryupa RAXR, | Ryppe RO R, 1),
(4.42)

For simplicity, we focus on the case with ¢? = 0 in this paper. Without loss of generality,
we set cf = —12,¢3 = A3, g = A4, ¢ = Ao, ¢ = A1. Then the general action becomes

S = / d"X\) =GR 430 + M My + Ao My + A3 RRyp0 R**7 + MRy, R R777 4 O(p*)]
(4.43)
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Please refer to eq. (4.2) and eq. (4.3) for the defination of M,, and R, respectively. According
to [36], the Weyl anomaly of dual CFTs is (T%; ) = 23 B, I,+2A Eg with central charges

n=1

given by eq. (4.5)

A =73,
By = —i + A1,
16
1
BZ = _674 +>\27
By = % (4.44)

Remarkably, the CFTs dual to the gravitational theories eq. (4.1) and eq. (4.43) have
exactly the same central charges. This means that they must have the same universal
terms of EE too. Thus RRWWRWW and RuVR”pUﬁR”M/B in the action eq. (4.43) can not
contribute to universal terms of EE in order to be consistent with the results of section
4.1.1 and section 4.1.2.

Following the approach of section 4.1.1, we find that the Wald entropy of RRWWR“” ro
and RWE’“ oo ﬂ]:’d’ P78 is indeed irrelevant to the universal terms of EE. However, mismatches
come from the anomaly-like entropy if we choose Qo.z;; and T to be zero as in the original
work of [10]. This implies that the splittings of the conical metric eq. (2.12) are necessary.
Applying egs. (2.10), (2.20), (2.21), (4.7)-(4.10), we get the anomaly-like entropy as

SAnomaly = - / dpd4y\/ﬁ|:)\3Kzz]K5” (gKamnKamn - KaKa - 2@8(12 + 24T())

iJ mn m A aim j aij aij
+A4Kzin2](sznK2 _QO zZZm +6T0)+74Kzle2l](2K K(l’fgb _KaK ]_Qa]) +..

0 log(1/8) + ... (4.45)

where ‘...  denotes terms irrelevant to the logarithmic terms of EE. In the above derivations,

we have used the splittings eqs. (2.20), (2.21) and the fact that only the tr K* and (trK?)?
of the O(K*?) terms contribute to the universal term of EE for 6d CFTs. Now it is clear
that R]:ZWpUR“V”" and RWR“ p Jﬁ}?"p"ﬁ indeed do not contribute to the logarithmic terms.
So the higher curvature gravity with ¢? = 0 gives the same universal terms of EE as those
of section 4.1.1 and section 4.1.2. As for the case with ¢? non-zero, the calculation is quite
complicated. But there is no indication that this case would give a different result. We
leave the check of this case as an exercise for the readers. Finally, it should be mentioned
that, in addition to equations of motion, eq. (4.45) can be regarded as another derivation
of the splittings egs. (2.20), (2.21). That is because different higher curvature gravity
must give the same formula of universal terms of EE. Therefore, the logarithmic terms of
eq. (4.45) must be zero.

5 Field theoretical method

In this section, we compute the universal terms of EE by using the field theoretical method
and then compare with the holographic results. Similar to the bulk case, we meet the
splitting problem. Since now we do not know how to fix the splitting problem on the
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boundary, we assume the most general expressions. We find that there indeed exists suitable
splittings which could make the holographic and the field theoretical results match.
Recall that Weyl anomaly for 6d CFTs is given by

3
(T';) = Bnln+2AEs, (5.1)

n=1

where Ejg is the Euler density and I; are conformal invariants defined by

I = CrC"™e, M, L =cy;MCy,m™C,,7, (5.2)
1 i 6 1 jklm
I3 = Cigim <v2 0+ 4R — < R5j> carm (5.3)

In the field theoretical approach, one can derive the universal terms of EE from the Weyl
anomaly. Take the Weyl anomaly as a gravitational action and then calculate the ‘entropy’
of this ‘action’. It turns out that this ‘entropy’ equals to the logarithmic term of EE for
CFTs [35, 37].

5.1 Fl and F2

Let us firstly study the case of F; and F>. We find that the field theoretical results exactly
match the holographic ones for the C? and Ck? terms. As for the k* terms, one meet with
the splitting problem for go.z;; and tp. Since now we do not know how to fix the splitting
for ¢, q on the boundary, we assume the following general expressions

to = z1kamn k™" + 29k k®
q0 zzij = (xlkzimkgmj + 2 gijkzmnkzmn + ylkzkfij + Y2 gijkzki) + c.c. (54)
Recall that, in section4.1.1, we have already proved that the field theoretical results match
the holographic ones for Wald entropy (C? terms), so we focus on the anomaly-like entropy

below.
Applying the formula eq. (2.10), we get the anomaly-like entropy for I; eq. (5.2) as

Sl = / d4y\/ h()[ 247TEZ¢j]_<ngnCimjn — 127rl?:zijl?:gmn08mj”
¥
—QGW%Z]_CngCijz + 487T]_Cglzigmjoéjzg
967T];72mn];72mn022z2 - 4gﬂkzmnk2mnco 2Z22Z ] (55)

where Eaij is the traceless part of the extrinsic curvature and Cy ~ k? is defined in the
appendix. C. Comparing eq. (5.5) with eq. (4.18), we find that the Ck® terms match
exactly. If we require that the k% terms also match, we get a unique solution to eq. (5.4)

1 1
z =1, 90221—621, y1 =0, yzz—ﬁ—&“z (5.6)
Let us go on to compute the anomaly-like entropy for Is eq. (5.2). Using eq. (2.10),
we obtain
Sy — / d*y/ho| — 384rk,’ k" Clyzi + 1927k, kS Co iz ] (5.7)
b
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where Cy ~ k? is given by eq. (C.3). Similar to the case of I7, the Ck? terms of eq. (4.19)
and eq. (5.7) match exactly. The k* terms also match if we impose the condition eq. (5.6).
This is a non-trivial self-consistent testing of the splittings eq. (5.6) on the boundary. Note
that comparing the holographic results and the field theoretical results for F} and F3 does
not fix z1, z9.

To end this section, we show some details of the derivation of eq. (5.6). For simplicity,
we focus on the case of vanishing extrinsic curvature in the time-like direction (one can
check that the general case gives the same results). Then we can replace k,;; by %k” From
egs. (5.5), (5.7), (C.6), we can derive the k% terms as

3
= / d4y\/ ho [ 371'[31(371 — 2) — 4ngl]t7“k‘4 — ?ﬂ-[Bl (.’171 — 2y1 — 3) — 432(1 +x — 2y2>]]{?t7"k‘3
)

3
+—7[B1(21 4 221 + 282 + 16821) + 4By (1 + 221 — 1229 — 7221)](trk?)?

20
3
+ﬁﬂ-[31(19 + 6y1 — 56y — 33622) + 432(9 — 14y + 24y + 14422)]145
3
%W[Bl( 79 + 3$1 — 28.732 — 32y1 + 112y2 — 1682’1 + 67222)

—4B5(29 4 Txy — 1229 — 48y, + 48ys — 7221 + 288z2)]k2trk2} (5.8)
For 6d CFTs with B = 0, the holographic k* terms eq. (4.40) becomes
SE|log == log €/5 / d4y\/ |:371’Bl< T2> - 127TBQ(T2):|

= log(¢/d) / d*y\/h 37r[ (By + 4By)trk® + (By + 4By)ktrk® + gBl(ter)z

3 3
—5 3B+ ABo)k*trk? + G138+ 4132)1@4} . (5.9)
Compare eq. (5.8) with eq. (5.9), we find a unique solution
a1t Y R (5.10)
=1 e =7 =021, 91 =0, 2 = = — 02 :

Note that By and By are independent central charges, so there are ten equations (5.8) for
six unkown parameters. Thus it is really non-trivial that we have consistent solutions.

5.2 Fj

Now let us go on to study the F3 term. In section 4.1.2, we have discussed the holographic
F3 for two interesting cases. In this first case we set kq;; = 0 and derive the C? terms of
F5 eq. (4.34). And in the second case, we focus on the flat boundary spacetime and obtain
the k% terms of Fy eqs. (4.34), (4.40). In this section, we calculate the corresponding field
theoretical results and compare with the holographic ones. We find that the C? terms of
F5 indeed match. This can be regarded as a resolution of the HMS puzzle [12, 37]. While
for the k* terms, we have to deal with the splitting problem. We assume eqgs. (5.4), (5.6)
and check if this assumption of splitting could pass the F3 test or not.
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Case I: kq;; = 0. Let us firstly investigate the case with zero extrinsic curvature. It
is found by HMS [37] that there are mismatches between the holographic and the field
theoretical universal terms of EE even for the entangling surfaces with zero extrinsic cur-
vature. Recently, the authors of [12] find that HMS have ignored the anomaly-like entropy
from the Weyl anomaly I3. After taking into account this contribution, the holographic
and CFT universal terms of EE indeed match [12]. For simplicity [12, 37] both focus
on the cases with kg;; = 0 and Rgpes = 3€qp Vs = 0. Here we drop the second constraint
Rapei = 3eqp Ve = 0 and check if the holographic and the field theoretical results still match.
We only need to compare AS eq. (4.35) with the anomaly-like entropy from I3. That is
because the anomaly-like entropy of I; and I3 vanishes for kq;; = 0. Note further that the
anomaly-like entropy of I3 only comes form CijleC'ijkl = —VmCijlemCijkl for the case
of zero extrinsic curvature.

When the extrinsic curvature vanishes, the splitting problem disappears and the
anomaly-like entropy for the gravitational action with one derivative of the curvature is

given by [12]
0*L Q22ij Qzzkl
Sanomaly = 27 [ d'D —2)yVh |64 Lz
Anomaly ”/ )yf[ <6szmlaszzkzz>al By
+96i =+ ce
<8szzizlav5Rzzzk a /8(11
9’L VaVz
144 5.11
+ <8szzzzlaV2Rzzzk>al Bal 7 ( )
where ),V are defined in the conical metric
ds? = e2A[dzdz + * T (zdz — 2dZ)?] + 2ie* Vi (zdz — 2dZ)dy’
+(hij + Q”)dy’dyj (5.12)
Here A = —$1g(2Z + b?) is regularized warp factor and V;, Q;; are defined as
Vi = Ui + 2Vii + 2Vz + O(27),
Qij = Z2szij + 52@221']' + 2226214@25”‘ + 0(2’3) (513)
Applying the formula eq. (5.11), we derive the anomaly-like entropy of CijleCijkl =
—VmCijlemCijkl as
Sy = / d*y/ho [1287Q 215 Q 52" + 432m V., V.. (5.14)

It should be mentioned that the total entropy of DCijleij kL vanishes by using the approach
of [10, 12].
Substituting the conical metric eq. (5.12) with A = 0 into AS eq. (4.35), we get

AS = [1287Q..i;Q=2" + 432nV,;V."]. (5.15)

which is exactly the same as eq. (5.14). Thus the holographic and the field theoretical
results match for the C? terms of Fj.
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Case II: flat 532; Now let us go on to study the case with flat spacetime on the boundary.
The holographic result of 27 F3 is given by eq. (4.40)

SE|log = log(ﬁ/é) / d4y\/ ho [67T(T3 + 977 — 12T2)] s (5.16)
%
with

- - 2
Ty = (trk?)?, Ty = trk?, Ty = (V,k)% — 1—2194 + 11k rk? — 6(trk®)? — 16ktrk® + 12trk*.
(5.17)

Applying the method developed in [10, 12] together with the splittings egs. (5.4), (5.6),
we can derive 2w F3 as the entropy of I3. We list the results below.

I For ds? = dzdz + (1 + #)Qdy% + dy3 + dy3 + dyj, we obtain the entropy of I3 as

27w
S]|1Og:/2d4y ho = (5.18)

which agrees with the holographic result eq. (5.16) with kzj = diag{1,0,0,0}.

II For ds? = dzdz + (1 + 23%)*(dy} + sin® y1dy3) + dy3 + dy3, we derive the entropy of
I3 as

St1log = / d*y/ho 30, (5.19)
>

which matches the holographic result eq. (5.16) with k% = diag{1,1,0,0}.

III For ds? = dzdz + (1 + ZE2)2(dy? + sin® y1dy3 + sin? yy sin? yody?) + dy3, we get the
entropy of I3 as

4597
Sirhog = / dyv/ho (5.20)
>

which is consistent with the holographic result eq. (5.16) with k:gj = diag{1,1,1,0}.

IV For ds* = dzdz + (1 + Z2)%(dy? + sin®yidy + sin?yisin® yody3 +
sin? y; sin? ys sin? y%dyi), we have the entropy of I3

Srvhog =0, (5.21)
which also agrees with the holographic result eq. (5.16) with k%j = diag{1,1,1,1}.

Now it is clear that the splittings eq. (5.4), (5.6) have passed the F3 test. Remarkably,
we cannot fix the splittings completely by comparing the holographic and field theoretical
universal terms of EE. It seems that we have more than one way to split the conical metrics
on the boundary and such freedom does not affect the universal terms of EE.
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6 Conclusions

We have investigated the universal terms of EE for 6d CFTs by applying holographic and
the field theoretical methods, respectively. Our results agree with those of [37, 38]. We find
the holographic and the field theoretical results match for the C? and Ck? terms. While
for the k* terms, we meet the splitting problem for the conical metrics. We fix the splitting
problem in the bulk by using two different methods. The first one is by using equations of
motion and second one is requiring that all the higher derivative theories of gravity yield the
same logarithmic terms of EE. These two methods give consistent results for the splitting in
the bulk. As for the splitting on the boundary, we assume the general forms and find there
indeed exists suitable splitting which can make the holographic and CFT k* terms match.
Since we have much more equations than the free parameters, this match is non-trivial.
Remarkably, we can not fix the splitting on the boundary completely by comparing the
holographic and field theoretical results. It seems that we have some freedom to split the
conical metrics on the boundary and such freedom does not affect the universal terms of
EE for CFTs. That is not surprising, since the terms (Weyl anmoly) we studied are quite
special. Actually, for Lovelock gravity, arbitrary splitting would not affect the entropy.
How to fix the splitting problem on the boundary is an interesting problem. For the cases
with gravity duals, we could obtain the conical metrics on the boundary from the one in the
bulk. While for the general cases, now it is not clear to us how to fix this problem. We hope
to address this problem in future. Finally, we want to point out how much our holographic
results F; eqs. (4.21), (4.22), (4.33) depend on the splittings. It turns out that that the
combinations (F3 — 3Fy — 12F)) and (2F; + F) are independent of the splittings, due to
the fact that they can be derived from the holographic entanglement entropy of Einstein
gravity and Lovelock gravity which are irrelevant to the splittings. In other words, our

_B
results do not depend on the splittings when the central charges satisfy Bs = 323 ERN

Without loss of generality, we choose Fy as the third independent combination of F;. As
mentioned above, the splitting problem does not affect the C? and Ck? terms. Thus, only
the k* terms of Fy are relevant to the splitting problem.
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A Universal relations from extremal entropy condition

In this section, we derive the universal identity eq. (3.10) by taking the variation of the
entropy functional. For simplicty, we focus on Einstein gravity in asymptotically AdS

space-time. The basic idea is to study the variation of the universal logarithmic terms of
the entropy functional.
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Recall that the embedding functions of the entangling surface m into the bulk are given

by
. (0) N (1) . (2)

Xi(r,y0) = X)) + X (P ) + X ()2 + . .. (A1)
from which we can derive the induced metric on m as
2
1 ( 22) ml(o) 2
h”:w<1+ Ad-2) X' X'g ;T +> (A.2)
1/© (452 (0) (T) i
hij = T<h%j—|— (28( Xma)X"gmn+8Xm8 X" X akgmn) 2—|—...>,(A.3)
(432

where we only list terms including X°® in the above equations. Remarkably, only
42
the lineared terms of X' appear in the logarithmic terms of the entropy functional

1 d—2
ic Jsdr [5d yVh
1 43 @ @ 0 I 1 (0)< ) 0
Stog = E1og(£/5 /dd 2yv/ho { (d—2) X' X/ g5+ hio, X"o; X" G + h“ Xk 8kg”:|
(A.4)

453 453

where /. .." denote terms without X' . Taking the variation of X’ for eq. (A.4), we get

) 1 ©omn o  © © © ©
Xi=—_—~ _p (mﬁXJ X 4 T30, X X)
2(d—2) OO Y mna + 14,05, X" 05
1 .
= K A5
2(d— 2) (A-5)

R (0)
where Vf%ﬁ and F ; are the Levi-Civita connection with respect to hM and g ij» Tespectively.

Now we ﬁnish the derivations of eq. (3.10) from the extremal entropy condition. Al-
though we only studied the case of Einstein gravity , similar to (é)ij eq. (3.2) it is expected
that our approaches and conclusions of this section can be generalized to the general higher
derivative gravity, due to the fact that the universal relation eq. (3.10) can be derived from
PBH transformation [46]. This means that, at the leading order, the asymptotic symmetry
forces that the extremal entropy surface (bulk entangling surface ) approaches the minimal
area surface near the AdS boundary. Of course, they can be different at the subleading

(n).
orders near the AdS boundary, since X* with n > 2 are non-universal. Fortunately, we do

().
not need X* with n > 2 for the derivations of universal terms of EE for 4d and 6d CFTs,

similar to the case that we do not need (5)“ with n > 2 for the calculations of holographic
Weyl anomaly for 4d and 6d CFTs [36].

B The conformal invariance of Fj3

In this section, we prove that the logarithmic terms of EE for Einstein gravity Sg eq. (4.32)
are conformal invariant. Recall that F3 is a combination of Sk and the conformal invariants
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F1, Fy, E4. Thus, equivalently, we shall prove Fj is conformal invariant. For simplicity, we
focus on the infinitesimal conformal transformations. According to [47], we have

(0)

0¢g, = 20
5(3” = ViV-a
52 i &) 1., &) layk
Gy = —2005;+ V oVigi; = 5V VGG jym + 596 Vi) Vo (B.1)
and
Sk = —hijg " Vo

O™ = —20k™ — 451"V 0
ST = 61"V + 61'Vio — ¢,V "0

SRiji = 20Riji + 94V Vio — 03 ViVio +'9 3 ViVio — 43 ViVio  (B.2)
Substituting eqgs. (B.1), (B.2) into eq. (4.32), we get

. 1 .
8,55 = mlog(£/d) / d*y\/ho [?;”hwkmvma+ DRV ViVio 4 1g " B Riin; Vo

Wi

_29 (1)

% ~ L] 3 m n
KV o+ BIV™G Vo — G HIY,,0V, G — gk kmk" V0
1 mi.mn 1) 1 m nij (l)i mj (1)ij mn
+Zk K"V, Vo — gijkivjo + 5]6 kmijk Vo — gmh 'Viv]'0+ g h”h Vi Voo
y 1 . 1 . 1 ..
N CAVATA VY JAEE TRV ik Vo — e hIRV ik V0 4 GBIV RV o
5 ’ 1 ’ 1)id i 1o
— g5k kY0 4 Sk k™Y V0~ 29 hiy VEGE Ve — LIV 5 Vo
1.
—igl”hklvkl@ﬁsza . (B.3)
Let us try to simplify the above complicated results. The trick is to replace the covariant

derivative V; with respect to (2})“ by the intrinsic covariant derivative D; with respect to
hi; as much as possible. Besides, we find the following formulas are useful:

W RN Vi = Di(hVy,) — K™ Vi
h;ﬂh’;vmvno = D;Djo — k:"Z’ija
RN hij = King + Kjni
ke V™ = K"k,
KWW Rynpgt = K™ (Y ki — Vikmis)
1 ) . ) .
k™A PRI R ik Vo = 5 Dio D' (K" k) — D'o DY (K™ kimis) + Vikmk™V jo
Wk, Y, Vo = DY WK™V, Vo) — k"E"V, V0 — RIVk™V,, Vo (B.A4)
Applying the above formulas, we can simplify §,Sg as

; Jjm
5,85 = mlog(/s) / dy\/h DZ[ WK™ Vo + g k™ Dio — hij'g” Vo
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1 1 A

which are just total derivatives. Now it is clear that Sp eq. (4.32) and thus Fj eq. (4.33)
are conformal invariant up to some total derivatives.

C Weyl tensor

The Weyl tensor in D-dimensional spacetime is defined as

2 2
C;wpa = Rp,l/pcr - m(gu[pRo]y - gl/[pRO']u) + (D — 1)(D — 2) R GulpYolv- (Cl)

Here we list some useful formulas.

Cozoz = €01 2oz + €24C0 2223,
O wovs = —3Ty + 5 [KennK2™ — Qo =", + 6T1)
_ 1
WD—-1)(D—-2)
Clizj = €*AC1 Lizj + Co izj,
Co »izj = KoK — Qo 2z

(3Kcmanmn - KCKC - 2C)()ccmm + 24T0) (02)

1 1 1
~D_3 KK — K Keij = 5Q0" cij + Gij (B emn ™" = Qq oz + 6T0)
1
+ Gij (BK emn K" — K K€ —20Q )" + 24Tp) (C.3)

2D—-1)(D—2)
Cirjt = C1 irgi + e 24Co it
Co ikt = Kaa K, — Kaij K

2
D5 [9:1iRo gk — 9xj Ro 1]

2
+ CEOES) it 9k 3K emn K™ — KK — 2Q0%,™ + 247Tp) (C.4)
Ro ij = 2KaimKamj — KaKaij — anij (C5)

Let us focus on the case of [38] with Kg;; = %kij, Qo »zij = %qij and D = 6. We have

1 9
CO 2Z2Z — %(2kmnkmn + k2 - SQ) - gtO
1 1 1 9

vizi = —2Gij + 2kkij + = gij(kmnk™" — 2k° — —109ij

Co 2izj 8q3+8 ]+809]( +q) 10 09i;j
1 1 mn

Co ikji = (kilkjk—kijkkl)—§(9i[j7”o 1k —9k[j"0 l}i)+Togi[jgl]k(3kmnk —k?—2q+24to)

To ij = Qkimkmj — kkij — qij (CG)
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