
Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Open AccessR E S E A R C H A R T I C L E

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector
© 2010 Zierke and Bakos; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Com-

Research articleFPGA acceleration of the phylogenetic likelihood
function for Bayesian MCMC inference methods
Stephanie Zierke† and Jason D Bakos*†

Abstract
Background: Likelihood (ML)-based phylogenetic inference has become a popular method for estimating the
evolutionary relationships among species based on genomic sequence data. This method is used in applications such
as RAxML, GARLI, MrBayes, PAML, and PAUP. The Phylogenetic Likelihood Function (PLF) is an important kernel
computation for this method. The PLF consists of a loop with no conditional behavior or dependencies between
iterations. As such it contains a high potential for exploiting parallelism using micro-architectural techniques. In this
paper, we describe a technique for mapping the PLF and supporting logic onto a Field Programmable Gate Array
(FPGA)-based co-processor. By leveraging the FPGA's on-chip DSP modules and the high-bandwidth local memory
attached to the FPGA, the resultant co-processor can accelerate ML-based methods and outperform state-of-the-art
multi-core processors.

Results: We use the MrBayes 3 tool as a framework for designing our co-processor. For large datasets, we estimate that
our accelerated MrBayes, if run on a current-generation FPGA, achieves a 10× speedup relative to software running on
a state-of-the-art server-class microprocessor. The FPGA-based implementation achieves its performance by deeply
pipelining the likelihood computations, performing multiple floating-point operations in parallel, and through a
natural log approximation that is chosen specifically to leverage a deeply pipelined custom architecture.

Conclusions: Heterogeneous computing, which combines general-purpose processors with special-purpose co-
processors such as FPGAs and GPUs, is a promising approach for high-performance phylogeny inference as shown by
the growing body of literature in this field. FPGAs in particular are well-suited for this task because of their low power
consumption as compared to many-core processors and Graphics Processor Units (GPUs) [1].

Background
The problem of phylogenetic inference is to construct a
phylogeny that most closely resembles the actual relative
evolutionary history of a set of species. The species,
which consist of a set of nucleotide sequences, amino acid
sequences, or gene orderings, are referred to as taxa.

One of the challenges in phylogenetic inference is the
size of the tree space. The number of possible unrooted
phylogenetic trees for n taxa is:

[2]
In many cases, performing an exhaustive search to find

the optimal tree is computationally intractible so heuris-
tics are often used.

Another challenge in phylogenetic inference is deter-
mining the accuracy of a given tree. Maximum likelihood
(ML) and Bayesian inference methods typically employ
Felsenstein's pruning algorithm to compute the Phyloge-
netic Likelihood Function (PLF) in order to determine
the statistical likelihood score for a tree [3,4].

This paper describes a reconfigurable hardware imple-
mentation of the Phylogenetic Likelihood Function (PLF),
as well as the normalization and log-likelihood steps used
in MrBayes [5]. Our design includes enhancements
designed to leverage the high-bandwidth local memory
on our co-processor card to store the likelihood vectors
for each of the tree nodes.

MrBayes uses the PLF to evaluate the likelihood of trees
[21] (which consumes nearly all of the execution time),
and uses the Metropolis-coupled Markov chain Monte
Carlo (MCMC) search to move through the tree space.

* Correspondence: jbakos@cse.sc.edu
1 Department of Computer Science and Engineering, University of South
Carolina, Columbia, SC, USA
† Contributed equally
Full list of author information is available at the end of the article

()2 5
3

n
i

n −
=∏
BioMed Central mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

https://core.ac.uk/display/81867056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20385005
http://www.biomedcentral.com/

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 2 of 12
Related Work
ML and Bayesian phylogeny inference tools include
RAxML [6], GARLI [7], MrBayes [8], and PAML [9]. In
many cases parallelized versions of these tools have been
developed for cluster and shared-memory systems [10-
16]. This paper instead focuses specifically on heteroge-
neous computing methods for likelihood-based phyloge-
netic inference, which requires finer-grain parallelization
of the kernel computations using special-purpose co-pro-
cessors.

Mak and Lam are perhaps the first team to implement
likelihood-based phylogeny inference on an FPGA, but
they took an embedded computing approach as opposed
to a high-performance computing approach [17]. Specifi-
cally, they used the FPGA's integrated embedded proces-
sor to perform a genetic algorithm tree search method
called GAML (Genetic Algorithm for Maximum Likeli-
hood) and used special-purpose logic in the FPGA fabric
to perform the PLF using fixed-point arithmetic on
behalf of the software. They do not report speedups over
software running on a state-of-the-art CPU, as the goal of
this work was apparently to demonstrate phylogenetic
inference using an FPGA-based embedded heteroge-
neous system-on-chip (called "platform FPGA") and not
to accelerate a high-performance computer.

Alachiotis et al recently published a series of papers
that describe their FPGA-based accelerator for ML-based
methods [18,19]. Similar to the work by Mak and Lam,
they implemented the PLF in special-purpose hardware,
but their co-processor was hosted by a server running
optimized C code and their PLF was double precision
floating-point. In their experiments, they reconstructed
trees with up to 512 taxa and achieved an average
speedup of 8 relative to software on a single processor
core and an average speedup of 4 relative to software on a
sixteen core processor. They store the likelihood vectors,
which serve as both the input and output of the PLF, in
the FPGA card's local memory for high-bandwidth low-
latency access. Their accelerator design also includes
control logic for traversing the entire tree, reporting only
the likelihood score back to the host. However, their
architecture does not compute the more expensive log
likelihood score, nor does it perform scaling or normal-
ization (performed in MrBayes to prevent numerical
underflow of the conditional probability vectors).

There has also been recent work in using Graphics Pro-
cessor Units (GPUs) as co-processors for likelihood-
based phylogenetic inference. In recent work, Suchard et
al used the NVIDIA CUDA GTX280 many-core architec-
ture to implement single and double precision versions of
the PLF under a Bayesian framework using both the
codon and nucleotide models [20]. Similar to Alachiotis
et al, they do not compute the log-likelihood or perform
scaling and normalization. Using a single computer with

three GPUs, their maximum achieved speedups over sin-
gle-threaded software on an Intel Core 2 Extreme where
144 for the single-precision codon model and 20 for the
single precision nucleotide model (dropping to 51 and 12
for a single GPU, and 52 and 15 for three GPUs but with
double precision).

Top-Level Search
We designed our FPGA-based accelerator within the
framework of the Bayesian Metropolis-Coupled Markov
Chain Monte Carlo (MC3) method. Specifically, we used
the MrBayes 3 codebase as a guide for selecting precision,
identifying the computational kernels, performing the
search, and to measure the baseline performance for the
software case as a control for our tests.

Single Chain Algorithm
Listed below are the main steps involved in the MCMC
analysis.

(1) Given input data D, randomly initialize the tree
state, s,

(2) Propose a random move to state s',
(3) Calculate the acceptance probability P for s', accord-

ing to Equation 1 below,
(4) Choose a random number between 0 and 1. If the

number is less than P, accept the proposed state, s = s'.
Otherwise maintain the old state.

(5) At user-specified intervals, "sample" the tree by
recording all relevant information about the current state
s.

(6) If the iteration count is less than the target number,
go to step 2.

(7) The tree that has been accepted the greatest number
of times is considered to have the greatest posterior prob-
ability (i.e. the consensus tree

Likelihood Calculation
The most expensive component of the search involves
computing the acceptance probability P. While P depends
on the three different ratios, computing the new likeli-
hood ratio is significantly more expensive than comput-
ing the prior and proposal ratios. To calculate the
likelihood ratio, only the numerator, P(D | s'), need be
computed since the denominator is the saved likelihood
value from the previous iteration in the loop.

P
P D s
P D s

P s
P

= ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

min ,
(| ’)
(|)

(’)
(

1

likelihood

ratio

��� �� ss
P s s
P s s)
(| ’)
(’|)

,

prior

ratio
proposal

ratio

� ��� ��
⋅

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

(1)

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 3 of 12
Likelihood is the probability of observing the data given
a particular tree. In order to make the likelihood calcula-
tion practical, MrBayes utilizes conditional probability. If
we place a virtual root somewhere inside the tree and
consider leaf nodes to be at the "bottom" of a tree, the
conditional probability describes that the probability of
everything at or below a particular node is the product of
the events taking place on both descendant lineages [21].
Therefore, by starting at the bottom of the tree and work-
ing upwards, the conditional probability of each node is
found by looking only at its left and right descendant
nodes. Once the root, or topmost node, is reached, the
overall tree likelihood is the product of the conditional
probabilities for each site--or character--in the sequence
data.

Methods
Application Partitioning
When adapting an application to any heterogeneous
computing model, the target application must be parti-
tioned into a performance-critical portion that is exe-
cuted on the FPGA and a non-performance critical
portion that is executed on a general-purpose CPU. In
this case, the initialization, the proposing of moves, chain
swapping, sampling, and the summary of the results are
performed in software by the general-purpose CPU.
When computing the likelihood of a proposed tree, each
internal node of the tree is processed via a post-order tra-
versal. This computation is performed on the FPGA with
minimal intervention by the host. Once the likelihood is
computed, the software accepts or rejects the move, and
performs chain swapping and sampling as needed.

Kernel Design

The log likelihood function contains a loop that visits

each internal node in the tree, beginning from the "bot-

tom-most" internal nodes (that are parent to two leaves)

and systematically moves toward the root. The first step

is to compute the conditional probability vector (actually

an n × 4 table, where n is the number of characters in the

aligned input data), which is performed according to

Felsenstein's pruning algorithm. Given parent node k and

children i and j, their likelihood vectors and , and

the 4 × 4 transition probability matrices P(i) and P(j), the

likelihood of base N at position c of the parent vector

 is shown by Equation 2.

In our target application, the conditional probability
vectors are single precision floating-point values.

After this, MrBayes normalizes the conditional proba-
bility vector, generates a new scaled likelihood vector
called scP, and adds this vector to a log scaled vector
called lnScaler as shown in Equations 3-5. In our target
application, the scP and lnScaler vectors are both single
precision.

If the current node is the virtual root, the third step is to
compute the tree likelihood. This is performed by scaling
each conditional probability value by the corresponding
prior probabilities for each nucleotide, πA through πT
drawn from the input data. These priors are sometimes
called "based frequencies".

The numSites vector is used for compression by elimi-
nating repeated characters. In our target application, the
likelihood computation is performed in double precision.

Log(x) Considerations
As shown in the previous section, the kernel must calcu-
late the natural logarithm of two different variables. The
first calculation is single-precision floating-point and
occurs in the normalization step in Equation 4. The sec-
ond is double-precision floating-point and occurs in the
likelihood calculation in Equation 6. The results of our
timing analysis show that, combined, these two log(x) cal-
culations consume nearly half of the total execution time,
making the log calculation a critical component in our
design. Here we describe our use of the Chebyshev
approximation to implement the log function in hard-
ware.

�
LS

i() �
LS

j()

�
L cN

k()()

� �
L c P i L c P jN A C G T

k
NS S

i

S A C G T
NS∈ ∈

= ⎛
⎝⎜

⎞
⎠⎟∑{ , , , }

() ()

{ , , , }
() () () ()) ()()

{ , , , }

�
L cS

j

S A C G T∈∑⎛
⎝⎜

⎞
⎠⎟

(2)

�
�

�L c
LN A C G T
k c

N A C G T LN
kN A C G T

k
∈ = ∈

∈
{ , , , }

() ()
{ , , , }

() ()

max { , , , }
())()c

(3)

scP c L
k

N A C G T N
k� ��� �()

{ , , , }
()() logmax= ∈ (4)

lnScaler lnScaler scP
� �������� � �������� � ���

= + (5)

likelihood lnscaler c L cS S
root

s A C G T

= ⋅
∈

� �������� �
() log ()

{ , , , }

p∑∑∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⋅
⎛

⎝

⎜
⎜⎜

numS
c

������

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 4 of 12
Natural Logarithm Implementation
MrBayes computes the natural log of normalized values
in the interval (0,1]. Since the natural log asymptotically
approaches negative infinity as x approaches zero, the
slope also approaches infinity as x -> 0, and thus any
approximation method for computing the natural log
requires exponentially smaller divisions of x values as x
approaches 0. Execution profiling using the input sets
from our experimental results section showed no values
of x less than 10-32. We therefore consider the range 10-32

≤ x ≤ 1.0].
A popular approach for implementing the natural log in

special-purpose hardware is to approximate the log func-
tion using Chebyshev polynomials [22-25]. Lookup tables
can also be used to approximate the log function [26], but
this approach requires a substantial amount of on-chip
memory. In this case, we needed this memory instead for
caching the output vectors.

Chebyshev polynomials of the first kind, denoted Tn,
are important in approximation theory because their
roots are used as nodes in polynomial interpolation. The
polynomials satisfy the following recurrence relation:

Chebyshev polynomials are a piecewise polynomial
approximation method that solves a problem by dividing
the input value range into segments. Each segment is
approximated with a different polynomial. These polyno-
mials are partial sums of the Chebyshev expansion for a
function f(x):

In our design we use 5th degree Chebyshev polynomials.
We are able to compute the powers of x up to x4 in two
stages of multiplication, and we can add the terms
together in three stages. The five coefficients for each
segment are stored in BRAM on the FPGA.

As shown in Table 1, we implemented 16 segments. Fig-
ure 1 shows the approximation error over the range [10-

32,10-24). While trying various log approximations, we
observed that, in general, if the tree search requires the
log of any x value less than the lower limit of the approxi-
mation, the resultant error causes the search to diverge.

Our top-level design is shown in Figure 2. The design is
composed of three components. For each incoming value

of x, we use a radix-2 comparison network to determine
the segment in which x falls and generate a correspond-
ing address for the coefficient memory. In parallel to this,
multipliers are used to compute powers of x up to x4.
These values, along with the coefficient values, are even-
tually used to compute the Chebyshev polynomial.

We used Maplesoft Maple [27] to generate the Cheby-
shev coefficients and to expand the resultant polynomi-
als. Our implementation requires four adders, seven
multipliers, 20 BRAMs, and four comparators to deter-
mine which coefficients should be used for a given value
of x. Because the Chebyshev approximation required
coefficients with magnitudes greater than the upper limit
for the single precision representation, we only imple-
mented a double precision version and performed con-
version in the case where the log is performed for single
precision values.

Accelerator Design
Figure 3 summaries the inputs and outputs and shows the
top level design. In our target application there are three
components involved in computing the log likelihood of a
tree. Each step depends on the previous so they must be
performed sequentially but can be parallelized using a
single deep pipeline. The likelihood evaluation is only
performed for the virtual root node, but in our design we
combine the likelihood logic and the scaling logic, dis-
carding the likelihood result when it is not needed by the
host.

The first step in the algorithm requires two transition
probability tables (two 4 × 4 nucleotide tables requiring
32 single precision floating point values), as well as condi-
tional probability vectors for the left and right descendant
nodes (eight single precision values per character). The
transition probability tables can be loaded into the FPGA
and maintained for each tree node, while the conditional
probability vectors can be "streamed" through the pipe-
line on the FPGA. This component outputs a conditional
probability vector for the current node (four single preci-
sion floating point values per character).

The second step requires the conditional probabilities
computed in the previous step (four single precision val-
ues per character) as well as scaler values for each charac-
ter (one single precision value per character) and outputs
a scaled conditional probability vector (four single preci-
sion values per character), and two updated scaler values
for each character ("lnScaler" and "scPNew" values--two
single precision values per character).

The third step takes, as input, the conditional probabil-
ity vector and scaler vector from the second step (five sin-
gle precision values per character) as well as the base
frequencies (four double precision values), and site
occurrences (one single precision value per character),
and outputs the total log likelihood (one double-precision
floating point value). This design includes the logic nec-

T x0 1() =

T x x1() =

T x xT x T xn n n+ −= −1 12() () ()

f x a T xn n

n

() ()=
=

∞

∑
0

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 5 of 12
essary to complete the likelihood evaluation of an inter-
nal or root node, one character at a time.

Reducing I/O
In order to make our co-processor design amenable to
any phylogeny tool that requires the same log likelihood
computations, we deliberately leave as much of the top-
level control (i.e. the search algorithm) to the host as pos-
sible. In other words, the co-processor performs only the
likelihood, scaling, normalization, and log likelihood
computations and is not coupled to the tree search algo-
rithm or any particular tree representation.

However, in order to minimize I/O traffic between the
host and co-processor, the vectors associated with each
tree node must be stored in the FPGA card's on-board
(and off-chip) memory. Our FPGA card has six banks of
DDR2 SRAM, giving the accelerator access to six inde-
pendently addressable 72-bit memory ports per cycle
(totalling 432 bits per cycle).

During initialization, the host sends the four priors
(base frequencies) to the accelerator. This only occurs
once per search and doesn't add any per node overhead.

Prior to processing each tree node, the host issues a
programmed I/O call to the accelerator controller that
indicates the unique chain/node base address for the left
child, right child, and current node. These addresses cor-
respond to memory addresses on the co-processor card's
local memory and are maintained by the host. This allows
the host to manage the tree topology.

After receiving this instruction, the accelerator control-
ler loads the 4 × 4 transition probability tables for the left
and right children into on-chip memory (32 floats). It also
loads the current node's numSites array into on-chip
memory. These values are loaded from two different
memory ports, so the time required for this transaction is
set by size of the numSites array.

After this, the pipeline begins processing the current
node. For each sequence character, the pipeline reads
four 32-bit conditional probability values and 32-bit
lnScaler value for both child nodes per cycle. All values
are read in parallel because they are distributed across
three memory ports each.

Table 1: Segmentation for Chebyshev Approximation.

Segment Range of x Segment Range of x

1 10-32 ≤ x < 10-30 9 10-16 ≤ x < 10-14

2 10-30 ≤ x < 10-28 10 10-14 ≤ x < 10-12

3 10-28 ≤ x < 10-26 11 10-12 ≤ x < 10-10

4 10-26 ≤ x < 10-24 12 10-10 ≤ x < 10-8

5 10-24 ≤ x < 10-22 13 10-8 ≤ x < 10-6

6 10-22 ≤ x < 10-20 14 10-6 ≤ x < 10-4

7 10-20 ≤ x < 10-18 15 10-4 ≤ x < 10-2

8 10-18 ≤ x < 10-16 16 10-2 ≤ x < 1.0

Figure 1 Error Function 10-32 ≤ x < 10-24plotted over a logarithmic
x-axis. This pattern repeats over the range [10-32 to 0].

10
-32

10
-30

10
-28

10
-26

10
-24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Approximation Error

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 6 of 12
During this operation, the pipeline outputs, for each
sequence character, four 32-bit conditional probability, a
single 32-bit lnScaler value, and a single 32-bit scP value
for the current node. Since all memory ports are in use
for reading, the output data must be buffered in on-chip
memory until all the input data enters the pipeline. After
this, the output data is written to the on board memory.

Our current design limits the computed conditional
probability vectors to a size of 8192 × 4 (for each nucle-
otide), requiring 128 K of on-chip memory. This gives a
maximum sequence length of 8192 for each of the input
taxa. This limitation is imposed by difficulties in meeting
timing closure for place-and-route rather than the on-
chip memory capacity.

Conditional Probability Computation
Figure 4 shows the logic needed to update one row in the
conditional probability table for the current node. This
logic is replicated four times to complete the conditional
probability update for one character. The complete con-
ditional probability computation has a pipeline latency of
38 cycles on the Virtex-2 Pro FPGA and 34 cycles on the
Virtex-6 FPGA, due to differences in the latencies of the
floating-point units for each FPGA (the Virtex-6 has
hard-IP adder components while the Virtex-2 Pro does
not).

Figure 5 shows the logic necessary to perform the scal-
ing for the conditional probability table of a node one
character at a time. The conditional probability values are
provided by the conditional probability logic shown in

Figure 2 Hardware design for Chebyshev log(x) approximation. Shown in the figure: (a) the input value x is resolved into one of the sixteen sets
of coefficients using a comparison network (synchronization delays not shown), (b) powers of x are computed (D blocks represent delays), and (c) the
Chebyshev polynomial is computed. The total latency of this circuit is 45 cycles and 50 cycles for single- and double-precision on the Virtex-2 Pro FPGA,
and 39 and 48 cycles on the Virtex-6 FPGA.

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 7 of 12
Figure 4. The scaling step involves comparisons and divi-
sions. The pipeline that produces the normalized condi-
tional probabilities has a latency of 32 cycles on the
Virtex-2 Pro and Virtex-6 FPGAs (not including the first
stage pipeline that feeds it the un-normalized conditional
probability values). The pipeline that produces the log
scaler has a latency of 49 cycles on the Virtex-2 Pro and
43 cycles on the Virtex-6, or 81 cycles and 75 cycles when
including the latency of the conditional probability pipe-
line, from which it receives its inputs.

We combine the likelihood evaluation in this block as
well, although we only need to save the final value for the
topmost node. The pipeline that produces the likelihood
values is 125 stages deep (again not including the pipe-
lines that provide its inputs).

Likelihood Accumulator
As shown in Figure 5, the likelihood value must be accu-
mulated for the root node of a tree. The figure shows a
simple feedback-based accumulation circuit but this is
symbolic only--double-precision addition is normally a
deeply pipelined operation (having a 14 cycle latency in
our case), and since new inputs arrive to the accumulator
every cycle, a data hazard exists between the output of
the accumulator and the next input to be accumulator. In
other words, when a deeply-pipelined adder is converted
into an accumulator using a feedback, the adder will
accumulate α partial sums for each stage of the pipeline,

where α is the pipeline depth. In this case, special logic
must be used to reduce these partial sums to a final sum
after all the input values have arrived.

To reconcile this problem, we have implemented a sim-
plified version of the DSA reduction circuit developed by
Prasanna [28]. Our double precision accumulator is com-
posed of a single 14-stage double precision adder, an out-
put buffer, and a set of multiplexers that allow the
accumulator to be placed in various configurations
depending on the input and output state of the adder.

Whenever the accumulator's input enable is asserted,
the current accumulator input and the output of the
adder are routed into the adder inputs. This means that
while the accumulator is receiving a continuous stream of
input values, the adder contains 14 partial sums within its
pipeline.

When the accumulator's input enable is not asserted
(i.e. in between likelihood evaluations), the accumulator
is in a state where it coalesces the 14 partial sums. In this
mode, a buffer attached to the adder output is used to
capture any non-zero value that is produced by the adder.
Each clock cycle where this output buffer and the adder's
current output both contain non-zero values, both values
are routed back into the adder and the output buffer is
cleared. This process continues until all the partial sums
have been reduced into a single sum, requiring five passes
through the adder equalling 70 total cycles.

Figure 3 Top-Level Design for Log Likelihood Accelerator.

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 8 of 12
Input/Output
The first time the host visits each node, data associated
with the node (consisting of four conditional probability
vectors, one lnScaler vector, one numSites vector, and a 4
× 4 transition probability table) are transferred to the
FPGA card using direct memory access (DMA) and are
stored in its local memory. Before transferring the data,
the host specifies the base address that the FPGA uses for
each chain and node, which are maintained in a table on
the host. In other words, the host is responsible for mem-
ory allocation and management of the FPGA card's local
memory, and the accelerator reads input from and writes
results to addresses specified by the host. Note that while
the node states (vectors) are stored in the FPGA card's
local memory, the host maintains all other data associ-
ated with each tree such as the topology.

The host allocates enough space for two copies of the
state information associated with each node in order to
allow for a "pending" and "committed" state for each vec-
tor. After processing each node, the accelerator stores the
results starting at the "pending" address. If the tree is state
is committed, the host swaps the "pending" address with
the "current" address for each node in the tree. If the tree
is state is rejected, the host doesn't perform this swap and
vectors associated with each tree node remain
unchanged.

Results
Hardware Implementation
We designed our accelerator architecture using the Men-
tor Graphics FPGA Advantage CAD/EDA tools using
VHDL, synthesized using Synopsys Synplify Pro 8.8.04,
and placed-and-routed using Xilinx ISE 11.4.

We synthesized and place-and-routed our accelerator
onto an Annapolis Micro Systems WILD-STAR II Pro
computing card containing a Xirtex-2 Pro 100 FPGA and
six 36-bit wide banks of DDR2 SRAM modules used for
local memory. Our design operates at 165 MHz and con-
sumes nearly all of the logic slices and hardware multipli-
ers on the FPGA.

Software Configuration
We used an Intel Xeon 5500-series processor to measure
the software performance and act as the host for the co-
processor. At the time of this writing in early 2010, the
Xeon 5500-series is the most recently released and high-
est-performance Intel server processor available.

We compiled the MrBayes code using the gcc version
4.1.2 compiler and with the "O3" compiler optimization
and with the SIMD SSE3 extensions enabled. Note that in
the MrBayes code, SSE3 instructions are explicitly used
for computing the conditional probability values but are
not used for computing the root node's log likelihood (it
is not clear why this is the case).

The default compile configuration of MrBayes uses the
standard UNIX log function defined in version 2.5 of the
math library shipped with Red Hat Enterprise Linux 5.4.
However, MrBayes can also be compiled to use the de
Soras log approximation that is included in MrBayes
3.1.2. The approximation uses the following algorithm to
approximate log x:

1. extract the exponent from the IEEE 754 representa-

tion to obtain: ,

2. extract the mantissa m (where 1 ≤ m < 2) from the

IEEE 754 representation and compute:

,

3. set

exp x= [log]2

l mm= − +() −3
2
32

l l exp= + − ⋅() log1 2

Figure 4 Design for conditional probability computation. In the
accelerator design, this design is replicated four times (for each nucle-
otide) to implement Equation 1. The latency of this pipeline is 38 cycles
on the Virtex-2 Pro FPGA and 34 cycles on the Virtex-6 FPGA, based on
floating-point cores from Xilinx Core Generator.

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 9 of 12
In the MrBayes code, log 2 is approximated as the base-
10 constant 0.69314718. This approximation is only used
for the scaling operation and is not used for computing
the log likelihood for the root node of the tree (the UNIX
log function is still used for this). In the implementation
of this approximation, a 0 is returned for any input values
that are < 10-10. Comments in the MrBayes source code
states that this approximation yields errors less than 7 ×
10-3. However, because of the hard-coded lower limit
placed on x, the effective error of the approximation is
substantially higher when it evaluates a log of a value <
10-10 (as it returns 0), which actually causes the search to
diverge for many datasets.

As a result of the error introduced by calls to this
approximation with ×< 10-10, MrBayes failed to converge
for all of the datasets in our experiments (i.e. the average
standard deviation of split frequencies increased to its
maximum value during the search). As a result, we do not
include performance results for this log approximation.

Test Data
Table 2 describes each of the test datasets, each contain-
ing DNA sequence data and downloaded from TreeBase
[29]. The table is sorted by the sequence length. We ran
each of these using the base software version of MrBayes
3, using the GTR substitution model and assuming clock-

constrained (rooted) trees with uniform probability den-
sity on the branch lengths. We left all other options as
default.

Column 4 of the table shows the number of generations
required by MrBayes to converge rounded up to the near-
est increment of 50,000, where we (and the MrBayes out-
put) determine that convergence has occurred when the
average standard deviation of split frequencies is < 0.1.

Effect of Log Approximation
Table 2 also lists the number of generations required for
the MrBayes search to converge for each of our sample
datasets. To estimate the effect of the log approximation
on the quality of search results, Table 2 also lists the Rob-
inson-Foulds distance [30], as computed by PhyloNet
[31], between the consensus tree given by the base soft-
ware method (used as the model tree) against the consen-
sus tree given by the FPGA-accelerated method. In
general, these distances are equal to the typical distances
between multiple runs of the same dataset in the soft-
ware-only control case.

Discussion
Accelerator Performance
Since the hardware portion of the accelerated MrBayes is
a fixed latency pipeline, the performance of our design

Figure 5 Design for scaling and likelihood evaluation computation. The four-input adder is implemented using a 2-stage binary adder tree. This
pipeline has a total latency of 213 cycles on a Virtex-2 Pro FPGA and 227 cycles on a Virtex-6 FPGA (251 and 261 when including the conditional prob-
ability pipeline that feeds this pipeline), including single-to-double precision conversion between the normalization and likelihood pipelines (not
shown).

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 10 of 12
can be derived as a function of the clock speed, sequence
length, and pipeline latencies.

Our Virtex-2 Pro-based accelerator produces an output
every cycle after the pipeline latency of 119 cycles for
non-root nodes, which require only the outputs of the
conditional probability pipeline, and 251 for a root node
that requires the output from the log likelihood pipeline.
These latency values change to 109 and 261 for a Virtex-6
FPGA. The average time to process a node is therefore:

(119λ + λc)·(1 - r) + (251λ + λc)·r, for a Virtex-2 Pro 100
and (109λ + λc) + (261λ + λc)·r, for a Virtex-6 SX 475

where λ is the clock period, c is the sequence length,

and r is the ratio of root node evaluations to internal node

evaluations. This ratio is nominally equal to , where

n is the number of taxa. However, in some cases the con-

ditional probabilities for a particular node does not need

to be updated, and in these cases they are not performed.

In Table 2 we report this ratio for each dataset as

reported at runtime.
On our Virtex-2 Pro 100 FPGA, an FPGA which is sev-

eral generations old, the pipelines and memory interface
operate at 165 MHz (cycle time of approximately 6 ns).
We have also synthesized, placed, and routed our acceler-
ator design targeting more recent FPGA technology, a
Virtex-6 SX 475 FPGA, and achieved timing closure at

310 MHz (its DSP48E blocks are designed to operate at
350 MHz and these blocks generally dictate the through-
put of floating-point units for which they are used [32]).
We report our results based for both clock speeds.

Performance Results
We performed all software experiments on an unloaded
machine (i.e. no other processes were running to guaran-
tee exclusive, unshared access to the processors and
cache).

Table 3 lists our performance results. For each dataset
we report the average CPU time required to compute a
single non-root node and root node, as well as the aver-
age over all nodes. We also report the average pipeline
times for each node for the FPGA implementations and
corresponding speedups. As shown, we achieve a near
10× improvement over software for the 310 MHz version
of our design without sacrificing the quality of the con-
sensus trees from the search.

Conclusions
We successfully implemented an accelerator to MrBayes
and characterized its performance. Our accelerator
design exploited fine-grain parallelism using a custom,
deep pipeline for computing the likelihood of a tree node.
This technique can be trivially scaled up by assigning a
separate FPGA in a multiple-FPGA system to each chain.
This work demonstrates both the potential for accelerat-
ing Bayesian inference.

1
1n−

Table 2: Input datasets and effects of log approximation on consensus tree.

Dataset Taxa Chars Gen. for SW conv % root nodes
eval

RF distance
between

consensus tree
from the SW

(base) and
consensus tree

from HW

m993 [33] 63 963 50 K 3.8% 9

m1319 [34] 37 1366 100 K 6.2% 3

m346 [35] 64 1620 100 K 3.8% 7

m1038 [36] 297 2021 >500 K 1.0% 21

m1485 [37] 63 3009 100 K 3.8% 13

m4056 [38] 434 9563 >500 K 1.2% 56

m3631 [39] 191 13568 >500 K 1.7% 23

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 11 of 12
Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SZ performed the run-time analysis of MrBayes to determine which compo-
nents of the application to perform on the co-processor, designed the acceler-
ator architecture, and wrote the bulk of the manuscript text. JDB assisted SZ in
choosing the application, analyzing its runtime behavior, and designing the
accelerator architectures. JDB modified the accelerator architecture so it would
fit on the FPGA, added control logic to reduce the design's I/O bottleneck by
caching node data in on-board memory, designed the accelerator architec-
ture's host interface, modified the MrBayes source code to interface it to the
accelerator, performed the tests to characterize performance and accuracy,
edited and revised the manuscript, and performed additional synthesis runs
for a more recent FPGA device. Both authors read and approved the final man-
uscript.

Acknowledgements
We thank the anonymous reviewers whose comments have led to substantial
improvements to this paper. This material is based upon work supported by
the National Science Foundation under Grant Nos. CCF-0844951 and CCF-
0915608.

Author Details
Department of Computer Science and Engineering, University of South
Carolina, Columbia, SC, USA

References
1. Williams J, George A, Richardson J, Gosrani K, Suresh S: Fixed and

Reconfigurable Multi-Core Device Characterization for HPEC. Proc of
High-Performance Embedded Computing Workshop (HPEC), Lexington, MA
2008.

2. Felsenstein J: The number of evolutionary trees. Systematic Zoology
1978, 27:27-33.

3. Felsenstein J: Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol 1981, 17:368-376.

4. Felsenstein J: Inferring Phylogenies 2/e. Sinauer Associates 2003.
5. Alfaro ME, Zoller S, Lutzoni F: Bayes or Bootstrap? A Simulation Study

Comparing the Performance of Bayesian Markov Chain Monte Carlo
Sampling and Bootstrapping in Assessing Phylogenetic Confidence.
Molecular Biology and Evolution 2003, 20(2):255-266.

6. Stamataki A: RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic
Analysis with Thousands of Taxa and Mixed Models. Bioinformatics
2006, 22(21):2688-2690.

7. Zwickl D: Genetic Algorithm Approaches for the Phylogenetic Analysis
of Large Biological Sequence Datasets Under the Maximum Likelihood
Criterion. In Ph.D. Thesis University of Texas at Austin; 2006.

8. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian Phylogenetic Inference
under Mixed Models. Bioinformatics 2003, 19(12):1572-1574.

9. Yang Z: PAML 4: Phylogenetic Analysis by Maximum Likelihood. J Mol
Bio Evol 2007, 24(8):1586-1591.

10. Altekar G, et al.: Parallel Metropolis Coupled Markov Chain Monte Carlo
for Bayesian Phylogenetic Inference. Bioinformatics 2004, 20:407-415.

11. Feng X, et al.: Parallel Algorithms for Bayesian Phylogenetic Inference. J
Parallel Distr Comput 2003, 63:707-718.

12. Feng X, et al.: Building the Tree of Life in Terascale Systems. Proc Parallel
and Distributed Processing Symposium (IPDP 2007) .

13. Keane T, et al.: DPRml: Distributed Phylogeny Reconstruction by
Maximum Likelihood. Bioinformatics 2005, 21:969-974.

14. Minh B, et al.: plQPNNI: Parallel Reconstruction of Large Maximum
Likelihood Phylogenies. Bioinformatics 2005, 21:3794-3796.

15. Schmidt H, et al.: TREE-PUZZLE: Maximum Likelihood Phylogenetic
Analysis Using Quartets and Parallel Computing. Bioinformatics 2002,
18:502-504.

16. Stamatakis A, et al.: RAxML-III: A Fast Program for Maximim Likelihood-
Based Inference for Large Phylogenetic Trees. Bioinformatics 2005,
21:456-463.

Received: 18 May 2009 Accepted: 12 April 2010
Published: 12 April 2010
This article is available from: http://www.biomedcentral.com/1471-2105/11/184© 2010 Zierke and Bakos; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.BMC Bioinformatics 2010, 11:184

Table 3: Performance Results for SSE3 and fast log approximation.

Average SW node processing time (μs) Average HW node processing time (μs) and speedup relative to
SW

Dataset Non-root Root node Average Ave. HW
time/node
@ 165 MHz

(μs)

Speedup
vs. SW

Ave. HW
time/node
@ 310 MHz

(μs)

Speedup
vs. SW

m993 16.1 43.1 17.1 6.6 2.6 3.5 4.9

m1319 20.7 54.2 22.7 9.0 2.5 4.8 4.7

m346 41.1 118.0 44.0 9.6 4.6 5.1 8.7

m1038 46.3 119.4 47.0 13.0 3.6 6.9 6.8

m1485 61.5 166.2 65.5 19.0 3.4 10.1 6.5

m4056 193.6 560.3 198.2 58.7 3.4 31.2 6.4

m3631 199.6 563.9 205.9 83.0 2.5 44.1 4.7

http://www.biomedcentral.com/1471-2105/11/184
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16928733
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15513992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16046495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11934758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608047

Zierke and Bakos BMC Bioinformatics 2010, 11:184
http://www.biomedcentral.com/1471-2105/11/184

Page 12 of 12
17. Mak TST, Lam KP: Embedded Computation of Maximum-Likelihood
Phylogeny Inference Using Platform FPGA. Proc IEEE Computational
Systems Bioinformatics Conference table of contents 2004:512-514.

18. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A: Exploring FPGAs for
accelerating the Phylogenetic Likelihood Function. Proc Eighth IEEE
International Workshop on High Performance Computational Biology
(HiCOMB 2009) .

19. Alachiotis N, Sotiriades E, Dollas A, Stamatakis A: A Reconfigurable
Architecture for the Phylogenetic LikelihoodFunction. Proc
International Conference on Field Programmable Logic and Applications (FPL
2009) .

20. Suchard M A, Rambaut A: Many-Core Algorithms for Statistical
Phylogenetics. Bioinformatics 2009, 25(11):1370-1376.

21. Felsenstein J: Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol 1981, 17:368-376.

22. Fu H, Mencer O, Luk W: Optimizing LogarithmicArithmetic on FPGAs.
Proc 15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM 2007) 2007:163-172.

23. Hamada T, Nakasato N: PGR: a software package for reconfigurable
super-computing. Proc International Conference on Field Programmable
Logic and Applications (FPL'05) 2005:366-373.

24. Li R-C: Near Optimality of Chebyshev Interpolation for Elementary
Function Computations. IEEE Transactions on Computers 2004,
53(6):678-687.

25. Abed KH, Siferd RE: CMOS VLSI Implementation of a Low-Power
Logarithmic Converter. IEEE Transactions on Computers 2003,
52(11):1421-1433.

26. de Dinechin F, Klein C, Pasca B: Generating high-performance custom
floating-point pipelines. Proc 19th Internationl Conference on Field
Programmable Logic and Applications (FPL 2009) .

27. Maple, MapleSoft [http://www.maplesoft.com]
28. Zhuo L, Prasanna VK: High-Performance Reduction Circuits Using

Deeply Pipelined Operators on FPGAs. IEEE Trans Paralleland Dist Sys
2007, 18(10):.

29. TreeBase [http://www.treebase.org]
30. Robinson DR, Foulds LR: Comparison of phylogenetic trees.

Mathematical Biosciences 1981, 53:131-147.
31. Than C, Ruths D, Nakhleh L: PhyloNet: A Software Package for Analyzing

and Reconstructing Reticulate Evolutionary Relationships. BMC
Bioinformatics 2008, 9:322.

32. Virtex-6 FPGA DSP48E1 Slice User Guide [http://www.xilinx.com].
retrieved 1/22/2009

33. Binder M, Bresinsky A: Derivation of a polymorphic lineage of
Gasteromycetes from boletoid ancestors. Mycologia 2001, 94(1):85-98.

34. Bauer R, Begerow D, Oberwinkler F, Maranová L: Classicula: the
teleomorph of Naiadella fluitans. Mycologia, Mycologia 2003,
95(4):756-764.

35. Barns SM, Delwiche CF, Palmer JD, Pace NR: Perspectives on archaeal
diversity, thermophily and monophyly from environmental rRNA
sequences. Proc Natl Acad Sci 1996, 93:9188-9193.

36. Berbee ML: The phylogeny of plant and animal pathogens in the
Ascomycota. Physiological and Molecular Plant Pathology(2001) 2001,
59:165-187.

37. Anderson FE, Córdoba AJ, Thollesson M: 2003 Bilaterian phylogeny
based on analyses of a region of the sodium-potassium ATPase alpha
subunit gene. Journal of Molecular Evolution 2004, 58(3):.

38. Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J,
Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Andrie R, Trippe K,
Ciuffetti L, Wynn A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ,
Arzanlou M, de Hoog S, Crous PW, Hewitt D, Pfister DH, Peterson K,
Gryzenhout M, Wingfield MJ, Aptroot A, Suh S-O, Blackwell M, Hillis DM,
Griffith G, Castlebury L, Rossman A, Lumbsch HT, Lücking R, Büdel B,
Diederich P, Ertz D, Geiser D, Hosaka K, Inderbitzin P, Kohlmeyer J,
Volkmann-Kohlmeyer B, Mostert L, O'Donnell K, Sipman H, Rogers J,
Shoemaker R, Sugiyama J, Summerbell R, Untereiner W, Johnston P,
Stenroos S, Zuccaro A, Dyer P, Crittenden P, Yahr R, Cole MS, Hansen K,
Trappe JM, Lutzoni F, Spatafora JW: A phylum wide phylogeny of the
Ascomycota to address phylogenetic informativeness, ancestral
character reconstruction and define novel lineages. Systematic Biology
2008 in press.

39. Spatafora JW, Johnson D, Sung G-H, Hosaka K, O'Rourke B, Serdani M,
Spotts R, Lutzoni F, Hofstetter V, Fraker E, Gueidan C, Miadlikowska J, Reeb

V, Lumbsch T, Lücking R, Schmitt I, Aptroot A, Roux C, Miller A, Geiser DJH,
Hestmark G, Arnold AE, Büdel B, Rauhut A, Hewitt D, Untereiner WA, Cole
MS, Scheidegger C, Schultz M, Sipman H, Schoch CL: A five-gene
phylogenetic analysis of the Pezizomycotina. Mycologia 2006,
98:1018-1028.

doi: 10.1186/1471-2105-11-184
Cite this article as: Zierke and Bakos, FPGA Acceleration of the phylogenetic
likelihood function for Bayesian MCMC inference methods BMC Bioinformat-
ics 2010, 11:184

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19369496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7288891
http://www.maplesoft.com
http://www.treebase.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18662388
http://www.xilinx.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8799176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15045481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17486977

	Abstract
	Background
	Results
	Conclusions

	Background
	Related Work
	Top-Level Search
	Single Chain Algorithm
	Likelihood Calculation

	Methods
	Application Partitioning
	Kernel Design
	Log(x) Considerations
	Natural Logarithm Implementation
	Accelerator Design
	Reducing I/O
	Conditional Probability Computation
	Likelihood Accumulator
	Input/Output

	Results
	Hardware Implementation
	Software Configuration
	Test Data
	Effect of Log Approximation

	Discussion
	Accelerator Performance
	Performance Results

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

