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test with focus on the device-dependent variation
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Abstract

The aim of the paper was to estimate the accuracy of the metrology of an installed indirect on-line sensor system
based on the automated California Mastitis Test (CMT) with focus on the prior established device-dependent variation.
A sensor calibration was implemented. Therefore, seven sensors were tested with similar trials on the dairy research
farm Karkendamm (Germany) on two days in July 2011 and January 2012. Thereby, 18 mixed milk samples from serial
dilutions were fourfold recorded at every sensor. For the validation, independent sensor records with corresponding
lab somatic cell score records (LSCS) in the period between both trials were used (n = 1,357). From these records for
each sensor a polynomial regression function was calculated. The predicted SCS (PSCS) was obtained for each sensor
with the previously determined regression coefficients. Pearson correlation coefficients between PSCS and LSCS were
established for each sensor and ranged between r = 0.57 and r = 0.67. Comparing the results with the correlation
coefficients between the on-line SCS (OSCS) and the LSCS (r = 0.20 to 0.57) for every sensor, the calibration
showed the tendency to improve the installed sensor system.
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Background
Mastitis is still the most costly and defiant disease for
the dairy industry (Dadpasand et al. 2012). In German
dairy herds, this disease is the second main reason for
early culling after fertility problems. Annual statistics
published by the German Cattle Breeders’ Federation
(Bonn, Germany) showed that the percentage of culling
because of udder diseases among all culling in German
dairy herds was 14.9% in the year 2012 (ADR 2013).
Mastitis has been the first focus of sensor developments,
because of its major relevance for the dairy industry
(Hogeveen et al. 2010).
The cow-level lab somatic cell count (LSCC), generally

log-transformed to lab somatic cell score (LSCS), is the
commonly used indirect trait for monitoring udder
health for performance recording and genetic evaluation
in Germany (Stampa et al. 2006). LSCC records are usually
recorded monthly by the local herd recording organization
and provide an important source of information for both,
breeding and herd management. A potential shortcoming
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of the monthly LSCS as an indicator trait is, that acute
short-duration infections may be difficult to identify simply
from increased SCC during lactation (Urioste et al. 2010).
Therefore, dairy producers have the possibility to use sen-
sor systems for daily automatic on-line mastitis detection
in composite or quarter milking (Koeck et al. 2012). Brandt
et al. (2010) mentioned that sensors for on-farm analysis of
milk composition are developed either for replacing visual
inspection of foremilk by the milker (colour and image
sensors) or for monitoring indicators in milk that have a
high informational value but are not recognizable directly
by the milker. Any ‘on-line’ mastitis detection is currently
performed using electrical conductivity (EC), somatic cell
count (SCC) or colour determination (Viguier et al. 2009),
but the measurement of EC and SCC are the most com-
mon methods for mastitis detection in up-to-date milking
systems (Brandt et al. 2010).
In the present study, the automated on-line SCC

(OSCC) sensor system CellSense™ (Sensortec, Hamilton/
Dairy Automation Limited, Waikato, New Zealand) was
examined for its accuracy of metrology. The measuring
principle based on the automated California Mastitis Test
(CMT). The viscosity of a formed gel – milk sample
mixed with a detergent-based chemical reagent – is called
n Open Access article distributed under the terms of the Creative Commons
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drain time (Whyte et al. 2004). Some of the fundamental
chemical and rheological aspects of this gel formation
were studied for developing a reliable parameter for early
mastitis detection (Whyte et al. 2005; Verbeek et al. 2008).
Selection decisions and bulk tank SCC management on
dairy farms might be possible by identifying cows with
udder health problems (Whyte et al. 2004).
Given that the OSCC is obtained from the drain time

by each sensor using a specific algorithm, the sensor
records might be comparable to the LSCC. Previous
studies dealing with the mentioned sensor system analysed
the correlation between lab and sensor. The manufac-
turers tested and calibrated one CellSense™ unit in the lab
and on-line in an automatic milking system (AMS). Over-
all 83% (n = 197) of records in the calibration data set and
96% (n = 66) of data from on-line testing were correctly
classified by the sensor (Whyte et al. 2004). Regarding
their calibration approach, the manufacturers constituted
a calibration curve for the OSCC sensor prototype (lab
testing only), showing the location of the OSCC band
boundaries (Whyte et al. 2002). The calibration curve was
diagrammed by endorsing the records and charting the
curve. Furthermore, Leslie et al. (2007) and Kamphuis
et al. (2008) obtained correlation coefficients between lab
and sensor records of r = 0.71 and r = 0.76 using only one
CellSense™ unit.
In order to estimate the variations between seven dif-

ferent sensors and to use a more statistical calibration
approach, the objectives of the current study were (1) to
calculate a calibration curve with polynomial regression
functions for each sensor with the trial data from July
2011 and January 2012, (2) to validate the sensor calibra-
tion with on-line sensor records in the period between
both trials, (3) to obtain a predicted SCS (PSCS) for each
sensor with prior determined regression coefficients and
(4) to establish correlation coefficients between PSCS
and LSCS for each sensor and to compare these results
with the correlation coefficients between on-line SCS
(OSCS) and LSCS.

Material and methods
Sensor data
Milk viscosity data were recorded routinely at the dairy
research farm Karkendamm of the Institute of Animal
Breeding and Husbandry, Christian-Albrechts-University
in Kiel (Germany) between April 2011 and December
2012. Approximately 165 Holstein-Friesian dairy cows
were milked twice daily in a rotary milking parlour on
28 milking stalls (GEA Farm Technologies). Dairy cows
were classified into lactation number 1, 2 and ≥ 3. Forty-
four lactation weeks were obtained. Automatic viscosity
sensors were attached at the main milk-line on every
fourth milking stall as an on-line system. The measuring
principle based on the automated California Mastitis
Test (CMT), which was developed in 1957 (Schalm and
Noorlander 1957) and derived from the Whiteside test
(Whiteside 1939). It is a common cow side test, especially
used to identify subclinical mastitis (Leach et al. 2008).
Data were available approximately two minutes after milk
flow started. The viscosity of a formed gel is called drain
time. It is the time the gel needs to flow through a stan-
dardized bore. From the drain time the OSCC of the milk
sample is obtained using a specific algorithm. The OSCC
was log-transformed to the OSCS as suggested by Ali and
Shook (1980) to obtain nearly normal distribution. Drain
time records included in the data were between 0.80 and
6.00 seconds. For further analysis, the drain time was
log10(+1)-transformed (logDT). Cows which were milked
into buckets were not assessed by the sensors.

Sensor testing and mode of operation
For the calibration, sensors were tested in July 2011
and January 2012 with two similar experimental setups.
High SCC milk (>2 mio. cells/ml) and low SCC milk
(<200,000 cells/ml) was obtained from two randomly
selected cows in the research dairy herd and combined in
various proportions within a serial dilution as imple-
mented by Whyte et al. (2004). Therefore, 18 mixed milk
samples (nine mixed milk samples per experimental
setup) were fourfold tested at each of the seven sensors.
For on-line testing, the 18 mixed milk samples were four-
fold tested by connecting plastic syringes – filled with
60 ml of each mixed milk sample inside – with the sam-
pling well-tube of each sensor. While the milking rotary
rotated slowly, one sensor after another received a milk
start signal (starting with sensor no. 1) and started auto-
matic sampling after approximately 35 seconds. Sampling,
mixing, measuring and cleaning was performed according
to Whyte et al. (2004) and was completed automatically.
When sensor no. 1 arrived after one entirely turn of the
rotary parlour, the start button was pressed two times and
the next measuring procedure started. This was repeated
four times for every sensor. Therefore, 72 measurement
data for each sensor and altogether 504 measurement data
for all these seven sensors were obtained.
The seven automatic viscosity sensors were attached on

every fourth milking stall as an on-line system and data
were obtained for one out of four cows at each milking.
Hence, for the sensor validation (verification of sensor
calibration), the under practical conditions routinely re-
corded on-line sensor data between both experimental
setups in the period between July 2011 to January 2012
(n = 1,357) with the corresponding LSCS were consulted.

Data from herd management system and laboratory
Milk yield was automatically recorded at every milking
in the herd management system (DairyPlan, GEA Farm
Technologies). Milk composition was analysed weekly
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based on samples collected from two consecutive milk-
ings. For the present research, two reference samples of
each mixed milk sample in both trials were taken (n = 36)
and submitted to the laboratory of the local dairy herd
recording organisation for LSCC determination. The two
LSCC records of each mixed milk sample were averaged
for further examinations (n = 18). According to Kamphuis
et al. (2008), the LSCC was regarded as the reference. For
further analysis the LSCC was log-transformed to the
LSCS as suggested by Ali and Shook (1980). Only LSCS
information was considered in further analysis.

Statistical analysis
The SAS package (SAS® 2010) was used for descriptive
and statistical analyses. Statistical significance was defined
at P ≤ 0.05. The distributions of LSCC and drain time were
tested using the UNIVARIATE procedure (SAS® 2010). In
Table 1, the analysed descriptive statistics of sensor and
laboratory records for the calibration data set (n = 504)
and the validation data set (n = 1,357) are presented. A
threshold OSCC value of 0 was possible, because Whyte
et al. (2004) accounted a need of farmers for flexible band
reporting, rather than strictly quantitative results. For the
parameter OSCS, a lower observation number was used in
the calibration data set (n = 478) and the validation data
set (n = 310), because the log-transformation of a value of
0 resulted in a missing value (Table 1).
For the estimation of the residuals and residual variances

for each sensor a linear mixed model was used, which was
as follows:

yijklm ¼ μþ SEi þ tdj þ td �msk þ td �ms � srl
þ eijklm

where yijklm = observation of logDT, μ = overall mean,
SEi = fixed effect of the ith sensor (i = 1 to 7), tdj = random
effect of the jth test day (j = 1 to 2), msk = within test day
Table 1 Descriptive statistics: number of observations (N), me
and maximal (Max) values for the sensor and laboratory dete
data set

Indicator1 Calibration data set

N Median Mean SD Min Ma

CellSense™

DT 504 1.94 2.01 0.36 1.33 3.6

logDT 504 1.29 1.30 0.07 1.13 1.5

OSCC 504 364 437 358 0 2,1

OSCS 478 2.58 2.55 0.35 0.78 3.3

Laboratory

LSCC 504 679 855 641 45 2,5

LSCS 504 5.76 5.70 1.22 1.85 7.7
1DT = drain time (sec); logDT = log-transformed drain time (log10(DT) + 1); OSCC = o
(log2(OSCC/100) + 3); LSCC = laboratory somatic cell count (1000/ml); LSCS = laborat
nested random effect of the kth mixed milk sample (k = 1
to 18), srl = within test day and mixed milk sample nested
random effect of the lth sample run (l = 1 to 4) and eijklm =
random residual effect of the ijklmth observation.
Assuming heteroscedasticity instead of homoscedasticity

in the linear mixed model, a residual variance was esti-
mated for each sensor. Thereby, the device-dependent
variation was determined. The sensors were sorted by
magnitude of the residual variance.
The partial least square regression (PLSR) statistical

procedure was applied to the trial data (Pullanagari
2011). Linear and polynomial regression of the records
in the calibration data set was compared. Regarding the
adjusted coefficient of determination (R2), the polynomial
regression was chosen for further examination. Therefore,
the RSREG procedure in the SAS package (SAS® 2010)
was performed in order to establish relationships between
lab estimated values and the values predicted from calibra-
tion equations. The method of least squares was used
to fit quadratic response surface regression models
(SAS® 2010). The regression coefficients were obtained
by polynomial regression of X versus Y in the calibration
process (Hansen and Schjoerring 2003). Differences in
coefficients of determination (R2) and root mean square
errors (RMSE) were compared to test the performance of
the calibration models (Pullanagari 2011).
For external validation, the under practical conditions

obtained sensor records of the twice daily milking between
both tests with corresponding lab information were used.
The predicted SCS (PSCS) was calculated for each sensor
with the previously obtained regression models using the
validation data set. The Pearson correlation coefficients
between PSCS and LSCS for each sensor were deter-
mined. Compared with the correlations between PSCS
and OSCS for each sensor, the quality of the predicted
variable PSCS and the accuracy of the sensor calibration
were validated.
dian, mean value, standard deviation (SD), minimal (Min)
rmined records in the calibration and the validation

Validation data set

x N Median Mean SD Min Max

7 1,357 1.44 1.52 0.28 0.92 5.29

6 1,357 1.16 1.18 0.06 0.97 1.72

11 1,357 0 67 226 0 3,760

3 310 3.72 3.65 1.71 −2.06 8.23

97 1,357 56 164 411 5 6,320

0 1,357 2.16 2.45 1.66 −1.32 8.89

n-line somatic cell count (1000/ml); OSCS = on-line somatic cell score
ory somatic cell score (log2(LSCC/100) + 3).
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Results and discussion
The results of the linear mixed model showed, that the
variation between the sensors is significant (P < 0.0001).
For the clarification of potential differences between the
sensor effects, the residuals were calculated for each
sensor with regard to the random effects observed in the
linear mixed model. The results offered a high signifi-
cant device-dependent variation (P < 0.0001). Residual
variances ranged between 0.000106 (log SCC/ml) and
0.000814 (log SCC/ml).
Consequently, a further estimation of the variations

between sensor and lab records was required. Pearson
correlation coefficients between sensor and lab data were
illustrated for the calibration data set in Table 2. High
correlations were found between drain time and LSCC
(r = 0.75) and logDT and LSCS (r = 0.79). The correlation
between OSCC and LSCC was r = 0.91 (P < 0.0001). The
OSCS was well correlated (r = 0.80) with the LSCS.
Few studies dealing with the mentioned sensor system

analysed the correlation between lab and sensor. Leslie
et al. (2007) evaluated the diagnostic test characteristics
of one CellSense™ unit against lab records. The correl-
ation between OSCC and LSCC was r = 0.71, which was
obvious lower than the correlation found in this study
(r = 0.91). A CellSense™ unit was also tested by Kamphuis
et al. (2008) in an AMS. They reported more variation in
OSCC values at lower values of LSCC, meaning that a
more linear relationship was found between OSCC and
LSCC at greater values of LSCC. This was reflected in
their calculated correlation coefficients between OSCS
and LSCS with r = 0.76 (P < 0.001), which mostly provided
present findings. In comparison to the correlations men-
tioned in the literature, the results of the present study
showed higher correlation coefficients. Regarding quarter
level SCC data recorded with these sensor system installed
in an AMS, Mollenhorst et al. (2009) found a correlation
coefficient of r = 0.47 (P < 0.001) between laboratory deter-
mined quarter SCS and OSCS, with an increasing correl-
ation at higher SCC values.
Nevertheless, the estimated variations between the

seven sensors should lead to a more statistical calibration
approach compared with Whyte et al. (2004). Therefore,
Table 2 Pearson correlation coefficients between sensor
records and laboratory records calculated with data from
the calibration data set

Parameter1 DT logDT OSCC OSCS

OSCS - 0.87 - -

LSCC - - 0.91 -

LSCS 0.75 0.79 - 0.80

P < 0.0001; 1DT = drain time (sensor determined; sec); logDT = log-transformed
drain time (log10(DT) + 1); OSCC = on-line somatic cell count (sensor
determined; 1000/ml); OSCS = on-line somatic cell score (log2(OSCC/100) + 3);
LSCC = somatic cell count (laboratory determined; 1000/ml); LSCS = somatic
cell score (laboratory determined; log2(LSCC/100) + 3).
calibration curves were calculated with polynomial regres-
sion functions for each sensor with the trial data from July
2011 and January 2012. As the trait of interest, the accur-
acy of measurement was tested. Therefore the coefficients
of determination (R2) and root mean square errors
(RMSE) for the seven sensors were presented in Table 3.
The results showed large differences between the sensors
(R2 = 56.1 to 87.2%) with good accuracy (RMSE = 0.82 to
0.44 (log SCC/ml)).
The sensor calibration was validated with on-line

sensor records in the period between both trials and a
PSCS was obtained for each sensor with prior determined
regression coefficients. Table 4 showed the correlation
coefficients for the sensors between LSCS and PSCS,
determined with data from the validation data set.
According to expectations, the correlation coefficients for
the validation data set were lower compared with those of
the calibration data set, conscious that for OSCS a lower
observation number was used. The correlations between
OSCS and LSCS ranged between r = 0.20 and r = 0.57,
whereas correlations between PSCS and LSCS varied from
r = 0.57 to 0.67 (P < 0.0001).
Whyte et al. (2004) tested and calibrated a CellSense™

unit in the lab and on-line in an AMS. Regarding their
calibration approach, the inventors constituted a calibra-
tion curve for the OSCC sensor prototype, which was
diagrammed by endorsing the records and charting the
curve. Overall 238 laboratory samples and 69 samples in
the field were tested. The used SCC thresholds of the
sensor system were outlined in a five-band scale: < 200;
200 to 500; 500 to 1,500; 1,500 to 5,000 and > 5,000
(1,000 cells/ml). During laboratory testing, the sensor
correctly detected 95%, 85%, 76%, 72% and 95% of sam-
ples in each of the five mentioned bands. Overall 83%
(n = 197) of records in the calibration data set and 96%
(n = 66) of data from on-line testing were correctly clas-
sified by the sensor (Whyte et al. 2004).
A potential explanation for the moderate correlations

between PSCS and LSCS might be the influence of milk
sample density and composition. It cannot be excluded,
that milk components (e.g. fat or protein content) might
have an effect on the sensor data, but that could not be
surveyed with the underlying test results. In this study,
the sample components were self-provided in the mixed
Table 3 Differences of the coefficient of determination
(R2) and the root mean square error (RMSE) of the
polynomial regression models for each sensor calculated
with data from the calibration data set

Parameter1 Sensor

1 2 3 4 5 6 7

R2 87.2 60.3 56.1 77.5 71.4 76.2 81.5

RMSE 0.44 0.78 0.82 0.59 0.66 0.60 0.53
1R2 (%); RMSE (log SCC/ml).



Table 4 Pearson correlation coefficients for the installed
seven sensors between laboratory somatic cell score (LSCS)
and predicted somatic cell score (PSCS) determined with
data from the validation data set, and the differences (Δ)
between the correlation coefficients as the quality of the
calibration approach

Sensor Parameter1 OSCS LSCS Δ

1
LSCS 0.57 -

0.10
PSCS - 0.67

2
LSCS 0.22 -

0.40
PSCS - 0.62

3
LSCS 0.33 -

0.33
PSCS - 0.66

4
LSCS 0.20 -

0.37
PSCS - 0.57

5
LSCS 0.49 -

0.13
PSCS - 0.62

6
LSCS 0.51 -

0.10
PSCS - 0.61

7
LSCS 0.26 -

0.34
PSCS - 0.60

P < 0.0001; 1OSCS = on-line somatic cell score (log2(OSCC/100) + 3); LSCS = somatic
cell score (laboratory determined; log2(LSCC/100) + 3); PSCS = predicted somatic
cell score; Δ= IdifferenceI.
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milk samples within the serial dilution, because no
standardisation for milk ingredients was realised. There-
fore, those milk components were not consulted for
further examination. Schalm and Noorlander (1957) men-
tioned that the used reagent for the CMT was chosen,
because it did not involve the milk fat as part of the visible
positive reaction with mastitic milk. Nevertheless, the
effect of other milk components on the sensor records
must be analysed in further studies.
It should also be mentioned, that the sensor system and

the lab use different measuring principles. The sensor
system in this study used the automated CMT, where a
milk sample is mixed with the detergent-based chemical
reagent and the viscosity from the gel is indirectly
obtained (Whyte et al. 2005). On the other hand, the lab
used the directly fluoro-optic electronic cell counting
method by disk cytometry (e.g. Fossomatic 5000, Foss
Electric, Hillerød), where the cell nuclei are stained (e.g.
with ethidium bromide) and counted by light scatter, or
fluorescent detectors, or both (Brandt et al. 2010).
The accuracy of the sensor calibration was validated by

comparing the differences (Δ) between the previous deter-
mined correlation coefficients between OSCS and LSCS
(r = 0.20 to 0.57) with those between PSCS and LSCS
(r = 0.57 to 0.67) (Table 4). The correlations examined
for the predicted records achieved higher values for each
sensor. Hence, the differences ranged between Δ = 0.10
and 0.40. Therefore, the validation of the calibration
models indicated that the calibration approach in this
study showed the tendency to improve the on-line sensor
system sustainable.

Conclusions
The indirect on-line sensor system based on the automated
California Mastitis Test was calibrated with a more statis-
tical calibration approach as compared with the calibration
strategy of the manufacturers. The calibration showed the
tendency to improve the sensor system. Nevertheless, the
robustness of the sensor system is not specified so far, due
to the sensor calibration method which was only executed
for the on-line installed sensor system in the present study.
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