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Abstract: It has been recently proposed by Dvali et al. [1] that high energy scattering in

non-renormalizable theories, like the higgsless Standard Model, can be unitarized by the

formation of classical configurations called classicalons. In this work we argue that clas-

sicalons should have analogs of thermodynamic properties like temperature and entropy

and perform a model-independent statistical mechanical analysis of classicalon decays. We

find that, in the case of massless quanta, the decay products have a Planck distribution

with an effective temperature T ∼ 1/r∗, where r∗ is the classicalon radius. These results,

in particular a computation of the decay multiplicity, N∗, allow us to make the first collider

analysis of classicalization. In the model for unitarization of WW scattering by classical-

ization of longitudinal W s and Zs we get spectacular multi-W/Z final states that decay

into leptons, missing energy and a very high multiplicity (at least 10) of jets. We find that

for the classicalization scale, M∗ = v = 246 GeV (M∗ = 1 TeV) discovery should be possible

in the present 7 TeV (14 TeV) run of the LHC with about 10 fb−1 (100 fb−1) data. We also

consider a model to solve the hierarchy problem, where the classicalons are configurations

of the Higgs field which decay into to multi-Higgs boson final states. We find that, in

this case, for M∗ = 500 GeV (M∗ = 1 TeV), discovery should be possible in the top fusion

process with about 10 fb−1 (100 fb−1) data at 14 TeV LHC.
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1 Introduction and motivation

To find out how longitudinal WW -scattering is unitarized is the raison d’être for the LHC.

If the LHC keeps delivering data at the present rate we may know the ultimate fate of the

most popular candidate, the Higgs boson, very soon. According to projections it would be

possible to exclude the Standard Model (SM) Higgs boson over the whole mass range with

5 fb−1 data although discovery will take some more time [2]. An elementary Higgs boson,

however, has its own problems if it exists as one must then explain the hierarchy between

its mass and the cut-off scale. This suggests the existence of new TeV-scale physics even if

the Higgs boson exists. Thus, whether or not a Higgs exists, the standard argument goes

that that a Wisonian UV completion is required with new states needing to be integrated

in at the TeV scale. A non-Wilsonian alternative has been proposed in ref. [1]. For this

the authors take inspiration from the other major problem of high energy physics, that

of finding a UV-completion for quantum gravity. It has been argued in refs. [1, 3] that

in transplanckian 2→2 scattering in gravity there is no violation of perturbative unitarity

because of black hole formation. Black holes are classical objects that decay to many
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particles and decays to two particles are suppressed leading to a suppression of the 2→2

scattering amplitudes. As we go to higher energies we get larger black holes and the

amplitudes are even more suppressed. In refs. [1, 4–7] it has been proposed that formation

of classical objects, called classicalons, is possible in high energy scattering also in non-

gravitational theories. This happens if there is a bosonic field (the classicalizer field) which

is sourced by derivatively coupled operators that grow with energy. At high enough center of

mass energy
√
ŝ, the source leads to formation of classical configurations of the classicalizer

field. As the classicalon would in general decay into many particles, the usual problem of

perturbative unitarity violation in 2→2 scattering in non-renormalizable theories is thus

avoided without a usual Wilsonian UV completion.

In the case of WW -scattering the bosonic field can be the longitudinal goldstone modes

of the W . As is well known interactions involving these modes grow with energy so that

an appropriate non-linear interaction can be used for self-sourcing these modes. This way

of unitarizing WW -scattering is thus arguably even more economical than having a single

Higgs. As we will discuss in more detail later, around the classicalization scale the clas-

sicalons should be thought of as a tower of quantum resonances and only at energies much

higher than this scale do they become truly classical. Thus, whereas around the classi-

calization scale, such a theory would resemble standard Wilsonian UV completions, like

technicolor, with resonances appearing at this scale, a theory with classicalization would be

very different in the deep UV. For instance, the inclusive cross-section in classicalizing the-

ories would grow geometrically as the squared classicalon radius, r2∗, at energies above the

classicalization scale, unlike any Wilsonian UV-completion where the cross-section eventu-

ally decreases with energy. Classicalization can have an application even if the Higgs boson

exists provided appropriate classicalizing interactions are also present. Classical configu-

rations of the Higgs field itself, called Higgsions, can be sourced by the energy of the other

SM particles in high energy scattering. The classicalization scale where Higgsion forma-

tion starts would then become the scale at which the loop contributions to the Higgs mass

get screened, thus solving the hierarchy problem. The collider signals for these models

would be the spectacular production of multiple W s and Zs in the first case of goldstone

classicalization and multi-Higgs final states from Higgsion decays in the second case.

In this work we want to tackle the important question of classicalon decays. We want

to address questions like: How many particles does a classicalon decay to? What is the

energy distribution of these decay products? These questions are important for under-

standing both the theory and phenomenology of classicalons. From the theoretical point of

view, the most important feature for unitarization of the amplitudes is that a classicalon

decays, in general, to many particles and decays to a few particles are suppressed. Thus

understanding classicalon decays is very important. From the experimental point of view

this is the important ingredient that will allow us to make LHC predictions. This is because

while the production cross-section can be estimated from geometric arguments to be πr2∗,

a collider analysis is impossible without knowledge of the multiplicity of the classicalon

decay products. We will argue, as was already pointed out in ref. [6], that classicalons, like

black holes, have properties analogous to entropy and temperature and they decay ther-

mally. This will give us completely model independent predictions about how classicalons
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should decay. Before giving the broad argument that tells us why classicalons should have

thermodynamic properties we will briefly describe how classicalization takes place.

We take the simple example of a massless scalar theory with a single non-linear, non-

renormalizable interaction,

L = ∂µφ∂
µφ+

(∂µφ∂
µφ)2

M4
∗

. (1.1)

A non-linear interaction of a similar form will be used for classicalization of longitudinal

W s and Zs later. We know that the non-renormalizable term (∂µφ∂
µφ)2/M4

∗ above would

become important at length scales smaller than the quantum length cut-off, L∗ = 1/M∗.

This term can actually become important at even larger length scales, as shown in refs. [1,

4], if φ takes a large classical value. An analysis in ref. [4] shows that this is precisely what

happens in a scattering process with initial energy bigger than the cut off, i.e.
√
ŝ > M∗.

1

The authors solve classical equations of motion to show that if we start with free spherical

wave-packet φ0 there would be a correction due to the non-linear term,

φ = φ0 + φ1 (1.2)

that becomes important (i.e φ1 ∼ φ0) at a length scale,

r∗ =

√
ŝ
α

M1+α
∗

(1.3)

where α (always ≤ 1) is a positive number that depends on the choice of non-linear term,

and is 1/3 in this example. We can see from the expression above that for
√
ŝ > M∗ we

get r∗ > L∗ = 1/M∗ so that r∗ is in fact a classical length. At distances smaller than r∗
the non-linear term becomes important leading to a formation of a classical configuration

of radius r∗. As is clear from eq. (1.3) with increasing energy the source due to the non-

linear term becomes bigger and bigger in magnitude and the radius r∗ of the classical

object increases. This means that with higher energy we do not probe shorter distances

in these theories. Black holes are seen as a special case of classicalization where r∗ is the

Schwarzschild radius, M∗ is Mpl, the planck mass, and α = 1. As shown in ref. [1] the

phenomenon is insensitive to higher order terms in the Lagrangian as these operators give

a smaller r∗.

We will now motivate why classicalons must have analogs of thermodynamic properties.

One way to see how an effective notion of entropy can arise for a classicalon is by noting

that there are many ways of forming a classicalon. Any scattering process with 2,3 . . .N

initial particles shown in figure 1(a) would form a classicalon if the total energy of these

particles,
√
ŝ, is larger than M∗. There is, however, an upper limit on the number of initial

particles. This is because we want the wavelength of the particles λ to be smaller than r∗,

so that the energy of the particles can be localized within the classicalon radius. Assuming

massless quanta, the energy of each particle, 1/λ, must be then at least 1/r∗. This puts

an upper bound on the number N in figure 1(a) which is given by,

Nmax ∼M/(1/r∗) ∼Mr∗. (1.4)

1For recent work on the dynamics of classicalization see refs. [8, 9].
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Figure 1. (a) Different ways of forming classicalons. Any scattering process with 2,3 . . .N initial

particles would form a classicalon if the total energy of these particles.
√
ŝ, is larger than M∗. (b)

We show the time reverse of the processes shown in figure 1(a). By time reversal symmetry, all

these processes should be allowed decays.

where M is the mass of the classicalon. The only restriction on the initial state is the

conservation of energy and momentum and ensuring that the energy of the particles is

localized inside the radius r∗. We expect from combinatorics that there would be many

more ways of distributing the required energy among many particles than among a few

particles, implying that there should be many more ways of forming a classicalon with

many particles in the initial state than with a few particles. Assuming classical time

reversal symmetry (t→ −t) we can now argue that the time reverse of each of the possible

processes shown in figure 1(a) is an allowed decay as shown in figure 1(b). Thus it follows

that a classicalon would in general decay to many particles just because of combinatorics.

It is also true, however, that just as a classicalon can be formed from two initial particles

it can also decay to only two particles but this would be combinatorially suppressed.

In this work we will find a quantitative formulation of the above picture which will lead

to an evaluation of the analogs of thermodynamic properties of a classicalon like entropy

and temperature and also a computation of the number of its decay products. We will

then use these results to make predictions for signals at the LHC. As we will see, like black

holes, classicalons decay to give high multiplicity final states. Unlike black holes, however,

the classicalons do not couple universally to all SM particles. In particular, there is no

direct coupling to light quarks so that classicalons have a much lower production cross-

section than black holes of the same energy. For the same reason, classicalon production,

unlike black hole production, is not the dominant scattering process at energies above the

classicalization scale with other SM scattering processes having a higher cross section. In
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section 2, we carry out the statistical mechanical analysis of classicalon decays and use the

results we find to make LHC predictions in section 3. Finally we make concluding remarks

in section 4.

2 Classicalon statistical mechanics

We will now describe a more precise formulation of the intuitive picture in figure 1 and

obtain quantitative results. In theories that exhibit classicalization, in addition to the free

lagrangian there are non-linear self-sourcing terms which are important only if the energy√
ŝ gets localized in a radius r∗ given by eq. (1.3). This leads to the formation of a classical

configuration of mass M =
√
ŝ which decays into many particles.

We will consider a massless classicalizer field φ and discuss later how our results can

be generalized to the massive case. We will assume that the only requirements for forming

a classicalon are

• conservation of energy and momentum, that is,

| ~k1|+ | ~k2| . . .+ | ~kN | = M (2.1)

~k1 + ~k2 . . .+ ~kN = 0 (2.2)

where ki are the four-momenta of the incoming particles,

• localization of the energy of the incoming particles inside the classical radius r∗.

As we will see later, the conservation of the 3-momentum does not lead to any constraint as

it is automatically satisfied for N � 1. As the time reverse of every classicalon formation

process is a classicalon decay process, this implies that every possible way of choosing a final

state respecting the above conditions gives us an allowed classicalon decay. We will think of

the set of four momenta of the incoming/outgoing particles in a particular formation/decay

process of a classicalon of a given mass, M , as a microstate. The combinatoric exercise of

counting the number of ways of choosing these four vectors such that the energy adds up

to the classicalon mass would be very similar to the statistical mechanical analysis of ideal

Bose gasses or blackbody radiation. As we will see, however, unlike the case of an ideal gas

or blackbody radiation, the particles here are not represented by waves confined to a box.

The wave-packets must have a size and shape such that the second condition is satisfied and

this leads to a density of states function different from the blackbody radiation case. The

statistical mechanics of classicalons will thus be very different from blackbody radiation

resulting in different thermodynamic relations. We will now see what the condition for

localization of the energy inside the radius r∗ tells us about the geometry of the incoming

wave-packets.

2.1 Geometry of wave-packets

We will see in this section that in order to localize most of their energy inside the classicalon

radius, r∗, the incoming wave-packets in a classicalon formation process (and thus, by time

reversal symmetry, the outgoing wave-packets in a classicalon decay process) can have
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r∗

√
N r∗

                                                                                                
                                                                                               2

                           *r

√ N r*

Figure 2. Classicalon formation from many incoming wave-packets which superpose to give an

incoming spherically symmetric disturbance. We show the situation at t ≤ 0 (left) and at t = 0

(right) when the wave-packets reach the origin. We show that at the moment t = 0 when all the

wave-packets reach the origin, a field exists outside the classicalon radius because the wave-packets

have transverse length bigger than r∗. The field outside, however, drops off as φ ∼ 1/r so that

most of the energy is still localized inside r∗. As we discuss in the text, these wave-packets stop

overlapping at a distance
√
Nr∗ from the origin (shown by the dashed circle here) so we truncate

our wave-packets to a length equal to
√
Nr∗ in the transverse directions.

a longitudinal width at most of the order of r∗, but are allowed to have a much bigger

transverse length,
√
Nr∗, where N is the number of incoming particles. We will not have

to take into account the effect of the classicalizing interaction as we will assume that if

the wave-packets are able to localize their energy inside the radius r∗, in the absence of a

classicalizing interaction, they would form a classicalon in the presence of one.

We consider the formation of a classicalon from N incoming particles where 1� N ≤
Nmax as shown in figure 2(left), propagating freely such that they all reach the origin at

the same time, t = 0. As N � 1 we can think of these wave-packets to be distributed

approximately isotropically in all directions, giving rise to a spherically symmetric incoming

disturbance (for t < 0) when they are superposed with each other. In ref. [4] it has been

discussed how classicalons can be formed from the collapse of a spherical wave-packet of

finite width. The spherical wave-packet collapses according to the free wave equation when

its radius r > r∗. As the wave-packet collapses to a radius smaller than r∗, the non-linear

classicalizing term in the lagrangian becomes important and it does not allow the energy

to be localized at distances shorter than r∗. This leads to the formation of a classical

configuration of radius r∗ even if the original width of the wave-packet is much smaller.

Clearly the spherical wave-packet cannot have width bigger than the classicalon diameter

2r∗ otherwise its energy cannot be localized within the radius r∗ and a classicalon would

not be formed.

In our picture, such a spherical disturbance corresponds to a superposition of many

incoming ‘plane’ wave-packets of longitudinal width 2r∗ as shown in figure 2(left). Hence

we will take for each wave-packet the boundary conditions for modes confined in a one

dimensional box of size 2r∗. For an incoming wave-packet with a definite squared energy,
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ω2 = k2, we, therefore, take the following functional form in the longitudinal coordinate l,

φ(l) = sin k(l + r∗) (2.3)

with the k quantized as,

k = nπ/2r∗. (2.4)

Here l is the longitudinal displacement from the center of the wave-packet and we are not

writing the time dependance. Note that the above function satisfies φ(l = −r∗) = φ(l =

r∗) = 0. As any function with compact support in the width of the wave-packet can be

decomposed as a superposition of the above modes, this means that we are considering all

possible wave-packet profiles which go to zero outside the width of the wave-packet. In

particular we are considering wave-packets with widths smaller than 2r∗.

What about the transverse length of the wave-packets? In the transverse direction the

wave-packets can actually have a length much bigger than r∗. This leads to the existence

of a field outside the classicalon radius r∗ when the wave-packets superpose at the origin

at t = 0, as is clear from figure 2(right), but, as we show in appendix A, the field outside

the classicalon radius drops off as φ ∼ 1/r so that most of the energy is still inside the

classicalon radius r∗. The 1/r behavior is expected because we are superposing solutions of

the free wave equation which becomes Poisson’s equation in the static limit. For t > 0, the

classicalon decays and it is clear that the field at any point outside r∗ remains unchanged

from its t = 0 value until the information of the classicalon decay reaches it. Hence if

there is a φ ∼ 1/r tail at t = 0, we expect such a tail to remain at points outside, till

the information of the classicalon decay reaches them. Similarly there exists a φ ∼ 1/r

tail outside the incoming wave-packets for t < 0. The appearance of the φ ∼ 1/r tail

outside the classicalon is interesting because such a tail in fact exists in the static solutions

discussed in ref. [1]. It is necessary because it leads to the flux of the gradient ∇φ that must

exist because of the source. We will show in appendix A that φ ∼ Q/r, where Q =
√
N

matches with the ‘charge’ of the classicalizing source at the parametric level.

So far we have been assuming that the wave-packets are infinitely large in the transverse

direction. This would, however, create a problem unless we have a superposition of an

infinite number of wave-packets. This is because, as it is clear from figure 2(right), if there

are a finite number of wave-packets, at large distances the wave-packets will not overlap

anymore and thus we would not get the superposition leading to the 1/r fall off of the field.

For a finite number of wave-packets with infinite transverse dimensions most of the energy

of the wave-packets would be localized at large distances where there is no overlap between

the different wave-packets. Thus our wave-packets must have large but finite transverse

dimensions. We show in appendix A that the distance at which the wave-packets stop

overlapping is given by,

L =
√
Nr∗. (2.5)

Thus we see that the incoming/outgoing particles in a classicalon formation/decay process,

can be represented by wave-packets of size 2r∗ in the longitudinal direction and size
√
Nr∗

in the transverse direction.
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Before going into our quantitative derivations, we will describe what happens qualita-

tively. At times t < 0 and distances from the origin much larger than r∗, the wave-packets

travel freely and the number of quanta is conserved. As the wave-packets approach dis-

tances closer than r∗, the non-linear classicalizing term becomes important, the number of

particles is no longer conserved and can increase or decrease from the initial number. As

we said earlier, we will think of the set of four-momenta in a particular formation/decay

process of a classicalon of a given radius as a microstate. Whereas the initial number of

particles and their momenta can be arranged to be anything by us, we would expect the

classicalon to decay to a number of particles and with an energy distribution for the de-

cay particles that corresponds to the maximum number of microstates. We want to find

this distribution function that corresponds to maximum number of microstates. The first

ingredient we need is the density of states function.

2.2 Density of states function

We want to find out the density of states for the wave-packets we described, that is the

number of wave-packets of the kind described above that have energy in the range ω to

ω+dω. We will obtain such wave-packets by superposing free wave modes confined in a box

of volume V = L3 where L is given by eq. (2.5). To get a wave-packet with momentum ~k and

width 2r∗ we would have to superpose many waves with momentum in the same direction

as ~k and magnitude around |~k|.2 For waves confined in a box all values of (kx, ky, kz) are

not allowed, instead only a lattice of points in k-space is allowed. Another way of saying

this is that in a shell in k-space between the radii ω and ω + dω all possible directions are

not allowed. We want to find the number of states that lie within this shell. For the modes

confined in the box we know that the density of states is given by,

g(~k)d3k =
V

8π3
d3k. (2.6)

Going to spherical coordinates, d3k → 4πk2dk = 4πω2dω, this gives,

g(ω)dω =
V ω2

2π2
dω =

1

8π3
Ldω × L2(4πω2) (2.7)

Up to factors of π the first term here is the number of box modes in a particular direction

having energy in the range ω to ω + dω and the second term is the number of allowed

directions. As we are considering wave-packets of width 2r∗ and not L in the longitudinal

direction, the number of wave-packets in a particular direction with energy in the range ω

to ω + dω will be smaller by a factor 2r∗/L so that we get,

g(ω)dω =
1

8π3
(2r∗)dω × L2(4πω2) =

Nr3∗ω
2

π2
dω (2.8)

where we have substituted L from eq. (2.5). One must also keep in mind that there are no

wave-packets with energy less than π/2r∗ (see eq. (2.4)). It is useful to write the density

2Note that this way of constructing our wave-packets ensures that any two wave-packets traveling in

different directions are linearly independent. The functional form in eq. (2.3) ensures that two wave-packets

in the same direction, but with different ω = k, are also linearly independent.
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of states function also in cartesian coordinates,

g(~k) d3k =
Nr3∗
4π3

d3k. (2.9)

Note that the existence of the extra factor of N in eqs. (2.8) and (2.9), as compared to the

case of a particle confined in a box, is crucial and leads to thermodynamic relations for a

classicalon different from ideal Bose gasses or blackbody radiation.

2.3 Number of N particle decays for 1� N � Nmax

We want to count the number of ways a classicalon of mass M can decay to N particles

which is the same as the number of ways of forming a classicalon from N particles. We

want to show that the number of ways is higher for larger N , thus proving that a classicalon

prefers to decay to many particles. We will now evaluate Γ(M,N), the number of ways in

which N incoming particles, where 1� N � Nmax, can form a classicalon of a given mass,

M . Note that for our derivation here we will assume that in each energy state there is at

most one particle which is a very good approximation for N � Nmax. The total number

of ways of forming a classicalon would be,

Ω(M) =

Nmax∑
N=2

Γ(M,N). (2.10)

We try to find all possible set of four vectors of the N outgoing wave-packets with the only

constraint that energy and momentum are conserved,

| ~k1|+ | ~k2| . . .+ | ~kN | = M (2.11)

~k1 + ~k2 . . .+ ~kN = 0 (2.12)

For large N , the momentum conservation constraint is not important. This is because the

sum ~k1 + ~k2 . . .+ ~kN−1 is completely unconstrained as we can always fix ~kN to ensure that

the sum ~k1 + ~k2 . . . + ~kN = 0. For N � 1, | ~kN |, which is the energy of a single particle

is negligible compared to M , so that the two conditions above can be reduced to a single

energy conservation condition | ~k1|+ | ~k2| . . .+ | ~kN−1| = M on the N −1 particles. For large

N , however we can always replace N − 1 by N . Using eq. (2.9) we thus get the following

phase space integral with only the energy conservation constraint,

Γ(M,N) =
((N/4)(r∗/π)3)N

N !

∫
d3k1d

3k2 . . . d
3kNδ(| ~k1|+ | ~k2| . . .+ | ~kN | = M). (2.13)

The N ! in the denominator appears because the particles are indistinguishable and all pos-

sible permutations result in the same state. The integral above is a well-known integral in

statistical mechanics that appears in the evaluation of entropy of an ideal ultra-relativistic

gas. For N � 1, the result is (see for instance page 153 in ref. [10]),

Γ(M,N) =
2N (
√

3)3NNN (r∗M/π)3N

N !(3N)!
=

2N (
√

3)3NNNN3N
max

π3NN !(3N)!
. (2.14)

It is easy to check that Γ(M,N) is an increasing function of N , which shows that a clas-

sicalon would prefer to decay to many particles and not a few.
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2.4 Classicalons as Bose-Einstein systems

In this subsection we will try to find the most probable energy distribution of the particles a

classicalon decays to. In other words we will try to find the distribution with the maximum

number of microstates, Ω̃(M). As is usually assumed in statistical mechanics we will

assume that the total number of ways of forming the classicalon, Ω(M) in eq. (2.10), is

approximately equal to the total number of ways of forming the most probable distribution,

that is,

Ω(M) ≈ Ω̃(M). (2.15)

Parts of the discussion here will be very similar to the standard derivation of the Bose-

Einstein distribution, although the density of states function here is different.

We want to find the most probable value of Nω, the number of particles in the energy

state with energy ω. In the continuum limit, Nω becomes N(ω), the distribution function.

As explained in the previous subsection, the only constraint is the energy conservation

constraint in eq. (2.11) which we rewrite as,∑
ω

Nωgωω dω = M. (2.16)

where gω is the degeracy of the energy state with energy ω. In the continuum limit, gω
becomes g(ω), the density of states function derived in section 2.2. We first need to find

Ω(M), the number of ways of choosing the four momenta of the decaying particles while

satisfying the constraint in eq. (2.16). As we review in appendix B, this is given by the

well known expression,

Ω(M) = Πω
(Nω + gω)!

Nω!gω!
(2.17)

We can define the entropy of the system as,

S = log(Ω(M)). (2.18)

We want to maximize S respecting the constraints in eq. (2.16). As shown in appendix B,

using the method of Langrange multipliers, this leads to the Bose-Einstein distribution,

Nω =
gω

eβω − 1
. (2.19)

Here β is the Lagrange multiplier related to the constraint in eq. (2.16) and effectively plays

the role of inverse temperature, T−1. To obtain β and the number of particles in the most

probable distribution, N∗, we now go to the continuum limit replacing the summations

above by integrals and solve the equations,

N∗ =

∫
ω=π/2r∗

g(ω)dω =
N∗r

3
∗

π2

∫
ω=π/2r∗

ω2dω

eβω − 1
(2.20)

M =

∫
ω=π/2r∗

ωg(ω)dω =
N∗r

3
∗

π2

∫
ω=π/2r∗

ω3dω

eβω − 1
. (2.21)
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Note that the lower limit in the integral is not zero but the minimum allowed frequency

for our wave-packets π/2r∗ (see eq. (2.4)). To obtain β make the substitutions βω = x in

eq. (2.20) to obtain, ∫
x=βπ/2r∗

x2dx

ex − 1
= (1/π)(βπ/r∗)

3. (2.22)

Both the l.h.s. and r.h.s. of the above equation depend on βπ/r∗. While the r.h.s. obvi-

ously increases with βπ/r∗ the integral in the l.h.s. decreases as the lower limit is raised

so it decreases with βπ/r∗ and we find a unique solution at βπ/r∗ ≈ 1.9. The precise

numerical coefficients should not be taken seriously and only the parametric relationships

are important. We get,3

β ∼ r∗ ⇒ T ∼ 1

r∗
. (2.23)

Now to find N∗ we use eq. (2.21), again substituting βω = x, to get,

N∗r
3
∗

π2
β−4

∫
x=βπ/2r∗

x3dx

ex − 1
= M. (2.24)

Now substituting the solution of eq. (2.22), β ∼ r∗, we get,

N∗ ∼Mr∗ ∼ Nmax. (2.25)

The above expression shows that the typical energy of a quanta is M/N∗ ∼ 1/r∗, so that

the typical wavelength is r∗. This is what we expect from the dynamics of classicalization

as r∗ is the length scale at which classicalization takes place [6]. Now we can also evaluate

the entropy,

S =

∫
βdM ∼

∫
r∗dM ∼

∫
M α

M1+α
∗

dM ∼
(
M

M∗

)1+α

∼Mr∗

⇒ S ∼ N∗ ∼ Nmax (2.26)

where we have substituted r∗ using eq. (1.3) taking
√
ŝ = M . Thus we have found that

the classicalon decays to the maximum number of particles it can, Nmax, with a blackbody

spectrum having T ∼ 1/r∗. We see that the total number of decays is Ω(M) = eS , so that

probability of decays to a few particles, which is a small number compared to eS , would

be exponentially suppressed,

P (Classicalon→ few) ∼ 1

Ω(M)
∼ e−S ∼ e−N∗ . (2.27)

in accordance with ref. [6].

We now consider the special case of a black hole for which α = 1, M∗ = Mpl and r∗
is the Schwarzschild radius. As a black hole does not decay classically, the above analysis

for the distribution of the decay products cannot be applied to a black hole. As argued

in ref. [6], however, classicalization is the first step to the formation of a black hole and

3As the radius of the classicalon increases with mass (see eq. (1.3)), this relationship implies that the

classicalon temperature decreases with its energy so that it has a negative specific heat.
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this takes place before the horizon emerges. Thus our calculation of the entropy which is

basically a counting of the number of ways in which a classicalon can be formed should

give us the correct black hole entropy. Indeed, we find for α = 1,

S ∼ N∗ ∼Mr∗ ∼M2
plr

2
∗ (2.28)

in agreement with the Bekenstein-Hawking formula.

We want to emphasize that obtaining the parametric relationships above is far from

assured based only on dimensional grounds. For instance if we had taken wave-packets of

size 2r∗ in both the longitudinal and transverse directions we would have found the usual

density of states for an ideal gas, g(ω)dω ∼ r3∗ω2dω without the factor N . This would lead

to the usual relationships M ∼ r3∗T 4 and S ∼ r3∗T 3 for blackbody radiation. The fact that

the wave-packets are of size
√
Nr∗ in the transverse direction is thus crucial in obtaining

the final result we have derived. As we discussed earlier in section 2.1 (and show in detail

in appendix A) a transverse length much greater than r∗ is in fact necessary for generating

the φ ∼ 1/r tail of the field outside the classicalon.

In the above analysis we have considered all frequencies higher than ω = π/2r∗, in-

cluding frequencies higher than the cut-off M∗, although the higher frequencies are expo-

nentially suppressed by the Bose-Einstein distribution function. We have not imposed an

energy cut-off M∗ disallowing higher frequencies or equivalently wavelengths smaller than

the length cut-off L∗ = 1/M∗. Such a cut-off would be analogous to the Debye frequency

of crystals. Note that such an energy cut-off if imposed will not make any difference to

our final results in the classical (and thermodynamic) limit
√
s/M∗ →∞, where

√
s = M .

To see this note that an upper cut-off ω = M∗ in the integrals in eq. (2.20) and (2.21)

corresponds to a cut-off βM∗ in the integrals in eq. (2.22) and (2.24). Now,

βM∗ = r∗M∗ =

(√
s

M∗

)α
→∞ (2.29)

as
√
s/M∗ → ∞ where we have used eq. (1.3) and (2.23). Thus, in the classical limit,

putting such an ultraviolet cut-off is equivalent to putting no cut-off at all and hence it

will not change our results.

We want to mention some modifications that we will make in our expressions before

using them for experimental predictions The first issue is regarding the lower limit ω =

π/2r∗ in the integrals. It is not true that energies smaller than ω = π/2r∗, or larger

wavelengths, λ � r∗, are not present. This is because the distribution function we have

derived is for wave-packets of size of the order of r∗ in the longitudinal direction. A detector,

however, would detect plane waves much larger in size and the wave-packets of size r∗ are

themselves composed of plane waves of much have larger wavelengths. Note that this does

not have any effect on the distribution function for higher energies (smaller wavelengths).

We will not attempt to find the correct distribution at lower energies (longer wavelengths) as

our assumption that the distribution function suddenly drops to zero for wave-packets with

width larger than r∗ is a simplifying approximation and is not accurate. It is reasonable

to expect that a more precise analysis would yield the Planck distribution over the whole
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energy range. Even in this case the lower frequencies would be suppressed due to the

phase space factor ω2dω. Therefore from here onwards we will get rid off the lower limit

ω = π/2r∗ in the integrals and take the lower limit to be the lowest kinematically allowed

value, ω = m, m being the mass of the φ-quanta. We need to make a second modification

because we have been assuming so far, a classicalizer field that is massless, whereas it

is massive in the models we are going to consider. While deriving our density of states

function we made in eqs. (2.7) and (2.8) the substitution k2dk = ω2dω which assumes that

the φ-quanta are massless. Using k2 = (ω2 −m2) instead, m being the mass, we get the

correct density of states expression in the massive case,

g(ω)dω ∼ Nr3∗k2dk ∼ Nr3∗ω
√
ω2 −m2 dω. (2.30)

Finally, in order to make experimental predictions, we will fix the unknown numerical

coefficients in the parametric form of the density of states function above by using the

black hole example where the exact expressions are well known. We will describe this in

more detail in the next section.

3 Classicalons at the LHC

Now that we know how to compute the number of decay products in a classicalon decay,

we are ready to perform a collider study of classicalization in the phenomenological models

introduced in the section 1. Along with the decay multiplicity computation, the other

important fact that we will use for our study is that classicalon production has a geometric

cross-section πr2∗. The two models we are going to consider are the classicalization of

longitudinal W s and Zs and the classicalization of Higgs bosons. The LHC signal would

be multi-W/Z production in the first case and multi-Higgs production in the second case.

As in the case of black hole production in TeV-scale quantum gravity models [11–14], this

would finally lead to production of leptons and many jets. Unlike black holes, though,

classicalon production would not be a universal phenomenon in hard scattering processes

at energies above the cut-off scale.4 This is because the light quarks and gluons would not

have a strong coupling to the classicalon in both the cases we will consider. This is the

main difference of classicalization signals from black hole signals. Thus even at energies

higher than the classicalization scale, normal SM 2 → 2 hard scattering processes would

continue in other channels with cross-sections larger than classicalon production. Another

result of the absence of any direct coupling between classicalons and light quarks or gluons

is that classicalon production would have a much smaller cross-section compared to black

hole production at the same scale, so that classicalons would be harder to discover/exclude

at colliders.

Before going into the details, there is a caveat that must be emphasized. The phe-

nomenon of classicalization is well understood only for energies much higher than the clas-

sicalization scale. In particular the quantitative expressions that we will use, for instance,

4In gravitational high energy scattering above the Planck scale, black hole formation is expected for

impact parameters smaller than the Schwarzschild radius or equivalently for large scattering angles. For

impact parameters much larger than the Schwarzschild radius and transplanckian energies elastic 2→2

scattering should take place which is well described by the eikonal approximation (t/s� 1) [15, 16].
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the expressions for the radius, cross-section and decay multiplicity, strictly hold only in

the limit of large number of quanta, i.e. for N∗ � 1 or equivalently for energies much

higher than the cut-off,
√
ŝ�M∗. This is the classical limit as well as the thermodynamic

limit where our statistical assumptions are true. As the energies accessible at the LHC are

not so high, we will be forced to consider processes where N∗ ∼ 6. Many would consider

these energies to be still part of the ‘quantum regime’ around the classicalization scale.

The same problem exists in collider analyses of black hole formation and decays in TeV-

scale quantum gravity scenarios [17]. Black holes can be reliably tackled by theory only

at energies much higher than the Planck scale. In the regime around the classicalization

(Planck) scale, it is more appropriate to think of classicalons (black holes) as a tower of

quantum resonances than as classical objects [18]. There is, however, no theoretical model

for this quantum regime that can be used to make reliable experimental predictions. Thus

in the absence of a better alternative the only choice we have is to use the expressions for

the classical regime, as has been done in studies of black holes so far. We will, however,

incorporate in our analysis the fact that classicalon masses are quantized.

3.1 Classicalization of longitudinal W s and Zs

As is well known, in the absence of the Higgs boson the scattering of the longitudinal

components of W and Z bosons violates tree-level unitarity at energies of the order of a

TeV [19]. In ref. [1] it was proposed that classicalization can unitarize these amplitudes.

In this proposal the longitudinal (goldstone) modes of the vector bosons classicalize and

form a configuration of W s and Zs that finally decay into many W s and Zs.

For our anlysis we will take the classicalizing interaction proposed in ref. [1],

c

2

(
Tr
(
DµUDµU

†
))2

(3.1)

where U is the SU(2) matrix U = exp(iπaτa/v) containing the goldstones πa. Here v =

246 GeV is the Higgs vacuum expectation value (VEV) and τa are the Pauli matrices. The

covariant derivative above is defined as follows,

DµU = ∂µU + ig
τa
2
W aU − ig′UBY

τ3
2
. (3.2)

When expanded the operator in eq. (3.2) gives the following classicalizing interaction,

c

v4
(∂µπa∂

µπa)2 . (3.3)

For this particular operator the classicalon radius is given by [1, 4],

r∗ ∼ c1/3
M1/3

v4/3
∼ M1/3

M
4/3
∗

, (3.4)

where, M∗ = v/c1/4, is the classicalizing scale. Note that the above relationship is valid

only until r∗ reaches the Compton wavelength of the Z-boson, 1/mZ . Beyond this point the

radius would freeze at the value 1/mZ [1]. The experimental constraints on the coupling c

come from electroweak precision measurements. Only the T parameter gets a contribution
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from this operator and the other electroweak parameters (the S parameter and the six

electroweak parameters U -Z as defined in ref. [20] for instance) get no contribution. The

contribution to the T parameter is given by [21],

∆T =
−(c/2)

4π2αem

(
3g2g′2

2
+

3g′4

4

)
log

M∗
MZ

. (3.5)

As c = (v/M∗)
4, we see that the ∆T contribution is small for M∗ & 500 GeV. For M∗ =

246 GeV the contribution is appreciable. From eq. (3.5) we find that for c = ±1(and

hence M∗ = v) we get ∆T = ∓0.1. As we are considering a higgsless theory a negative

c is preferred. For higher values of M∗ the contribution to ∆T would be much smaller.

There would, however, be additional contributions to electroweak precision observables

from the quantum resonances that exist in such a theory around the classicalizing scale,

M∗. These contributions are unfortunately not calculable without a knowledge of the

precise dynamics at the classicalizing scale. All we can do is make the general statement

that a higher classicalization scale will mean smaller contributions to electroweak precision

observables from these resonances.

We will absorb the unknown numerical coefficient in eq. (3.4) in a redefinition of the

coupling c to obtain,

r∗ = c1/3
M1/3

v4/3
=
M1/3

M
4/3
∗

. (3.6)

Note that the classicalization scale, M∗ = v/c1/4, cannot be much higher than the TeV

scale as WW -scattering needs to be unitarized before these energies are reached. We

will make computations for the three choices of the classicalization scale, M∗ = 246 GeV,

M∗ = 600 GeV and M∗ = 1 TeV.

3.1.1 Multiplicity of gauge bosons in the final state

We want to find the total number of W/Zs a classicalon of a given mass, M , would finally

decay into. We are not allowed to use the massless limit of the expressions we derived

(eqs. (2.20) and (2.21)) in this case. One way of seeing that the massless approximation

is not valid here is that the expression for multiplicity in the massless limit would give us

multiplicity greater than the kinematic bound M/mW/Z . The reason we need to consider

the mass is that, in this case, the kinetic energy k ∼ 1/r∗ does not dominate the energy of

the individual quanta as the mass of the quanta is comparable, that is mW/Z ∼ 1/r∗. This

is in turn because of the small separation between the mass mW/Z and the classicalization

scale M∗ = v/c1/4. Thus we use the the density of states for the massive case given

previously in eq. (2.30),

g(ω)dω = γN∗r
3
∗ω
√
ω2 −m2dω, (3.7)

where γ is an unknown numerical coefficient that we will fix by demanding that we get the

exact result in the black hole case. We will not consider here the effects of the difference

in W and Z mass which is small compared to the classicalon mass. To be conservative we

will take the mass of all the quanta forming the classicalon, m = 91.2 GeV the Z-mass. We
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find the number of decay particles by solving for β and N∗, the eqs. (2.20) and (2.21) but

with the modified density of states function in eq. (2.30) and a different lower limit,

γN∗r
3
∗

∫ M

m

ω
√
ω2 −m2dω

eβω − 1
= N∗ (3.8)

γN∗r
3
∗

∫ M

m

ω2
√
ω2 −m2dω

eβω − 1
= M. (3.9)

We have explained at the end of section 2.4 why the lower limit in the integrations above

has been changed from the lower limit in eqs. (2.20) and (2.21). We fix the factor γ above

by requiring that for m = 0 we get from eq. (3.8), the exact black hole result,

β−1 = T =
1

4πr∗
. (3.10)

This gives,5

γ =
(4π)3

2ζ(3)
≈ 825, (3.11)

where ζ(n) is the Riemann zeta function.

The results of our evaluation are shown in table 1 and figure 3(left) for our three

choices, M∗ = 246 GeV, M∗ = 600 GeV and M∗ = 1 TeV. We see that instead of the

dependence N∗ ∼ Mr∗ ∼ M 4/3 expected in the massless limit, we find an almost linear

dependence N∗ ∼ M (the dependence is not exactly linear as can be seen from the values

in table 1). For comparison we also show the N∗ vs M dependence for extra-dimensional

black holes in figure 3(left). We have used the expression for N∗ in ref. [14],

NBH
∗ =

2
√
π

n+ 1

(
M

Mpl

)n+2
n+1

(
8Γ(n+3

2 )

n+ 2

) 1
n+1

. (3.12)

Here n is the number of extra dimensions and Mpl is the fundamental Planck scale in

the 4 + n dimensional space-time. We have taken n = 2, 3 and Mpl = 400 GeV. Note

that the value Mpl = 400 GeV has been chosen close to the classicalization scale only

for comparison and such low values of Mpl have already been ruled out [22]. Higher

values of Mpl will give much lower N∗ values. As one can see in the figure, for the n =

2 case, the N∗ vs M curve is clearly not linear whereas for the n = 3 case the non-

linearity due to the N∗ ∼ M
n+2
n+1 dependence is not noticeable. As n is increased (note

that larger n values are preferred because of astrophysical bounds [23]) the curve would

become more and more linear and N∗ would decrease. Note that whereas N∗ is the final

decay multiplicity in the case of black holes, in the case of classicalons the multiplicity

of final decay products is actually bigger than (about twice) N∗, because N∗ is just the

number of the primary decay products, the W s and Zs, which decay further giving rise

to more leptons and jets. Keeping this in mind one can from see from figure 3(left) that

5Note that the analytical expression strictly holds only in the limit that the upper limit (after the

substitution βω = x) of the integration in eq. (3.8), βM → ∞. We, however, find it to be a very good

approximation in the examples we consider.
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M(GeV) N∗
Total Cross-section (fb) Signal Cross-section

Q=+2 Q=0 Q=-2 l(fb) l+l+(fb) 3l(3W → 3l,WZ → 3l) (fb) 3l+(fb)

M∗ = 246 GeV, LHC energy = 7 TeV

830 6 8.3 7.6 1.7 5.9 [2.7] 0.9 [0.5] 1.7 (0.8, 0.9) [1.0 (0.5, 0.5)] 0.1 [0.06]

958 7 4.7 4.1 0.9 3.0 [1.2] 0.6 [0.3] 1.2 (0.6, 0.6) [0.6 (0.3,0.3)] 0.07 [0.04]

1086 8 2.7 2.3 0.5 1.6 0.3 0.8 (0.5, 0.3) 0.05

1213 9 1.6 1.3 0.2 0.8 0.2 0.5 (0.3, 0.2) 0.04

1340 10 1.0 0.7 0.1 0.4 0.1 0.3 (0.2, 0.1) 0.03

1467 11 0.6 0.4 0.07 0.2 0.07 0.2 (0.1, 0.07) 0.02

1594 12 0.4 0.3 0.04 0.1 0.04 0.2(0.1, 0.05) 0.01

M∗ = 246 GeV, LHC energy = 14 TeV

830 6 74 84 23 60 [28] 8.9 [4.8] 18 (8.6, 9.3) [11 (5.5, 5.0)] 0.9 [0.6]

958 7 50 55 15 38 [15] 6.4 [3.0] 15 (8.0, 6.9) [7.5 (4.3, 3.2)] 0.9 [0.5]

1086 8 33 35 9.2 22 4.4 11 (6.6, 4.8) 0.7

1213 9 23 24 5.9 14 3.1 8.9 (5.5, 3.4) 0.6

1340 10 16 16 3.9 8.4 1.9 6.6 (4.3, 2.3) 0.5

1467 11 12 11 2.7 5.3 1.5 5.0 (3.4, 1.6) 0.4

1594 12 8.8 8.3 1.9 3.4 1.1 3.9 (2.8, 1.1) 0.3

M∗ = 600 GeV, LHC energy =14 TeV

1160 6 3.1 3.2 0.8 2.4 [1.1] 0.6 [0.2] 0.7 (0.3, 0.4) [0.4 (0.2, 0.2)] 0.04 [0.02]

1325 7 2.0 1.9 0.5 1.4 [0.5] 0.2 [0.1] 0.5 (0.3, 0.2) [0.3 (0.2, 0.1)] 0.03 [0.02]

1490 8 1.3 1.2 0.3 0.8 0.2 0.4 (0.2, 0.2) 0.03

1655 9 0.9 0.8 0.2 0.5 0.1 0.3 (0.2, 0.1) 0.02

1820 10 0.6 0.5 0.1 0.3 0.07 0.2 (0.1, 0.07) 0.02

1980 11 0.4 0.4 0.08 0.2 0.05 0.2 (0.1, 0.06) 0.01

2140 12 0.3 0.3 0.05 0.1 0.04 0.1 (0.09, 0.04) 0.01

M∗ = 1 TeV, LHC energy =14 TeV

1580 6 0.3 0.3 0.07 0.2 [0.1] 0.03 [0.02] 0.07 (0.03,0.03) [0.04 (0.02,0.02)] -

1795 7 0.2 0.2 0.03 0.1 [0.05] 0.02 [0.01] 0.05 (0.03,0.02) [0.03 (0.02,0.01)] -

2005 8 0.1 0.1 0.02 0.06 0.01 0.03 (0.02,0.01) -

1215 9 0.1 0.1 0.01 0.05 0.01 0.03 (0.02, 0.01) -

2420 10 0.05 0.04 0.01 0.02 0.01 0.02 (0.01, 0.01) -

2620 11 0.03 0.03 0.01 0.01 - 0.01 (0.01, -) -

2820 12 0.02 0.02 0.01 - - 0.01 (0.01, -) -

Table 1. Cross-section for classicalon production by weak boson fusion in the model with goldstone

classicalization. We give the total cross-section as well as the cross-section in the different channels.

The number of leptons mentioned in each channel is the exact number of leptons in the final state.

The values in the square brackets are the cross-section values assuming no invisible Z decays and

no W decays to hadronically decaying τs, which ensures the maximum number of partonic jets.

Note that no effect of showering, hadronization, experimental cuts or detector acceptances has been

included here. For a discussion of these, see the text.

the multiplicity of final decay products is larger for these classicalons when compared to

black holes of the same mass even for such small values of n and Mpl as n = 2 and

Mpl = 400 GeV. In figure 3(right) we show the typical energy, M/2N∗, of a lepton or

partonic jet emerging from one of the W/Zs produced in the classicalon decay, in the rest

frame of the classicalon. An experimental measurement of the typical energy would tell us

about the N∗ vs M dependance for the classicalon. We will discuss this measurement in

more detail later.
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Figure 3. In the model of classicalization of longitudinal W s and Zs we show the number of quanta

N∗ as a function of the classicalon mass M in the figure on the left. In the figure on the left, we also

show the N∗ vs M curves for some black hole examples. Classicalon states exist only at the points

where values of N∗ are integers. In the figure on the right, we show the typical energy, M/2N∗, of

a lepton or parton emerging from one of the W/Zs produced in the classicalon decay, in the rest

frame of the classicalon.

It is important to note that classicalons must have a discrete mass spectrum as was

shown in ref. [18]. The allowed masses are precisely the points marked in figure 3(left),

that is masses that give an integer value for N∗. At intermediate energies in between two

allowed masses, a classicalon with a lower mass would be formed along with some SM

particle(s) [18] that carries the rest of the energy and momentum. We will assume in our

analysis that at these intermediate energies the closest classicalon with a lower mass, say

MN∗ , is formed with the cross-section πr2∗(MN∗). As the spacing between the masses that

we have found is greater than the Z-mass, the additional SM particle emitted can even be

a W/Z boson. This would mean that we may be able to get (N∗ + 1) W/Zs in the final

state even at energies lower than MN∗+1. We will avoid this complication as by ignoring

this effect, which enhances the signal, we are only being conservative.

3.1.2 Branching ratios

In order to derive the classicalon branching ratio to a particular number of W+, W−

and Zs, we will assume that a classicalon decays democratically and randomly to the

three Goldstone components π+, π− and π3, the only constraint being electrical charge

conservation. By the Goldstone boson equivalence principle, we will thus get in the unitary

gauge a number of longitudinal W+, W− and Zs equal to the number of π+, π− and π3s in

the final state. Thus the unnormalized probability of a particular N∗-particle classicalon

composition with number of W+ bosons equal to NW+ , number of W− bosons equal to

NW− and number of Z bosons equal to NZ , must be proportional to the number of possible

ways of exchanging the identical particles amongst themselves to give the same final state,

that is,

P ′(NW+ , NW− , NZ) =
N∗!

NW+ !NW− !NZ !
. (3.13)

So for instance for a neutral classicalon with energy and radius such that we get N∗ = 5

using eqs. (3.8) and (3.9), the possible compositions are: ZW+W−W+W−, ZZZW+W−
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and ZZZZZ. Computing probabilities as described above we get for these different possi-

bilities,

P ′(ZW+W−W+W−) =
5!

2!2!1!

P ′(ZZZW+W−) =
5!

1!1!3!

P ′(ZZZZZ) =
5!

0!0!5!
. (3.14)

Finally these probabilities must be normalized,

P (NW+ , NW− , NZ) =
P ′(NW+ , NW− , NZ)∑
P ′(NW+ , NW− , NZ)

. (3.15)

The sum in the above equation runs over all NW+ , NW− and NZ respecting NW+ +NW−+

NZ = N∗ and NW+ −NW− = Q, Q being the electric charge of the classicalon.

To find the branching fraction to leptons, jets and missing energy that the Ws/Zs

decay to, we need to consider still more combinatoric possibilities. We discuss this in

detail in appendix C, where we provide expressions for the branching ratio to final states

with varying number of leptons.

In figure 4 we show the branching ratio of classicalons with charge, +2, 0 and −2. Note

that the branching ratio for decay channels with higher number of leptons rise with N∗
whereas the branching ratio of the single lepton channel falls. This is so because classicalons

with higher N∗ decay to more leptons. This is clear from figure 4(bottom right) where we

show the classicalon branching ratio to nl leptons. We see that an N∗-particle classicalon

decays with maximum branching ratio to nl ∼ N∗/5 leptons. Note that the branching

ratios in figure 4 have been computed at the theoretical level and do not include any

experimental effects.

At the LHC these classicalons can be produced in the weak boson fusion (WBF)

process, pp → jj(WLWL → Cl) (see figure 5). To compute the cross section for their

production we use the effective W approximation. In this approximation the luminosity of

longitudinal W bosons is given by [24],

dL

dτ
=

(
g2

16π2

)2
1

τ
[(1 + τ) ln(1/τ) + 2(τ − 1)] (3.16)

where τ = ŝ/sq is the ratio of the squared center of mass energy of the W -pair, ŝ, to the

squared center of mass energy of the initial quarks, sq. The cross-section for production

of an N∗-particle classicalon is found by convoluting the geometric cross-section with this

luminosity function and the parton density functions as follows,

σN =
∑
ij

∫ M2
N∗+1/s

M2
N∗/s

dτ πr2∗(MN∗)

∫ 1

τ

dτ ′

τ ′

∫ 1

τ ′

dx

x
fi(x, q

2)fj(τ
′/x, q2)

dL

dξ
(3.17)

where now τ = ŝ/s, s being the proton-proton center of mass energy squared, τ ′ = sq/s

and ξ = τ/τ ′. We have taken the factorization scale q2 = M2
W . As we stated already, we
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Figure 4. In the model of classicalization of longitudinal W s and Zs we show the branching

fractions for a neutral classicalon (top left) and for classicalons with electric charge, Q = ±2 (top

right/bottom left). In the figure on the bottom right, we show the classicalon branching ratio to nl
leptons for a neutral classicalon. In the decay channels shown above we require exactly (and not at

least) the number of leptons mentioned.

have assumed that for energies MN∗ < ŝ < MN∗+1, an N∗-particle classicalon is formed

along with other SM particles with a cross-section πr2∗(MN ). For our computations we

have used the MSTW parton density functions (PDF) [25]. In the summation above both

i and j run over all positively charged quarks for W+W+ fusion which leads to production

of classicalons with charge +2, and run over all negatively charged quarks for W−W−

fusion which leads to production of classicalons with charge −2. For production of neutral

clasicalons from W+W− fusion i and j run over quarks with opposite electric charge. As

we are considering only W± in the initial state, the classicalons produced can have charge

only −2, 0 and +2. The contribution of initial states with a Z boson has been neglected

here as the Z boson luminosity is much smaller compared to the W boson luminosity.

For instance, the ZZ luminosity is about an order of magnitude smaller than the W+W−

luminosity [24].

3.1.3 Signals at the LHC

The final states that would be seen in colliders are leptons plus multijets and missing

energy. We will provide cross-sections for the final states, l+ 6ET + jets, l+l++ 6ET + jets,

3l+ 6ET +jets and 3l++ 6ET +jets where l can be an electron, muon or leptonically decaying

τ and we consider hadronically decaying τs as jets. In the final states above we require
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Figure 5. Production of a classicalon by weak boson fusion in the model with goldstone classical-

ization.

exactly (and not at least) the number of leptons mentioned. While the l+ 6ET +jets channel

would be the discovery mode with the highest cross-section a simultaneous observation of

a signal in the other more striking channels, l+l++ 6ET + jets, 3l+ 6ET + jets and 3l++ 6
ET +jets, would provide confirmation that the phenomenon is indeed classicalization. The

fact that missing energy must be present in these channels is an important difference from

the black hole case where the probability of neutrino emission is small (< 5%) and one can

have final states with leptons and jets but no missing energy (this is the final state discussed

in ref. [14] for instance). As we said earlier, when we go to higher N∗ values channels with

even more leptons will become important. The production cross-section for classicalons,

however, decreases as N∗ increases because of the falling longitudinal W luminosity in

eq. (3.17).6 We will, therefore, not study channels with larger number of leptons.

The production cross-section for classicalons is given in table 1 for M∗ = 246 GeV,

M∗ = 600 GeV and M∗ = 1 TeV at LHC energies 7 and 14 TeV. We have provided con-

tributions only for N∗ ≥ 6.7 Using the branching ratios evaluated in the previous section,

we give in table 1 the cross-sections of the four channels, l, l+l+, 3l and 3l+, that we are

interested in. For the 3l channel there are two different ways in which three leptons can

be produced, from the decay of three W s or from the decay of a W and Z. In table 1 we

provide the individual contribution from both these channels as these two modes can be

experimentally distinguished by checking if a lepton pair reconstructs the Z-mass. Also,

the number of partonic jets is higher for the WZ → 3l mode than the 3W → 3l mode. The

number of partonic jets in an event is maximum if all the Zs that do not decay leptonically,

decay hadronically (and not invisibly) and all the W s that do not decay leptonically, decay

to quarks pairs and not to τ -jets. In table 1 we have given in square brackets for N∗ = 6

6As we will soon see, another issue for channels with greater number of leptons is that there is a greater

reduction in cross-section for these channels when experimental requirements like lepton isolation are taken

into account.
7The energy regime close to the classicalization scale that we have not considered, that is

√
ŝ ∼M∗ and

N < 6, would phenomenologically resemble strong electroweak symmetry breaking (EWSB) theories like

technicolor with the appearance of quantum resonances at this scale. Final states with as many as five final

W/Zs have already been mentioned in the literature as signatures for strong EWSB [26].
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and N∗ = 7, the cross-section values assuming the maximum possible number of jets are

produced. As one can see from these values for N∗ = 6 and N∗ = 7 about half of the time

the classicalon does decay to the maximum number of jets possible.

The number of jets produced is very large and this ensures that the background is

negligible. Including the two forward jets produced in the WBF process, for N∗ = 6(10) as

many as 12 (20) partonic jets in the single lepton channel, 10 (18) partonic jets in the l+l+

and 3l channels, and 8 (16) partonic jets in the 3l+ channel, can be produced. In figure 6

we add up contribution from classicalons with N∗ ≥ 6 and show the cross-section for l plus

at least 12 partonic jets, l+l+ plus at least 10 partonic jets, 3l plus at least 10 partonic

jets and the cross-section for the 3l++ 6ET + jets channel.8 We do not require a minimum

number of jets in the last case as the background is absent even without this requirement.

Whereas the 3l+ channel is virtually background free (the background cross-section is of

the order of 0.01 fb at 14 TeV LHC [27]) the other channels also have negligible background

if we require so many jets. The l+ 6ET + jets background gets its major contribution from

the tt̄+ jets production and for more than 10 jets the background, with appropriate cuts,

is negligible [28]. The l+l++ 6ET + jets background has been discussed in detail in ref. [29]

and ref. [30] and again cuts can be applied to reduce this background to a negligible value

for high jet multiplicities (8 or more jets). As all the major SM processes that contribute

3l+ 6ET + jets background, like the WZ + jets process, would also contribute to the single

lepton channel, if the l+ 6ET + jets background is negligible, this background can also be

neglected at high jet multiplicities.

It should be noted that the cross-section values in table 1 and figure 6 do not include

any effect of parton showering, experimental cuts or detector acceptances. Let us discuss

the important experimental effects not taken into account here. The experimental cut that

is expected to have a substantial effect in the presence of so many jets is the requirement

for lepton isolation. For instance if we consider 15 partonic jets having a cone radius

∆R =
√

∆η2 + ∆φ2 = 0.4, we can roughly estimate the fraction of times an isotropically

emitted lepton would remain isolated by finding the fraction of area of in η− φ space that

is still unoccupied by the jets assuming conservatively that the jets do not overlap. To

take into account the fact that the leptons and jets are produced centrally we limit their

η-range to −1.5 < η < 1.5, which gives a total allowed area ∆η∆φ = 6π. This estimate

gives us about 60% probability that a lepton would be isolated for 15 non-overlapping

jets. It should also be kept in mind that that the lepton identification rate is about

90% [31]. Thus, this estimate tells us, due to the requirement of all the leptons being

isolated and getting identified, the cross-section would be reduced to about 54% of the

theoretical value in the l+ 6ET + jets channel, to about 29% of the theoretical value in the

l+l++ 6ET + jets channel and to about 16% of the theoretical value in the channels with

three leptons. At the same time, the 3l ( l+l+) channel would contribute about 35%(50%)

8For evaluation of the exclusive contribution to the cross-section of l + 12 jets from N∗ = 6 classicalon

decays, l+l+ +10 jets from N∗ = 6 classicalon decays, (WZ → 3l)+10 jets from N∗ = 6 classicalon decays

and (3W → 3l)+10 jets from N∗ = 7 classicalon decays we have to use the cross-section values allowing no

invisible decays of the Z boson and no tau decays of W bosons, as such decays would lead to fewer jets than

the required number. Decay of two or more Zs invisibly is relatively unlikely and has been ignored here.
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Figure 6. Cross-section for production of a lepton plus at least 12 partonic jets, two same sign

leptons plus at least 10 partonic jets, three leptons plus at least 10 partonic jets and for three same

sign leptons from the decay of classicalons formed by longitudinal W s and Zs. Missing transverse

energy is present in all the cases mentioned above and the number of leptons mentioned in each

case is the exact number of leptons in the final state. Note that the number of jets mentioned above

is at the partonic level and no effect of showering, hadronization, experimental cuts or detector

acceptances has been included here. For a discussion of these effects see the text.

of the time to the single lepton channel when not all but only two (one) of the leptons

are lost due to lepton isolation/identification requirements. A similar contribution from

the 3l channel to the l+l+ channel would be relatively small. As the leptons are produced

isotropically, pT and η cuts are not expected to have a big effect. Now we come to the

experimental cuts related to the jets. A limitation of our analysis that it has been carried

out at the partonic level only. Whereas the number of jets would increase from the number

at the partonic level because of parton showering, other experimental effects like pT and

η cuts and most importantly the jet isolation cut requiring a minimum ∆R separation

between any two jets, would decrease the number of jets from the partonic level. The

∆R cut is important because if the number of jets is very large and it is likely for two

or more partonic jets to merge thus reducing the number of jets experimentally observed.

The number of jets produced in a classicalon decay is so large, however, that even after

a possible reduction due to the above factors we would expect many jets. Finally, an

experimental cut requiring a minimum missing transverse energy should not reduce the

signal cross-section appreciably.

Keeping these issues in mind we see from figure 6 that whereas for M∗ = 246 GeV,

classicalization should be seen in the l+ 6ET + jets channel (with hints seen in the other
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channels also) in the present run of the LHC with about 10 fb−1 data, a thorough confir-

mation with observation in all the channels would require data at 14 TeV. On the other

hand for M∗ = 600 GeV about 10 fb−1 data at 14 TeV would be needed for both discovery

and confirmation in the different channels. The cross-section for M∗ = 1 TeV is about ten

times smaller than that for M∗ = 600 GeV and this is the maximum classicalization scale

that can be probed with about 100 fb−1 LHC data at 14 TeV.

Another important measurement would be the dependence of N∗ on the total energy

of the decay products shown in figure 3(left). It is theoretically equivalent to measure

the average energy of a lepton/partonic jet, M/(2N∗), in the classicalon rest frame9 as

a function of the total invariant mass. Experimentally, however, the average energy of

a lepton/partonic jet is a more tractable quantity than the total multiplicity as it is not

affected even if there is missing energy. We plot the average energy of a lepton/partonic

jet as a function of the mass in figure 3(right). We see that the average energy decreases

very gradually. As far as leptons are concerned it should be straightforward to measure the

typical energy. An interesting feature to be checked would be that the typical lepton energy

should be same in all the different channels l+ 6ET + jets, l+l+ 6ET + jets, 3l+ 6ET + jets

and 3l++ 6ET + jets. To find the typical energy of a jet in an event as a function of

the total energy and confirming that this is same as the typical lepton energy would be

much more complicated. This is again because the energy of a jet at the partonic level is

not the same as the final energy measured in the detector. The typical jet energy would

decrease due to parton showering and increase if two jets get merged. Another error in

the measurement would come from the fact that two of the jets in the event would be the

WBF jets which would not have the typical energy in figure 3(right), but this would not

be a large effect because of the large number of jets present. Simulations including parton

showers, hadronization and jet algorithms are needed in order to trace back the energy at

the partonic level from the final energy measured in the detectors.

3.2 Higgs as the classicalizer

The second application of classicalization we want to consider is a model where the clas-

sicalizing field is the Higgs itself and the classicalons (called Higssions in this case) are

configurations of the Higgs field. The motivation for this model comes from the hierarchy

problem. Indeed, the radiative corrections to the Higgs mass in this model are screened

by the classization scale itself and not by the highest possible UV scale. In other words,

the loop contributions to the Higgs mass get classicalized and cut-off at the classicalization

scale M∗. As the biggest contribution to the Higgs mass comes from the top, the top loop

must get classicalized at the lowest scale, that is for the Higgs mass to be natural we must

have,
yt

16π2
M2
∗ ∼ m2

h (3.18)

9The typical energy measured in the lab frame would not be so different from the typical energy in the

classicalon rest frame because we expect, as is the case in black hole production [13], that the classicalons

produced would not be highly boosted.
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where M∗ is the classicalization scale. This gives the condition M∗ . 4πmh. We will

consider the case where only the right handed top has a classicalizing interaction of the

form,
κ

M2
∗

(H†H)t̄R 6∂µtR. (3.19)

It is reasonable to consider the possibility of a universal classicalization scale for all SM

particles, in which case Higgsions would be produced at low scales directly from the light

quarks. This scenario, however, would be far more constrained by existing flavor and LHC

data. Here we will consider the minimal case required for naturalness with only the right

handed top having a low scale classicalizing interaction. In this case the radius of the

classicalon is given by the expression [1],

r∗ ∼
κvM

M3
∗

for κ > 0 (3.20)

r∗ ∼
κM

M2
∗

for κ < 0 (3.21)

where v is the Higgs VEV. Again the above relationships is valid only until r∗ reaches

the compton wavelength of the Higgs, 1/mh and beyond this point the radius freezes at

the value 1/mh [1]. Again we will absorb any numerical coefficient present in the above

expressions for r∗ and also the numerical value of κ in a redefinition of M∗ to obtain,

r∗ =
vM

M3
∗

for κ > 0 (3.22)

r∗ =
M

M2
∗

for κ < 0. (3.23)

Again, experimental constraints due to quantum resonances around M∗ are unfortunately

incalculable.

The number of quanta is again found using eqs. (3.8) and (3.9) using the same value

for the normalization factor, γ, given in eq. (3.11). We take mH = 130 GeV here and in

the rest of this section. We plot the number of quanta as a function of the classicalon mass

in figure 7 for the two different choices, M∗ = 500 GeV and M∗ = 1 TeV for both positive

and negative κ. The curves are again almost linear as in the previous case of goldstone

classicalization. We also show for comparison the N∗ vs M curve for a black hole in n = 3

extra dimensions with Mpl = 400 GeV. Once again, for comparison with the black hole

multiplicity, it must be kept in mind that the final decay multiplicity, in the classicalon

case, is bigger than N∗, the number of Higgs bosons, as the Higgs bosons decay further to

leptons and jets.

We will consider the possibility of producing Higgsions in the top fusion process gg →
(tt̄ → Cl)tt̄ (see figure 8). To find the cross-section for classicalon production form top

fusion we introduce a dimension-5 tthh operator in CALCHEP [32], (t̄tH†H/Λ) and find

the cross-section for the top fusion process pp→ gg → tt̄hh. At high energies the tt→ hh

cross-section due to this operator is a constant as a function of the tt̄-energy; this is also

true for production of N∗-particle classicalons (tt→ Cl) the cross-section in this case being

fixed at πr2∗(MN∗). Thus we find the cross-section of the top fusion process pp→ gg → tt̄hh
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Figure 7. In the model with Higgs as the classicalizer we plot the number of Higgs bosons produced,

N∗, in a classicalon decay as a function of the classicalon mass and compare it with the multiplicity

curve for a black hole in n = 3 extra dimensions with Mpl = 400 GeV.
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Figure 8. Production of a classicalon by the top fusion process in the model with the Higgs as the

classicalizer.

(taking into account only the contribution of the tthh operator and not other SM processes)

and rescale this cross-section by the ratio of the tt̄→ Cl cross-section to the tt→ hh cross-

section to obtain the pp→ gg → tt̄+ Cl cross-section. Finally we would have to multiply

by a factor of 1/2 as the tt → Cl process would take place only if both the tops are right

handed whereas for the tt → hh process to take place the tops need to have opposite

chiralities. Note that we are assuming that the total cross-section can be factorized into a

hard part and (tt̄→ Cl) and a ‘top parton density function (PDF)’ and this is not expected

to be accurate unless the partonic center of mass energy
√
ŝ � mt. For this reason our

cross-section estimates would be approximate.

We show the results for the cross-sections for M∗ = 500 GeV and M∗ = 1 TeV in

table 2. We also give branching ratios and cross-sections for the l+ 6ET + jets channel

(again requiring exactly, and not at least, one lepton) where the lepton comes from a real

– 26 –



J
H
E
P
0
5
(
2
0
1
2
)
1
1
4

N∗ Branching ratio Cross-section for κ < 0 Cross-section for κ > 0

to l+ jets(%) M (GeV) All channels (fb) l+ jets(fb) M (GeV) All channels (fb) l+ jets(fb)

M∗ = 500 GeV

6 29 1160 26(0.5) 7.5(0.2) 1335 8.4(0.08) 2.4(0.03)

7 26 1320 17(0.3) 4.4(0.08) 1505 5.4(0.04) 1.4(0.01)

8 23 1480 13(0.2) 3.0(0.05) 1670 4.0(0.01) 0.9(-)

9 21 1640 8.0(0.1) 1.7(0.02) 1835 3.2(0.01) 0.7(-)

10 18 1800 6.0(0.06) 1.1(0.01) 2000 2.1(-) 0.4(-)

Total cross-section: 70(1.2) 18(0.4) 23(0.1) 5.8(0.04)

M∗ = 1 TeV

6 29 1590 1.0 0.3 2620 0.02 -

7 26 1780 0.6 0.2 2875 0.01 -

8 23 1960 0.4 0.09 3115 0.01 -

9 21 2140 0.2 0.04 3350 - -

10 18 2310 0.2 0.04 3580 - -

Total cross-section: 2.4 0.7 0.04 -

Table 2. Cross-section for classicalon production by top fusion in the model with the Higgs as

the classicalizer. We give the total cross-section as well as the cross-section for only the l + jets

channel. We have considered the cases M∗ = 500 GeV and M∗ = 1 TeV. The cross-sections for

7 TeV LHC energy, when not negligible (<0.01 fb), are given in parentheses. All other numbers

are for 14 TeV LHC energy. For evaluating the branching ratio to the l + jets channel we have

used the SM numbers for mH = 130 GeV, that is, BR(H → qq̄) = 0.55, BR(H → gg) = 0.06,

BR(H → ττ) = 0.05, BR(H → WW ) = 0.29 and BR(H → ZZ) = 0.04. We have considered

hadronically decaying τs to be jets and leptonically decaying τs to be leptons. Note that no effect

of showering, hadronization, experimental cuts or detector acceptances has been included here. For

a discussion of these, see the text.

or virtual W boson emerging form either a Higgs or one of the final tops (decay channels

with greater number of leptons have a much smaller branching fraction in this case). Again,

unlike black holes, missing energy must necessarily be present in this channel. The number

of jets is even larger here and a classicalon with N∗ = 6 would give rise to about 16 jets

including the jets from the top decays, so that the background is again negligible [28]. A

similar estimate to the one done in the previous subsection tells us that for 16 jets at least

about 50% of the theoretical cross-section should survive after the lepton identification

and isolation requirements are taken into account. It is clear from table 2 that discovery

would not be possible in the 7 TeV run of the LHC. For M∗ = 500 GeV discovery should

be possible with about 10 fb−1 at 14 TeV LHC energy for both the κ < 0 and κ > 0 cases.

Much higher integrated luminosities, about 100 fb−1, would be required for M∗ = 1 TeV

and κ < 0 whereas the κ > 0 case would be out of reach even with high luminosities.

4 Conclusions

We have argued that classicalons must have analogs of thermodynamic properties and we

have carried out a model-independent statistical mechanical analysis of classicalons. By

taking the set of four momenta of the incoming (outgoing) particles that form a classicalon

(that a classicalon decays to) as a microstate of the classicalon, we count the number of
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such microstates imposing only the condition of energy-momentum conservation and the

condition that the incoming wave-packets should be able to localize their energy inside

the classicalon radius, r∗. We find that the particles a classicalon decays to will have

a Planck distribution with an effective temperature T ∼ 1/r∗ in the case of a massless

classicalizer field. The final thermodynamic relations obeyed by a classicalon are different

from those obeyed by blackbody radiation in spite of the fact that both have the same

distribution function. This is because incoming/outgoing wave-packets in a classicalon

formation/decay process have a different density of states than the particles in blackbody

radiation. Our results confirm the expectations of ref. [6] and we find the entropy scales

like, S ∼ N∗ ∼ Mr∗, when the classicalizer field is massless. This implies that classicalon

decays to a few particles should be combinatorially suppressed by a factor e−S ∼ e−N∗ . For

the specific case of a black hole, the classicalon radius is proportional to its mass, and the

well known proportionality of the black hole entropy to its area follows from the general

scaling of the classicalon entropy.

We use our results, in particular the computation of the number of classicalon decay

products, N∗, to make LHC predictions. For computing the rate of production, we use the

fact that classicalons are expected to be produced with a geometric cross-section, πr2∗. The

important difference from black hole production is that even at energies higher than the

classicalization scale, other SM processes involving particles without a strong classicalizing

interaction go on unaffected with a larger cross-section than classicalon production. In the

models we consider, light quarks have no direct classicalizing interactions and, as a result,

the classicalon production cross-sections are much smaller than black hole production cross-

sections at the same energy. On the other hand, we find the multiplicity of final decay

products of the classicalons to be larger than the decay multiplicity of extra-dimensional

black holes, in the cases we consider.

The first model we look at is a model where longitudinal WW scattering is unitarized

in the absence of a Higgs by classicalization of longitudinal W s and Zs. The classicalon

in this model decays to multiple W s and Zs which lead to signals in various channels like

l+ 6ET + jets, l+l++ 6ET + jets, 3l+ 6ET + jets and 3l++ 6ET + jets where the number

of partonic jets is typically larger than ten. Our results for the different channels are well

summarized in figure 6. We find that, for this model, discovery would be imminent in the

l+jets channel in the present 7 TeV run of the LHC, if the classicalization scale is as low as

M∗ = v = 246 GeV and that we would have to wait for about 10 fb−1 integrated lumiosity

at 14 TeV, if the scale is higher, around M∗ = 600 GeV. The maximum classicalization

scale that can be probed with 100 fb−1 data at 14 TeV is about M∗ = 1 TeV.

For the model to address the hierarchy problem with the Higgs itself as the classicalizer,

we consider the minimal case where only the right handed top has a classicalizing inter-

action. The classicalon radius in this case depends on the sign of the non-renormalizable

coupling κ. We explore the prospect of discovery of such classicalons in the top fusion

process gg → (tt̄ → Cl)tt̄ by looking at the l+ 6ET + jets final state where the number

of partonic jets is very high (at least 15). We find that for M∗ = 500 GeV, discovery

should be possible with about 10 fb−1 at 14 TeV LHC for both the κ < 0 and κ > 0 cases.

For M∗ = 1 TeV and κ < 0 much higher integrated luminosities, about 100 fb−1, would
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be required whereas the κ > 0 case would be out of reach even with high luminosities if

M∗ = 1 TeV.

Thus, we have shown that classicalon decays can produce remarkable multi-W/Z or

multi-Higgs signatures at the LHC. Our encouraging results on the discovery prospects of

classicalization suggest that a more rigorous experimental study including event generation,

QCD and detector effects should be undertaken in the future.
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A Transverse length of wave-packets forming a classicalon

We want to show in this appendix that while the transverse length of wave-packets forming

a classicalon can be much larger than 2r∗, it cannot be larger than
√
Nr∗, where N is the

number of incoming wave-packets. We will show, first of all, that when all the incoming

wave-packets reach the origin at t = 0 (see figure 2(right)), because of the transverse length

being larger than 2r∗, there is a field φ outside the classicalon radius r∗ but it drops off

as φ ∼ 1/r. To prove this, let us think for the moment, although as we will soon see this

cannot be the case, that the wave-packets are infinitely extended in the transverse direction.

If the number of these wave-packets is very large we can approximate the summation in the

superposition of these wave-packets by an integral over a spherically symmetric distribution

of these wave-packets with the direction of the momenta ~k varying continuously. Let θ be

the angle the momentum of a particular wave-packet makes with the z-axis (see figure 9).

For a point P on the z-axis outside the sphere, at a distance r from the origin, only wave-

packets with direction of momentum in a certain θ range, − cos−1(r∗/r) < θ < cos−1(r∗/r),

contribute to the field φ (see figure 9) if r > r∗. On the other hand, for a point inside the

classicalon, there are contributions from all the wave-packets without a restriction on θ.

The total contribution to the field φ at P , at a distance r from the origin, from wave-packets

with energy |~k| is,

φ(r) ∼
∫ 1

−1
sin k(r cos θ + r∗)d(cos θ)

∫ 2π

0
dφ for r < r∗,

φ(r) ∼
∫ r∗/r

−r∗/r
sin k(r cos θ + r∗)d(cos θ)

∫ 2π

0
dφ ∼ 1

r
for r > r∗, (A.1)

where we have used the functional form in eq. (2.3) and substituted kl = ~k.~r = kr cos θ, ~r

being the position vector of the point P . The exact form of the function inside the radius r∗
is not important as it would change anyway in the presence of a classicalizing interaction.

What is important is the φ ∼ 1/r drop off outside the radius r∗ which shows that most
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Figure 9. Here we show that at t = 0 when all the wave-packets reach the origin, only wave-

packets with direction of momentum in the θ range − cos−1(r∗/r) < θ < cos−1(r∗/r) contribute

to the field at a point P on the z-axis at a distance r from the origin. Here ~k1 and ~k2 are the

momentum vectors of the two wave-packets shown.

of the the energy does get localized inside r∗ for these wave-packets (note that the energy

density goes as (∂φ)2 ∼ 1/r4). We can also obtain the normalization Q of the field, in

φ ∼ Q/r, at the parametric level. For this note that our wavepackets must have the usual

normalization 1/
√
ωNr3∗, Nr

3
∗ being the total volume of the wave-packets. Keeping in

mind that the number of wave-packets giving a contribution in eq. (A.1) in the interval

between (θ, φ) and (θ + dθ, φ+ dφ) is (N/4π)d(cos θ)dφ we get,

φ(r) =
N

4π

1√
ωNr3∗

∫ r∗/r

−r∗/r
sin k(r cos θ + r∗)d(cos θ)

∫ 2π

0
dφ ∼

√
N

r
for r > r∗. (A.2)

where we have used the typical value, ω = k = 1/r∗. The numerator
√
N =

√
Mr∗ is

actually the correct charge in any classicalizing theory [1]. For instance in the special case

of black holes it correctly reduces to the mass M of the black hole.

As we argued in section 2.1, in order that they always overlap, our wave-packets must

have a finite transverse length. Let us calculate this length for N incoming/outgoing

particles. For N particles at a radius L/2 from the origin, each particle can be thought to

occupy an area πL2/N where no other particle is present. Assuming this area occupied by

the particle to be circular we find that on an average the angle between the momenta of two

neighboring particles would be (2L/
√
N)/(L/2) = 4/

√
N . As one can see from figure 10

this would mean that two neighboring wave-packets would stop overlapping at a distance

L/2 given by,
L

2
× 4√

N
= 2r∗ ⇒ L =

√
Nr∗. (A.3)
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Figure 10. The distance L/2 at which two neighboring wave-packets stop overlapping.

B Derivation of the Bose-Einstein distribution function

In this appendix we review the standard textbook derivation of the Bose-Einstein distribu-

tion function (for a more detailed treatment see, for instance, sections 87–89 of ref. [33]).

We want to find the distribution function Nω that maximizes Ω(M) while respecting the

energy conservation constraint,

∑
ω

Nωgωω dω = M. (B.1)

Remember that Nω is the number of particles in the energy state with energy ω, and gω
is the degeneracy of this energy state. Let us represent an arbitrary configuration of a

particular energy level as, ××|×| . . .× where the crosses represent the indistinguishable φ

quanta and the space between two bars is a quantum state. Thus we should have Nω crosses

and gω − 1 bars and the number of ways of arranging these crosses and bars would give us

the number of ways of arranging the particles in a particular energy level. Considering all

energy levels, this leads to the well known expression,

Ω(M) = Πω
(Nω + gω)!

Nω!gω!
(B.2)

where we have approximated (Nω + gω − 1)! ≈ (Nω + gω)! and (gω − 1)! ≈ gω!. We want

to maximize the entropy, S = log(Ω(M)), respecting the constraints in eq. (B.1). We

must have,

dS =
∑

log
Nω + gω
gω

dNω = 0 (B.3)

dM =
∑

ωdNω = 0. (B.4)
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where we have used Stirling’s approximation, logN ! = N logN −N . Now we maximize S

by using the method of Lagrange multipliers,

dS − βdM = 0 (B.5)

⇒ log

(
1 +

gω
Nω

)
− βω = 0, (B.6)

where we have used eqs. (B.3) and (B.4) and β is the Lagrange multiplier. This leads to

the Bose-Einstein distribution,

Nω =
gωdω

eβω − 1
. (B.7)

Note that in our case there is no constraint on the total number of particles. Such a

constraint would have led to the presence of a chemical potential which is zero in our case.

C Branching ratios in goldstone classicalization

In this appendix we will provide formulae for the branching ratios of a classicalon to

final states with varying number of leptons in the goldstone classicalization model. In

the expressions below, wl is the branching ratio of a W to leptons (e, µ and leptonically

decaying τs), wj is the branching ratio of a W to jets (including hadronically decaying

τs ), zl is the branching ratio of a Z to two leptons and zj is the branching ratio of a Z

to two jets. In general we include invisible decays of the Z in zj . This gives wl = 0.25,

wj = 0.75, zl = 0.91 and zj = 0.07. To compute branching ratios to final states with

maximum possible number of jets in association with a given number of leptons, we do not

include W s decaying to hadronically decaying τs in wj and invisibly decaying Zs in zj ,

which changes the values of wj and zj above to wj = 0.68 and zj = 0.71. The branching

ratios depend on the electric charge, Q, of the classicalon. Let us first consider neutral

classicalons, i.e. the Q = 0 case.

Classicalons with Q = 0 In a general configuration for a neutral classicalon there are

k W+W− pairs and (N∗ − 2k) Z-bosons where 0 ≤ k ≤ [N∗/2], [N∗/2] being the largest

integer smaller than N∗/2. As explained in section 3.1.2, the probability of having such a

configuration is given by,

P ′k =
N∗!

(N∗ − k)!(k!)2
,

Pk =
P ′k∑n
k=0 P

′
k

. (C.1)

In order to obtain the single lepton final state one of the W s needs to decay leptonically

which gives the following branching ratio for a N∗-particle classicalon,

BR(Cl→ l) =

[N∗/2]∑
k=1

(
2k

1

)
wlw

2k−1
j zN∗−2kj Pk. (C.2)
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Similarly to obtain two(three) positive leptons, two (three) W+s need to decay leptonically

which leads to the expressions,

BR(Cl→ l+l+) =

[N∗/2]∑
k=2

(
k

2

)
w2
l w

2k−2
j zN∗−2kj Pk, (C.3)

BR(Cl→ 3l+) =

[N∗/2]∑
k=3

(
k

3

)
w3
l w

2k−3
j zN∗−2kj Pk. (C.4)

For the branching ratio to 3 leptons either 3 W s need to decay leptonically or 2 W s and a Z

need to decay leptonically which gives us two terms in the branching ratio of a classicalon

to 3 leptons,

BR(Cl→ 3l) =

[N∗/2]∑
k=2

(
2k

3

)
w3
l w

2k−3
j zN∗−2kj Pk+

[N∗/2]∑
k=1

(
2k

1

)
wlw

2k−1
j

(
N∗ − 2k

1

)
zlz

N∗−2k−1
j Pk.

(C.5)

Now let us generalize this to a classicalon decay to an arbitrary number of leptons, nl where

0 ≤ nl ≤ 2N∗. For nl = 2p, an even number, we can get nl leptons from the decay of an

even number, 2q, of W decays and (p− q), Z decays. This gives us,

BR(Cl→ 2p l) =

p∑
q=0

[N∗/2]∑
k=q

(
2k

2q

)
w2q
l w

2k−2q
j

(
N∗ − 2k

p− q

)
zp−ql zN∗−2k−p+qj Pk. (C.6)

If nl = (2p+1), is an odd number, we can get nl leptons from the decay of an odd number,

(2q + 1), of W decays and (p− q), Z decays. This gives us,

BR(Cl→ (2p+ 1)l) =

p∑
q=0

[N∗/2]∑
k=q

(
2k

2q + 1

)
w2q+1
l w2k−2q−1

j

(
N∗ − 2k

p− q

)
zp−ql zN∗−2k−p+qj Pk.

(C.7)

Classicalons with Q = +2 For classicalons with charge Q = +2, there are in general
(k+ 2) W+ bosons, k W− bosons and (N∗−2k−2) Z-bosons, where 0 ≤ k ≤ [(N∗−2)/2],
[(N∗−2)/2] being the largest integer smaller than (N∗−2)/2. Proceeding as in the previous
case we obtain the expressions,

P ′k =
N∗!

(N∗ − 2k − 2)!k!(k + 2)!
,

Pk =
P ′k∑[(N∗−2)/2]

k=0 P ′k
, (C.8)

BR(Cl→ l) =

[(N∗−2)/2]∑
k=0

(
2k + 2

1

)
wlw

2k+1
j zN∗−2k−2

j Pk, (C.9)

BR(Cl→ l+l+) =

[(N∗−2)/2]∑
k=0

(
k + 2

2

)
w2

l w
2k
j zN∗−2k−2

j Pk, (C.10)

BR(Cl→ 3l+) =

[(N∗−2)/2]∑
k=1

(
k + 2

3

)
w3

l w
2k−1
j zN∗−2k−2

j Pk, (C.11)
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BR(Cl→ 3l) =

[(N∗−2)/2]∑
k=1

(
2k + 2

3

)
w3

l w
2k−1
j zN∗−2k−2

j Pk

+

[(N∗−2)/2]∑
k=0

(
2k + 2

1

)
wlw

2k+1
j

(
N∗ − 2k − 2

1

)
zlz

N∗−2k−3
j Pk, (C.12)

BR(Cl→ 2pl) =

p∑
q=0

[(N∗−2)/2]∑
k=q−1

(
2k + 2

2q

)
w2q

l w
2k−2q+2
j ×

(
N∗ − 2k − 2

p− q

)
zp−ql zN∗−2k−2−p+q

j Pk, (C.13)

BR(Cl→ (2p+ 1)l) =

p∑
q=0

[(N∗−2)/2]∑
k=q−1

(
2k + 2

2q + 1

)
w2q+1

l w2k−2q+1
j ×

(
N∗ − 2k − 2

p− q

)
zp−ql zN∗−2k−2−p+q

j Pk. (C.14)

Classicalons with Q = −2 For classicalons with charge Q = +2, there are in general
(k+ 2) W− bosons, k W+ bosons and (N∗−2k−2) Z-bosons, where 0 ≤ k ≤ [(N∗−2)/2],
[(N∗ − 2)/2] being the largest integer smaller than (N∗ − 2)/2. In this case we obtain,

P ′k =
N∗!

(N∗ − 2k − 2)!k!(k + 2)!
,

Pk =
P ′k∑[(N∗−2)/2]

k=0 P ′k
, (C.15)

BR(Cl→ l) =

[(N∗−2)/2]∑
k=0

(
2k + 2

1

)
wlw

2k+1
j zN∗−2k−2

j Pk, (C.16)

BR(Cl→ l+l+) =

[(N∗−2)/2]∑
k=2

(
k

2

)
w2

l w
2k
j zN∗−2k−2

j Pk, (C.17)

BR(Cl→ 3l+) =

[(N∗−2)/2]∑
k=3

(
k

3

)
w3

l w
2k−1
j zN∗−2k−2

j Pk, (C.18)

BR(Cl→ 3l) =

[(N∗−2)/2]∑
k=1

(
2k + 2

3

)
w3

l w
2k−1
j zN∗−2k−2

j Pk

+

[(N∗−2)/2]∑
k=0

(
2k + 2

1

)
wlw

2k+1
j

(
N∗ − 2k − 2

1

)
zlz

N∗−2k−3
j Pk, (C.19)

BR(Cl→ 2pl) =

p∑
q=0

[(N∗−2)/2]∑
k=q−1

(
2k + 2

2q

)
w2q

l w
2k−2q+2
j ×

(
N∗ − 2k − 2

p− q

)
zp−ql zN∗−2k−2−p+q

j Pk, (C.20)

BR(Cl→ (2p+ 1)l) =

p∑
q=0

[(N∗−2)/2]∑
k=q−1

(
2k + 2

2q + 1

)
w2q+1

l w2k−2q+1
j ×

(
N∗ − 2k − 2

p− q

)
zp−ql zN∗−2k−2−p+q

j Pk. (C.21)
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