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Abstract
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extension with multi-parameters, the equivalent forms as well as the operator
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1 Introduction

Assuming that f , g ∈ L2 (R+) ,
∥∥f∥∥ =

{∫ ∞

0
f 2 (x) dx

}1
2

< 0,
∥∥g∥∥ < 0, we have the fol-

lowing Hilbert’s integral inequality (cf. [1]):

∞∫
0

∞∫
0

f (x) g
(
y
)

x + y
dxdy < π

∥∥f∥∥∥∥g∥∥ , (1)

where the constant factor π is the best possible. Moreover, for

a = {am}∞m=1 ∈ l2, b = {bn}∞n=1 ∈ l2, ‖a‖ =
{∑∞

m=1a
2
m

}1
2 < 0, ‖b‖ > 0, we still have the

following discrete Hilbert’s inequality

∞∑
m=1

∞∑
n=1

ambn
m + n

< π ‖a‖ ‖b‖, (2)

with the same best constant factor π. Inequalities (1) and (2) are important in analy-

sis and its applications (cf. [2-4]) and they still represent the field of interest to numer-

ous mathematicians. Also we have the following Mulholland’s inequality with the same

best constant factor (cf. [1,5]):

∞∑
m=2

∞∑
n=2

ambn
ln mn

< π

{ ∞∑
m=2

ma2m

∞∑
n=2

nb2n

}1
2
. (3)
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In 1998, by introducing an independent parameter l Î (0, 1], Yang [6] gave an

extension of (1). By generalizing the results from [6], Yang [7] gave some best exten-

sions of (1) and (2) as follows: If p > 1,
1
p
+
1
q
= 1,λ1 + λ2 = λ,kλ

(
x, y

)
is a non-negative

homogeneous function of degree -l satisfying k (λ1) =
∫ ∞

0
kλ (t, 1) tλ1−1dt ∈ R+,,

φ (x) = xp(1−λ1)−1,ψ (x) = xq(1−λ2)−1, f (≥ 0) ∈ Lp,φ (R+) =

⎧⎪⎨
⎪⎩f |∥∥f∥∥p,φ :=

{∫ ∞

0
φ (x)

∣∣f (x)
∣∣pdx}

1
p

< ∞

⎫⎪⎬
⎪⎭ , g (≥ 0) ∈ Lq,ψ (R+) ,

∥∥f∥∥p,φ,∥∥g∥∥q,ψ > 0 then

∞∫
0

∞∫
0

kλ

(
x, y

)
f (x) g

(
y
)
dxdy < k (λ1)

∥∥f∥∥p,φ∥∥g∥∥q,ψ , (4)

where the constant factor k(l1) is the best possible. Moreover if kl(x, y) is finite and

kλ

(
x, y

)
xλ1−1 (kλ

(
x, y

)
yλ2−1) is decreasing for x >0(y > 0), then for

a = {am}∞m=1 ∈ lp,φ :=

⎧⎪⎨
⎪⎩a|‖a‖p,φ :=

{∑∞
n=1φ (n) |an|p

}1
p < ∞

⎫⎪⎬
⎪⎭ , b = {bn}∞n=1 ∈ lq,ψ , ‖a‖p,φ , ‖b‖q,ψ > 0 we have

∞∑
m=1

∞∑
n=1

kλ (m,n) ambn < k (λ1) ‖a‖p,φ‖b‖q,ψ , (5)

where, k(l1) is still the best value. Clearly, for

p = q = 2,λ = 1, k1
(
x, y

)
=

1
x + y

,λ1 = λ2 =
1
2
, inequality (4) reduces to (1), while (5)

reduces to (2). Some other results about Hilbert-type inequalities are provided by

[8-16].

On half-discrete Hilbert-type inequalities with the general non-homogeneous kernels,

Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that

the the constant factors in the inequalities are the best possible. However Yang [17]

gave a result with the kernel
1

(1 + nx)λ
by introducing an interval variable and proved

that the constant factor is the best possible. Recently, Yang [18] gave the following

half-discrete Hilbert’s inequality with the best constant factor B(l1, l2)(l1 > 0, 0 < l2
≤ 1, l1 + l2 = l):

∞∫
0

f (x)
∞∑
n=1

an
(x + n)λ

dx < B (λ1,λ2)
∥∥f∥∥p,φ‖a‖q,ψ . (6)

In this article, by using the way of weight functions and Jensen-Hadamard’s inequal-

ity, a more accurate half-discrete Mulholland’s inequality with a best constant factor

similar to (6) is given as follows:

∞∫
3
2

f (x)
∞∑
n=2

an

ln
4
9
xn

dx < π

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∫
3
2

xf 2(x)dx
∞∑
n=2

na2n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
2

. (7)
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Moreover, a best extension of (7) with multi-parameters, some equivalent forms as

well as the operator expressions are also considered.

2 Some lemmas

Lemma 1 If λ1 > 0, 0 < λ2 ≤ 1,λ1 + λ2 = λ,α ≥ 4
9
, setting weight functions ω(n) and

ϖ(x) as follows:

ω (n) :=
(
ln

√
αn

)λ2

∞∫
1√
α

(
ln

√
αx
)λ1−1

x(lnαxn)
λ

dx, n ∈ N\ {1} ,
(8)

� (x) :=
(
ln

√
αx
)λ1

∞∑
n=2

(
ln

√
αn

)λ2−1

n(ln αxn)
λ

, x ∈
(

1√
α
,∞

)
, (9)

then we have

� (x) < ω (n) = B (λ1,λ2) . (10)

Proof. Applying the substitution t =
ln

√
αx

ln
√

αn
to (8), we obtain

ω (n) =

∞∫
0

1

(1 + t)λ
tλ1−1dt = B (λ1,λ2).

Since by the conditions and for fixed x ≥ 1√
α
,

h
(
x, y

)
:=

(
ln

√
αy
)λ2−1

y
(
ln αxy

)λ =
1

y
(
ln

√
αx + ln

√
αy
)λ(ln√

αy
)1−λ2

is decreasing and strictly convex in y ∈
(
3
2
,∞

)
, then by Jensen-Hadamard’s inequal-

ity (cf. [1]), we find

� (x) <
(√

α ln x
)λ1

∞∫
3
2

1

y
(
lnαxy

)λ (ln√
αy
)λ2−1

dy

t = (ln
√

αy)/(ln
√

αx)
=

∞∫
ln
(
3
√

α/2
)

ln
√

αx

tλ2−1dt

(1 + t)λ
≤ B (λ2,λ1)B (λ1,λ2) ,

namely, (10) follows. □ ▪
Lemma 2 Let the assumptions of Lemma 1 be fulfilled and additionally,

p > 1,
1
p
+
1
q
= 1, an ≥ 0,∈ N\ {1} , f (x)is a non-negative measurable function in(

1√
α
,∞

)
. Then we have the following inequalities:
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J : =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=2

(
ln

√
αn

)pλ2−1

n

⎡
⎢⎢⎢⎢⎢⎢⎣

∞∫
1√
α

f (x)

(lnαxn)
λ
dx

⎤
⎥⎥⎥⎥⎥⎥⎦

p⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

≤ [B (λ1,λ2)]

1
q

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

� (x) xp−1(ln√
αx
)p(1−λ1)f p (x) dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

,

(11)

L1 : =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

(
ln

√
αx
)qλ1−1

x[� (x)]q−1

[ ∞∑
n=2

an
(ln αxn)

λ

]q

dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
q

≤
{
B (λ1,λ2)

∞∑
n=2

nq−1(ln√
αn

)q(1−λ2)−1
aqn

}1
q
.

(12)

Proof. By Hälder’s inequality cf. [1] and (10), it follows
⎡
⎢⎢⎢⎢⎢⎢⎣

∞∫
1√
α

f (x) dx

(lnαxn)
λ

⎤
⎥⎥⎥⎥⎥⎥⎦

p

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

1

(lnαxn)
λ

[ (
ln

√
αx
)(1−λ1)/qx1/q(

ln
√

αn
)(1−λ2)/pn1/p

f (x)

]

×
[(

ln
√

αn(1−λ2)/pn1/p
)

(
ln

√
αx(1−λ1)/qx1/q

)
]
dx

}p

≤
∞∫
1√
α

xp−1

(lnαxn)
λ

(
ln

√
αx
)(1−λ1)(p−1)

n
(
ln

√
αn

)1−λ2
f p (x) dx

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

1

(ln αxn)
λ

nq−1
(
ln

√
αn

)(1−λ2)(q−1)

x
(
ln

√
αx
)1−λ1

dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

p−1

=

{
ω (n)

(
ln

√
αn

)q(1−λ2)−1

n1−q

}p−1 ∞∫
1√
α

xp−1
(
ln

√
αx
)(1−λ1)(p−1)

n(lnαxn)
λ
(
ln

√
αn

)1−λ2
f p (x) dx

=
[B (λ1,λ2)]p−1n(
ln

√
αn

)pλ2−1

∞∫
1√
α

xp−1
(
ln

√
αx
)(1−λ1)(p−1)

n
(
ln

√
αxn

)λ(ln√
αn

)1−λ2
f p (x) dx.
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Then by Beppo Levi’s theorem (cf. [19]), we have

J ≤ [B (λ1,λ2)]

1
q

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=2

∞∫
1√
α

xp−1
(
ln

√
αx
)(1−λ1)(p−1)

n(lnαxn)
λ
(
ln

√
αn

)1−λ2
f p (x) dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

= [B (λ1,λ2)]

1
q

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

∞∑
n=2

xp−1
(
ln

√
αx
)(1−λ1)(p−1)

n(lnαxn)
λ
(
ln

√
αn

)1−λ2
f p (x) dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

= [B (λ1,λ2)]

1
q

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

� (x) xp−1(ln√
αx
)p(1−λ1)−1

f p (x) dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

,

that is, (11) follows. Still by Hölder’s inequality, we have
[ ∞∑

n=2

a

(ln αxn)
λ

]q

=

{ ∞∑
n=2

1

(ln αxn)
λ

[ (
ln

√
αx
)(1−λ1)/qx1/q(

ln
√

αn
)(1−λ2)/pn1/p

]

×
[(

ln
√

αn
)(1−λ2)/pn1/p(

ln
√

αx
)(1−λ1)/qx1/p

an

]}q

≤
⎧⎨
⎩

∞∑
n=2

xp−1

(lnαxn)
λ

(
ln

√
αx
)(1−λ1)(p−1)

n
(
ln

√
αn

)1−λ2

⎫⎬
⎭

q−1

×
∞∑
n=2

1

(lnαxn)
λ

nq−1
(
ln

√
αn

)(1−λ2)(q−1)

x
(
ln

√
αx
)1−λ1

aqn

=
x[� (x)]q−1(
ln

√
αx
)qλ1−1

∞∑
n=2

(
ln

√
αx
)λ1−1

x(ln αxn)λ
nq−1(ln√

αn
)(q−1)(1−λ2)aqn.

Then by Beppo Levi’s theorem, we have

L1 ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

∞∑
n=2

(
ln

√
αx
)λ1−1

x(ln αxn)λ
nq−1(ln√

αn
)(q−1)(1−λ2)aqndx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
q

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=2

⎡
⎢⎢⎢⎢⎢⎢⎣
(
ln

√
αn

)λ2

∞∫
1√
α

(
ln

√
αx
)λ1−1

x(lnαxn)
λ

dx

⎤
⎥⎥⎥⎥⎥⎥⎦
nq−1(ln√

αn
)q(1−λ2)−1

aqn

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
q

=

{ ∞∑
n=2

ω (n) nq−1(ln√
αn

)q(1−λ2)−1
aqn

}1
q
,

and then in view of (10), inequality (12) follows. □ ▪
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3 Main results
We introduce two functions

	(x) : = xp−1(ln√
αx
)p(1−λ1)−1

(
x ∈

(
1√
α
,∞

))
, and


 (n) : = nq−1(ln√
αn

)q(1−λ2)−1
(n ∈ N\ {1}) ,

wherefrom, [	(x)]1−q =
1
x

(
ln

√
αx
)qλ1−1, and [
 (n)]1−p =

1
n

(
ln

√
αn

)pλ2−1.

Theorem 3 If

p > 1,
1
p
+
1
q
= 1,λ1 > 0, 0 < λ2 ≤ 1,λ1+λ2 = λ,α ≥ 4

9 , f (x) , an ≥ 0, f ∈ Lp,	

(
1√
α
,∞

)
, a = {an}∞n=2 ∈ lq,
 ,

∥∥f∥∥p,	 > 0, then we

have the following equivalent inequalities:

I :=
∞∑
n=2

∞∫
1√
α

anf (x) dx

(ln αxn)
λ
=

∞∫
1√
α

∞∑
n=2

f (x) andx

(ln αxn)λ
< B (λ1,λ2)

∥∥f∥∥p,	‖a‖q,
 ,
(13)

J =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∑
n=2

[
 (n)]1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

∞∫
1√
α

f (x) dx

(lnαxn)
λ

⎤
⎥⎥⎥⎥⎥⎥⎦

p⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
p

< B (λ1,λ2)
∥∥f∥∥p,	, (14)

L :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞∫
1√
α

[	(x)]1−q

[ ∞∑
n=2

an
(lnαxn)

λ

]q

dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

1
q

< B (λ1,λ2) ‖a‖q,
 , (15)

where the constant B(l1, l2) is the best possible in the above inequalities.

Proof. By Beppo Levi’s theorem (cf. [19]), there are two expressions for I in (13). In

view of (11), for ϖ(x) < B(l1, l2), we have (14). By Hälder’s inequality, we have

I =
∞∑
n=2

⎡
⎢⎢⎢⎢⎢⎢⎣




−1
q (n)

∞∫
1√
α

1

(lnαxn)
λ
f (x) dx

⎤
⎥⎥⎥⎥⎥⎥⎦
[



1
q (n) an

]
≤ J‖a‖q,
 . (16)

Then by (14), we have (13). On the other-hand, assuming that (13) is valid, setting

an := [
 (n)]1−p

⎡
⎢⎢⎢⎢⎢⎢⎣

∞∫
1√
α

1

(ln αxn)
λ
f (x) dx

⎤
⎥⎥⎥⎥⎥⎥⎦

p−1

,n ∈ N\ {1} ,
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then Jp-1 = ||a||q, Ψ. By (11), we find J < ∝. If J = 0, then (14) is valid trivially; if J >0,

then by (13), we have

‖a‖qq,
 = Jp = I < B (λ1,λ2)
∥∥f∥∥p,
‖a‖q,
 , i.e.

‖a‖q−1
q,
 = J < B (λ1,λ2)

∥∥f∥∥p,	,
that is, (14) is equivalent to (13). By (12), since [ϖ(x)]1-q >[B(l1, l2)]1-q, we have (15).

By Hälder’s inequality, we find

I =

∞∫
1√
α

[
	

1
p (x) f (x)

][
	

−1
p (x)

∞∑
n=2

an
(lnαxn)

λ

]
dx ≤ ∥∥f∥∥p,	L.

(17)

Then by (15), we have (13). On the other-hand, assuming that (13) is valid, setting

f (x) := [	(x)]1−q

[ ∞∑
n=2

an
(ln αxn)

λ

]q−1

, x ∈
(

1√
α
,∞

)
,

then Lq-1 = ║f║p, F.. By (12), we find L < ∝. If L = 0, then (15) is valid trivially; if L

>0, then by (13), we have∥∥f∥∥pp,	 = Lq = I < B (λ1,λ2)
∥∥f∥∥p,	‖a‖q,
 , i.e.∥∥f∥∥p−1

p,	 = L < B (λ1,λ2) ‖a‖q,
 ,

That is, (15) is equivalent to (13). Hence inequalities (13), (14) and (15) are

equivalent.

For 0 < ε <pl1, setting ãn =
1
n

(
ln

√
αn

)λ2− ∈
q −1

,n ∈ N\{1}, and

f̃ (x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ∈
(

1√
α
,

e√
α

)

1
x

(
ln

√
αx
)λ1−

∈
p

−1

, x ∈
[

e√
α
,∞

) ,

if there exists a positive number k(≤ B(l1, l2)), such that (13) is valid as we replace B

(l1, l2) with k, then in particular, it follows

Ĩ : =
∞∑
n=2

∞∫
1√
α

1

(ln αxn)
λ
ãnf̃ (x) dx < k

∥∥∥f̃∥∥∥
p,	

∥∥ã∥∥q,


= k

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∫
e√
α

dx

x
(
ln

√
αx
)ε+1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

1
p {

1

2
(
ln 2

√
α
)ε+1 +

∞∑
n=3

1

n
(
ln

√
αn

)ε+1
}1
q

< k
(
1
ε

)1
p

⎧⎨
⎩ 1

2
(
ln 2

√
α
)ε+1 +

∞∫
2

1

x
(
ln

√
αx
)ε+1 dx

⎫⎬
⎭
1
q

=
k
ε

{
ε

2
(
ln 2

√
α
)ε+1 +

1(
ln 2

√
α
)ε
}1
q
,

(18)
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Ĩ =
∞∑
n=2

(
ln

√
αn

)λ2−
ε

q
−1 1

n

∞∫
e√
α

1

x(ln αxn)λ

(
ln

√
αx
)λ1− ε

p−1
dx

t =
(
ln

√
αx
)
/
(
ln

√
αn

)
=

∞∑
n=2

1

n
(
ln

√
αn

)ε+1
∞∫

1/ ln
√

αn

t
λ1−

ε

p
−1

(t + 1)λ
dt

= B
(

λ1 − ε

p
,λ2 +

ε

p

) ∞∑
n=2

1

n
(
ln

√
αn

)ε+1 − A (ε)

> B
(

λ1 − ε

p
,λ2 +

ε

p

) ∞∫
2

1

y
(
ln

√
αy
)ε+1 dy − A (ε)

=
1

ε
(
ln 2

√
α
)ε B

(
λ1 − ε

p
,λ2 +

ε

p

)
− A (ε) ,

A (ε) :=
∞∑
n=2

1

n
(
ln

√
αn

)ε+1
1/ ln

√
αn∫

0

1

(t + 1)λ
t
λ1− ε

p−1
dt.

(19)

W find

0 < A (ε) ≤
∞∑
n=2

1

n
(
ln

√
αn

)ε+1
1/ ln

√
αn∫

0

t
λ1− ε

p−1
dt

=
1

λ1 − ε
p

∞∑
n=2

1

n
(
ln

√
αn

)λ1+
ε

q
+1

< ∞,

that is, A(ε) = O(1) (ε ® 0+). Hence by (18) and (19), it follows

B
(
λ1 − ε

p ,λ2 + ε
p

)
(
ln 2

√
α
)ε − εO (1) < k

{
ε

2
(
ln 2

√
α
)ε+1 +

1(
ln 2

√
α
)ε
}1
q
, (20)

and B(l1, l2) ≤ k(ε ® 0+). Hence, k = B(l1, l2) is the best value of (13).

Due to the equivalence, the constant factor B(l1, l2) in (14) and (15) is the best pos-

sible. Otherwise, we can imply a contradiction by (16) and (17) that the constant factor

in (13) is not the best possible. □ ▪
Remark 1 (i) Define the first type half-discrete Mulholland’s operator

T : Lp,	

(
1√
α
,∞

)
→ lp,
1−pas follows: for f ∈ Lp,	

(
1√
α
,∞

)
, we define Tf ∈ lp,
1−pas

Tf (n) =

∞∫
1√
α

1

(lnαxn)λ
f (x)dx, n ∈ N\{1}.

Then by (14), it follows
∥∥Tf∥∥p,
1−p ≤ B(λ1,λ2)

∥∥f∥∥p,	and then T is a bounded operator

with ║T║ ≤ B(l1, l2). Since by Theorem 1, the constant factor in (14) is the best possi-

ble, we have ║T║ = B(l1, l2).
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(ii) Define the second type half-discrete Mulholland’s operator

T̃ : lq,
 → Lq,	1−q

(
1√
α
,∞

)
as follows: For a Î lq,ψ, define T̃a ∈ Lq,	1−q

(
1√
α
,∞

)
as

T̃a(x) =
∞∑
n=2

1

(ln αxn)λ
an, x ∈

(
1√
α
,∞

)
.

Then by (15), it follows
∥∥∥T̃a∥∥∥

q.	1−q
≤ B(λ1,λ2)‖a‖q,
and then T̃is a bounded operator

with
∥∥∥T̃∥∥∥ ≤ B(λ1,λ2). Since by Theorem 1, the constant factor in (15) is the best possi-

ble, we have
∥∥∥T̃∥∥∥ = B(λ1,λ2).

Remark 2 We set p = q = 2,λ = 1,λ1 = λ2 = 1
2in (13), (14) and (15). (i) if α = 4

9, then

we deduce (7) and the following equivalent inequalities:

∞∑
n=2

1
n

⎡
⎢⎢⎣

∞∫
3
2

f (x)

ln 4
9xn

dx

⎤
⎥⎥⎦

2

< π2

∞∫
3
2

xf 2(x)dx, (21)

∞∫
3
2

1
x

[ ∞∑
n=2

an
ln 4

9xn

]2

dx < π2
∞∑
n=2

na2n; (22)

(ii) if a = 1, then we have the following half-discrete Mulholland’s inequality and its

equivalent forms:

∞∫
1

f (x)
∞∑
n=2

an
ln xn

dx < π

⎧⎨
⎩

∞∫
1

xf 2(x)dx
∞∑
n=2

na2n

⎫⎬
⎭

1
2

, (23)

∞∑
n=2

1
n

⎡
⎣ ∞∫

1

f (x)
ln xn

dx

⎤
⎦

2

< π2

∞∫
1

xf 2(x)dx, (24)

∞∫
1

1
x

[ ∞∑
n=2

an
ln xn

]2

dx < π2
∞∑
n=2

na2n. (25)
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