
Hindawi Publishing Corporation
EURASIP Journal on Applied Signal Processing
Volume 2006, Article ID 72879, Pages 1–9
DOI 10.1155/ASP/2006/72879

Blind Adaptive Channel Equalization with
Performance Analysis

Shiann-Jeng Yu1 and Fang-Biau Ueng2

1National Center for High Performance Computing, No. 21 Nan-Ke 3rd Road, Hsin-Shi, Tainan County 744, Taiwan
2Department of Electrical Engineering, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan

Received 4 March 2005; Revised 25 August 2005; Accepted 26 September 2005

Recommended for Publication by Christoph Mecklenbräuker
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1. INTRODUCTION

Traditional adaptive equalizers are based on the periodic
transmission of a known training data sequence in order
to identify or equalize a distorted channel with intersym-
bol interference (ISI). However, the use of training data se-
quence may be very costly in some applications. Blind chan-
nel equalizers (BCE) without training data available receive
much attention in recent years [1–15]. Early blind equaliza-
tion techniques [1, 2] exploited the higher order statistics
(HOS) of the output to identify the channels. Unfortunately,
the HOS-based BCE requires a large number of data samples
and huge computation load which limit their applications in
fast changing environments.

To circumvent the shortcomings of the HOS-based ap-
proaches, second-order statistics (SOS) was considered in
BCE. The SOS-based BCE was developed based on cyclo-
stationary characteristics of the signal. The first SOS-based
BCE was derived by Tong et al. [3]. They demonstrated that
the SOS is sufficient for blind adaptive equalization by us-
ing fractionally sampling or using an array of sensors. Since
that, extensive researches were explored in the literature.
The well-known approaches are the least-squares, the sub-
space, and the maximum likelihood [3, 8, 9]. These blind
equalizers were termed the two-step methods which esti-
mate multiple channel parameters first and then equalize the
channels based on the estimated channel parameters. How-
ever, the two-step methods are not optimal because they do
not take the channel estimation error into account in the

second-step optimization procedure. Recently, direct equal-
ization estimators become more attractive [10–13]. The lin-
ear prediction-based equalizer was developed by [13]. Work
[12] used the adaptive beamforming technique to develop
a constrained optimization method. Multiple-shift correla-
tion (MSC) of the signals can be used in a partially adaptive
channel equalizer to achieve fast convergence speed and low
computation load. These direct equalizers can be adaptive,
leading to much simpler realization for practical implemen-
tation.

The SOS-based equalizers have the advantages of fast
convergence speed and lower computational complexity
compared with the HOS-based approaches. Unfortunately,
most of the SOS-based equalizers suffer from the perfor-
mance degradation caused by the model mismatch. The mis-
matchmay be from inadequate channel order estimation due
to limited observation data or the small channel coefficients.
Practical multipath channels often have small head and tail
terms, selection of appropriate channel order may not be an
easy task. As shown in [15] that the blind channel equaliza-
tion/identification methods should model only the “signifi-
cant part” of the channel composed of the “large” channel
coefficient terms. The “small” head and/or tail terms should
be neglected to avoid overmodeling the system and causing
degradation of the equalization performance.Work [16] pre-
sented a new channel order criterion for blind equalization
and [15] investigated the robustness of the LS and SS ap-
proaches by using the perturbation theory.
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In this paper, we study the steady-state performance
of the MSC-based equalizer. We explore the relationship
between the output signal-to-interference plus noise ratio
(SINR) and the small head and tail terms of the FIR chan-
nels. By applying an orthogonalization approximation to the
analyses, the output SINR in terms of the small channel coef-
ficients is derived. A degradation factor defined by the output
SINR of the MSC-based equalizer over the optimal value is
used to examine the performance degradation of the equal-
izer. We find that the degradation factor is not only a func-
tion of the small channel coefficients, but also a function
of the optimal output SINR, the optimal output power, and
the control vector. To reduce the degradation caused by the
small channel coefficients, this paper proposes a simple itera-
tive method. The analysis of the iterative method is also per-
formed. From the analysis results, we identify that the itera-
tive method indeed improves the equalization performance.

2. SIGNALMODEL

Let us consider an array with p antennas. If the received sig-
nal is sampled at the symbol rate, the digitized data of the
array can be written by [14],

y(n) =
q∑

i=1
his(n− i + 1) + z(n), (1)

where y(n) = [y1(n)y2(n) · · · yp(n)]T , {s(n)} is the input
signal symbol sequence, and z(n) = [z1(n)z2(n) · · · zp(n)]T
is the additive white Gaussian noise vector. “T” represents
the transpose. s(n) is an independent identically distributed
(iid) zero-mean sequence with E{s(i)s∗( j)} = δ(i − j)
and is independent of zi(n). The channel parameters {hi =
[h1(i)h2(i) · · ·hp(i)]T , i = 1, 2, . . . , q} contain all the im-
pulse response of the p FIR channels. The channel order of
this multiple FIR channel model of (1) is q − 1. Define the
data vector YM(n) = [yT(n)yT(n − 1) · · · yT(n −M + 1)]T ,
YM(n) can be expressed as

YM(n) = B f (h)SM(n) + ZM(n), (2)

where

B f (h) =

⎡
⎢⎢⎢⎣

h1 h2 · · · hq · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · h1 h2 · · · hq

⎤
⎥⎥⎥⎦

(pM)x(q+M−1)

= [
b f 1,b f 2, . . . ,b f (q+M−1)

]

(3)

is a block Toeplitz matrix and is full rank. ZM(n) =
[zT(n)zT(n − 1) · · · zT(n − M + 1)]T , SM(n) =
[s(n)s(n − 1) · · · s(n − q − M + 2)]T represents the
signal sources corresponding to the columns b f i(h).

The purpose of the equalizer is to provide an estimate of
the signal s(n− d + 1) with a possible delay of d− 1 samples.
From beamforming point of view [16], s(n − d + 1) can be
seen as the desired signal and the other signals s(n − i) with
i �= d − 1 can be virtually seen as the interferers. Tsatsanis

and Xu [12] noted the analogies of (2) to the beamforming
problem statement [16] and developed the COM for direct
blind equalizers. They found from (3) that ifM ≥ d − 1 ≥ q,
b f d = [0 · · · 0 hTq hTq−1 · · · hT1 0 · · · 0]T contain-
ing the information of all channel parameters can be used
in designing the blind equalizer. The COM algorithm can be
derived through an optimization problemwithmultiple con-
straints. Consider the optimization problem

min
WCOM

WH
COMRYMWCOM subject to CH

d WCOM = h. (4)

The weight vector of the COM (constrained optimization
method) algorithm is given by [12],

WCOM = R−1YM
CdΦ

−1θ, (5)

where Φ = CH
d R

−1
YM
Cd, RYM = E{YM(n)YH

M(n)}, θ is the
eigenvector of Φ corresponding to the minimum eigenvalue,
and

Cd =
⎡
⎢⎣
0p(d−q)×p(d−q)

Ipq×pq
0p(M−d)×p(M−d)

⎤
⎥⎦

(pM)x(pq)

. (6)

From (5), the COM constructs pM adaptive weights to
estimate a total of pq channel parameters for resolving one
of theM + q− 1 signals of SM(n). Unfortunately, pM is often
much greater thanM + q− 1. For example, let p = 10, q = 3,
and M = 9, the number of adaptive weights for the COM
is as high as 90, but the number of all the signal sources of
SM(n) is only 11. Because the convergence speed and com-
putation load of an adaptive algorithm strongly depend on
the dimension of the adaptive weights [17], the COM using
such big number of adaptive weights to resolve a signal of
SM(n) is not efficient. Another approach called the mutually
referenced equalizers (MRE) [18] is based on the following
observation. Without consideration of the noise, the equal-
izers have

VH
k YM(n) = VH

i YM(n + i− k)

for i, k = 0, 1, . . . , q +M − 1, k > i,
(7)

where the Vk are also defined as k-delay equalizers. There ex-
ist equalizers to achieve perfect symbol recovery. However, in
the presence of noise perfect symbol recovery is impossible
by using the criterion of (7). Work [18] successfully devel-
oped asymptotic algorithms for all equalization delays.

3. THE PROPOSED PARTIALLY ADAPTIVE
CHANNEL EQUALIZER (PACE)

Consider a shift correlation matrix defined by Ry(n,n− k) =
E{y(n)yH(n− k)} and is given by

Ry(n,n− k) =
q∑

i=1

q∑

j=1
E
{
s(n− i + 1)s∗(n− j − k + 1)

}

× hihHj + E
{
z(n)zH(n− k)

}
.

(8)
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Consider the algorithm for direct blind adaptive equaliza-
tion using partially adaptive weights. Let Y(n) be a vector
containing the first N entries of YM(n) and be expressed
by Y(n) = [yT(n)yT(n − 1) · · · yT(n − m + 2)y1(n − m +
1)y2(n−m + 1) · · · yl(n−m + 1)]T , where m = �N/p� and
l = N − (m − 1)p. �·� denotes the nearest larger integer. By
(2) and (3), Y(n) can be written by

Y(n) = B(h)S(n) + Z(n), (9)

where the N × (q +m− 1) matrix B(h) is written by

B(h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 · · · hq · · · 0 0
...

. . .
. . .

. . .
. . .

. . .
...

... · · · h1 h2 · · · hq 0

0 · · · 0 h̄1 h̄2 · · · h̄q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= [
b1,b2, . . . ,bQ

]
,

(10)

where Q = q +m − 1 and bi is the ith column of B(h). It is
noted that B(h) is a submatrix of B f (h) and is therefore full
rank [19]. In (10), the vector h̄i consists of the first l entries
of hi, S(n) = [s(n)s(n − 1) · · · s(n − Q + 1)]T , and Z(n) =
[zT(n) · · · zT(n−m+2)z1(n−m+1)z2(n−m+1) · · · zl(n−
m+1)]T is aN×1 noise vector. The adaptive array theory [16]
states that a N-element array has N − 1 degrees of freedom
to resolve at most N − 1 signal sources including the desired
signal and interference. Therefore, we have to select

N > Q (11)

to resolve one of the signal sources of S(n). If the direction
vector bd is known, the optimal weight vector corresponding
to the desired signal s(n− d + 1) is given by [16],

wd = μR−1Y bd, (12)

where RY (n) = E{Y(n)YH(n)} = B(h)BH(h) + σ2I and μ
is a scalar. In this paper, μ is used to normalize the weight
vector. Since the direction vector bd is probably containing
a fraction of all the channel parameters, the equalizer using
(12) is called the partially adaptive equalizer. Next, we use the
MSC of Y(n) to find the weight vector wd directly. Consider
that

RY (n,n− k) = B(h)E
{
S(n)SH(n− k)

}
BH(h)

+ E
{
Z(n)ZH(n− k)

}
.

(13)

Thus, if k = Q − 1 and k ≥ m, (13) can be reduced to

RY (n,n−Q + 1) = bQbH1 . (14)

A simple method for extracting bQ from (14) is selecting a
nonzero vector u, which satisfies bH1 u �= 0. The direction vec-
tor bQ can be found by

RY (n,n−Q + 1)u = bQ
(
bH1 u

)
∝ bQ. (15)

Similarly, consider another nonzero vector v with bHQv �= 0,
then

RH
Y (n,n−Q + 1)v = b1

(
bHQv

)
∝ b1. (16)

By (12), (15), and (16), the weight vectors of w1 and wQ can
be given by

wQ = μR−1Y (n)RY (n,n−Q + 1)u ∝ R−1Y (n)bQ,

w1 = μR−1Y (n)RH
Y (n,n−Q + 1)v ∝ R−1Y (n)b1.

(17)

The outputs corresponding to the zero-delay and (Q − 1)-
delay signals are given by ŝ (n) = wH

1 (n)Y(n) and ŝ (n − Q +
1) = wH

Q (n)Y(n), respectively. Using the same approach, the
weight vectors of wd for d = 2, 3, . . . , �Q/2� can be derived as
follows:

wd = μR−1Y (n)RY (n,n−Q + d)wQ,

wQ+1−d = μR−1Y (n)RH
Y (n,n−Q + d)w1,

(18)

wherewQ=μR−1Y (n)RY (n,n−Q+1)u and w1=μR−1Y (n)RH
Y (n,

n − Q + 1)v. It is noted that the above algorithm needs two
initial vectors u and v in (17) for calculating w1 and wQ, re-
spectively. In theory, any nonzero vectors having bHQu �= 0
and bH1 v �= 0 can be chosen as the candidates. We can se-
lect u = wQ and v = w1 for consistency of the algorithm.
In the next section, we study the equalization performance
in the presence of channels with small head and tail channel
coefficients. We find that for the batch processing, selecting
u = wQ and v = w1 has the benefit of improving the per-
formance. On the consideration of adaptive implementation
of the proposed PACE algorithm, we first insert the time in-
dex for the weight vectors for clarification. A straightforward
thinking is to express (18) as follows:

wd(n) = μR−1Y (n)RY (n,n−Q + d)wQ(n),

wQ+1−d(n) = μR−1Y (n)RH
Y (n,n−Q + d)w1(n).

(19)

Here, the algorithm cannot be implemented due to unavail-
ability ofwQ(n) at this moment. For the recursive implemen-
tation of the PACE, we slightly modify the above equations as

wd(n) = μR−1Y (n)RY (n,n−Q + d)wQ(n− 1),

wQ+1−d(n) = μR−1Y (n)RH
Y (n,n−Q + d)w1(n− 1).

(20)

Let the correlation matrix be updated by

RY (n,n− k) = (1− α)RY (n− 1,n− 1− k)

+ αY(n)YH(n− k),
(21)
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where α is a weighting factor with 0 ≤ α ≤ 1. The RLS-based
PACE algorithm is summarized as follows:

R−1Y (n) = 1
(1− α)

R−1Y (n− 1)

− α

(1−α)
R−1Y (n−1)Y(n)YH(n)R−1Y (n−1)
(1−α)+αYH(n)R−1Y (n−1)Y(n) ,

RY (n,n−Q + d) = (1− α)RY (n− 1,n− 1−Q + d)

+ αY(n)YH(n−Q + d),

Pd(n) = RY (n,n−Q + d)wQ(n− 1),

PQ+1−d(n) = RH
Y (n,n−Q + d)w1(n− 1),

wd(n) = Ŵd(n)/
∥∥Ŵd(n)

∥∥

with Ŵd(n) = R−1Y (n)Pd(n),

wQ+1−d(n) = ŴQ+1−d(n)/
∥∥ŴQ+1−d(n)

∥∥

with ŴQ+1−d(n) = R−1Y (n)PQ+1−d(n),

(22)

with R−1Y (0) = τI and wQ(0) = u and w1(0) = v. Here, τ is a
very large scalar. The computational complexity is O(N2).

3.1. A new order detection criterion

Now consider that

�k = trace
{
RH
Y (n,n− k)R−1Y RY (n,n− k)

}
, (23)

we have

�k =
⎧
⎨
⎩

∥∥hq
∥∥2(hH1 R−1Y h1

)
, if k = q − 1,

0, if k ≥ q,
(24)

where ‖hi‖ denotes the 2-norm of hi. Since ‖hi‖ is not zero,
�k may be an indicator for determining the order of the FIR
channels by checking its value nonzero. However, at practical
situation of finite number of samples, we have

�̂k = trace
{
R̂H
Y (n,n− k)R̂−1Y R̂Y (n,n− k)

} =
p∑

i=1
ĝk(i), (25)

where ĝk(i) = P̂H
i R̂

−1
Y P̂i with P̂i the ith column of R̂Y (n,n −

k). In practice, �̂k will never be zero for any k. Therefore
detecting the channel order by nonzero check criteria should
be modified for the finite-sample examples.

Here, we observe that the values of �̂k for k ≥ q should
not have very significant difference at sufficient large number
of samples. We suppose that �̂k for k ≥ q are in the same
hypothesis termedH0. On the other hand, �̂q−1 should be in
another hypothesis termed H1. Now consider the following
parameter:

Υk = �̂k√(
1/(K − k)

)∑K
i=k+1 �̂

2
i

, (26)

Table 1: Channel impulse response of 4-element array.

Antenna h0 ∗ 103 h1 ∗ 103 h2 h3

#1 4.091e j(−0.019) 9.06e j(−0.41) 0 1.31e j(0.23)

#2 2.47e j(0.58) 18.4e j(−1.25) 1.31e j(−0.23) 1.16e j(1.48)

#3 2.74e j(−0.91) 6.9e j(0.92) 0 0.62e j(−1.11)

#4 1.39e j(−0.03) 18.4e j(−1.46) 0.52e j(−1.13) 0.21e j(−1.43)

Antenna h4 h5 h6 ∗ 103 h7 ∗ 103

#1 2.87e j(0.98) 0.32e j(0.96) 5.77e j(−1.16) 2.56e j(0.31)

#2 2.09e j(1.01) 0.75e j(0.68) 3.95e j(0.019) 1.35e j(1.28)

#3 1.21e j(−1.08) 0.15e j(−0.98) 13.08e j(−0.98) 1.54e j(−0.74)

#4 0.95e j(−1.07) 0.31e j(−0.95) 15.06e j(0.88) 0.37e j(−1.28)

where K is chosen as a sufficient large integer so that K > q.
Since �̂k, for K ≥ k ≥ q, do not have significant difference,
the denominator and the nominator of (26) should be ap-
proximately equal. It follows that Υk should be around 1 for
K ≥ k ≥ q. On the contrary, since �̂q−1 should be signif-
icantly greater than �̂k for K ≥ k ≥ q, Υq−1 should be a
significant large value comparing to Υk for k ≥ q. Therefore,
we propose a detection criterion by

Υk

⎧
⎨
⎩
≥ η, for �̂k inH1,

< η, for �̂k inH0,
(27)

where η is a detection threshold. The channel order q can
be determined by q = k + 1 if Υk ≥ η. As a fact, large K is
preferred, but largeK leads tomore computations for finding
all Υk for order detection.

It is known that R̂Y (n,n− k) is the maximum likelihood
estimate of RY (n,n − k) [17]. From the first and second as-
sumptions of this paper, we know that {s(n)} is a zero-mean
iid random sequence and {vi(n)} is the additive zero-mean
white Gaussian noise. Using the central limit theorem [20],
each ĝk(i) can be asymptotically modeled as an independent
χ2 random variable for sufficient large L [21]. �̂k is the sum
of ĝk(i) and should have the χ2 distribution. According to the
probability theory [20], Υ2

k has the F(1,K − k) distribution
or ±Υk has the t-distribution with degrees of freedom K − k.
Since �̂k, for K ≥ k ≥ q, are of the hypothesis H0, we have
−η < ±Υk < η or equivalently Υk < η at a specified confi-
dence level. The range (−η,η) is called the confidence inter-
val at a specified confidence level. In general, 90% or 95%
confidence levels are commonly used. Table 3 presents the
threshold with 90% and 95% confidence levels, where η is
a function of K−k and can be written by η = η(K−k). Since
�̂q−1 is not of the hypothesisH0,Υq−1 should violate the rule
of Υq−1 < η. At that time, the order q can be detected. We
summarize the proposed order detection procedure as fol-
lows.

Step 1. Select the threshold value η based on a specified con-
fidence level and select a sufficient large integer K .

Step 2. Compute �̂k by (25) for k = K ,K − 1, . . . , 1.

Step 3. Starting from k = K − 1, calculate Υk by (26).
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Table 2: Channel impulse response of 6-element array.

Antenna h1 h2 h3 h4

#1 0.02e j(−0.07) 0.13e j(0.45) 1.29e j(−0.98) 0.85e j(−0.019)

#2 2.08e j(−0.97) 1.21e j(0.78) 1.31e j(−1.28) 0.85e j(1.11)

#3 0.06e j(−0.02) 0.45e j(−0.52) 0.43e j(−0.99) 0.28e j(−0.019)

#4 0.02e j(−0.19) 1.091e j(−0.33) 0.29e j(−1.019) 0.19e j(0.89)

#5 0.15e j(0.79) 0.25e j(−0.79) 0.24e j(−0.78) 0.18e j(−0.19)

#6 0.008e j(−0.02) 0.05e j(−0.55) 0.09e j(−1.019) 0.09e j(−0.29)

Step 4. If Υk < η, k = k − 1 and go back to Step 3.

Step 5. If Υk ≥ η, q = k + 1 and stop the procedure.

In general, at least a signal source of S(n) will be resolved
in equalization. The minimum criterion for the PACE to
equalize the channels and resolve at least two signal sources
is q + m − 2 ≥ m, that is, q ≥ 2. It shows that if at least a
multipath signal is present in the environment, the PACE al-
gorithm using (17) can resolve the zero-delay and (q−m+2)-
delay signals of S(n).

More generally, the PACE algorithm can resolve any sig-
nal source of S(n) if the time-shift index k satisfies k ≥ m.
From descriptions of the previous subsection, the minimal
multiple-shift index k required for resolving all the signal
sources is k = q +m − 1 − �(q +m − 1)/2�. As a result, the
constraint for resolving all the signal sources of S(n) is given
by

q +m− 1−
⌈
q +m− 1

2

⌉
≥ m, (28)

wherem = �N/p�. Both (11) and (28) provide designers con-
straints of the dimension of the partially adaptive weights N
to achieve channel equalization.

4. STEADY-STATE PERFORMANCE ANALYSIS

For the batch processing, the initial vectors u and v which
satisfy with the constraints shown in the above section can
achieve the same performance. However, in the presence of
channel with small head and tail channel coefficients [22],
the performance is different. In this section, we study the ef-
fect of the initial vectors u and v in the steady-state with small
channel coefficients. A method for selecting the initial vec-
tors is proposed and its performance is also studied. Let us
consider a performance index called the output SINR which
is defined as follows:

ξd = wH
d bdb

H
d wd

wH
d

(
RY − bdbHd

)
wd

(29)

for estimating the (d − 1)-delay signal source of Y(n), that
is, s(n − d + 1), by using wd, where wH

d bdb
H
d wd is called the

output signal power corresponding to s(n− d + 1).

4.1. Analysis

It has been assumed that the direction vectors of b1,b2, . . . ,
bm1 and bQ,bQ−1, . . . ,bQ−m2+1 are small comparing with the

direction vectors of bm1+1, bm1+2, . . . ,bQ−m2 . The weight vec-
tors are

wm1+1 = R−1Y (n)RH
Y

(
Q −m1 −m2 − 1

)
u, (30)

where

RY
(
Q −m1 −m2 − 1

) =
m1+m2+1∑

i=1
bQ−m1−m2−1+ib

H
i . (31)

Substituting (31) into (30) yields

wm1+1 =
m1+m2+1∑

i=1
R−1Y (n)bibHQ−m1−m2−1+iu. (32)

Using (32), we have

bHm1+1wm1+1 =
m1+m2+1∑

i=1
bHm1+1R

−1
Y (n)bibHQ−m1−m2−1+iu

≈ po(m1+1)b
H
Q−m2

u,

(33)

where po(m1+1) = bHm1+1R
−1
Y (n)bm1+1 and |bHm1+1R

−1
Y (n)bi| 


bHm1+1R
−1
Y (n)bm1+1. Therefore, its term can be neglected with

comparison to the term with bHm1+1R
−1
Y (n)bm1+1. The output

power of using wm1+1 is given by

wH
m1+1RY (n)wm1+1

=
m1+m2+1∑

i=1, j=1
uHbQ−m1−m2−1+ib

H
i R

−1
Y (n)b jbHQ−m1−m2−1+ ju

≈
m1+m2+1∑

i=1
poi

∣∣uHbQ−m1−m2−1+i
∣∣2.

(34)

The output SINR of wm1+1 is given by

ξm1+1 =
wH
m1+1bm1+1b

H
m1+1wm1+1

wH
m1+1

(
RY (n)− bm1+1b

H
m1+1

)
wm1+1

. (35)

After some calculations, we have ξm1+1 ≈ ξo(m1+1)Ψm1+1,
where ξo(m1+1) is the optimal SINR and

Ψ−1m1+1 = 1 +

(
ξo(m1+1)

po(m1+1)

)

×
⎛
⎜⎝

(∑m1+m2+1
i=1, i �=m1+1 poi

∣∣uHbQ−m1−m2−1+i
∣∣2
)

po(m1+1)
∣∣bHbQ−m2

∣∣2

⎞
⎟⎠

(36)

being in terms of the effect of the performance due to small
heads and small tails of the channel parameters.

4.2. Selecting initial vectors

In this section, we propose a simple iterative method to re-
duce the sensitivity from the small channel coefficients. This
method was also ever used for performance improvement
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Table 3: The detection threshold of the t-distribution with 90% and 95% confidence interval.

K − k 1 2 3 4 5 6 7 8 9 ∞
90% 6.314 2.920 2.353 2.132 2.015 1.943 1.985 1.860 1.833 1.645
95% 12.706 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 1.960

of the adaptive spatial filtering. Let wm1+1(l) and wQ−m2 (l)
represent the weight vectors after l iterations. The iterative
method is described as follows:

wm1+1(l) = R−1Y (n)RH
Y

(
Q −m1 −m2 − 1

)
u(l),

wQ−m2 (l) = R−1Y (n)RY
(
Q −m1 −m2 − 1

)
v(l).

(37)

Let u(l) = wQ−m2 (l − 1) and v(l) = wm1+1(l − 1). We have

wm1+1(1) = R−1Y (n)RH
Y

(
Q −m1 −m2 − 1

)
u(1), (38)

wm1+1(2) = Φv(1), (39)

where

Φ=R−1Y (n)RH
Y

(
Q−m1−m2−1

)
R−1Y (n)RY

(
Q−m1−m2−1

)

≈
m1+m2+1∑

i=1
po(Q−m1−m2−1+i)R

−1
Y (n)bibHi .

(40)

By (38), we can find that

wm1+1(2l + 1) = ΦlR−1Y (n)RH
Y

(
Q −m1 −m2 − 1

)
uwm1+1(2l)

= Φlv(1).
(41)

And we can approximateΦl by

Φl ≈
m1+m2+1∑

i=1
plo(Q−m1−m2−1+i)p

l−1
oi R−1Y (n)bibHi . (42)

The output SINR after (2l + 1) iterations can be found by

ξm1+1(2l + 1) ≈ ξo(m1+1)Ψm1+1(2l + 1), (43)

where

Ψ−1m1+1(2l + 1)

= 1 +
(
ξo(m1+1)

po(m1+1)

)

×
⎛
⎜⎝

(∑m1+m2+1
i=1, i �=1 p2lo(Q−m1−m2−1+i)p

2l+1
oi

∣∣uHb(Q−m1−m2−1+i)
∣∣2
)

p2lo(Q−m2)p
2l+1
o(m1+1)

∣∣uHbQ−m2

∣∣2

⎞
⎟⎠ .

(44)

5. SIMULATION RESULTS

In this section, computer simulations are performed to eval-
uate the proposed blind equalizer. The COM and MRE are
also performed for comparison.
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Figure 1: The performance factor versus the input SNR with the
theoretical results (solid curve) and the experimental results (∗).
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PACEwith the theoretical results (solid curve) and the experimental
results (∗).

5.1. Batch processing

To show the effectiveness of our proposed iterative method,
we employ a 4-element array with channel parameters shown
in Table 1. It is noted that the channel has 2 small leading
and tail channel responses. That is, m1 = m2 = 2. The
channel order is 7 (q = 8) and the initial vectors are cho-
sen as u = v = [1, 1, . . . , 1]T . The multiplicity m is chosen
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Figure 3: The output SINR versus the number of samples for the
batched PACE.

as 4 for the proposed algorithm. Thus, we have Q = 11.
Figure 1 shows the performance degradation at different in-
put SNR. It is shown that the iterative method using (37)
significantly improves the performance. The PACE without
iteration is quite sensitive to the small leading and tail terms.
The performance analysis approaches to the experimental
result. Figure 2 shows the performance at different number
of iterations. The input SNR is 20 dB. We find from these
figures that the PACE with iterations can significantly in-
crease the output SINR. However, using iterations more than
15, the improvement is quite limited. Next, let us exam the
performance for finite number of samples. The iid BPSK
signal with values {+1,−1} is passed through the channels
and received by the array. The correlation matrix is calcu-
lated by

RY (n,n− k) = 1
K

K−1∑

i=0
Y(n− i)YH(n− k − i) (45)

with K data samples. Figure 3 shows the results of the PACE
with and without iterations. The input SNR is 20 dB. The
results are obtained by averaging 100 independent runs. We
find that the PACE without iteration does not have good per-
formance. The iterative approach can significantly improve
the performance. For the channel order detection problems,
we choose K = 8. The detection thresholds with 90% and
95% confidence levels shown in Table 3 are used for sim-
ulations. Figure 4 presents the results of the channel order
detection of the proposed method with 90% and 95% con-
fidence levels and the AIC and MDL. The input signal-to-
noise ratio (SNR) is 20 dB. Figure 4 shows that the AIC and
MDL require about 30 samples to detect correct channel or-
der. But the proposed method using both 90% and 95% con-
fidence levels requires about 70 and 150 samples, respectively,
to achieve the same performance. Figure 5 shows the detec-
tion probability versus the number of samples. The results
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Figure 4: Detection of the channel order using the proposed
method and the AIC and MDL.

are calculated from 100 independent runs. The input SNR is
20 dB.We find that theMDL is themost efficientmethod and
can detect correct channel order using small number of sam-
ples to achieve very high detection probability (over 90% de-
tection probability). The AIC often overestimates the chan-
nel order and its detection probability cannot reach a very
high probability. The proposed method using 90% and 95%
confidence levels works better than the AIC and can achieve
very high detection probability if the number of samples is
sufficient large. This example shows that using 95% confi-
dence level is too conservative to detect channel order with
high detection probability at limited number of samples. On
the contrary, the 90% confidence level is more moderate for
this example. Figure 6 presents the detection probability in
different input SNR values. The results are calculated from
100 independent runs. The number of samples used in this
example is 200.We find that theMDL is very sensitive to vari-
ations of the input SNR. It cannot reach high detection prob-
ability at low input SNR. In contrast, the proposed method
using 90% confidence level is robust to variations of the SNR
comparing to the AIC and MDL. At SNR = 5 dB, it can de-
tect correct channel order with more than 70% probability.
In this figure, the proposed method using 95% confidence
level does not have satisfactory results at low SNR. From Fig-
ures 5 and 6, we can conclude that the proposed order de-
tection method (e.g., using the 90% confidence level) is not
sensitive to variations of the input SNR, but is sensitive to the
number of samples. In general, the large number of samples
is required for the proposed method to detect the channel
order with high detection probability.

5.2. Adaptive processing

To investigate the PACE algorithm of using (20), we consider
an array with p = 6 antenna elements. A channel impulse
response shown in Table 2 is used. The channel order is 3
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Figure 6: The detection probability versus the input SNR.

for this case. The multiplicity m is chosen as 4 for PACE and
MRE and as 6 for the COM. At the beginning of the iteration,
the initial weight vectors of w1(0) and w7(0) of the PACE are
set as nonzero random vectors for each independent run. The
weighting factor is chosen as α = 1/n. Figure 7 presents the
output SINR versus the number of samples. The results are
obtained by averaging by 100 independent runs. The PACE
algorithm has fast convergent speed and achieves very good
performance. The PACE has performance better than that of
the MRE and COM. We note from (12) that the channel pa-
rameters can be estimated from the weight vector. The weight
vector wq ∝ R−1Y bq. Therefore, bq = ηRY (n)wq, where η is a
complex variable for gain and phase adjustment. Ifm = 4, we
have bq = [hT4 hT3 hT2 hT1 ]T . All the channel parameters can
be estimated from bq. Figure 8 shows the mean square error
(MSE) of the estimated channel parameters. The COM with
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Figure 7: The output SINR versus the number of samples. Solid
curve: the PACE, dash curve: the COM, dash-dot curve: the MRE.
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Figure 8: The MSE versus the number of samples. Solid curve: the
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delay 4 and M = 6 is used for comparison. Figure 8 shows
that the PACE outperforms the COM.

6. CONCLUSIONS

An effective order detection method and a PACE algorithm
for direct multichannel equalization have been presented.
Both of the order detection method and the PACE algo-
rithm use the MSC property of the data. The order detection
method is derived from the MSC matrix. A t-distribution-
based hypothesis testing criteria is used for detecting the
channel order. The proposed method can effectively detect
the channel order without using the EVD or SVD. Simu-
lations show that the method is not sensitive to the input
SNR. However, it is sensitive to number of samples. Sufficient
large number of samples should be used for the proposed
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detectionmethod to have high detection probability.We have
found from the analyses that the weight vector which yields
higher output SINR is more sensitive to the small channel
coefficients. In order to reduce the performance degradation
caused by the small channel coefficients and the control vec-
tor, we propose a simple iterative method. The performance
improvement of the iterative method has also been analyzed.
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