Chen and Yang Journal of Inequalities and Applications 2012, **2012**:70 http://www.journalofinequalitiesandapplications.com/content/2012/1/70

 Journal of Inequalities and Applications a SpringerOpen Journal

RESEARCH

Open Access

On a more accurate half-discrete mulholland's inequality and an extension

Qiang Chen¹ and Bicheng Yang^{2*}

* Correspondence: bcyang@gdei. edu.cn

²Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, PR China Full list of author information is available at the end of the article

Abstract

By using the way of weight functions and Jensen-Hadamard's inequality, a more accurate half-discrete Mulholland's inequality with a best constant factor is given. The extension with multi-parameters, the equivalent forms as well as the operator expressions are considered.

Mathematics Subject Classication 2000: 26D15; 47A07.

Keywords: Mulholland's inequality, weight function, equivalent form, operator expression

1 Introduction

Assuming that $f, g \in L^2(R_+)$, $||f|| = \left\{ \int_0^\infty f^2(x) \, dx \right\}^{\frac{1}{2}} < 0$, ||g|| < 0' we have the fol-

lowing Hilbert's integral inequality (cf. [1]):

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y} dx dy < \pi \|f\| \|g\|, \qquad (1)$$

where the constant factor π is the best possible. Moreover, for $a = \{a_m\}_{m=1}^{\infty} \in l^2, b = \{b_n\}_{n=1}^{\infty} \in l^2, \|a\| = \left\{\sum_{m=1}^{\infty} a_m^2\right\}^{\frac{1}{2}} < 0, \|b\| > 0'$ we still have the following discrete Hilbert's inequality

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m b_n}{m+n} < \pi \|a\| \|b\|,$$
(2)

with the same best constant factor π . Inequalities (1) and (2) are important in analysis and its applications (cf. [2-4]) and they still represent the field of interest to numerous mathematicians. Also we have the following Mulholland's inequality with the same best constant factor (cf. [1,5]):

$$\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_m b_n}{\ln mn} < \pi \left\{ \sum_{m=2}^{\infty} m a_m^2 \sum_{n=2}^{\infty} n b_n^2 \right\}^{\frac{1}{2}}.$$
(3)

© 2012 Chen and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In 1998, by introducing an independent parameter $\lambda \in (0, 1]$, Yang [6] gave an extension of (1). By generalizing the results from [6], Yang [7] gave some best extensions of (1) and (2) as follows: If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, $\lambda_1 + \lambda_2 = \lambda_1 k_\lambda (x, y)$ is a non-negative homogeneous function of degree $-\lambda$ satisfying $k(\lambda_1) = \int_0^\infty k_\lambda (t, 1) t^{\lambda_1 - 1} dt \in R_{+, p}$ $\phi(x) = x^{p(1-\lambda_1)-1}, \psi(x) = x^{q(1-\lambda_2)-1}, f(\geq 0) \in L_{p,\phi}(R_+) = \left\{ f_1 \| f \|_{p,\phi} := \left\{ \int_0^\infty \phi(x) | f(x) |^p dx \right\}^{\frac{1}{p}} < \infty \right\}, g(\geq 0) \in L_{q,\psi}(R_+), \| f \|_{p,\phi} \| g \|_{q,\psi} > 0$ then $\int_0^\infty \int_0^\infty k_\lambda (x, y) f(x) g(y) dx dy < k(\lambda_1) \| f \|_{p,\phi} \| g \|_{q,\psi},$ (4)

where the constant factor $k(\lambda_1)$ is the best possible. Moreover if $k_{\lambda}(x, y)$ is finite and $k_{\lambda}(x, y) x^{\lambda_1 - 1} (k_{\lambda}(x, y) y^{\lambda_2 - 1})$ is decreasing for x > 0(y > 0), then for $a = \{a_m\}_{m=1}^{\infty} \in l_{p,\phi} := \left\{ a ||a||_{p,\phi} := \left\{ \sum_{n=1}^{\infty} \phi(n) |a_n|^p \right\}^{\frac{1}{p}} < \infty \right\}, b = \{b_n\}_{n=1}^{\infty} \in l_{q,\psi}, ||a||_{p,\phi}, ||b||_{q,\psi} > 0$ we have $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} k_{\lambda}(m, n) a_m b_n < k(\lambda_1) ||a||_{p,\phi} ||b||_{q,\psi},$ (5)

where, $k(\lambda_1)$ is still the best value. Clearly, for $p = q = 2, \lambda = 1, k_1(x, y) = \frac{1}{x + y}, \lambda_1 = \lambda_2 = \frac{1}{2}$, inequality (4) reduces to (1), while (5) reduces to (2). Some other results about Hilbert-type inequalities are provided by [8-16].

On half-discrete Hilbert-type inequalities with the general non-homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove that the the constant factors in the inequalities are the best possible. However Yang [17] gave a result with the kernel $\frac{1}{(1 + nx)^{\lambda}}$ by introducing an interval variable and proved that the constant factor is the best possible. Recently, Yang [18] gave the following half-discrete Hilbert's inequality with the best constant factor $B(\lambda_1, \lambda_2)(\lambda_1 > 0, 0 < \lambda_2 \le 1, \lambda_1 + \lambda_2 = \lambda)$:

$$\int_{0}^{\infty} f(x) \sum_{n=1}^{\infty} \frac{a_n}{(x+n)^{\lambda}} dx < B(\lambda_1, \lambda_2) \|f\|_{p,\phi} \|a\|_{q,\psi}.$$
(6)

In this article, by using the way of weight functions and Jensen-Hadamard's inequality, a more accurate half-discrete Mulholland's inequality with a best constant factor similar to (6) is given as follows:

$$\int_{\frac{3}{2}}^{\infty} f(x) \sum_{n=2}^{\infty} \frac{a_n}{\ln \frac{4}{9} x n} dx < \pi \left\{ \int_{\frac{3}{2}}^{\infty} x f^2(x) dx \sum_{n=2}^{\infty} n a_n^2 \right\}^{\frac{1}{2}}.$$
(7)

Moreover, a best extension of (7) with multi-parameters, some equivalent forms as well as the operator expressions are also considered.

2 Some lemmas

Lemma 1 If $\lambda_1 > 0$, $0 < \lambda_2 \le 1$, $\lambda_1 + \lambda_2 = \lambda$, $\alpha \ge \frac{4}{9}$, setting weight functions $\omega(n)$ and $\overline{\omega}(x)$ as follows:

$$\omega(n) := \left(\ln \sqrt{\alpha}n\right)^{\lambda_2} \int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{\left(\ln \sqrt{\alpha}x\right)^{\lambda_1 - 1}}{x(\ln \alpha x n)^{\lambda}} dx, \quad n \in \mathbb{N} \setminus \{1\},$$
(8)

$$\varpi(x) := \left(\ln \sqrt{\alpha}x\right)^{\lambda_1} \sum_{n=2}^{\infty} \frac{\left(\ln \sqrt{\alpha}n\right)^{\lambda_2 - 1}}{n(\ln \alpha x n)^{\lambda}}, \quad x \in \left(\frac{1}{\sqrt{\alpha}}, \infty\right), \tag{9}$$

then we have

$$\varpi(x) < \omega(n) = B(\lambda_1, \lambda_2).$$
(10)

Proof. Applying the substitution $t = \frac{\ln \sqrt{\alpha}x}{\ln \sqrt{\alpha}n}$ to (8), we obtain

$$\omega(n) = \int_{0}^{\infty} \frac{1}{(1+t)^{\lambda}} t^{\lambda_1 - 1} dt = B(\lambda_1, \lambda_2).$$

Since by the conditions and for fixed $x \ge \frac{1}{\sqrt{\alpha}}$,

$$h(x, \gamma) := \frac{\left(\ln \sqrt{\alpha \gamma}\right)^{\lambda_2 - 1}}{\gamma \left(\ln \alpha x \gamma\right)^{\lambda}} = \frac{1}{\gamma \left(\ln \sqrt{\alpha x} + \ln \sqrt{\alpha \gamma}\right)^{\lambda} \left(\ln \sqrt{\alpha \gamma}\right)^{1 - \lambda_2}}$$

is decreasing and strictly convex in $\gamma \in \left(\frac{3}{2}, \infty\right)$, then by Jensen-Hadamard's inequality (cf. [1]), we find

$$\varpi(x) < \left(\sqrt{\alpha}\ln x\right)^{\lambda_1} \int_{\frac{3}{2}}^{\infty} \frac{1}{\gamma(\ln \alpha x \gamma)^{\lambda}} \left(\ln \sqrt{\alpha} \gamma\right)^{\lambda_2 - 1} d\gamma$$
$$t = \left(\ln \sqrt{\alpha} \gamma\right) / \left(\ln \sqrt{\alpha} x\right) \int_{\frac{1}{2}}^{\infty} \frac{t^{\lambda_2 - 1} dt}{(1+t)^{\lambda}} \le B(\lambda_2, \lambda_1) B(\lambda_1, \lambda_2)$$

namely, (10) follows. \Box \blacksquare

Lemma 2 Let the assumptions of Lemma 1 be fulfilled and additionally, $p > 1, \frac{1}{p} + \frac{1}{q} = 1, a_n \ge 0, \in \mathbb{N} \setminus \{1\}, f(x)$ is a non-negative measurable function in $\left(\frac{1}{\sqrt{\alpha}}, \infty\right)$. Then we have the following inequalities:

$$J := \left\{ \sum_{n=2}^{\infty} \frac{\left(\ln \sqrt{\alpha}n\right)^{p\lambda_2 - 1}}{n} \left[\int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{f(x)}{(\ln \alpha x n)^{\lambda}} dx \right]^p \right\}^{\frac{1}{p}}$$

$$\leq \left[B\left(\lambda_1, \lambda_2\right) \right]^{\frac{1}{q}} \left\{ \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \varpi\left(x\right) x^{p-1} \left(\ln \sqrt{\alpha}x\right)^{p(1-\lambda_1)} f^p\left(x\right) dx \right\}^{\frac{1}{p}},$$

$$(11)$$

$$L_{1}:=\left\{ \int_{1}^{\infty} \frac{\left(\ln\sqrt{\alpha}x\right)^{q\lambda_{1}-1}}{x[\varpi(x)]^{q-1}} \left[\sum_{n=2}^{\infty} \frac{a_{n}}{\left(\ln\alpha xn\right)^{\lambda}}\right]^{q} dx \right\}^{q} dx$$

$$\leq \left\{ B\left(\lambda_{1},\lambda_{2}\right) \sum_{n=2}^{\infty} n^{q-1} \left(\ln\sqrt{\alpha}n\right)^{q(1-\lambda_{2})-1} a_{n}^{q} \right\}^{\frac{1}{q}}.$$

$$(12)$$

Proof. By Hälder's inequality cf. [1] and (10), it follows

$$\begin{split} &\left[\int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{f(x) \, dx}{(\ln \alpha x n)^{\lambda}}\right]^{p} = \begin{cases} \int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} \left[\frac{(\ln \sqrt{\alpha} x)^{(1-\lambda_{1})/q} x^{1/q}}{(\ln \sqrt{\alpha} x)^{(1-\lambda_{2})/p} n^{1/p}} f(x)\right] \\ &\times \left[\frac{(\ln \sqrt{\alpha} n^{(1-\lambda_{2})/p} n^{1/p})}{(\ln \sqrt{\alpha} x^{(1-\lambda_{1})/q} x^{1/q})}\right] dx \end{cases}^{p} \leq \int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{x^{p-1}}{(\ln \alpha x n)^{\lambda}} \frac{(\ln \sqrt{\alpha} x)^{(1-\lambda_{1})(p-1)}}{n(\ln \sqrt{\alpha} n)^{1-\lambda_{2}}} f^{p}(x) \, dx \\ &\times \left\{\int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} \frac{n^{q-1} (\ln \sqrt{\alpha} n)^{(1-\lambda_{2})(q-1)}}{x(\ln \sqrt{\alpha} x)^{1-\lambda_{1}}} dx \right\}^{p-1} \\ &= \left\{\omega(n) \frac{(\ln \sqrt{\alpha} n)^{q(1-\lambda_{2})-1}}{n^{1-q}}\right\}^{p-1} \int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{x^{p-1} (\ln \sqrt{\alpha} x)^{(1-\lambda_{1})(p-1)}}{n(\ln \alpha x n)^{\lambda} (\ln \sqrt{\alpha} n)^{1-\lambda_{2}}} f^{p}(x) \, dx \\ &= \frac{[B(\lambda_{1},\lambda_{2})]^{p-1} n}{(\ln \sqrt{\alpha} n)^{p\lambda_{2}-1}} \int_{-\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{x^{p-1} (\ln \sqrt{\alpha} x)^{(1-\lambda_{1})(p-1)}}{n(\ln \sqrt{\alpha} x)^{\lambda} (\ln \sqrt{\alpha} n)^{1-\lambda_{2}}} f^{p}(x) \, dx. \end{split}$$

Then by Beppo Levi's theorem (cf. [19]), we have

$$\begin{split} J &\leq \left[B\left(\lambda_{1},\lambda_{2}\right)\right]^{\frac{1}{q}} \left\{ \sum_{n=2}^{\infty} \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{x^{p-1} \left(\ln\sqrt{\alpha}x\right)^{(1-\lambda_{1})\left(p-1\right)}}{n(\ln\alpha xn)^{\lambda} \left(\ln\sqrt{\alpha}n\right)^{1-\lambda_{2}}} f^{p}\left(x\right) dx \right\}^{\frac{1}{p}} \\ &= \left[B\left(\lambda_{1},\lambda_{2}\right)\right]^{\frac{1}{q}} \left\{ \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \sum_{n=2}^{\infty} \frac{x^{p-1} \left(\ln\sqrt{\alpha}x\right)^{(1-\lambda_{1})\left(p-1\right)}}{n(\ln\alpha xn)^{\lambda} \left(\ln\sqrt{\alpha}n\right)^{1-\lambda_{2}}} f^{p}\left(x\right) dx \right\}^{\frac{1}{p}} \\ &= \left[B\left(\lambda_{1},\lambda_{2}\right)\right]^{\frac{1}{q}} \left\{ \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \varpi\left(x\right) x^{p-1} \left(\ln\sqrt{\alpha}x\right)^{p(1-\lambda_{1})-1} f^{p}\left(x\right) dx \right\}^{\frac{1}{p}}, \end{split}$$

that is, (11) follows. Still by Hölder's inequality, we have

$$\begin{split} & \left[\sum_{n=2}^{\infty} \frac{a}{(\ln \alpha x n)^{\lambda}}\right]^{q} = \left\{\sum_{n=2}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} \left[\frac{(\ln \sqrt{\alpha} x)^{(1-\lambda_{1})/q} x^{1/q}}{(\ln \sqrt{\alpha} n)^{(1-\lambda_{2})/p} n^{1/p}}\right] \\ & \times \left[\frac{(\ln \sqrt{\alpha} n)^{(1-\lambda_{2})/p} n^{1/p}}{(\ln \sqrt{\alpha} x)^{(1-\lambda_{1})/q} x^{1/p}} a_{n}\right]\right]^{q} \leq \left\{\sum_{n=2}^{\infty} \frac{x^{p-1}}{(\ln \alpha x n)^{\lambda}} \frac{(\ln \sqrt{\alpha} x)^{(1-\lambda_{1})(p-1)}}{n(\ln \sqrt{\alpha} n)^{1-\lambda_{2}}}\right\}^{q-1} \\ & \times \sum_{n=2}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} \frac{n^{q-1} (\ln \sqrt{\alpha} n)^{(1-\lambda_{2})(q-1)}}{x(\ln \sqrt{\alpha} x)^{1-\lambda_{1}}} a_{n}^{q} \\ & = \frac{x[\varpi(x)]^{q-1}}{(\ln \sqrt{\alpha} x)^{q\lambda_{1}-1}} \sum_{n=2}^{\infty} \frac{(\ln \sqrt{\alpha} x)^{\lambda_{1}-1}}{x(\ln \alpha x n)^{\lambda}} n^{q-1} (\ln \sqrt{\alpha} n)^{(q-1)(1-\lambda_{2})} a_{n}^{q}. \end{split}$$

Then by Beppo Levi's theorem, we have

$$L_{1} \leq \left\{ \int_{1}^{\infty} \sum_{n=2}^{\infty} \frac{\left(\ln \sqrt{\alpha}x\right)^{\lambda_{1}-1}}{x(\ln \alpha xn)^{\lambda}} n^{q-1} \left(\ln \sqrt{\alpha}n\right)^{(q-1)(1-\lambda_{2})} a_{n}^{q} dx \right\}^{\frac{1}{q}}$$
$$= \left\{ \sum_{n=2}^{\infty} \left[\left(\ln \sqrt{\alpha}n\right)^{\lambda_{2}} \int_{1}^{\infty} \frac{\left(\ln \sqrt{\alpha}x\right)^{\lambda_{1}-1}}{x(\ln \alpha xn)^{\lambda}} dx \right] n^{q-1} (\ln \sqrt{\alpha}n)^{q(1-\lambda_{2})-1} a_{n}^{q} \right\}^{\frac{1}{q}}$$
$$= \left\{ \sum_{n=2}^{\infty} \omega \left(n\right) n^{q-1} \left(\ln \sqrt{\alpha}n\right)^{q(1-\lambda_{2})-1} a_{n}^{q} \right\}^{\frac{1}{q}},$$

and then in view of (10), inequality (12) follows. \square \blacksquare

3 Main results

We introduce two functions

$$\Phi(x) := x^{p-1} \left(\ln \sqrt{\alpha} x \right)^{p(1-\lambda_1)-1} \left(x \in \left(\frac{1}{\sqrt{\alpha}}, \infty \right) \right), \text{ and}$$

$$\Psi(n) := n^{q-1} \left(\ln \sqrt{\alpha} n \right)^{q(1-\lambda_2)-1} (n \in \mathbb{N} \setminus \{1\}),$$

wherefrom, $[\Phi(x)]^{1-q} = \frac{1}{x} \left(\ln \sqrt{\alpha} x \right)^{q\lambda_1-1}, \text{ and } [\Psi(n)]^{1-p} = \frac{1}{n} \left(\ln \sqrt{\alpha} n \right)^{p\lambda_2-1}.$

Theorem

 $p > 1, \frac{1}{p} + \frac{1}{q} = 1, \lambda_1 > 0, 0 < \lambda_2 \le 1, \lambda_1 + \lambda_2 = \lambda, \alpha \ge \frac{4}{9}, f(x), a_n \ge 0, f \in L_{p,\Phi}\left(\frac{1}{\sqrt{\alpha}}, \infty\right), a = \{a_n\}_{n=2}^{\infty} \in l_{q,\Psi}, \|f\|_{p,\Phi} > 0, \quad then \quad we have the following equivalent inequalities:$

$$I := \sum_{n=2}^{\infty} \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{a_n f(x) \, dx}{(\ln \alpha x n)^{\lambda}} = \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \sum_{n=2}^{\infty} \frac{f(x) \, a_n dx}{(\ln \alpha x n)^{\lambda}} < B(\lambda_1, \lambda_2) \left\| f \right\|_{p, \Phi} \|a\|_{q, \Psi}, \tag{13}$$

3

$$J = \left\{ \sum_{n=2}^{\infty} \left[\Psi(n) \right]^{1-p} \left[\int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{f(x) \, dx}{(\ln \alpha x n)^{\lambda}} \right]^p \right\}^{\frac{1}{p}} < B(\lambda_1, \lambda_2) \left\| f \right\|_{p, \Phi'}, \tag{14}$$

$$L := \left\{ \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \left[\Phi(x) \right]^{1-q} \left[\sum_{n=2}^{\infty} \frac{a_n}{(\ln \alpha x n)^{\lambda}} \right]^q dx \right\}^{\frac{1}{q}} < B(\lambda_1, \lambda_2) \|a\|_{q, \Psi},$$
(15)

where the constant $B(\lambda_1, \lambda_2)$ is the best possible in the above inequalities.

Proof. By Beppo Levi's theorem (cf. [19]), there are two expressions for *I* in (13). In view of (11), for $\varpi(x) < B(\lambda_1, \lambda_2)$, we have (14). By Hälder's inequality, we have

$$I = \sum_{n=2}^{\infty} \left[\Psi \frac{-1}{q} (n) \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} f(x) dx \right] \left[\Psi^{\frac{1}{q}} (n) a^{n} \right] \le J \|a\|_{q,\Psi}.$$
 (16)

Then by (14), we have (13). On the other-hand, assuming that (13) is valid, setting

$$a_{n} := \left[\Psi\left(n\right)\right]^{1-p} \left[\int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{1}{\left(\ln \alpha x n\right)^{\lambda}} f\left(x\right) dx\right]^{p-1}, n \in \mathbb{N} \setminus \{1\},$$

If

then $J^{p-1} = ||a||_{q}$, Ψ . By (11), we find $J < \infty$. If J = 0, then (14) is valid trivially; if J > 0, then by (13), we have

$$\|a\|_{q,\Psi}^{q} = J^{p} = I < B(\lambda_{1}, \lambda_{2}) \|f\|_{p,\Psi} \|a\|_{q,\Psi}, \text{ i.e.}$$
$$\|a\|_{q,\Psi}^{q-1} = J < B(\lambda_{1}, \lambda_{2}) \|f\|_{p,\Phi'}$$

that is, (14) is equivalent to (13). By (12), since $[\varpi(x)]^{1-q} > [B(\lambda_1, \lambda_2)]^{1-q}$, we have (15). By Hälder's inequality, we find

$$I = \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \left[\Phi^{\frac{1}{p}}(x) f(x) \right] \left[\Phi^{\frac{-1}{p}}(x) \sum_{n=2}^{\infty} \frac{a_n}{(\ln \alpha x n)^{\lambda}} \right] dx \le \|f\|_{p,\Phi} L.$$
(17)

Then by (15), we have (13). On the other-hand, assuming that (13) is valid, setting

$$f(x) := \left[\Phi(x)\right]^{1-q} \left[\sum_{n=2}^{\infty} \frac{a_n}{(\ln \alpha x n)^{\lambda}}\right]^{q-1}, \quad x \in \left(\frac{1}{\sqrt{\alpha}}, \infty\right),$$

then $L^{q-1} = ||f||_{p}, \Phi$.. By (12), we find $L < \infty$. If L = 0, then (15) is valid trivially; if L > 0, then by (13), we have

$$\begin{split} & \left\|f\right\|_{p,\Phi}^{p} = L^{q} = I < B\left(\lambda_{1},\lambda_{2}\right) \left\|f\right\|_{p,\Phi} \|a\|_{q,\Psi}, \text{ i.e.} \\ & \left\|f\right\|_{p,\Phi}^{p-1} = L < B\left(\lambda_{1},\lambda_{2}\right) \|a\|_{q,\Psi}, \end{split}$$

That is, (15) is equivalent to (13). Hence inequalities (13), (14) and (15) are equivalent.

For $0 < \varepsilon < p\lambda_1$, setting $\tilde{a}_n = \frac{1}{n} \left(\ln \sqrt{\alpha} n \right)^{\lambda_2 - \frac{\epsilon}{q} - 1}$, $n \in \mathbb{N} \setminus \{1\}$, and $\tilde{f}(x) := \begin{cases} 0, x \in \left(\frac{1}{\sqrt{\alpha}}, \frac{e}{\sqrt{\alpha}}\right) \\ 0, x \in \left(\frac{1}{\sqrt{\alpha}}, \frac{e}{\sqrt{\alpha}}\right) \\ \frac{\epsilon}{1} \left(\ln \sqrt{\alpha} x \right)^{\lambda_1 - \frac{\epsilon}{p} - 1}, x \in \left[\frac{e}{\sqrt{\alpha}}, \infty\right) \end{cases}$

if there exists a positive number $k (\leq B(\lambda_1, \lambda_2))$, such that (13) is valid as we replace $B(\lambda_1, \lambda_2)$ with k, then in particular, it follows

$$\begin{split} \tilde{I} &:= \sum_{n=2}^{\infty} \int_{1}^{\infty} \frac{1}{\left(\ln \alpha x n\right)^{\lambda}} \tilde{a}_{n} \tilde{f}\left(x\right) dx < k \left\| \tilde{f} \right\|_{p,\Phi} \left\| \tilde{a} \right\|_{q,\Psi} \\ &= k \left\{ \int_{\frac{e}{\sqrt{\alpha}}}^{\infty} \frac{dx}{x \left(\ln \sqrt{\alpha} x\right)^{e+1}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{2 \left(\ln 2 \sqrt{\alpha}\right)^{e+1}} + \sum_{n=3}^{\infty} \frac{1}{n \left(\ln \sqrt{\alpha} n\right)^{e+1}} \right\}^{\frac{1}{q}} \\ &< k \left(\frac{1}{\varepsilon} \right)^{\frac{1}{p}} \left\{ \frac{1}{2 \left(\ln 2 \sqrt{\alpha}\right)^{e+1}} + \int_{2}^{\infty} \frac{1}{x \left(\ln \sqrt{\alpha} x\right)^{e+1}} dx \right\}^{\frac{1}{q}} \\ &= \frac{k}{\varepsilon} \left\{ \frac{\varepsilon}{2 \left(\ln 2 \sqrt{\alpha}\right)^{e+1}} + \frac{1}{\left(\ln 2 \sqrt{\alpha}\right)^{\varepsilon}} \right\}^{\frac{1}{q}}, \end{split}$$
(18)

$$\begin{split} \tilde{I} &= \sum_{n=2}^{\infty} \left(\ln \sqrt{\alpha} n \right)^{\lambda_2 - \frac{\varepsilon}{q} - 1} \frac{1}{n} \int_{\frac{\varepsilon}{p}}^{\infty} \frac{1}{x(\ln \alpha x n)^{\lambda}} \left(\ln \sqrt{\alpha} x \right)^{\lambda_1 - \frac{\varepsilon}{p} - 1} dx \\ &\quad t = \left(\ln \sqrt{\alpha} x \right) / \left(\ln \sqrt{\alpha} n \right) \sum_{n=2}^{\infty} \frac{1}{n(\ln \sqrt{\alpha} n)^{\varepsilon + 1}} \int_{1/\ln \sqrt{\alpha} n}^{\infty} \frac{t^{\lambda_1 - \frac{\varepsilon}{p} - 1}}{(t+1)^{\lambda}} dt \\ &\quad = B\left(\lambda_1 - \frac{\varepsilon}{p}, \lambda_2 + \frac{\varepsilon}{p} \right) \sum_{n=2}^{\infty} \frac{1}{n(\ln \sqrt{\alpha} n)^{\varepsilon + 1}} - A\left(\varepsilon\right) \\ &\quad > B\left(\lambda_1 - \frac{\varepsilon}{p}, \lambda_2 + \frac{\varepsilon}{p} \right) \int_{2}^{\infty} \frac{1}{\gamma(\ln \sqrt{\alpha} \gamma)^{\varepsilon + 1}} dy - A\left(\varepsilon\right) \\ &\quad = \frac{1}{\varepsilon (\ln 2\sqrt{\alpha})^{\varepsilon}} B\left(\lambda_1 - \frac{\varepsilon}{p}, \lambda_2 + \frac{\varepsilon}{p} \right) - A\left(\varepsilon\right), \\ A\left(\varepsilon\right) &:= \sum_{n=2}^{\infty} \frac{1}{n(\ln \sqrt{\alpha} n)^{\varepsilon + 1}} \int_{0}^{1/\ln \sqrt{\alpha} n} \frac{1}{(t+1)^{\lambda}} t^{\lambda_1 - \frac{\varepsilon}{p} - 1} dt. \end{split}$$

W find

$$0 < A(\varepsilon) \le \sum_{n=2}^{\infty} \frac{1}{n(\ln\sqrt{\alpha}n)^{\varepsilon+1}} \int_{0}^{1/\ln\sqrt{\alpha}n} t^{\lambda_{1}-\frac{\varepsilon}{p}-1} dt$$
$$= \frac{1}{\lambda_{1}-\frac{\varepsilon}{p}} \sum_{n=2}^{\infty} \frac{1}{n(\ln\sqrt{\alpha}n)^{\lambda_{1}+\frac{\varepsilon}{q}+1}} < \infty,$$

that is, $A(\varepsilon) = O(1)$ ($\varepsilon \to 0^+$). Hence by (18) and (19), it follows

$$\frac{B\left(\lambda_{1}-\frac{\varepsilon}{p},\lambda_{2}+\frac{\varepsilon}{p}\right)}{\left(\ln 2\sqrt{\alpha}\right)^{\varepsilon}}-\varepsilon O\left(1\right) < k \left\{\frac{\varepsilon}{2\left(\ln 2\sqrt{\alpha}\right)^{\varepsilon+1}}+\frac{1}{\left(\ln 2\sqrt{\alpha}\right)^{\varepsilon}}\right\}^{\frac{1}{q}},\tag{20}$$

and $B(\lambda_1, \lambda_2) \leq k(\varepsilon \to 0^+)$. Hence, $k = B(\lambda_1, \lambda_2)$ is the best value of (13).

Due to the equivalence, the constant factor $B(\lambda_1, \lambda_2)$ in (14) and (15) is the best possible. Otherwise, we can imply a contradiction by (16) and (17) that the constant factor in (13) is not the best possible. \Box

Remark 1 (i) Define the first type half-discrete Mulholland's operator

$$T: L_{p,\Phi}\left(\frac{1}{\sqrt{\alpha}},\infty\right) \to l_{p,\Psi^{1-p}as}$$
 follows: for $f \in L_{p,\Phi}\left(\frac{1}{\sqrt{\alpha}},\infty\right)$, we define $Tf \in l_{p,\Psi^{1-p}as$
 $Tf(n) = \int_{\frac{1}{\sqrt{\alpha}}}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} f(x) dx, \quad n \in \mathbb{N} \setminus \{1\}.$

Then by (14), it follows $||Tf||_{p,\Psi^{1-p}} \leq B(\lambda_1, \lambda_2) ||f||_{p,\Phi}$ and then T is a bounded operator with $||T|| \leq B(\lambda_1, \lambda_2)$. Since by Theorem 1, the constant factor in (14) is the best possible, we have $||T|| = B(\lambda_1, \lambda_2)$.

(ii) Define the second type half-discrete Mulholland's operator

$$\tilde{T}: l_{q,\Psi} \to L_{q,\Phi^{1-q}}\left(\frac{1}{\sqrt{\alpha}},\infty\right)$$
 as follows: For $a \downarrow l_{q,\Psi}$, define $\tilde{T}a \in L_{q,\Phi^{1-q}}\left(\frac{1}{\sqrt{\alpha}},\infty\right)$ as
 $\tilde{T}a(x) = \sum_{n=2}^{\infty} \frac{1}{(\ln \alpha x n)^{\lambda}} a_n, \quad x \in \left(\frac{1}{\sqrt{\alpha}},\infty\right)$.

Then by (15), it follows $\|\tilde{T}a\|_{q,\Phi^{1-q}} \leq B(\lambda_1,\lambda_2)\|a\|_{q,\Psi}$ and then \tilde{T} is a bounded operator with $\|\tilde{T}\| \leq B(\lambda_1,\lambda_2)$. Since by Theorem 1, the constant factor in (15) is the best possible, we have $\|\tilde{T}\| = B(\lambda_1,\lambda_2)$.

Remark 2 We set $p = q = 2, \lambda = 1, \lambda_1 = \lambda_2 = \frac{1}{2}in$ (13), (14) and (15). (i) if $\alpha = \frac{4}{9}$, then we deduce (7) and the following equivalent inequalities:

$$\sum_{n=2}^{\infty} \frac{1}{n} \left[\int_{\frac{3}{2}}^{\infty} \frac{f(x)}{\ln \frac{4}{9} x n} dx \right]^2 < \pi^2 \int_{\frac{3}{2}}^{\infty} x f^2(x) dx,$$
(21)

$$\int_{\frac{3}{2}}^{\infty} \frac{1}{x} \left[\sum_{n=2}^{\infty} \frac{a_n}{\ln \frac{4}{9} x n} \right]^2 dx < \pi^2 \sum_{n=2}^{\infty} n a_n^2;$$
(22)

(ii) if $\alpha = 1$, then we have the following half-discrete Mulholland's inequality and its equivalent forms:

$$\int_{1}^{\infty} f(x) \sum_{n=2}^{\infty} \frac{a_n}{\ln x^n} dx < \pi \left\{ \int_{1}^{\infty} x f^2(x) dx \sum_{n=2}^{\infty} n a_n^2 \right\}^{\frac{1}{2}},$$
(23)

$$\sum_{n=2}^{\infty} \frac{1}{n} \left[\int_{1}^{\infty} \frac{f(x)}{\ln xn} dx \right]^2 < \pi^2 \int_{1}^{\infty} xf^2(x) dx,$$
(24)

$$\int_{1}^{\infty} \frac{1}{x} \left[\sum_{n=2}^{\infty} \frac{a_n}{\ln xn} \right]^2 dx < \pi^2 \sum_{n=2}^{\infty} na_n^2.$$
(25)

Acknowledgements

This work is supported by the Guangdong Science and Technology Plan Item (No. 2010B010600018), and the Guangdong Modern Information Service industry Develop Particularly item 2011 (No. 13090).

Author details

¹Department of Computer Science, Guangdong University of Education, Guangzhou, Guangdong 510303, PR China ²Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, PR China

Authors' contributions

QC conceived of the study, and participated in its design and coordination. BY wrote and reformed the article. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 14 November 2011 Accepted: 26 March 2012 Published: 26 March 2012

References

- 1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
- Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acaremic Publishers, Boston (1991)
- 3. Yang, B: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., dubai (2009)
- 4. Yang, B: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., dubai (2011)
- 5. Yang, B: An extension of Mulholand's inequality. Jordan J Math Stat. 3(3):151–157 (2010)
- 6. Yang, B: On Hilbert's integral inequality. J Math Anal Appl. 220, 778–785 (1998)
- 7. Yang, B: The Norm of Operator and Hilbert-type Inequalities. Science Press, Beijin (2009)
- Yang, B, Brnetić, I, Krnić, M, Pečarić, J: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math Inequal Appl. 8(2):259–272 (2005)
- 9. Krnić, M, Pečarić, J: Hilbert's inequalities and their reverses. Publ Math Debrecen. 67(3-4):315-331 (2005)
- 10. Jin, J, Debnath, L: On a Hilbert-type linear series operator and its applications. J Math Anal Appl. 371, 691–704 (2010)
- 11. Azar, L: On some extensions of Hardy-Hilbert's inequality and applications. J Inequal Appl 2009, 14 (2009). Article ID 546829
- 12. Yang, B, Rassias, T: On the way of weight coefficient and research for Hilbert-type inequalities. Math Inequal Appl. 6(4):625–658 (2003)
- 13. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J Inequal Appl 2006, 12 (2006). Article ID 28582
- 14. Kuang, J, Debnath, L: On Hilbert's type inequalities on the weighted Orlicz spaces. Pac J Appl Math. 1(1):95–103 (2007)
- 15. Zhong, W: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J Inequal Appl 2008, 13 (2008). Article ID 917392
- 16. Li, Y, He, B: On inequalities of Hilbert's type. Bull Aust Math Soc. 76(1):1-13 (2007)
- 17. Yang, B: A mixed Hilbert-type inequality with a best constant factor. Int J Pure Appl Math. 20(3):319-328 (2005)
- 18. Yang, B: A half-discrete Hilbert's inequality. J Guangdong Univ Edu. 31(3):1-7 (2011)
- 19. Donald, LC: Measure Theorey. Birkhäuser, Boston (1980)

doi:10.1186/1029-242X-2012-70

Cite this article as: Chen and Yang: On a more accurate half-discrete mulholland's inequality and an extension. Journal of Inequalities and Applications 2012 2012:70.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com