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Abstract We have investigated the cytotoxicity in
Saccharomyces cerevisiae of the novel antitumor agent
3-bromopyruvate (3-BP). 3-BP enters the yeast cells
through the lactate/pyruvate H+ symporter Jen1p and inhib-
its cell growth at minimal inhibitory concentration of
1.8 mM when grown on non-glucose conditions. It is not
submitted to the efflux pumps conferring Pleiotropic Drug
Resistance in yeast. Yeast growth is more sensitive to 3-BP
than Gleevec (Imatinib methanesulfonate) which in contrast
to 3-BP is submitted to the PDR network of efflux pumps.
The sensitivity of yeast to 3-BP is increased considerably by
mutations or chemical treatment by buthionine sulfoximine
that decrease the intracellular concentration of glutathione.
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Abbreviations
3-BP 3-bromopyruvate
BSO Buthionine sulfoximine
GSH Glutathione
YNB Yeast nitrogen base
HX2 Hexokinase 2
MIC Minimal inhibitory concentration
PDR Pleiotropic drug resistance

Introduction

The small molecule 3–bromopyruvate (3-BP) inhibits both cell
motility and pyruvate release in African Trypanosomes
(Barnard et al. 1993) as well as the growth of Toxoplasma
gondii (De Lima et al. 2011). Recently it was found that 3-BP
is a novel anticancer drug that reduces dramatically the level of
ATP in a variety of cancer models followed by cell death (Ko et
al. 2004; Mathupala et al. 2010; Ko et al. 2001; Qin et al. 2010;
Porporato et al. 2010). This indicates that 3-BP inhibits both
mitochondrial and glycolytic ATP production (Mathupala et al.
2010; Ko et al. 2001; Geschwind et al. 2002) in malignant
tumors that are submitted to the “Warburg effect” characterized
by increased glycolysis and abundant production of lactate in
the presence of oxygen. The “Warburg effect” has been related
to overexpression of hexokinase 2 (HX2) and its binding to
mitochondria (Ko et al. 2001; Geschwind et al. 2002;
Mathupala et al. 2009; Pedersen 1978; Pedersen 2007). It also
involves the monocarboxylate transporters MCT1 & MCT4
and the mitochondrial phosphate carrier (PIC) (Mathupala et al.
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2010; Izumi et al. 2011;Mathupala et al. 2006). However, how
3-BP selectively affects only cancer cells is not understood.

In this study we have examined the transport and the mech-
anism of cytotoxicity of 3-BP in the yeast Saccharomyces
cerevisiae. This non pathogenic, unicellular eukaryotic model
possesses uniquely sensitive genetic and genomic tools
(Goffeau et al. 1996) that can be indicative of similar modifi-
cations occurring in the human system (Karathia et al. 2011;
Mager and Winderickx 2005) including those involved in
cancer chemotherapy (Suter et al. 2006; Cardenas et al. 1999;
Dylag et al. 2010; Kurtz et al. 2005). We report that 3-BP is
toxic to yeast growth. Its major transporter is the lactate/pyru-
vate permease Jen1p. 3-BP is not submitted to the efflux pumps
involved in the Pleiotropic Drug Resistance (PDR) network. Its
intracellular cytotoxicity is strongly modulated by the level of
reduced glutathione (GSH) that can be decreased by mutations
in the pathway for GSH synthesis or by treatment with buthio-
nine sulfoximine (BSO).

Materials and methods

Strains and growth conditions

The yeast Saccharomyces cerevisiae haploid strains used in
this work are isogenic to W303-1A, BY4741 and US50-18C
parental strains, described in Table 1. Strains were grown at
28°C in standard rich (YPD) medium or in synthetic mini-
mal medium (YNB) containing 0.67% yeast nitrogen base
without aminoacids. The minimal YNB media was supple-
mented, when necessary, with appropriate aminoacids
and/or adenine and uracil to a final concentration of
20 μg/ml and with 2% sucrose, glucose, galactose or man-
nose. Complete medium: 1% Bacto-peptone plus 1% yeast
extract with 2% glucose or with lactic acid contained 0.5%
lactate, pH05. For plating the media were solidified with
2% of Bacto-agar. Liquid cultures were grown at 28°C and
160 rev./min.(Kaiser et al. 1994).

Sucrose, galactose, mannose, daunorubicin, rhodamine
6 G, glutathione and buthionine sulfoximine were purchased
from Sigma-Aldrich (USA); yeast extract, Bacto-peptone,
yeast nitrogen base, Bacto-agar were from Difco (USA);
Imatinib methanesulfonate was from Haoyuan Chemexpress
Co., China. The [14C]-labeled 3-BP was kindly donated as a
gift from Dr. Young H. Ko.

Spot tests

To determine MIC (minimal inhibitory concentration) of a
tested compound toward the selected yeast strain and to
compare the relative susceptibility of several strains, the
cells were grown to mid-log phase, diluted to OD60000.25
and spotted (3 μl) in 10-fold serial dilutions onto the agar

plates containing various concentrations of a tested com-
pound. Plates were incubated at 28°C for 72–120 h and
photographed. The sensitivity assays were repeated a mini-
mum of three times. Differences in growth show variabil-
ity of the tested strain in their susceptibility to the tested
inhibitor (Kaiser et al. 1994).

Radioactive substrate transport assay

The uptake of the [14C]-labeled 3-BP was carried out by the
method reported for L-lactate transport by Casal et al. (Casal
et al. 1999). Cells were grown to exponential phase at 28°C
in rich (YPD) medium with 2% glucose. The cells were
harvested, washed twice with ice-cold de-ionized water,
resuspended in rich medium with lactic acid and incubated
for 4 h. After incubation cells were harvested, washed twice
and resuspended in ice-cold de-ionized water to a final
concentration of 200 mg/ml (wet weight). Aliquots of
10 μl of cells were incubated for 30 s with different con-
centrations of the radioactive [14C]-labeled 3-BP in phos-
phate buffer at 30°C. The reaction was stopped with ice-cold
water and the suspension was filtrated on nitrocellulose
Whatman filters using a vacuum filtration box (Hoefer,
USA). Radioactivity of each sample was measured using a
scintillation fluid (Perkin-Elmer) and a scintillation counter
Beckman LS100. All charts and calculations were made using
GraphPad Prism 5 program.

Determination of reduced glutathione

The yeast metabolite extracts were prepared according
to Gonzales et al. (Gonzalez et al. 1997). The 5 ml
overnight yeast cultures grown on minimal medium with
sucrose up to OD60001.5–1.8 were centrifuged and added to
5 ml of the buffered, boiling ethanol (75% ethanol, 70 mM
HEPES, pH 7.5). After incubation for 3 min at 80°C,
the samples were cooled on ice for 3 min and the
volume of the extraction mixture was reduced by evap-
oration for 3 h at 45°C. The residue was re-suspended
in 250 μl of double distilled water and centrifuged for
5 min, at 14,000 rpm to remove the insoluble material.
The whole solubilized sample was added to 2.5 ml of
0.1 M sodium phosphate buffer (pH 8.0) and mixed and
50 μl of 4 mg/ml DTNB (5,5′-dithio-bis-[2-nitrobenzoic
acid]) was added (Ellman 1959). The reaction was de-
veloped for 15 min and the absorbance at 412 nm was
measured with a Varian Cary 300 Spectrophotometer in the
the double beam mode using 2.75 ml of the described sodium
phosphate buffer with 50 μl of 4 mg/ml DTNB as the
reference. The final concentration of the glutathione in
the sample was determined on the basis of a standard
curve using purchased glutathione as standard.
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Results and discussion

3-bromopyruvic acid is taken up in yeast cells
by the glucose-repressible lactate /pyruvate transporter Jen1p

At external pH05.0 of minimal (YNB) medium the minimal
inhibitory concentration (MIC) of 1.95 mM 3-BP inhibits the
growth of the parental strain W303-1A (Fig. 1a).

The yeast displays at least two distinct transporters in-
volved in the uptake of monocarboxylates across the plasma
membrane: the Lactate/Pyruvate: H+ Symporter Jen1p and the
Acetate: H+ Transporter (Ady2p). Additionally, the yeast ge-
nome encodes five members of the Monocarboxylate Porter
(MCP) Family (De Hertogh et al. 2002), but their role in
importing monocarboxylic acids has not been proven (Makuc
et al. 2001; Reihl and Stolz 2005).

Table 1 Yeast strains used

Strain Background Description and usage References

W303-1A W303-1A; (ade2-1, leu2-112,
his3-11,15, trp1-1, ura3-1)

Wild-type strain, isogenic to BLC203 except
for the presence of JEN1.

Thomas et al.(Thomas
and Rothstein 1989).

BLC203 (ΔJEN1) W303-1A; (ade2-1, leu2-112,
his3-11,15, trp1-1, ura3-1, ΔJEN1)

Strain in which the lactate transporter gene
JEN1 is deleted. Used to test 3-BP transport
as a negative control.

Casal et al.
(Casal et al. 1999).

EM01 US50-18 C; (ura3, his1) Wild-type strain, isogenic to US50-18
C and AD strains.

From Maciaszczyk-
Dzubińska E.
[not published]

US50-18 C US50-18 C; (ura3, his1, pdr1-3) Strain with the activating mutation pdr1-3 in the
gene encoding the transcription factor Pdr1p.
This strain is hyper-resistant to all drugs which
are Pdrp substrates.

Balzi et al.
(Balzi et al. 1987).

AD1-3 US50-18 C; (ura3, his1, pdr1-3,
Δyor1, Δsnq2, Δpdr5)

Strain with deletion of 3 genes encoding the
major Pdr transporters Yor1p, Snq2p and
Pdr5p. The pdr1-3 mutation results in
overexpression of the non-deleted
genes controlled by PDR1

Decottignies et al.
(Decottignies et al. 1988).

AD1-7 US50-18 C; (ura3, his1, pdr1-3,
Δyor1, Δsnq2, Δpdr5, Δpdr10,
Δpdr11, Δycf1, Δpdr3)

Strain with deletion of 6 genes encoding the
transporters Yor1p, Snq2p, Pdr5p, Pdr10p,
Pdr11p, Ycf1p and the transcription factor
Pdr3p.The pdr1-3 mutation results in
overexpression of the non-deleted
genes controlled by PDR1

Decottignies et al.
(Decottignies et al. 1988).

AD1-8 US50-18 C; (ura3, his1, pdr1-3, Δyor1,
Δsnq2, Δpdr5, Δpdr10, Δpdr11,
Δpdr15, Δycf1, Δpdr3)

Strain with deletion of 7 genes encoding the
transporters Yor1p, Snq2p, Pdr5p, Pdr10p,
Pdr11p, Pdr15p, Ycf1p and the transcription
factor Pdr3p. The pdr1-3 mutation results in
overexpression of the non-deleted genes
controlled by PDR1.

Decottignies et al.
(Decottignies et al. 1988).

AD1-9 US50-18 C; (ura3, his1, pdr1-3, Δyor1,
Δsnq2, Δpdr5, Δpdr10, Δpdr11,
Δpdr15, Δycf1, Δpdr3, Δpdr1)

Strain with deletion of 7 genes encoding the
transporters Yor1p, Snq2p, Pdr5p, Pdr10p,
Pdr11p, Pdr15p, Ycf1p and both transcription
factors Pdr1p and Pdr3p .

Decottignies et al.
(Decottignies et al. 1988).

BY4741 BY4741; (his3Δ; leu2Δ;
met15Δ; ura3Δ)

Parental strain, isogenic to ΔGSH1, ΔGSH2
and ΔGLR1 strains, encoding enzymes
involved in glutathione biosynthesis.

From EUROSCARF

ΔGSH1 BY4741; (his3Δ; leu2Δ; met15Δ;
ura3Δ; GSH1Δ)

Strain with deletion of the gene encoding
γ-glutamylcysteine synthetase, which catalyzes
the first step in glutathione biosynthesis
(Ohtake et al. 1990).

From EUROSCARF

ΔGSH2 BY4741; (his3Δ; leu2Δ;
met15Δ; ura3Δ; GSH2Δ)

Strain with deletion of the gene encoding
glutathione synthetase, which catalyzes
the synthesis of glutathione from
gamma-glutamylcysteine and glycine
(Ohtake et al. 1990).

From EUROSCARF

ΔGLR1 BY4741; (his3Δ; leu2Δ;
met15Δ; ura3Δ; GSH2Δ)

Strain with deletion of the gene encoding
glutathione reductase, which converts oxidized
glutathione to the reduced form GSH
(Outten et al. 2005).

From EUROSCARF
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The Jen1p transporter was an obvious candidate for the
3-BP transporter as it transports pyruvate as well as lactate
(Casal et al. 1999; Cassio et al. 1987). Figure 1a shows that
the growth of the ΔJEN1 strain is more resistant to 3-BP
(MIC02.4 mM) than the parental strain W303-1A (MIC0

1.95 mM). This effect is observed under culture conditions
(sucrose/galactose) that derepress Jen1p but is not visible
in medium containing glucose/mannose. Indeed, Fig. 1b
shows that in this medium a MIC higher than 2.4 mM is
observed both for parental W303-1A and ΔJEN1 strains
probably due to the well known glucose repression of
Jen1p (Casal et al. 1999).

Figure 2 shows that the uptake of [14C] 3-BP is markedly
decreased in theΔJEN1 strain compared to the parental strain
W303-1A. Transport parameters in the parental strain were
consistent with Michaelis-Menten kinetics with a Km02 mM
3-BP and a Vmax00.57 nmol 3-BP taken up /min x 106 cells.
Uptake rate in the ΔJEN1 strain is over 2-fold lower with a
Vmax00.22 nmol/min x106 cells. A small amount of 3-BP is
transported in the ΔJEN1 strain. This may be due to the
simple diffusion combined to weak activities of other trans-
porters such as the acetate transporter Ady2p and the mono-
carboxylate tansporters Mch1p to Mch5p, unrelated to Jen1p
(data not shown). It has to be noted however that there is no
lactate/pyruvate transporter similar to Jen1p in mammalian
cells. It remains thus to identify the monocarboxylate trans-
porters which take up specifically 3-BP in cancer cells.

The Yeast PDR network is not involved in conferring
resistance to 3-bromopyruvate

In Saccharomyces cerevisiae the Pleiotropic Drug Resistance
network of genes confers resistance to a variety of small cyto-
toxic molecules by activating their cellular efflux (Cannon et al.
2009; Prasad and Goffeau 2012). Single and multiple deletions
in ABC efflux pumps and of their transcription regulators
renders the cells very sensitive to inhibitiors. We have com-
pared the growth of the various PDR-hypersensitive deleted
mutants AD1-3, AD1-7, AD1-8, AD1-9 and of the upregulated
multidrug resistant mutant US50-18 C (Balzi et al. 1987;
Decottignies et al. 1988) compared to the EM01 parental
isogenic strain on media containing various concentrations of
3-BP. Figure 3a shows that neither 3-BP–resistance nor sensi-
tive phenotype were observed. 3-BP is thus not a substrate of
any of the tested drug-efflux pumps belonging to the ABC
family of transporters. The phenotype is totally different when
comparing growth (Fig. 3c and d) in the presence of the well
known multidrug substrates daunorubicin and rhodamine 6 G
(Kolaczkowski et al. 1998; Decottignies et al. 2001). Figure 3b
shows that the well know anticancer drug Gleevec (Imatinib
methanesulfonate) (Hoepfl et al. 2002; Cohen et al. 2002)
inhibits growth at concentrations similar to those which are
toxic for 3-BP. However, the parental strain EM01 is more
resistant (MIC02.2 mM) to Imatinib methanesulfonate than
the Pdrp-activated strain US50-18 C (MIC01.8 mM) while the
supersensitive AD deleted strains are more sensitive to Imatinib
methanesulfonate (MIC 1.6 mM) than the parental EM01.
Moreover, an aqua-Molar content of 3-BP is almost 4 times
lower than Gleevec (M.W. 166.96 versus 589.71, respectively).
From a practical point of view it is worth to mention that the first
drug is much cheaper. This important new finding suggests that
3-BP is less likely to develop multidrug resistance in the course
of chemiotherapy (Endicott and Ling 1989; Gottesman and
Pastan 1993) than Imatinib methanesulfonate and many other
drugs (such as daunorubicin, vinblastine and mitomycine).

Intracellular concentration of reduced glutathione correlates
with 3-bromopyruvate sensitivity

In Fig. 4 we have tested the susceptibility to 3-BP of three
strains defective in glutathione metabolism (Ohtake et al.

Fig. 1 Differences in growth
sensitivity of the parental strain
(W303-1A) and ΔJEN1 mutant
to 3-bromopyruvate on media
(YNB) with a non-repressing
(sucrose/galactose) and repres-
sing (glucose/mannose) carbon
source

Fig. 2 Transport of [14C] 3-BP in W303-1A and ΔJEN1 strains;
(Km02 mM 3-BP, Vmax00.57 nmol 3-BP/min×106 cells
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Fig. 3 Differences in
sensitivity of PDR-mutants to
3-BP, Imatinib methanesulfo-
nate, daunorubicin and rhoda-
mine 6 G. Minimal medium
(YNB) with sucrose

Fig. 5 Influence of 5 mM BSO
(buthionine sulfoximine) to
sensitivity to 3-bromopyruvate.
Minimal (YNB) medium with
sucrose

Fig. 4 Sensitivity of three
strains defective in glutathione
metabolism (ΔGSH1,ΔGSH2,
ΔGLR1) to 3-BP, compared to
the parental strain (BY4741)
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1990; Outten et al. 2005). Growth of a strain with deletion of
the gene encoding gamma-glutamylcysteine synthetase
(GSH1), which catalyses the first step in glutathione biosyn-
thesis is strongly weakened even on medium without 3-BP. It
is totally inhibited by the very low concentrations of 0.03 mM
3-BP. Difference in growth between the strain deleted in the
GSH2 gene (encoding glutathione syntethase, which catalyzes
the final step of synthesis of glutathione from gamma-
glutamylcysteine and glycine) and parental strain is also clear-
ly visible on medium with 3-BP (MIC00.9 mM), with no
significant difference on control medium (MIC02.1 mM).
Deletion of the GLR1 gene (encoding glutathione reductase)
also increased the sensitivity to 3-BP (MIC01.5 mM).

Figure 5 shows that 0.5 mM buthionine sulfoximine
(BSO), a known inhibitor of gamma-glutamylcysteine syn-
thetase, (Reliene and Schiestl 2006) increases about 30
times the susceptibility of the parental yeast cells to 3-BP
indicating a spectacular synergistic toxic effect. As expected
the deletion of the JEN1 gene restores resistance to 3-BP.
This shows that BSO acts intracellularly. Notably the cyto-
toxicity of doxorubicin shown to be enhanced by BSO has
also been reported in multi-drug resistant cells from human
breast tumor (Dusre et al. 1989). Figure 6 shows a strong
correlation between the intracellular level of GSH and the
sensitivity to 3-bromopyruvate. These results indicate that
glutathione plays a significant role in resistance to 3-BP in
yeast, either directly through interaction with 3-BP or indi-
rectly. An amount of 2 mM BSO treatment resulted in a 45%
lower GSH and 30% higher frequency of genomic DNA
deletions during mouse development (Reliene and Schiestl
2006). As BSO in minimally cytotoxic doses has limited
secondary effects both on yeast (this study) and mammalian
cells one can conclude that 3-BP in combination with BSO
might be useful in anticancer therapy.
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