SHORT REPORT

Open Access

Genetic diversity of *Brucella ovis* isolates from Rio Grande do Sul, Brazil, by MLVA16

Elaine MS Dorneles¹, Guilherme N Freire^{1†}, Maurício G Dasso², Fernando P Poester¹ and Andrey P Lage^{1*}

Abstract

Background: Ovine epididymitis is predominantly associated with *Brucella ovis* infection. Molecular characterization of *Brucella* spp. achieved by multi-*locus* variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of *Brucella ovis* isolates from Rio Grande do Sul State, Brazil, by MLVA16.

Findings: MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen *B. ovis* genotyped strains. All *B. ovis* MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved *loci* included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for *B. ovis* isolates. Among ten *B. ovis* isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen *B. ovis* strains typed in this study together with all nineteen *B. ovis* MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes.

Conclusions: In conclusion, the results of the present study showed a high genetic diversity among *B. ovis* field isolates from Rio Grande do Sul State, Brazil, by MLVA16.


Keywords: Genotyping, Brucella ovis, MLVA16, Ovine brucellosis

Findings

Background

Brucella ovis is a rough, Gram-negative, non-spore-forming, non-motile and facultative intracellular bacterium [1]. In rams, the microorganism causes mainly epididymitis [2,3], whereas in ewes the lesions are characterized by degeneration and inflammation of the endometrium with focal or diffuse lymphoid infiltrations [4].

Infection has been recognized in all countries where sheep are of economic importance and leads to significant losses to animal production [5,6]. In Brazil, the ovine epididymitis is chiefly described in southern States (Rio Grande do Sul, Santa Catarina, Paraná), where the sheep-raising is more developed [7], having been first reported in 1966 in Rio Grande do Sul State [8]. In 1996, a clinical and serological survey of rams in Rio

Molecular characterization of *Brucella* spp. achieved by multi-*locus* variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool to determine relationships among *Brucella* spp isolates from different animal species and from humans, as well as for epidemiological trace-back studies [11-17]. However, data regarding *B. ovis* genotyping, using MLVA16 or even other techniques are very scarce. Thus, the aim of this study was to evaluate the genetic diversity of *B. ovis* field isolates from Rio Grande do Sul, Brazil, using MLVA16.

Methods

Fourteen *B. ovis* field isolates obtained from sheep between 1982 and 1995 were used in this study. They were provided from the collection of Instituto de Pesquisas Veterinárias Desidério Finamor and were isolated (by FPP and MGD) from semen samples collected by electroejaculation

© 2014 Dorneles et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: alage@vet.ufmg.br

[†]Equal contributors

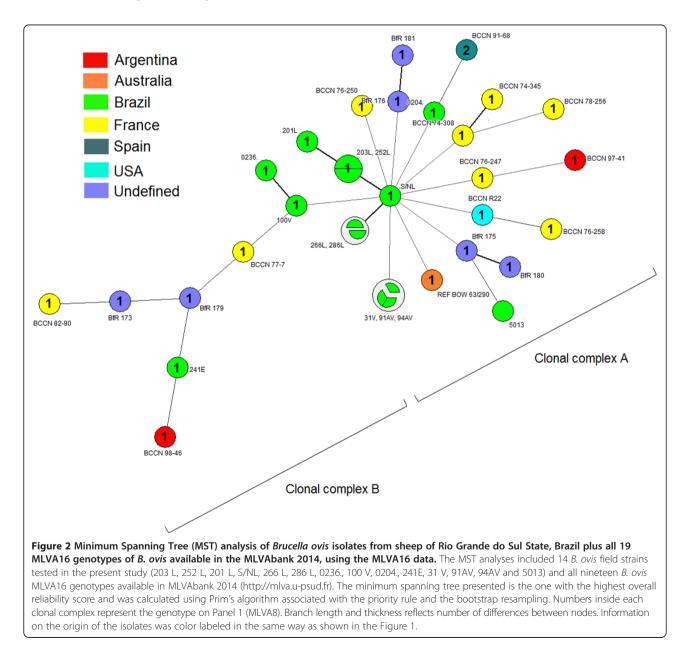
¹Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil Full list of author information is available at the end of the article

from rams in Rio Grande do Sul, Brazil (Santana do Livramento - 10; Uruguaiana - 2; and undefined municipalities - 2). All isolates from Santana do Livramento were from animals of the same herd, whereas the others four *B. ovis* isolates had not information about herd of origin. All isolates were confirmed to be *B. ovis* by biochemical and molecular tests [18-20]. Approval to use the *B. ovis* isolates in this study was formally given by the director of IPVDF.

Brucella ovis colonies were inactivated at 85°C for 2 hours and subjected to genomic DNA extraction [21,22]. DNA from each strain was genotyped by MLVA16, which was divided in: panel 1 (Bruce06, Bruce08, Bruce11, Bruce12, Bruce42, Bruce43, Bruce45, Bruce55); panel 2A (Bruce18, Bruce19, Bruce21); and panel 2B (Bruce04, Bruce07, Bruce09, Bruce16, Bruce30) [11,15].

From digitalized image of each gel, the band size was estimated and then converted into number of repeat units for each *locus* by using the software BioNumerics 6.1 (Applied Maths, Belgium) [15]. *Brucella melitensis* 16M (ATCC 23456^T) was used as control for band size estimation of all MLVA16 *loci*. The genotypes obtained were compared to those deposited in the MLVAbank 2014 (http://mlva.u-psud.fr/brucella/). Clustering analysis was performed using the category coefficient and UPGMA (BioNumerics 6.1) [15]. The Hunter-Gaston diversity index (HGDI) was used [23]. The minimum-spanning tree (MST) was generated using Prim's algorithm associated with priority rule (eBURST algorithm) and bootstrap resampling [24,25] (BioNumerics 6.1). The MST presented is the top score tree, the tree with the highest overall reliability score.

Results


Analysis of the MLVA16 *loci* revealed thirteen distinct genotypes among the fourteen *B. ovis* strains evaluated (Figure 1) and a HGDI of 0.989. All these MLVA16 patterns represented new genotypes, since no correspondence with those deposited on MLVAbank 2014 was found. However, the comparison of results observed in the eight

_	Bruce04	Bruce06	Bruce07	Bruce08	Bruce09	e11	Bruce12	Bruce16	Bruce18	Bruce19	Bruce21	Bruce30	Bruce42	Bruce43	Bruce45	Bruce55				
-75 -75 -85 -85 -90 -95	Bruc	Bruc	Bruc	Bruc	Bruc	Bruce11	Bruc	Key	Municipality	-										
87.5	6	3	6	5	12	2	10	12	3	8	9	2	1	1	5	2	241E		Brazil	1982
81.3	6	3	12	5	12	2	10	14	3	8	9	2	1	1	5	2	BCCN 98-46		Argentina	1998
81.3	6	3	7	5	7	2	10	6	3	8	9	2	1	1	5	2	REF BOW 63/290)		
93.8	6	3	5	5	16	2	10	10	3	8	9	2	1	1	5	2	BfR 175			1998
77.8	6	3	5	5	17	2	10	10	3	8	9	2	1	1	5	2	BfR 180			1998
87.5	10	3	7	5	15	2	10	9	3	8	9	2	1	1	5	2	BCCN 82-90		France	1982
82.8	10	3	5	5	12	2	10	9	3	8	9	2	1	1	5	2	BfR 173			1998
87.5	8	3	6	5	13	2	10	9	3	8	9	2	1	1	5	2	BCCN 77-7		France	1977
	9	3	6	5	12	2	10	9	3	8	9	2	1	1	5	2	BfR 179			1998
76.6	5	3	4	5	9	2	10	8	3	8	9	2	1	1	5	2	203L	Livramento		1995
93.8	5	3	4	5	9	2	10	8	3	8	9	2	1	1	5	2	252L	Livramento		1995
91.7	5	3	4	5	9	2	10	9	3	8	9	2	1	1	5	2	201L	Livramento	Brazil	1995
81.3	6	3	4	5	9	2	10	8	3	8	9	2	1	1	5	2	S/NL	Livramento	Brazil	
93.8	0	3	4	5	13	2	10	13	3	8	9	2	1	1	5	2	0236.	Uruguaiana	Brazil	1995
	8	3	4	5	13	2	10	13	3	8	9	2	1	1	5	2	100V	Livramento	Brazil	1995
7 <u>8.3</u> 87.5	9	3	9	5	8	2	10	7	3	8	9	2	1	1	5	2	BCCN 76-258		France	1976
75.9 81.3	9	3	9	5	9	2	10	14	3	8	9	2	1	1	5	2	BCCN R22		USA	
93.8	9	3	5	5	6	2	10	8	3	8	9	2	1	1	5	2	BfR 176			1998
81.3	9	3	5	5	5	2	10	8	3	8	9	2	1	1	5	2	BfR 181			1998
	9	3	4	5	7	2	10	15	3	8	9	2	1	1	5	2	BCCN 76-250		France	1976
86.7	8	3	7	5	14	2	10	8	3	8	9	2	1	1	5	2	BCCN 76-247		France	1976
73.9	7	3	7	5	16	2	10	8	3		9	2	1	1	5	2	BCCN 97-41		Argentina	1997
	11	3	10	5	10	2	10	8	3	8	9	2	1	1	5	2	BCCN 74-308		France	1974
7 <u>7.8</u> 93.8	11	3	10	5	12	2	10	8	3	8	9	2	1	1	5	2	BCCN 74-345		France	1974
	7	3	6	5	10	2	10	8	3	8	7	2	1	1	5	2	BCCN 78-256		France	1978
81.3	4	3	7	5		2	10	7	3	8	9	2	1	1	5	2	0204.	Uruguaiana	Brazil	1995
	4	2	, 6	5	9	2	10	5	3	8	9	2	1	1	5	2	BCCN 91-68	-	Spain	1991
93.8	7	3	4	4	14	2	.0	14	3	8	9	2	1	1	5	2	31V	Livramento		1995
90.6	7	3	4	4	14	2	10	14	3	8	9	2	1	1	5	2	91AV	Livramento	Brazil	1995
	7	3	4	5	14	2	10	14	3	8	9	2	1	1	5	2	94AV	Livramento		1995
	6	3	4	4	9	2	10	8	2	9	9	2	1	1	5	2	266L	Livramento		1995
93.8	6	3	4	4	9	2	10	8	3	9	9	2	1	1	5	2	286L	Livramento		1995
	6	3	8	4	3	2	10	10	3	8	9	2	1	1	5	2	5013		Brazil	1995
	•		-	•								4	'		5	~				982 – 1995

conserved *loci* included in the panel 1 (MLVA8) with those available in the MLVAbank 2014 (http://mlva.upsud.fr/brucella/) revealed that nine among the fourteen isolates had MLVA8 profile identical to profile 1 (Bruce06: 3; Bruce08: 5; Bruce11: 2; Bruce12: 10; Bruce42: 1; Bruce43: 1; Bruce45: 5; Bruce55: 2). The other five *B. ovis* isolates exhibited two different MLVA8 patterns, which were different of the MLVA8 1 and 2 genotypes (genotype 2 = Bruce06: 2; Bruce08: 5; Bruce11: 2; Bruce12: 10; Bruce42: 1; Bruce43: 1; Bruce45: 5; Bruce55: 2) (the only ones already described for *B. ovis*) due to polymorphisms in *loci* Bruce06, 08 and 12. The MST created based on MLVA16 genotypes is shown in Figure 2. Besides the *B. ovis* strains tested in the present study, all nineteen MLVA16 genotypes of *B. ovis* available in the MLVAbank 2014 were included in clustering and MST analyses. Analysis of geographical origin in the MST showed that *B. ovis* strain BCCN 98–46 from Argentina was closely related to a Brazilian *B. ovis* isolate, strain 241E (Figures 1 and 2). Moreover, MST analysis also revealed the existence of two clearly distinct major clonal complexes (clonal complexes A and B).

Discussion

Genotyping of microorganism of great veterinary importance, such as *B. ovis*, is a valuable tool for the control of disease, since it allows the characterization of outbreaks and, the determination of the source of infection and

transmission routes [26]. In the present study, molecular characterization of fourteen B. ovis field isolates revealed a high genetic diversity among strains (Figure 1). Interestingly, among ten B. ovis isolates from same herd only two strains had identical patterns (Figure 1). The existence of many different genetic profiles within the same herd has two possible explanations: first, the existence of an intense animal traffic led the introduction of the agent from different origins and second, all B. ovis strains isolated from outbreak were originated from the same B. ovis strain that undergone some changes in loci of MLVA16. Although there are no epidemiological data that can confirm or refute the first explanation, the second hypothesis seems less likely, since the differences observed among the ten B. ovis strains from same herd were not the result of one-repeat unit increase or decrease and were also not restricted to only one MLVA16 locus or panel. Moreover, even though some data had suggested short term evolution particularly among panel 2B loci [27,28], there was also polymorphism at locus Bruce08 from the most conserved panel (panel 1) (Figure 1). On the other hand, in contrast to smooth strains such as B. abortus, B. melitensis and B. suis that have demonstrated a high stability of all MLVA16 loci under in vivo and in vitro conditions [12-14,29], MLVA16 performed on B. canis, a rough strain, suggesting a hypervariability particularly in some panel 2B loci [30]. Whole genome sequencing of these B. ovis strains from the same herd would be the better way to understand the biological significance of the high genetic diversity observed without any concerns, however it is less practical and much more expensive.

Clustering analysis also showed a large distance between the two isolates from Uruguaiana (Bruce09, 04, 07 and 16), and between the two *B. ovis* strains from undefined municipalities (Bruce08, 09, 07 and 16), likewise in comparison among all four isolates (Figure 1). These major differences in the MLVA16 genotypic profile and the large difference in the years of isolation of the strains (1982, 1985 and 1995) (Figure 2), together, strongly suggest that no epidemiological relationship exist among these four *B. ovis* isolates.

Minimal spanning tree analysis revealed the existence of two clearly distinct major clonal complexes (clonal complexes A and B) (Figure 2), one composed by most of Brazilian *B. ovis* isolates plus French strains and a single strain from Argentina, Australia, Spain and USA (clonal complex A), and a second one with fewer representatives and composed by two strains from France and a single strain from Argentina and Brazil (clonal complex B) (Figure 2). The establishment of these relationships is central to develop a model for evolutionary steps in the difference of the *B. ovis* MLVA16 genotypes. Nevertheless, more representative sampling is needed for inclusion into this model for a more robust comparison. Therefore, data of present study are especially important, because it expands the universe of *B. ovis* strains genotyped by MLVA16 in both, amount and origin of strains.

Moreover, since Rio Grande do Sul State is bordered by Argentina, the close relationship between *B. ovis* strain BCCN 98-46 from Argentina and the Brazilian B. ovis isolate 241E suggests that B. ovis strains were circulating in the Brazilian - Argentinean border. In this context, animal importation could also explain the very close localization of B. ovis isolates from Brazil and B. ovis strains from France and Spain in MST analysis. Although there are no recent records about importation of animals from these countries to Rio Grande do Sul, historical records show that the formation of the sheep flock of this State was mainly achieved through the importation of animals from various countries of Europe and Oceania [31,32]. Furthermore, the main activity of the flock from Santana do Livramento, RS, from where most B. ovis strains were isolated, was the rearing of Texel breeders, a breed whose origin is in France and the Germany.

In conclusion, the results of the present study showed a high genetic diversity among *B. ovis* field isolates from Rio Grande do Sul State, Brazil by MLVA16.

Availability of supporting data

The data set supporting the results of this article is available in the Brucella_Brazil at http://mlva.u-psud.fr/ brucella/ repository.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

EMSD and GNF participated in design of the study, data acquisition and analysis. EMSD and wrote the paper. MGD, FPP and APL conceived and participated in design of the study, and critically reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgments

EMSD, GNF and APL are indebted to Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – for the fellowships. This study was supported by CNPq, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) and FEP – MVZ Coordenação Preventiva.

Author details

¹Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ²Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Rio Grande do Sul, Brazil.

Received: 21 March 2014 Accepted: 1 July 2014 Published: 12 July 2014

References

- Biberstein EL, McGowan B, Olander H, Kennedy PC: Epididymitis in rams. Studies on pathogenesis. Cornell Vet 1963, 54:27–41.
- OIE Organization for animal Health: Ovine brucellosis. In Manual of diagnostic tests and vaccines for terrestrial animals 2013. 2009. http://www. oie.int/.

- Carvalho Júnior CA, Moustacas VS, Xavier MN, Costa EC, Costa LF, Silva TMA, Paixão TA, Borges AM, Gouveia AMG, Santos RL: Andrological, pathologic, morphometric, and ultrasonographic findings in rams experimentally infected with *Brucella ovis. Small Rumin Res* 2012, 102(2–3):213–222.
- Komissarova LI: Pathological changes in rams and breeding ewes, infected with Brucella ovis. Shornik Rabot Leningrad Veter Instit 1973, 34:80–84.
- Burgess GW: Ovine contagious epididymitis: a review. Vet Microbiol 1982, 7(6):551–575.
- Ridler AL, West DM: Control of Brucella ovis infection in sheep. Vet Clin North Am Food Anim Pract 2011, 27(1):61–66.
- Poester FP, Gonçalves VSP, Lage AP: Brucellosis in Brazil. Vet Microbiol 2002, 90(1–4):55–62.
- Ramos AA, Mies Filhos A, Schenck JAP, Vasconcellos LD, Prado OTG, Fernandes JCT, Blobel H: Epididimite ovina, levantamento clínico no Rio Grande do Sul. Pesq Agrop Bras 1966, 1:211–213.
- Magalhães Neto A, Gil-Turnes C: Brucelose Ovina no Rio Grande do Sul. Pesq Vet Bras 1996, 16(2–3):75–79.
- Vidor ACM, Santos DV, Kohek Junior I, Machado G, Miranda ICS, Hein HE, Stein MC, Corbellini LG: Estudo epidemiológico para determinar a prevalência da brucelose ovina em machos no estado do Rio Grande do Sul. Acta Sci Vet 2012, 40:s127.
- Al Dahouk S, Le Flèche P, Nockler K, Jacques I, Grayon M, Scholz HC, Tomaso H, Vergnaud G, Neubauer H: Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods 2007, 69(1):137–145.
- Álvarez J, Sáez JL, García N, Serrat C, Pérez-Sancho M, González S, Ortega MJ, Gou J, Carbajo L, Garrido F, Goyache J, Domínguez L: Management of an outbreak of brucellosis due to *B. melitensis* in dairy cattle in Spain. *Res Vet Sci* 2011, 90(2):208–211.
- Dorneles EMS, Faria APP, Pauletti RB, Santana JA, Caldeira GAV, Heinemann MB, Almeida RT, Lage AP: Genetic stability of *Brucella abortus* S19 and RB51 vaccine strains by multiple *locus* variable number tandem repeat analisys (MLVA16). *Vaccine* 2013, 31(42):4856–4859.
- Her M, Kang SI, Cho DH, Cho YS, Hwang IY, Heo YR, Jung SC, Yoo HS: Application and evaluation of the MLVA typing assay for the Brucella abortus strains isolated in Korea. BMC Microbiol 2009, 9:230.
- Le Flèche P, Jacques I, Grayon M, Al Dahouk S, Bouchon P, Denoeud F, Nockler K, Neubauer H, Guilloteau LA, Vergnaud G: Evaluation and selection of tandem repeat loci for a *Brucella* MLVA typing assay. *BMC Microbiol* 2006, 6:9.
- Minharro S, Mol JP, Dorneles EMS, Barbosa RP, Neubauer H, Melzer F, Poester FP, Dasso MG, Pinheiro ES, Soares Filho PM, Santos RL, Heinemann MB, Lage AP: Biotyping and genotyping (MLVA16) of *Brucella abortus* isolated from cattle in Brazil, 1977 to 2008. *PLoS One* 2013, 8(12):e81152.
- Miranda KL, Poester FP, Minharro S, Dorneles EM, Stynen AP, Lage AP: Evaluation of *Brucella abortus* S19 vaccines commercialized in Brazil: Immunogenicity, residual virulence and MLVA15 genotyping. *Vaccine* 2013, 31(29):3014–3018.
- Alton GG, Jones LM, Angus RD, Verger JM: Techniques for the brucellosis laboratory. Paris: INRA; 1988.
- Baily GG, Krahn JB, Drasar BS, Stocker NG: Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg 1992, 95(4):271–275.
- Bricker B, Halling S: Enhancement of the *Brucella* AMOS PCR assay for differentiation of *Brucella abortus* vaccine strains S19 and RB51. *J Clin Microbiol* 1995, 33(6):1640–1642.
- Pitcher DG, Saunders NA, Owern RJ: Rapid extraction of bacterial genomic DNA with guanidium thyocianate. *Lett App Microbiol* 1989, 8(4):151–156.
- 22. Sambrook J, Russel D: *Molecular cloning: a laboratory manual*. New York: CSHL Press; 2001.
- 23. Hunter PR, Gaston MA: Numeric Index of the discriminatory ability of typing systems: an application of Simpson's Index of Diversity. *J Clin Microbiol* 1988, **26**(11):2465–2466.
- Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG: eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. *J Bacteriol* 2004, 186(5):1518–1530.
- Salipante SJ, Hall BG: Inadequacies of minimum spanning trees in molecular epidemiology. J Clin Microbiol 2011, 49(10):3568–3575.
- Struelens MJ: Molecular epidemiologic typing systems of bacterial pathogens: current issues and perpectives. Mem Inst Oswaldo Cruz 1998, 93(5):581–585.

- 27. Maquart M, Le Flèche P, Foster G, Tryland M, Ramisse F, Djonne B, Al Dahouk S, Jacques I, Neubauer H, Walravens K, Godfroid J, Cloeckaert A, Vergnaud G: MLVA-16 typing of 295 marine mammal *Brucella* isolates from different animal and geographic origins identififies 7 major groups within *Brucella ceti* and *Brucella pinnpedialis*. *BMC Microbiol* 2009, 9:145.
- García-Yoldi D, Le Flèche P, Marín CM, De Miguel MJ, Munöz PM, Vergnaud G, López-Goñi I: Assessment of genetic stablility of *Brucella melitensis* Rev 1 vaccine strain by multiple-locus variable number tandem repeat analysis. *Vaccine* 2007, 25(15):2858–2862.
- Whatmore AM, Shankster SJ, Perrett LL, Murphy TJ, Brew SD, Thirlwall RE, Cutler SJ, MacMillan AP: Identification and characterization of variablenumber tandem-repeat markers for typing of *Brucella* spp. J Clin Microbiol 2006, 44(6):1982–1993.
- Kang SI, Heo EJ, Cho D, Kim JW, Kim JY, Jung SC, Her M: Genetic comparison of *Brucella canis* isolates by the MLVA assay in South Korea. J Vet Med Sci 2011, 73(6):779–786.
- Viana JGA, Waquil PD, Spohr G: Evolução histórica da ovinocultura no Rio Grande do Sul: Comportamento do rebanho ovino e produção de lã de 1980 a 2007 [abstract]. *Revista Extensão Rural UFSM* 2010, XVII:20.
- Ribeiro LAO: Risco de introdução de doenças exóticas pela importação de ovinos. Boletim do Laboratório Regional de Diagnóstico – UFPEL 1993, 13:39–44.

doi:10.1186/1756-0500-7-447

Cite this article as: Dorneles *et al.*: **Genetic diversity of** *Brucella ovis* **isolates from Rio Grande do Sul, Brazil, by MLVA16.** *BMC Research Notes* 2014 **7**:447.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit