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Abstract In this paper, we focus on a conservative mo-
mentum advection discretisation in the presence of z-
layers. While in the 2D case conservation of momentum
is achieved automatically for an Eulerian advection
scheme, special attention is required in the multi-layer
case. We show here that an artificial vertical structure
of the flow can be introduced solely by the presence of
the z-layers, which we refer to as the staircase problem.
To avoid this staircase problem, the z-layers have to be
remapped in a specific way. The remapping procedure
also deals with the case of an uneven number of layers
adjacent to a column side, thus allowing one to simulate
flooding and drying phenomena in a 3D model.

Keywords Shallow water equations · Advection ·
Flooding and drying · Momentum conservation ·
z-layer · Staircase problem

1 Introduction

An important aspect in 3D ocean modelling is the
choice of the vertical coordinate system. Three dis-
tinct types of vertical coordinates are, in general
use, geopotential z-level coordinates, terrain-following
σcoordinates and isopycnal coordinates. There is
no single coordinate system that is suitable for all
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applications, as each of these coordinate systems has
its own advantages and disadvantages. Here we are
interested in coastal ocean modelling and, in particular,
in accurately simulating flows in the shallow near shore
region, including flooding and drying problems. It is
in this region that exchange between the land and
ocean occurs; it is a region of increasing importance to
oceanographers.

Isopycnal coordinates have been successfully used
in large-scale ocean models, such as Miami Isopycnic
Coordinate Ocean Model (Bleck et al. 1992) and
Hallberg Isopycnic Model (Hallberg 1997). These are
capable of retaining sharp interfaces and fronts. In
the coastal regions, however, the layers of predefined
constant density must be able to collapse into one layer
under well-mixed conditions and to inflate into a num-
ber of layers under stratified conditions. Together with
weak ability to simulate surface and bottom boundary
layers, this limits the use of isopycnal coordinates in
coastal models.

The main advantage of the σ -coordinate system
is the fact that it is fitted to both the moving free
surface and bottom topography. This allows one to
accurately approximate the vertical flow distribution
without a large number of vertical grid points. The
terrain-following coordinates allow an efficient grid
refinement near the free surface and the bed, which
makes it easy to resolve the boundary layers. However,
a systematic error in the calculation of the baroclinic
pressure gradient terms can arise in regions with steep
topography and sharp density gradients when using
σ -coordinates. A number of methods exist to reduce
the pressure gradient error; some of them are sum-
marised in Stelling and Van Kester (1994) and Kliem
and Pietrzak (1999).
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Efforts are now underway to create generalised
and hybrid coordinate models, such as Hybrid Co-
ordinate Ocean Model (Bleck 2002; Burchard and
Petersen 1997), that can employ appropriate coor-
dinates in different regions. Alternative vertical co-
ordinate systems are also being explored. Adcroft
and Campin (2004) propose a rescaled height coor-
dinate system which is essentially height-based but
shares some similarity with σ -coordinates. Halyer and
Lermusiaux (2010) employ time-dependent, terrain-
following coordinates. They first define a set of terrain-
following depths for the mean sea level and then a set
of time variable model depths such that the change in
cell thickness is proportional to the relative thickness of
the original (undisturbed) cell.

Geopotential z-level coordinates do not suffer
from the pressure gradient error associated with σ -
coordinates. The main problem with z-level models are
connected with flow along a sloping bottom and sur-
face. In this case, the stepwise discontinuous represen-
tation of the topography and free surface can generate
false flow structures, which we refer to here as the stair-
case problem. The treatment of the bottom topography
can be improved by using a finite volume discretisation
which allows one to use variable bottom layer thickness
(partial cells) or shaped volumes (“shaved” cells) as
proposed by Adcroft et al. (1997). However, as shown
here, this is not the complete solution.

The z-coordinates are referenced to a time mean wa-
ter level. The free-surface displacement moves relative
to this coordinates system and is to be implemented
as a moving boundary. In Griffies et al. (2001) and
Campin et al. (2004), this is done by allowing the top
model layer to vary in thickness. The free-surface vari-
ation, however, must be smaller than that of the top
layer thickness. This becomes a serious limitation with
increasing vertical resolution and in shallow regions
where extensive flooding and drying can take place. A
model can be coded to allow the top layer to vanish as
it is done in Delfin (Ham et al. 2005) or to become dry
as in SUNTANS (Fringer et al. 2006). The second layer
then takes on the role of the surface layer with variable
thickness. The major difficulty here is to make the
transition of a vanishing layer smooth enough to avoid
the staircase problem which leads to the generation of
false currents, stability and conservation problems.

In a large-scale hydrostatic model, a vertical struc-
ture of the flow must be created only due to physical
mechanisms such as sheer stress or complex bottom
profiles yielding flow separation. Without that, the re-
sults of 2D and 3D models should be identical. There-
fore, special attention is required for the discretisation
of the momentum equation in the 3D case.

The staircase problem can be avoided by using a semi-
Lagrangian advection scheme, such as the schemes by
Casulli and Walters (2000) and Ham et al. (2005). This
approach is, however, unable to provide momentum
conservation and, thus, it is not suitable for the mod-
elling of rapidly varied shallow water flows as typi-
cally found in flooding situations, for example, dam
break problems or tsunamis. Other schemes, such as the
schemes of Fringer et al. (2006) and Stuhne and Peltier
(2009) both employing the Eulerian advection scheme
by Perot (2000), have the staircase problem. Indeed,
the model of Fringer et al. (2006) does not conserve
momentum in the cells that contain the free surface.
SUNTANS is, however, mainly used for internal grav-
ity wave simulations, and the free surface dynamics are
not their main concern. Stuhne and Peltier (2009) in
their 3D global M2 tide simulation note deterioration
of results in the coastal regions compared to their 2D
simulation.

In this paper, we show how we can design an
Eulerian advective approximation which solves the
staircase problem and prevents the model from creating
an artificial vertical structure. To show the strength of
this approach, we even apply it to dam break problems.
Although the staircase problem is not related to the
choice of the horizontal discretisation as such, in the C-
grid class of models, an artificial vertical structure can
also be created due to the Coriolis force, since in this
class of models a tangential velocity reconstruction has
to be used.

The paper is organised as follows: the shallow water
equations are described in Section 2 and the general
model description is given in Section 3. Section 4 de-
scribes the two discretisations of the advection term,
as proposed by Perot (2000) and Kramer and Stelling
(2008). The scheme of Kramer and Stelling (2008) is
generalised for the multi-layer case. In Section 5, we
compare the behaviour of the advection schemes using
a number of 2D test cases. In Section 6, we show how
an artificial vertical structure in the flow can be created.
Next we propose a local layer remapping procedure
which allows one to remove the staircase problem thus
preventing the model from unphysical behaviour. The
proposed procedure also deals with the vanishing layer
case, thus allowing one to simulate flooding and drying
phenomena in the presence of multiple z-layers. Con-
clusions are given in Section 7.

2 Basic equations

Coastal flows may be modelled using the shallow
water equations, a well-known simplification of the



Ocean Dynamics (2010) 60:1447–1461 1449

Navier–Stokes equations. The shallow water equations
are derived under the following assumptions about
the flow:

– Vertical accelerations are small compared with
gravity, that is, the pressure p is assumed to be
hydrostatic.

– Density differences are small compared to the ref-
erence density ρ0, and hence, the density ρ may
be assumed to be constant except in the pressure
gradient term.

In this paper, we do not consider the effects of
density differences so the density cancels out of the
pressure gradient term. In common with similar models
(Casulli and Walters 2000; Baptista et al. 2005), we also
disregard horizontal mixing.

Let d be any unit vector in the horizontal plane and
let ud = u · d. Then the shallow water equations may be
written as follows:

∇ · u = 0

∂ud

∂t
+u · ∇ud+g∇xyη · d+ ∂

∂z
νv ∂ud

∂z
+(2�×u) · d = 0

(1)

where u denotes velocity vector, η is the free surface
elevation, νv is the vertical viscosity and � is the Earth’s
rotation vector.

Assuming bottom impermeability, the normal com-
ponent of the velocity at the sea bed must vanish. This
is expressed by the following kinematic condition:

w = Db
Dt

= uxy · ∇xyb at z = b (2)

where b(x, y) is the bottom height. Here we assume
that the vertical coordinate z is pointing upwards and
has its origin at the mean sea level. Thus, the total wa-
ter depth h(x, y, t) is defined as h(x, y, t) = η(x, y, t) −
b(x, y).

The kinematic condition at the free-surface is
given by

w = Dη

Dt
= ∂η

∂t
+ uxy · ∇xyη at z = η (3)

Here D
Dt = ∂

∂t + u · ∇ is the Lagrangian or material
derivative with ∇ being the gradient operator. In this
case, a 2D field is encountered; we write ∇xy to indicate
the 2D gradient operator.

The kinematic boundary conditions 2–3 may be used
in combination with the continuity equation integrated

over the water column to produce the following expres-
sion for the free surface:

∂η

∂t
+ ∂

∂x

⎡
⎣

η∫

b

udz

⎤
⎦ + ∂

∂y

⎡
⎣

η∫

b

vdz

⎤
⎦ = 0 (4)

3 Model description

We consider a discretisation on triangular meshes for
which the component of velocity normal to each mesh
edge is stored at the centre of the edge and the surface
elevation is stored at the circumcentre of each triangle.
The continuity equation is discretised using a finite-
volume scheme with a single triangle as the control
volume, while the pressure gradient term is discretised
using a form of finite-difference scheme.

The following grid notations are adopted (see Fig. 1).
We use index c to refer to a column of the grid and
index f to refer to a column side. The index k is
reserved to refer to the layer of a given cell. The layer
of a horizontal face above level k is k + 1

2 , and the layer
below is naturally k − 1

2 . This numbering is physically
consistent in that (k + 1) − 1

2 = k + 1
2 . The length of the

column side f is referred to as l f . A face belonging to a
column side f and lying on a vertical level k we denote
as fk. Similarly, ck denotes the cell at a vertical level k
of the column c. Height of the face fk is denoted as h f,k,
whereas h f refers to the total water depth at the column
side f . Similarly, hc and hc,k refer to the water depth at
the centre of the column c and to the height of the cell
ck in this column. Ac denotes the water column cross-
section area, that is, the area of the (triangular) base of
the column c.

Following Casulli and Walters (2000), the model
treats the barotropic pressure gradient, the vertical
viscosity in the momentum equations and the diver-
gence term in the continuity equation implicitly and
all other terms explicitly. The explicit treatment of the
advection and Coriolis terms makes the velocity sub-
matrix block tridiagonal which can be inverted using
fast direct methods. This allows efficient elimination
of the velocity variables from the continuity equation
resulting in a linear implicit system for the free surface
elevation.

We choose a semi-implicit θ -scheme as the temporal
discretisation of the free surface equation. The mo-
mentum equation is solved for the velocity component
normal to each cell face. The advection and Coriolis
operators are dealt explicitly relative to the pressure
term. For the time evolution of the pressure gradient,
we adopt the same θ -method chosen for the free surface
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Fig. 1 Grid fragment together with the grid notations

equation. A detailed description of the model can be
found in Ham et al. (2005).

Friction terms are currently disregarded. Thus, we
arrive at the following set of discrete equations:

Acη
n+1
c = Acη

n
c − θ	t

∑
f

(
s f,cl f

∑
k

hn
f,kun+1

f,k

)

− (1 − θ)	t
∑

f

(
s f,cl f

∑
k

hn
f,kun

f,k

)
= 0

un+1
f,k = un

f,k + 	tan
f,k + F(u)n

f,k

− g	t
(
θGn+1

f + (1 − θ)Gn
f

)
(5)

where un
f,k is the horizontal velocity component in the

direction n f normal to the f -th column side of the grid,
at the time level n.

Function s f,c is defined for each column side and
column such that it is equal to 0 if column c does not
contain column side f , 1 if it does and the normal n f at
f is the outer one with respect to c, and it is −1 if the
normal is the inner one.

Here G is a linear operator for pressure gradient
term. The operators a and F are explicit operators
which account for the contribution from the discreti-
sation of the momentum advection and Coriolis force,
respectively. We use the 3D order Adams–Bashforth
scheme for time integration of the Coriolis term; the
momentum advection term is integrated using explicit
Euler scheme.

The C-grid models only solve for the component
of velocity normal to a face. Therefore, in order to
evaluate the Coriolis term, it is necessary to interpolate
the tangent velocity at the centre of a cell face as a

linear combination of normal velocity components of
the nearby faces. Following Perot (2000), first the full
velocity vector uc,k in the cell interior is reconstructed.
Next the velocity vector u f,k at the face centre is recon-
structed by taking a linear combination of the velocity
vectors located at the centres of the two cells adjacent
to the face.

uc,k =
∑

fk

δ fk,ck d f,c
h f,kl f

hc,k Ac
u f,kn f (6)

u f,k =
∑

ck

δ fk,ck

d f,c

d f
uc,k (7)

The function δ fk,ck is defined for each face and cell such
that it is equal to 0 if cell ck does not contain face fk

and 1 if it does. A detailed description of the spacial
discretisation of the Coriolis term we use is given in
Kleptsova et al. (2009). In the section below, we focus
on the spacial discretisation of the advection opera-
tor a.

To implement flooding and drying, it is a common
practice to mask a column c as dry if its water depth hc

becomes less than a threshold value. Following Stelling
and Duinmeijer (2003), we define water depth h f at
a column side f using the first-order upwinding as
follows:

h f =

⎧⎪⎨
⎪⎩

hc1 if s f,c1u f > 0

hc2 if s f,c2u f < 0

max(ηc1, ηc2) − max(b c1, b c2) if u f = 0

(8)

The column side f is then masked as dry and the
velocity u f at the column side is set to zero once the
water depth h f becomes less than a prescribed thresh-
old value hmin. Thus, the water depth used to calculate
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outgoing fluxes of a column c is that of the column
itself. Therefore, there will never be a flux out of a dry
column. Stelling and Duinmeijer (2003) show that non-
negative water depth is ensured if:

	tun
f

	x
≤ 1 (9)

4 Advection

In this section, we consider two Eulerian advec-
tion schemes. The first scheme was proposed by
Perot (2000) for Navier–Stokes equations. The sec-
ond scheme based on the scheme by Perot (2000)
was derived by Kramer and Stelling (2008) for the
depth-integrated and depth-averaged shallow water
equations.

4.1 Advection discretisation by Perot (2000)

Following Perot (2000), first a finite-volume discretisa-
tion ac,k of the cell-based advection term is derived by
integrating the vector ∇ · (uu) = u · [∇u, ∇v, ∇w] over
a cell using the Gauss’ theorem
∫

�3

∇ · (uu)dV =
∫

∂�

u(u · N)dS (10)

Assuming a prismatic cell with the base area Ac and
height hc,k, this yields

Achc,kac,k =
∑

fk

s f,ch f,kl f u f,ku f,k

+
[

Acuc,k+ 1
2

(
uc,k+ 1

2
· nc,k+ 1

2

)

−Acuc,k− 1
2

(
uc,k− 1

2
· nc,k− 1

2

)]
(11)

where nc,k± 1
2

are the upward pointing vectors normal
to the “horizontal” faces of the cell and attached at the
centres of the faces. The face velocity vectors u f,k are
interpolated as given in Eqs. 6 and 7. The velocity vec-
tors uc,k± 1

2
attached at the centres of the “horizontal”

faces of the cell are interpolated as follows:

uc,k− 1
2

= hc,k−1

hc,k−1 + hc,k
uc,k−1 + hc,k

hc,k−1 + hc,k
uc,k

uc,k+ 1
2

= hc,k

hc,k + hc,k+1
uc,k + hc,k+1

hc,k + hc,k+1
uc,k+1 (12)

Observe that the velocity component u · n normal to
the “horizontal” faces of a cell is not, in general, equal
to the vertical velocity component w, as can be seen
from Fig. 2.

w

Fig. 2 A water column top cell together with vertical and normal
to the surface velocities

Integrating the 3D continuity equation in vertical
from bottom to a vertical level zk+ 1

2
and applying kine-

matic boundary condition 2 at the bed, we arrive at
the following expression for the velocity normal to the
“horizontal” faces of a cell:

(
uc,k+ 1

2
· nc,k+ 1

2

) = − 1
Ac

k∑
i=kb

s f,ch f,il f u f,i (13)

where kb is the index of the column’s bottom layer.
Next the face normal component of the advection

term is reconstructed out of a given set of the cell-based
vectors ac, by taking the following linear combination:

a f,k =
∑

ck

δ fk,ckα f,c(ac,k · n f ) (14)

The weighting coefficients α f,c are defined by Perot
(2000) as

α f,c = d f,c

d f
(15)

Other definitions of the weighting factors are possible
(see, for example, Wenneker et al. 2002). Influence of
the weighting factors on the performance of the depth-
integrated scheme is examined in Kramer and Stelling
(2008).

Thus, the advection component normal to the face jk
shown in Fig. 3 can be written as

a j,k =
∑

ck

δ jk,ckα j,c
1

Achc,k

·
⎡
⎣∑

fk

s f,ch f,kl f u f,k(u f,k · n j)

−
⎛
⎝(

uc,k+ 1
2
·n j

) k∑
i=kb

s f,ch f,il f u f,i

−(
uc,k− 1

2
·n j

)k−1∑
i=kb

s f,ch f,il f u f,i

⎞
⎠
⎤
⎦ (16)

In single layer case (k = 1), the horizontal velocity
field is assumed to be constant in the vertical. In this
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Fig. 3 The control volume (shaded area) used to discretise the horizontal momentum equation at face j, showing the plan form (left)
and side (right) views

case, cells c1 and faces f1 correspond to columns c
and column sides f . Therefore, height of the cells and
faces become equal to the water depth at the respective
columns and column sides. Thus, the Eq. 16 reduces to

a j =
∑

c

δ j,cα j,c

∑
f

s f,c
h f l f

Achc
u f (u f − uc) · n j (17)

4.2 Advection discretisation by Kramer and Stelling
(2008)

In Kramer and Stelling (2008), another discretisation of
the advection term a j for the depth-averaged equations
(i.e. for one-layer case) is presented. This scheme is
a combination of the unstructured grid variant of the
advection scheme by Stelling and Duinmeijer (2003)
with the advection scheme by Perot (2000) described
above.

a j =
∑

c

δ j,cα j,c

∑
f

s f,c
h f l f

Ach̄ j
u f (u∗

f · n j − u j) (18)

The water depth h̄ j at the column side (face) j is
defined as

h̄ j =
∑

c

α j,chc (19)

The vector u∗
f is the full velocity vector at the column

side (face) f reconstructed out of the velocity compo-
nents from the column (cell) c∗ upwind of column side
(face) f as given in Eq. 6, that is,

u∗
f = uc∗ (20)

If the upwind column (cell) is the one containing the
column side (face) j, u∗

f · n j is approximated as u j. Thus,

the fluxes going out of the column (cell) can be omitted
without changing of momentum.

This scheme was originally derived applying the
Perot (2000) scheme to the depth-integrated veloci-
ties hu and rewriting it for the depth-averaged veloci-
ties. This was done using the equivalence between the
depth-integrated and the depth-averaged momentum
equations and the fact that time derivative of hu can
be split into a contribution from the change in water
volume and a contribution from the change in velocity.

In the case of multiple layers, the contribution from
the change in velocity corresponds to the contribution
from the vertical faces of the cell; the contribution from
the change in water volume corresponds to the contri-
bution from the “horizontal” faces. Thus, to obtain a
multi-layer version of scheme by Kramer and Stelling
(2008), we can use the following cell-based advection
vector ac,k( jk) calculated for a face jk of the cell ck (the
analogue of Eq. 11)

Ach̄ j,kac,k( jk) =
∑

fk

s f,ch f,kl f u f,ku∗
f,k

+ Acu j,k+ 1
2

(
uc,k+ 1

2
· nc,k+ 1

2

)

− Acu j,k− 1
2

(
uc,k− 1

2
· nc,k− 1

2

)
(21)

with

u j,k− 1
2

= h̄ j,k−1

h̄ j,k−1 + h̄ j,k
u j,k−1 + h̄ j,k

h̄ j,k−1 + h̄ j,k
u j,k

u j,k+ 1
2

= h̄ j,k

h̄ j,k + h̄ j,k+1
u j,k + h̄ j,k+1

h̄ j,k + h̄ j,k+1
u j,k+1 (22)
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Fig. 4 Kelvin wave in a circular basin: the sea surface elevation after 1,666.6 h calculated using the advection scheme by Perot (2000)
(left) and Kramer and Stelling (2008) (right)
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Fig. 5 Dam break over wet bed: surface elevation and velocity calculated using the advection schemes given by Eq. 17 (top row) and
Eq. 18 (bottom row) compared with the analytical solution (black line)
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Thus, the multi-layer version of the advection scheme
18 can be written as follows:

a j,k =
∑

ck

δ jk,ckα j,c

∑
fk

s f,c
1

Ach̄ j,k

⎡
⎣h f,kl f u f,k(u∗

f,k · n j)

−
⎛
⎝u j,k+ 1

2

k∑
i=kb

h f,il f u f,i−u j,k− 1
2

k−1∑
i=kb

h f,il f u f,i

⎞
⎠
⎤
⎦

(23)

with kb being the index of the column’s bottom layer.
The advection schemes described above will be com-

pared using a number of 2D test cases in the section
below.

5 Test cases

All of the simulations described in this section are per-
formed with one layer in vertical, that is, the advection
term is discretised according to Eqs. 17 and 18.

5.1 Kelvin wave test case

If the water depth is (locally) close to uniform, then the
water depth at a column side (height of a face) is ap-
proximately equal to that at the neighbouring columns
(cells). Similarly, a cell (column)-based velocity vector
projected in the direction normal to a face of the cell
(normal to a side of the column) is approximately equal
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Fig. 6 Dam break over dry bed: surface elevation and velocity calculated using the advection schemes given by Eq. 17 (top row) and
Eq. 18 (bottom row) compared with the analytical solution (black line)
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to the face (column side) normal velocity component
if the flow velocity is (locally) close to uniform. Thus,
the advection schemes described above will behave
similarly in the test cases with no sudden changes in
water depth and flow velocity.

To illustrate this, we use a Kelvin wave in a shallow
circular basin test case, described in Ham et al. (2005).
The basin was given a uniform depth of 5 m. The initial
state chosen was:

η(r, θ) = 0.05e(r−r0)/LD cos θ

uθ (r, θ) = 0.05
√

g/he(r−r0)/LD cos θ

ur(r, θ) = 0 (24)

where LD is the Rossby radius, in this case approxi-
mately 68 km, and r0 = 250 km is the basin radius. In
the limiting case of an infinitely large basin, this is the
expression for a Kelvin wave of amplitude 5 cm. The
simulation was performed at a specified latitude of 45◦.
Figure 4 shows the sea surface elevation after 1,666.6 h.
As expected, the results obtained using different advec-
tion schemes are identical up to visible precision.

5.2 Dam break test case

A dam break is calculated in a 100-m-long and 10-m-
wide channel. At t = 0, the shock starts at x = 50 m
with zero initial velocity and the upstream water level
of 1 m. For the dam break over wet bed case, the water
level downstream is 0.1 m. The nominal triangle edge
length of the grid used is 2 m. The time step of 0.01 s was
used for the simulation of the dam break over wet bed.
The numerical solutions for the interval y ∈ (4, 6)m
compared to the analytical solution are shown in Fig. 5.
For the simulation of the dam break over dry bed, the
time step was set to 0.001 s. Threshold value hmin used
to mask columns as dry was set to 2.5 mm. Comparison
of the numerical solution for the interval y ∈ (4, 6)m to
the analytical solution is shown in Fig. 6.

In both cases, the results obtained using the advec-
tion scheme similar to Kramer and Stelling (2008) given
by Eqs. 18 and 23 show better agreement with the an-
alytical solution than the scheme by Perot (2000) given
by Eqs. 16 and 17. Besides that, the advection scheme
by Kramer and Stelling (2008) leads to a smoother
solution due to the first-order upwinding.

5.3 Tsunami run-up on a plane beach

Here we examine run-up and run-down motion of a
tsunami-type transient wave onto a plane sloping beach

with slope s = 1/10. The initial free surface shown in
Fig. 7 is specified according to

η = 500
(
0.006e−0.4444( x

5,000 −4.1209)2

− 0.018e−4.0( x
5,000 −1.6384)2)

(25)

which corresponds to the leading depression N-wave
shape, typically caused by an offshore submarine land-
slide. This case corresponds to the case D in Carrier
et al. (2003), who derived a general semi-analytic solu-
tion for such events based on nonlinear shallow water
equations.

Upon the release of the initial wave form, tsunami-
type waves propagate in both landward and offshore
directions, though only the landward travelling wave
runs up the beach. At the offshore boundary, a closed
boundary condition is imposed. Since the computa-
tional domain is sufficiently long (50 km), this does
not affect the run-up process on the other side of the
domain.

Simulation was performed on an 8,681-node grid,
with resolution varying from 8 m in the shallow region
to 318 m in the deep water. The time step was set to
1 s. The columns were masked as dry if their water
depth was less then hmin = 1 cm. The initial velocity is
set to zero everywhere. Figure 8 shows the comparison
of the computed surface elevation against the analytical
solution for t = 160, 175 and 220 s.

Once again, the results obtained using the advection
scheme similar to Kramer and Stelling (2008) given
by Eqs. 18 and 23 agree with the analytical solution
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Fig. 7 Tsunami run-up on a plane beach: a portion of the initial
surface elevation given by Eq. 25 used in the tsunami run-up
simulation
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Fig. 8 Tsunami run-up on a plane beach: comparison of the computed surface elevation profiles against the analytical prediction for
t = 160 s (top), t = 175 s (middle) and t = 220 s (bottom)

better than the ones obtained using the scheme by
Perot (2000) given by Eqs. 16 and 17.

5.4 Parabolic flood wave

A water mass with a parabolic shape given by

η0 = h0

(
1 − x2 + y2

R2
0

)
(26)

is released on a flat bed without friction. Here R0 =
50 km and h0 = 2 km are the initial radius and the initial
height of the water mass, respectively. The analytical
solution of the test is given by (see Thacker 1981)

η = h0

[
T2

t2 + T2 − x2 + y2

R2
0

(
T2

t2 + T2

)2
]

(27)

Here

T = R0√
2gh0

= 250 s (28)

is the time after which the initial height h0 has been
halved. Initially, the water mass is set at rest. The
time step used is 	t = 2 s. The numerical solution for
the cross section y = 0 compared with the analytical
solution Eq. 27 for t = 200, 600 and 1,000 s is shown
in Fig. 9.

In this case, the advection schemes by Perot (2000)
and Kramer and Stelling (2008) give similar results
which are in a good agreement with the analytical
solution for the time t = 200 s. For the time t = 600 and
1,000 s, results obtained using the scheme by Kramer
and Stelling (2008) are much better than that of the
scheme by Perot (2000). Moreover, for this test case
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Fig. 9 Parabolic flood wave: comparison of the computed (dots) surface elevation profile against the analytical prediction (solid line)
for t = 200, 600 and 1,000 s

using of the advection scheme by Perot (2000) led to
the model instability. Reducing the time step by the
factor of 10 did not solve the stability problem. The
results shown here were obtained with hc substituted
by h̄ j in the denominator of Eq. 17. Some other exper-
iments also show that substitution of h̄ j in place of hc

in Eq. 18 leads to increased stability and slightly better
results.

6 Comments on the advection discretisation
in the multi-layer case

The advection scheme by Perot (2000) has been used
successfully in a number of unstructured grid models
(see, for example, Stuhne and Peltier 2009 and Fringer
et al. 2006). However, Stuhne and Peltier (2009) no-
ticed that the results of their multi-layer simulation of

the global M2 tide were much worse in the coastal
region than the same results but from a 2D simula-
tion. Whereas the deep ocean amphidromic patterns
are similarly resolved in both the 2D and 3D cases.
Fringer et al. (2006) successfully use the advection
scheme by Perot (2000) for internal wave simulations.
They, however, claim that the advection scheme does
not conserve momentum in the cells containing the free
surfaces. This is quite a surprising statement given the
good deep ocean results of Stuhne and Peltier (2009).
A possible reason for the lack of conservation could be
the use of the vertical velocity w in place of the velocity
normal to the “horizontal” faces (see Fig. 2). If that is
so, we should not see the deterioration of the results in
the case of multiple layer simulation, since the normal
velocity interpolation is used.

To assess this, we use a two-layer simulation of the
dam break over a wet bed as described in Section 5.



1458 Ocean Dynamics (2010) 60:1447–1461

Simulations were performed using both the momentum
advection schemes 16 and 23; however, only the results
for the scheme 23 are shown. Figure 10 shows the
surface elevation and the face velocity norm for the
two layers at z1 = 0.08 m and z2 = 1.0 m above
the bed.

Both the free surface and velocity are represented
much worse here than in the one-layer simulation,
shown in Fig. 5. Moreover, the calculated flow velocity
differs across the layers, whereas it should be uniform.
As can be seen, difference in the velocity norm between
the layers for the faces on one column side is as high
as 3.31 m/s.

Our conjecture is that the poor-free surface repre-
sentation is caused by the artificial vertical structure in
the flow, which is created solely due to the presence
of vertical z-layers. For the z-layer models, the face
heights are usually defined as h f,k = hc,k, and all of the
cell heights hc,k are equal to each other everywhere
except for the cells containing the free surface (and
bed). Due to this, the contribution to the change of
momentum from the change of velocity (contribution
from the vertical faces in Eqs. 11 and 21 for the internal
layers) is not the same as for the top and bottom layer.
Similarly, the velocity reconstruction procedure (Eq. 6)
for the internal layers is different from that for the top
and bottom layer.

In the next section, using the momentum advection
scheme 23 as an example, we show how one can prevent
the model from creating artificial vertical structure in
the flow.

6.1 Improved implementation of the advection term

In absence of bottom friction, the flow velocity should
be constant in depth. That is, the momentum equation 5
should be identical for all of the layers. This means that
advection and Coriolis operators for a particular layer
should be the same as for the whole water column. This
is possible if the ratio of a cell height to the height of
its face is the same as the ratio of the respective column
water depth to the column side water depth this face
belong to. That is, the identity

h f,k

hc,k
= h f

hc
(29)

should be valid for all cells and faces.
Assume the situation shown in the left panel of

Fig. 11: The column upwind of the column side j has
three layers with heights hu,k, whereas the downwind
column has only two layers with heights hd,k. Define
for the downwind column adjacent to the column
side j exactly three sub-layers whose thickness h′

d,k is
determined by

h′
d,k = h j,k

h j
hd (30)

Since the water depth at the column side j is equal to
that of the upwind column and h j,k = hu,k, the relation
29 holds automatically for the column side j and the
upwind column. The heights of the other faces need
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Fig. 11 The side view of the control volume (shaded area) used to discretise the horizontal momentum equation at face

to be redefined according to Eq. 29 for both of the
columns.

With the above definition, the advection term a j,k′

given by Eq. 23 becomes

a j,k′ =
∑

c′
k

δ jk′ ,ck′ α j,c

∑
f ′
k

s f,c
1

Ach̄ j

⎡
⎣h f l f u f,k′(u∗

f,k′ · n j)

−
⎛
⎝u j,k′+ 1

2

k′∑
i=k′

b

h f l f u f,i − u j,k′− 1
2

k′−1∑
i=k′

b

h f l f u f,i

⎞
⎠

⎤
⎦

(31)

and the velocity reconstruction procedure (Eq. 6)
reads as

uc,k′ =
∑

f

δ f,cdc
f

h f l f

Achc
u f,k′n f (32)

Here k′ refers to the index of the sub-layer, not the
actual layer.

Note that the sub-layer 2 crosses two actual layers in
the downwind column. In that case, the normal velocity
component u f,k′ is approximated as

u f,2′ = h′
d,21

h′
d,2

u f,1 + h′
d,22

h′
d,2

u f,2 (33)

where h′
d,21 and h′

d,22 are the heights of the parts of
the sub-layer 2 belonging to the actual layers 1 and 2,
respectively (see Fig. 11). Moreover, the same principle
should be applied to the velocity reconstruction proce-
dure (Eqs. 6–7) also used in the discretisation of the
Coriolis term.

The two-layer simulation of the dam break over wet
bed described above was repeated using the advection
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Fig. 13 Dam break over dry bed: surface elevation (left) and the velocity norm for the bottom layer (right) compared with the analytical
solution (black line)

discretisation given by Eq. 31; the results are shown
in Fig. 12. As can be seen, the free surface elevation
is represented at least as well as in the one-layer case
shown in Fig. 5. The difference in the velocity norm
between the two layers for the faces on one column side
is exactly 0.

Simulation of a dam break over a dry bed as de-
scribed in Section 5 was repeated using ten vertical lay-
ers located at z = 0.1, 0.2, 0.3, ..., 0.9 and 1.0 m above
the bed. The resulting surface elevation and velocity
norm for the bottom layer (shown in Fig. 13) are
identical to that of the one-layer simulation (Fig. 6).
The velocity norm for the other layers are equal to
the velocity norm of the bottom layer in the locations
where they are defined.

All the other experiments from Section 5 were
also repeated with multiple layers using the advection
scheme 31. The results are not shown here since they
are, as expected, identical to the one-layer case.

7 Discussion

Staggered C-grids has been used in a variety of unstruc-
tured grid models for large-scale ocean applications.
The unstructured finite-volume scheme of Casulli and
Walters (2000) combines a semi-implicit time integra-
tion of the equations with a semi-Lagrangian approach
for the advection term. Such a scheme can be shown to
be stable at any flow Courant number. This approach
was also adopted in Delfin (Ham et al. 2005). The
drawback of such schemes is that most implementations

do not provide conservation of momentum and hence
are not suitable for simulation of such phenomena as
flooding and drying. Accurate simulations of flooding
and drying are important for dam break problems and
tsunami simulations.

Here we compare two Eulerian advection schemes,
namely the scheme by Perot (2000) and Kramer and
Stelling (2008) which we generalise to the 3D case. We
show that the scheme of Kramer and Stelling (2008)
gives better results for dam break problems.

We show that special attention is required to the dis-
cretisation of the momentum equation in the presence
of multiple z-layers. It is a common practice to vary
only the thickness of the top and bottom layers to rep-
resent the free surface and bathymetry variation. The
thickness of the internal layers which do not contain
the free surface and bed is kept constant. The heights
of the faces for these layers are usually defined to be
equal to the heights of the layers, thus replicating the
flat bed case. We show that this generates a staircase
problem which leads to inaccurate solutions and may
erroneously introduce vertical structure in the flow.

A model must not create a vertical structure in the
flow if there is no physical reason for that. Therefore,
the discretised momentum equation for a particular
layer should be identical to that of any other layer
if phenomena such as bottom friction, viscosity and
diffusion are disregarded. This means that heights of
any two cells sharing a face should have the same
ratio as the respective column heights. In addition, the
ratio of the cells’ face heights should be the same as
the ratio of the heights of the column sides. Here we
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propose to locally redefine/remap cells and faces in
such a way that the above-mentioned conditions are
fulfilled. The remapping procedure allows us to always
have equal number of (sub)cells to the left and to the
right of a particular column side, thus removing the
discontinuities associated with the representation of
the free surface and bathymetry as a series of steps. It
also allows us to simulate flooding and drying phenom-
ena in the presence of multiple z-layers.

In C-grid models, a discretisation of the Coriolis
force may become an additional source for the stair-
case problem, since this class of models only solves
for the component of velocity normal to a face and
the tangential component is interpolated. Therefore,
the same layer remapping procedure should be applied
while reconstructing the tangential velocity in order to
prevent the model from the creating artificial vertical
structure due to the discretisation of the Coriolis term
in the presence of multiple z-layers.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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