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A heritable form of SMARCE1-related meningiomas
with important implications for follow-up and family screening
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Abstract Childhood meningiomas are rare. Recently, a new
hereditary tumor predisposition syndrome has been discovered,
resulting in an increased risk for spinal and intracranial clear
cell meningiomas (CCMs) in young patients. Heterozygous
loss-of-function germline mutations in the SMARCE1 gene
are causative, giving rise to an autosomal dominant inheritance
pattern. We report on an extended family with a pediatric CCM
patient and an adult CCM patient and several asymptomatic
relatives carrying a germline SMARCE1 mutation, and discuss
difficulties in genetic counseling for this heritable condition.
Because of the few reported cases so far, the lifetime risk of
developing meningiomas for SMARCE1 mutation carriers is
unclear and the complete tumor spectrum is unknown. There

is no surveillance guideline for asymptomatic carriers nor a
long-term follow-up recommendation for SMARCE1-related
CCM patients as yet. Until more information is available about
the penetrance and tumor spectrum of the condition, we pro-
pose the following screening advice for asymptomatic
SMARCE1 mutation carriers: neurological examination and
MRI of the brain and spine, yearly from diagnosis until the
age of 18 and once every 3 years thereafter, or in between if
there are clinical symptoms. This advice can also be used for
long-term patient follow-up. More data is needed to optimize
this proposed screening advice.
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Introduction

Meningiomas mostly arise in middle-aged people. Occurrence
in childhood is rare [1]. Meningiomas account for a small
subset (1–4 %) of all pediatric brain tumors [2]. A meningio-
ma in childhood can be the first presenting symptom of neu-
rofibromatosis type 2 (OMIM 101000), caused by mutations
in the NF2 gene [3–5]. Our knowledge of the etiology of
meningiomas not caused by neurofibromatosis type 2 is still
limited [6]. Some meningiomas are caused by germline mu-
tations in the SMARCB1 gene, but here the risk for single
meningiomas without the occurrence of schwannomas is rare
[7, 8]. Meningiomas may also occur due to germline muta-
tions in SUFU [9, 10].

One subtype of meningiomas, the clear cell subtype, arises
more frequently in young people compared to more common
subtypes of meningiomas [11]. Clear cell meningiomas (CCM)
are a subtype with a specific histology and in situ behavior. The
tumors are more aggressive with a tendency to recur and
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metastasize within the CNS compared to nonclear cell meningi-
omas. In theWorldHealthOrganization classification of Btumors
of the CNS,^ clear cell meningiomas are defined as grade 2
because of their aggressiveness [12]. Early detection and treat-
ment are therefore of paramount importance for this tumor type.

Recently, marked steps in the etiologic understanding of
clear cell meningiomas were taken. In 2013 and 2014, Smith
et al. reported on heterozygous germline mutations in the
SMARCE1 gene in 16 patients from 11 unrelated families with
spinal and intracranial CCM [11, 13, 14]. The patients were
mostly children, adolescents, or young adults. The first muta-
tions were detected after whole-exome sequencing and further
cases were proven by Sanger sequencing. In the examined
tumors, loss of the SMARCE1 protein was shown by immu-
nohistochemical analysis. Tumor DNA showed loss of hetero-
zygosity (LOH) of the wild-type allele or a second
inactivating mutation as a second hit in some tumors, imply-
ing a tumor suppressor function of the SMARCE1 gene. These
findings prove the existence of a hereditary tumor predisposi-
tion syndrome with an increased risk for spinal and intracra-
nial CCMs (OMIM 607174). Genetic testing and counseling
in afflicted families have now become possible by finding the
causative gene but poses new questions and difficulties be-
cause of the sparse knowledge so far.

Here we present a family with a pediatric CCM patient and
an adult CCM patient and several asymptomatic relatives car-
rying a germline SMARCE1mutation.We propose a screening
advice for asymptomatic carriers in the family and for long-
term patient follow-up.

Case report

A 10-year-old boy was referred to our centre because of recent
onset of hearing loss and tinnitus of the right ear. He
complained about blurry vision. His medical history was un-
remarkable apart from treatment with methylphenidate be-
cause of ADHD. Physical examination of the ear, nose and
throat showed no abnormalities apart from an abnormal
Weber test to the left, and an asymmetric reaction of facial
nerve. The audiogram showed a sensorineural hearing loss
of the right ear, with a downsloping audiogram and complete
loss of higher tones indicating damage to the acoustic nerve.
The MRI scan of the brain showed a large extrinsic tumor in
the right cerebello-pontine angle with severe compression and
displacement of the brainstem (Fig. 1). The tumor could be
removed in two successive surgical sessions. In the first sur-
gery, the tumor mass could be taken out almost completely
except for a very adherent remnant on the vertebral artery and
a second separate tumor on the other side. In spite of the close
involvement of the lower cranial nerves, all these nerves could
be saved anatomically and functionally as monitored intraop-
eratively. Pathological examination of the tumor showed a

clear cell type meningioma, WHO grade II (Fig 2).
Hereafter, a second surgery with the aim of radical resection
of the remnants was undertaken with good results (Simpson
classification I). Post-operatively, the patient experienced
swallowing difficulties due to multiple cranial nerve apraxia.
In due time, he recovered well and, after 4months, he was able
to speak, eat and drink normally while some atrophy of the
right part of the tongue remained. There has been no local
recurrence of tumor during 1-year follow-up.

Sanger sequencing of the SMARCE1 gene in DNA from
blood showed a 1-bp deletion causing a frameshift in exon 9:
c.814delA, p.Arg272Glyfs*5. This particular mutation was
not reported before, but the nature of the mutation makes it
very likely pathogenic. Analysis of tumor DNA showed ho-
mozygosity of this mutation indicating loss-of-heterozygosity
(LOH) at the mutation locus (Fig 3). Mutation analysis of the
NF2 gene was normal.

Family history

The parents of the patient were tested for the SMARCE1 muta-
tion after genetic counseling. The father was shown to be a
carrier. An MRI brain and spine showed no tumors. As shown
in the pedigree, the paternal grandmother had a spinal tumor
removed at age 36. The initial pathology report mentioned an
ependymoma, but revision showed a clear cell meningioma
grade II. Recent follow-up with MRI showed no abnormalities
at age 70. The brother and sister of the index case and a paternal
aunt proved to be asymptomatic carriers after presymptomatic
testing. All were referred for neuroaxis screening and MRI of

Fig. 1 Heterogenous tumor within the right cerebello-pontine angle
causing severe compression of the brainstem. This T2-weighted MRI
image in the transversal plane illustrates the extrinsic nature of the lesion
with a differential diagnosis of meningioma or Schwannoma
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the brain and spine in follow-up. A recent MRI brain and spine
showed no abnormalities in the aunt. MRI brain of the brother
at age five because of temporary diplopia showed no abnormal-
ities. The further MRI results of the brother and sister are pend-
ing. The family pedigree is shown in Fig. 4.

Discussion

This case report shows further evidence for the role of
SMARCE1 mutations in the etiology of clear cell meningiomas.
We address here the following questions: why to screen, who to
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Fig. 2 H&E staining of the tumor
(a, magnification ×20), partly
consisting of clear cells on the
right side. The asterisk indicates
meningothelial cells. In (b) to (d)
more detailed micrographs
(magnification ×40) of the clear
cell component after PAS, EMA
and progesterone receptor
staining, respectively

Blood lymphocyte 

Tumor 

Normal control 

Fig. 3 DNA sequencing chromatograms from the patient’s blood
lymphocyte DNA and tumor DNA from fresh frozen tissue, and a
normal control for reference. The mutation locus of the SMARCE1
c.814delA frameshift mutation is indicated by the red arrows. In blood
lymphocyte (germline) DNA, the mutation is present in heterozygous

state, while in the tumor, it is present in homozygous state, indicating
loss-of-heterozygosity (LOH) at the mutation locus. The minimal
amount of wild-type sequence that is visible in the tumor sample is
caused by a small amount of normal tissue mixed with the tumor cells
(color figure online)
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screen, what to screen and how to screen in afflicted families and
discuss the difficulties in determining what is the best practice.

Why to screen?

Early detection of meningiomas is of highest importance to
prevent damage of surrounding tissue and dissemination. It
also enhances the chance of total radical resection. For child-
hood and adolescent meningiomas, the extent of the initial
surgical resection is the strongest independent prognostic fac-
tor [15]. Radical neurosurgical resection of very large tumors
in eloquent areas may be more hazardous to the patient with a
greater chance of (transient) post-operative morbidity, as illus-
trated in our case. Clear cell meningiomas tend to behave
more aggressively and have a tendency to recur and metasta-
size, making it even more paramount to discover this type as
early as possible [12]. Unfortunately, meningiomas frequently
cause symptoms late, only after they have grown slowly to a
large size. The mass effect of the lesion on the environment
finally creates symptoms, like in our patient. This may inter-
fere with early detection. Screening in high-risk groups could
therefore be beneficial.

Who to screen?

Patients that have been treated for a meningioma will remain
in follow-up for several years but are discharged thereafter
because the risk of recurrence will decline. However, patients
with a history of a SMARCE1-related meningioma will prob-
ably remain at a higher risk for further CCMs, particularly if
female. This makes them a possible high-risk group for which
a long-term follow-up schedule might be beneficial. It is cur-
rently unknown whether the risk for CCMs remains increased
during the rest of the lifetime or decreases substantially after a
certain age, as in NF2 where the risk for new tumors declines
with older age [16]. We believe that long-term screening is
advisable until we have more knowledge on this.

Carrier family members could constitute a second high-risk
group for CCMs. Presymptomatic testing of family members
after genetic counseling can be beneficial because it allows for
justified screening and early tumor detection in carriers.
However, genetic counseling is complicated by the fact that
the penetrance of the disease and the lifetime risk for CCMs
are unknown at the moment. Moreover, no established guide-
line is available providing a screening advice. Penetrance of

Fig. 4 Pedigree of the family
with the SMARCE1 mutation.
Current age is mentioned below
the square/circle. + = mutation
positive, − = mutation negative.
Solid black = CCM patient, age of
detection of CCM is mentioned
below the current age. Solid
white = clinically
asymptomatic.? = testing not
started yet
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the disease could be overestimated based on current literature,
as only a few families have been described so far with prob-
ably a detection bias towards families with more than one
patient. Several asymptomatic carriers of different ages and
gender were detected in the family reported here. Incomplete
penetrance for meningiomas in SMARCE1 mutation- positive
families was shown before by Smith et al. They found three
asymptomatic male carriers, aged 17, 71, and middle age,
coming from three different families with more than one me-
ningioma patient [13, 14].

What to screen?

There is no certainty about the complete tumor spectrum of
this tumor syndrome as of yet.We know from other autosomal
dominant hereditary cancer predisposition syndromes that tu-
mors can arise in different and distinct tissue types, for exam-
ple, in Lynch syndrome and Von Hippel Lindau syndrome
[17, 18]. In those diseases, the problem is bi-allelic shutdown
of a tumor suppressor gene within the tumor tissue. It appar-
ently depends on the nature of the exact tumor suppressor
gene, which types of tissues will be at risk for tumor forma-
tion. The evidence of the few cases of SMARCE1-related
CCMs that have been published so far, together with the ev-
idence of the patient reported here, shows that the SMARCE1
gene also acts as a tumor suppressor gene [13]. In the clear cell
meningiomas, there is a second hit causing inactivation of the
wild-type allele [14]. So far, no other tumor types than spinal
and intracranial CCMs have been described in SMARCE1-
positive patients. Strategic gathering of patient and family data
can help determine if we need to be on the lookout for other
types of tumors in carriers, and further knowledge is need-
ed to better understand why loss of SMARCE1 expression
specifically leads to CCMs. For now, we propose to screen
for spinal and intracranial CCMs only. Raffalli-Ebezant et
al. reported on a carrier female who appeared to have mul-
tiple, asymptomatic spinal lesions in keeping with
intradural meningiomas [11]. This suggests that multiple
tumors can be present and screening of the whole brain
and spine is advisable.

All mutations in the SMARCE1 gene found so far in CCM
patients are loss-of-function mutations, including frameshift
and nonsense mutations, an inversion and two large deletions
[11, 13, 14, 19]. Missense mutations in the SMARCE1 gene
cause a clinically very different syndrome called Coffin-Siris
syndrome (OMIM135900) with congenital mental retardation
and dysmorphisms as main features [20, 21]. The so far
known CCM patients with a loss-of-function SMARCE1 mu-
tation have no clinical signs of Coffin-Siris syndrome, and
screening for developmental delay or dysmorphisms is there-
fore not necessary.

It is currently unclear if missense mutations in the
SMARCE1 gene causing Coffin-Siris syndrome predispose

to CCMs later in life. This combination has actually been
described very recently for a related gene causing Coffin-
Siris syndrome, the SMARCB1 gene. A patient with Coffin-
Siris syndrome phenotype and a constitutional missense
SMARCB1 gene mutation developed schwannomatosis [22].

How to screen?

Until more information is available about the penetrance and
complete tumor spectrum of the condition, we propose the
following screening advice for asymptomatic SMARCE1 mu-
tation carriers: neurological examination and MRI of the brain
and spine, yearly from diagnosis until the age of 18 and once
every 3 years thereafter, or in between if there are clinical
symptoms.

For asymptomatic carrier children/adolescents, more fre-
quent neurological screening is advised than for adults, be-
cause they are less well equipped to detect and mention any
neurological problems and because the risk to develop tumors
in SMARCE1 carriers seems to be larger at younger age, es-
pecially for boys [11, 13, 14, 19]. Furthermore, childhood
meningiomas in general tend to have a more aggressive bio-
logical behavior and a worse prognosis than the same tumors
in adults, justifying a more aggressive screening approach in
children to detect the tumors in an early state [1, 23, 24]. A
disadvantage of starting screening at a young age is the fact
that MRI of the neuraxis in young or noncooperative patients
requires sedation or general anesthesia because of the long
duration of the imaging. The use of melatonin as a low-risk
sedation substitute could help prevent this in a subset of pa-
tients. The morbidity and mortality risk of sedation or anes-
thesia in children is small if done in a well-equipped centre
with experience.

All symptomatic males with a SMARCE1 mutation de-
scribed so far developed meningiomas in childhood (age
range 2–10 years), while the symptomatic carrier females de-
veloped tumors somewhat later in adolescence or early adult-
hood (age range 14–30s) [11, 13, 14, 19]. This was again
shown in our family. These findings suggest that penetrance
of the disease might be age- and gender-dependent. Those
carrier males who do develop a tumor seem to develop it at
early age and females seem to be at higher risk after onset of
their fertile period. The increased penetrance for males for
meningiomas in childhood is also found both in sporadic me-
ningiomas and NF2 [5] with the reverse being true in adult-
hood. Smith et al. hypothesize a possible hormonal influence
on penetrance, but there is no scientific proof on this as yet
[10, 13]. We believe that this ample amount of evidence for
gender- and age-specific penetrance is not enough to adjust a
screening advice depending on age or gender at the present
time. If the evidence becomes stronger, less surveillance for
men after a certain age could possibly be considered.
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For patients after meningioma treatment, frequency and
duration of the follow-up surveillance depend on the location
of the tumor, the WHO grade of the tumor, and the extent of
the tumor resection according to the Dutch national guideline
Intracranial Meningioma [25]. The above mentioned screen-
ing advice could be used for long-term follow-up thereafter
for SMARCE1-related CCM patients, because of their en-
larged risk of additional primary tumors.

Future directives

Hopefully, substantiated adjustment to this proposed screen-
ing advice can be made after structural gathering of more
medical and genetic data of patients and families. This will
help to better estimate the age- and gender-dependant pene-
trance of the disease and gain more certainty about the com-
plete tumor spectrum for carriers of a SMARCE1 mutation.
The addition of this report about a larger family to the current
literature on the subject hopefully is a step in the right direc-
tion, raising awareness of the condition and adding relevant
data to the knowledge.
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