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A b s t r a c t  

Since its introduction in 2001, natural time analysis has been ap-
plied to diverse fields with remarkable results. Its validity has not been 
doubted by any publication to date. Here, we indicate that frequently 
asked questions on the motivation and the foundation of natural time 
analysis are directly answered if one takes into account the following two 
key points that we have considered as widely accepted when natural time 
analysis was proposed: first, the aspects on the energy of a system for-
warded by Max Planck in his Treatise on Thermodynamics; second, the 
theorem on the characteristic functions of probability distributions which 
Gauss called Ein Schönes Theorem der Wahrscheinlichkeitsrechnung 
(beautiful theorem of probability calculus). The case of the time series of 
earthquakes and of the precursory Seismic Electric Signals are discussed 
as typical examples. 

Key words: natural time analysis, complex systems, energy, dichoto-
mous signals. 

1. INTRODUCTION 
Since 2001 (Varotsos et al. 2001, 2002a, b), it has been proposed that unique 
dynamic features hidden behind can be revealed from the time series of 
complex systems, if we analyze them in terms of a new time domain termed 
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natural time �. Examples of data analysis in this time domain carried out by a 
multitude of authors (e.g., Vargas et al. 2015, Flores-Márquez et al. 2014, 
Ramírez-Rojas et al. 2011, Rundle et al. 2012, Holliday et al. 2006) have 
appeared in diverse fields, including Biology, Cardiology, Condensed Matter 
Physics, Environmental Sciences, Geophysics, Physics of Complex Systems, 
Statistical Physics, and Seismology. Several of these applications have been 
compiled in a monograph by Varotsos et al. (2011a), where the foundations 
of natural time analysis have been also explained in detail by providing the 
necessary mathematical background in each step. It is the objective of this 
short paper to shed more light on frequently asked questions related to the 
motivation and the foundation of natural time analysis. For example, alt-
hough this analysis does not make use of any adjustable parameter, a ques-
tion raises on why the selection of the normalized energy for each event is 
preferred in this analysis (see below) compared to other physical quantities. 
For a time series comprising N events, we define as natural time �k for the 
occurrence of the k-th event the quantity  �k = k/N. In doing so, we ignore the 
time intervals between consecutive events, but preserve their order and ener-
gy Qk. The analysis in natural time is carried out (Varotsos et al. 2001, 
2002a, b) by studying the evolution of the pair (�k , pk), where the quantity 
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is the normalized energy for the k-th event, and using the normalized power 
spectrum (cf. � stands for the angular natural frequency): 
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�(�) is (Varotsos et al. 2011a) the characteristic function of pk for all  � L R  
since pk  can be regarded as a probability for the occurrence of the k-th event 
at �k. This is obvious for dichotomous signals as it is frequently the case of 
Seismic Electric Signals (SES) activities (but holds for other signals as well 
(Varotsos et al. 2001, 2002a, b; 2009, 2011a); see also Section 3), because 
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probability to observe the k-th event among the other events (see Fig. 1) at 
the natural time  �k = k/N. 

In natural time analysis, the behavior of �(�) is studied at  � � 0, be-
cause all the moments of the distribution of pk  can be estimated from the de-
rivatives  dm�(�)/d�m  (for m positive integer) of the characteristic function 
�(�) at  � � 0  (see page 512 of Feller (1971)). For this purpose, a quantity 
	1 was defined (Varotsos et al. 2001, 2002a) from the Taylor expansion (see 
also the Appendix): 

 2 4
1 2( ) 1 ...N ; J ; J ;� 	     (4) 
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It has been shown (Varotsos et al. 2011a, b) that 	1 becomes equal to 
0.070 at the critical state for a variety of dynamical systems. Once N consec-
utive events have been observed, the k-th event that occurred at natural time 
�k = k/N (k � N)  will be hereafter called, for the sake of convenience, “k/N  
 

Fig. 1. Assume that N events have been recorded: The observer reports the occur-
rence of each consecutive event as long as it lasts, e.g., the fifth one (b), but marks 
nothing during periods of absence of events (a). The reading is replayed and a cam-
era takes a snapshot. Upon discarding the “empty” snapshots, the probability to ob-

serve, for example the fifth event, is  5
1

N

n
n
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�
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event”. Note that upon the occurrence of an additional event, the value of �k 
changes from k/N to k/(N + 1) together with the change of pk from 
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�
+ , thus leading to changes of �(�) and 	1 as well. 

Such changes are important, for example, when analyzing in natural time the 
small earthquakes that occur after the initiation of an SES activity in the 
candidate epicentral area in order to estimate the occurrence time of the 
forthcoming mainshock (e.g., Varotsos et al. 2008; see also Huang 2015). 
Hence, when dealing with the possible outcomes of a yet-to-be-performed 
experiment (as well as when studying the behavior of an evolving dynamical 
system), where the total number of events that will be recorded is not known 
in advance, the �k values that are always discrete rational numbers in (0,1] 
vary until the occurrence of the last event. 

Using 
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+ , which is the distribution corresponding to 

pk , the normalized power spectrum �(�) of Eq. 2 can be rewritten in terms 
of p(�) as (Varotsos et al. 2011b) 
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and its Taylor expansion around  � � 0  leads to the value 
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Alternative expressions for �(�) and 	1 are given in the Appendix. 

2. RANDOM  VARIABLE.  CHARACTERISTIC  FUNCTION.  
BACKGROUND 

2.1 Random variable 
Since 1933, Kolmogorov has first made it clear that a random variable is 
nothing but a measurable function on a probability space. Let (', A, P) be a 
probability space, where ' stands for the sample space (the set of world 
states, sometimes called outcomes), A the event space (the set of subsets of 
'), and P the probability measure. A single-valued real-valued function 
X = X(�)  defined on  ' (� L I)  is called a random variable if for any real x 
the set C D: ( )X xE; ;  belongs to the class A (e.g., see Random variable. Ency- 
clopedia of Mathematics, available from: http://www.encyclopediaofmath.org/ 
index.php?title=Random_variable&oldid=29510; access 2 February 2015). In 
simple words, a random variable X is a function that associates a unique  
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numerical value with every outcome of an experiment (e.g., see Statistics 
Glossary v. 1.1 (STEPS), available from: http://www.stats.gla.ac.uk/steps/ 
glossary/probability_distributions.html#probdistn; access 2 February 2015), 
or more simply (e.g., see Summary of Chapter 8 in Finite Mathematics and 
Finite Mathematics and Applied Calculus, available from: http://www. 
zweigmedia.com/ThirdEdSite/Summary7.html; access 2 February 2015) it is 
just a rule that assigns a numerical value to each outcome in the sample 
space of an experiment. Also a random variable is sometimes described as a 
variable whose value is subject to variations due to chance, i.e., randomness 
in a mathematical sense, e.g., see page 391 of Yates et al. (2002) (but see al-
so page 500 of Jaynes (2003), where the following is written: “However, alt-
hough the property of being «random» is considered a real objective attribute 
of a variable, orthodoxy has never produced any definition of the term «ran-
dom variable» that could actually be used in practice to decide whether some 
specific quantity, such as the number of beans in a can, is or is not «ran-
dom». Therefore, although the question «which quantities are random?» is 
crucial to everything an orthodox statistician does, we are unable to explain 
how he actually decides this; we can only observe what decisions he 
makes.”). A random variable differs essentially from other mathematical var-
iables since it conceptually does not have a single, fixed value (even if un-
known), but it can take on a set of possible different values each with an 
associated probability (if discrete) or a probability density function (if con-
tinuous). 

A random variable’s possible values might represent the possible out-
comes of either a past experiment whose already existing value is uncertain 
(e.g., as a result of incomplete information or imprecise measurements), or a 
yet-to-be-performed experiment. A typical example is the case of the analy-
sis of a series of seismic events, which for instance should be carried out for 
the time series of small earthquakes occurring in the candidate area after the 
SES initiation in order to estimate the occurrence time of an impending 
mainshock, as mentioned earlier. In this example, the values of k/N depend 
of course on the magnitude threshold adopted. In addition, for each threshold 
selected, the values of k/N are subject to variations due to experimental error 
in the determination of the magnitude, which may result in the observation 
or not of the smaller events, especially the ones in the vicinity of the thresh-
old in a way explained in Varotsos et al. (1996). In other words, due to the 
experimental error, events slightly exceeding the threshold selected may not 
be reported in the measurement while others slightly smaller than the thresh-
old may be reported, thus affecting the k/N values. Also, we clarify that ran-
dom variable’s values may conceptually represent either the results of an 
“objectively” random process (e.g., rolling a die) or the “subjective” ran-
domness that results from incomplete knowledge of a measurable quantity. 



P.A. VAROTSOS  et al. 
 

846

The latter is the case of the aforementioned example of analyzing a series of 
seismic events in which, as mentioned, an experimental error in the magni-
tude determination may affect the values of k/N. 

2.2 Characteristic function 
Let X be a random variable. The characteristic function of a continuous dis-
tribution with cumulative distribution function F(x) is defined as  

 � � : ( ) ( )i X i xR E e e dF x' ; ;; ;
#

	#
� �L � �
 � $  (8) 

which is a complex-valued function. E stands for the expectation value. For 
a discrete distribution on the non-negative integers j, it is defined as  
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where  Pr [X = j], or simply pj (if we follow the symbol used in Eq. 1 in Sec-
tion 1), denotes for the random variable X its associated probability at the 
non-negative integer value  X = j. 

The characteristic function uniquely determines the probability density 
function of a continuous distribution (see page 509 of Feller (1971) and 
page 48 of Johnson et al. (1992)); we have 
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Gauss called this theorem Ein Schönes Theorem der Wahrscheinlichkeits-
rechnung (beautiful theorem of probability calculus). The corresponding in-
version formula for discrete distributions on the non-negative integers is  
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3. CHARACTERISTIC  FUNCTION  AND  NATURAL  TIME  ANALYSIS 
In accordance to Eq. 9, the function �(�) in Eq. 3 introduced in natural time 
analysis (Varotsos et al. 2001, 2002a, b), i.e.,  
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constitutes the characteristic function of the random variable  (X =) k/N. This 
is so, because pk � as given by Eq. 1 � can be regarded (Varotsos et al. 2001, 
2002a, b) as the probability associated with  X = k/N  (moreover, �(�) of 
Eq. 12 is positive definite for all  � L R,  �(0) = 1  and the map  � � �(�)  
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is continuous at the origin, thus satisfying the conditions of the theorem 
1.1.12 in page 17 of Applebaum (2013) to be characteristic function of a 
probability distribution). In other words, pk is the probability for observing 
the k/N event. The latter becomes clear if we focus on the question “What is 
energy?” by considering the authoritative aspects of Max Planck to which 
we now turn. These aspects also show an insight into the use of the quantity 
of energy when natural time analysis was proposed (Varotsos et al. 2001, 
2002a, b). 

3.1 What is energy? 
Recent relevant books (e.g., see Coopersmith 2010) note that “most physi-
cists are unable to provide a satisfactory answer to this question” (see also 
Crystal 2011). 

Max Planck, in §58 of his Treatise on Thermodynamics (see page 41 in 
Planck (1945)) states:  

“The energy of a body, or system of bodies, is a magnitude depending on 
the momentary condition of the system. In order to arrive at a definite nu-
merical expression for the energy of a system in a given state, it is necessary 
to fix upon a certain normal arbitrarily selected state (e.g., 0°C and atmos-
pheric pressure). The energy of the system in a given state, referred to the 
arbitrarily selected state, is then equal to the algebraic sum of the mechanical 
equivalents of all the effects produced outside the system when it passes in 
any way from the given to the normal state. The energy of a system is, there-
fore, sometimes briefly denoted as the faculty to produce external effects”. 

This definition suggests the following answer to the aforementioned 
question on “what is energy”, e.g., for a recent reference see Bauer (2011): 
“The energy of the system is a measure of its presence in the universe”. 

We now proceed to the change of energy, U1 – U2, accompanying the 
transition of the system from a state 1 to a state 2 (which may probably hap-
pen when observing an event). Max Planck in §63 of his Treatise on Ther-
modynamics (see pages 44-45 in Planck (1945)) states:  

“The energy, as stated, depends on the momentary condition of the sys-
tem. To find the change of energy, U1 – U2, accompanying the transition of 
the system from a state 1 to a state 2, we should, according to the definition 
of the energy in §58 (this is the definition mentioned above), have to meas-
ure U1 as well as U2 by the mechanical equivalent of the external effects 
produced in passing from the given states to the normal state. But, supposing 
we so arrange matters that the system passes from state 1, through state 2, in-
to the normal state, it is evident then that  U1 – U2  is simply the mechanical 
equivalent of the external effects produced in passing from 1 to 2. The de-
crease of the energy of a system subjected to any change is, then, the me-
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chanical equivalent of the external effects resulting from that change; or, in 
other words, the increase of the energy of a system which undergoes any 
change, is equal to the mechanical equivalent of the heat absorbed and the 
work expended in producing the change:  

 1 2U U Q W	 �   (13) 

Q is the mechanical equivalent of the heat absorbed by the system, e.g., by 
conduction, and W is the amount of work expended on the system. …” and 
in §64 of his Treatise on Thermodynamics Max Planck clarifies: 

“The difference  U1 – U2  may also be regarded as the energy of the sys-
tem in state 2, referred to state 1 as the normal state …” 

Hence, the aforementioned answer to the question on “what is energy?” 
also holds for the difference  U1 – U2. 

3.2 Why it is logical to consider pk as a probability for the observation of 
the k/N event 

In the light of the above authoritative aspects of Max Planck summarized by 
Bauer (2011), and assuming that N events have been observed, we think 
along the following lines: since Qk stands for the energy of the k-th event and 
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+  for the total energy of N events, their ratio  � �
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considered as a probability for the occurrence (observation) of the k/N event. 
(The quantities pk are, of course, probabilities according to Kolmogorov 
(1950), since 1 1N

kk p� �+ .) This, however, should not be considered as be-
ing illogical with the following claim: “this is illogical since one never has 
the situation that the k/N event occurred with probability 20% and did not 
occur with probability 80%, for example”. This should be understood in the 
context that 80% refers to the sum of the probabilities of all the other  N � 1  
events to occur. 

4. CONCLUSIONS 
The analysis in natural time � is based on the study of the evolution of the 
pair (�k, pk). On the basis of the authoritative aspects forwarded by Max 
Planck concerning the energy of a system, it becomes evident that pk can be 
considered as the probability for observing the event at  �k = k/N. By means 
of �k and pk that are experimentally accessible, the characteristic function 
�(�) is obtained. This function, upon recalling the theorem which Gauss 
called “beautiful theorem of probability calculus”, uniquely determines the 
probability distribution of pk. Thus, in short, the transparency of the analysis 
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in natural time cannot be doubted, in any terms, since it is based on celebrat-
ed aspects in Physics and in Probability Calculus, and in addition it does not 
make use of any adjustable parameter. 

A p p e n d i x  

Alternative expressions for  �(�)  and  �1 

We first give a general expression for �(�) valid for any value of �: 
By writing  
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where we used the fact that  
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valid for any value of �. 
When  � � 0 (and since  max[�i] = 1), we have  sin (��i /2) � ��i /2  and 

hence Eq. A4 simplifies to: 
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By comparing with Eq. 4 and using Eq. A2, we find for the 	1 value the fol-
lowing expression: 
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Note that there exists compatibility of the 	1 value obtained from Eq. 7 with 
Eq. A6, which can be shown as follows: 

We consider that 

 � � � �
1

2 2

1 1 1 1
2 .

N N N N k

l m l m k k i k i k
l m k i

p p � � p p � �
	 	

 
� � � �

	 � 	++ ++   (A7) 

In view of Eq. A7, Eq. A6 turns to 
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Hence in general 
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i.e., Eq. 7, or  
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i.e., Eq. A6 shown above. 
Alternatively, if instead of Eq. A1, we use the following expression for 

�(�): 
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we obtain 
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which, when  � � 0, leads to  
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