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This paper deals with reconstruction of nonuniformly sampled bandlimited continuous-time signals using time-varying discrete-
time finite-length impulse response (FIR) filters. The main theme of the paper is to show how a slight oversampling should be
utilized for designing the reconstruction filters in a proper manner. Based on a time-frequency function, it is shown that the
reconstruction problem can be posed as one that resembles an ordinary filter design problem, both for deterministic signals and
random processes. From this fact, an analytic least-square design technique is then derived. Furthermore, for an important special
case, corresponding to periodic nonuniform sampling, it is shown that the reconstruction problem alternatively can be posed as a
filter bank design problem, thus with requirements on a distortion transfer function and a number of aliasing transfer functions.
This eases the design and offers alternative practical designmethods as discussed in the paper. Several design examples are included
that illustrate the benefits of the proposed design techniques over previously existing techniques.
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1. INTRODUCTION

Nonuniform sampling occurs in many practical applications
either intentionally or unintentionally [1]. An example of in-
tentional nonuniform sampling is found in analog-to-digital
conversion where certain time slots are used for calibration
and so forth. This can be viewed as if some samples from a
uniform grid are discarded which results in a nonuniform
grid. Unintentional uniform sampling occurs in, for exam-
ple, high-speed time-interleaved analog-to-digital converters
(ADCs), where static time-skew errors between the differ-
ent subconverters give rise to a class of periodic nonuniform
sampling [2] as exemplified in Figure 1(c).

Regardless whether the continuous-time (CT) signal, say
xa(t), has been sampled uniformly (Figure 1(a)), producing
the sequence x(n) = xa(nT) or nonuniformly (Figure 1(b)),
producing the sequence x1(n) = xa(tn), it is often desired to
reconstruct xa(t) from the generated sequence of numbers.
Thus, in the nonuniform-sampling case, it is desired to re-
cover xa(t) from the sequence x1(n). This can, in principle,
be done in two different ways. The first way is to reconstruct
xa(t) directly from x1(n) through CT reconstruction func-
tions. Although it is known how to do this in principle (see,
e.g., [1, 3–7]), problems arise when it comes to practical
implementations. In particular, it is very difficult to prac-
tically implement CT functions with high precision. It is
therefore desired to use the second way which is to perform

the reconstruction in the digital domain, that is, to first re-
cover x(n). One then needs only one conventional digital-to-
analog converter (DAC) and a CT filter to obtain xa(t), which
are much easier to implement than general complicated CT
functions. Recovery of x(n) is also of interest even if xa(t) is
not to be reconstructed. For example, in receivers in digital
communication systems, x(n) is the final goal.

Recovering x(n) from x1(n) in the digital domain can,
in principle, be done by utilizing discrete-time (DT) recon-
struction functions obtained through sampling of a corre-
sponding ideal CT reconstruction function. However, these
CT reconstruction functions are generally noncausal (two-
sided) functions, which therefore must be truncated in order
to make the corresponding digital reconstruction system
practically implementable. This truncation causes recon-
struction errors that are not easily controlled. In particular,
problems arise when one attempts to approximate perfect re-
construction over the whole frequency range |ωT| ≤ π, ωT
being the “DT frequency” variable.

To get around the above mentioned problems, one
should (1) assume a slight oversampling and (2) use design
techniques that are not based on truncation of infinite-
duration functions. In this way one can (1) for a given fil-
ter order obtain the best approximation with respect to the
frequency region of interest |ωT| ≤ ω0T < π (i.e., for the
slightly oversampled case) and (2) for a given allowed ap-
proximation error obtain theminimum-order filters meeting
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Figure 1: (a) Uniform sampling, (b) nonuniform sampling, and (c)
periodic nonuniform sampling.

this criterion. Whereas this approach is known to be benefi-
cial when designing ordinary frequency selective filters [8],
it has hitherto not been fully explored as to reconstruction
systems. For example, the method introduced in [9] employs
causal interpolation functions, and it was observed experi-
mentally that the reconstruction deteriorates when the band-
width approaches π, but a theoretical study was not pro-
vided. A main theme of this paper is therefore to investigate
these issues in detail as outlined in Section 1.1 below. Be-
fore embarking on that discussion, it is stressed that, even
though oversampling itself is undesired since it generates
more samples than necessary for reconstruction according to
the Nyquist sampling theorem, it is recognized that a slight
oversampling is required in most signal processing systems
in order to make them practically implementable. Hence, the
assumption that the signals be slightly oversampled is not a
disadvantage from the practical point of view (albeit it may
be so from a strict theoretical point of view), but instead an
advantage or even a necessity in order to obtain a practically
implementable high-performance reconstruction system.

1.1. Purpose of the paper

The purpose of this paper is three-fold as discussed in the fol-
lowing. The first purpose of the paper is to provide further
insights into the problem of reconstructing nonuniformly
sampled bandlimited signals using time-varying discrete-
time FIR filters. To this end, the starting point is a ban-
dlimited CT signal that is nonuniformly sampled and slightly
oversampled as to the average sampling frequency, the reason
for the latter assumption being as outlined above. It is further
assumed that the sampling instances are known. Under these
assumptions, a representation of the reconstructed sequence
is derived that utilizes a time-frequency function. This rep-
resentation enables a proper utilization of the oversampling
and reduces the reconstruction problem to a design problem
that resembles an ordinary filter design problem. Both deter-
ministic and random signals are considered in the paper.

The second purpose of the paper is to introduce design
techniques that properly make use of the oversampling that a
priori has been assumed. These techniques rely on the time-
frequency function discussed above. Both least-square and
minimax design techniques will be discussed.

The third purpose of the paper is to show that, for an im-
portant special case, corresponding to a certain type of peri-
odic nonuniform sampling, the design problem can be posed
as a filter bank (FB) design problem, thus with requirements
on a distortion transfer function (that should approximate
one) and a number of aliasing transfer functions (that should
approximate zero). This formulation offers alternative design
methods as will be discussed as well. A part here is also to dis-
cuss the relation between the FB formulation derived in this
paper and an alternative FB formulation derived in [7].

1.2. Relation to previous work

The idea of using time-varying filters for reconstructing
nonuniformly sampled signals is not new. As mentioned ear-
lier, this solution is automatically obtained through sampling
and truncation of a corresponding ideal CT reconstruction
function. Although such a solution may be the best approx-
imation to the ideal solution, it will only be so with re-
spect to the whole frequency range |ωT| ≤ π. It will not
be the best approximation with respect to the frequency re-
gion |ωT| ≤ ω0T < π, that is, for the slightly oversampled
case. The reason is that truncation of infinite-length func-
tions does not handle don’t-care bands. A consequence of
using designs based on truncation is therefore that the or-
der required to obtain an acceptable reconstruction error in
the region |ωT| ≤ ω0T < π may become much higher than
actually needed. Using instead the time-frequency function
employed in this paper, and the proposed design techniques
based on that function, one can utilize the oversampling and
obtain minimum-order filters. This will be demonstrated
through design examples (Example 4), where the proposed
approach is compared to truncated CT Lagrange-based fil-
ters [1, 10].

As to the special case of periodic nonuniform sampling,
it is noted that an FB formulation of this problem has been
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derived earlier in [7], but there is a difference between the
formulation in that paper and the one to be derived in this
paper. The advantage of using the FB formulation in this pa-
per is that it enables one to directly make use of the design
procedure derived for the general case where the sampling
is not periodically nonuniform. In this way, the filter orders
can be reduced compared to those of the practical filters sug-
gested up to now [11, 12] for approximating the ideal ones in
[7] (as will be demonstrated in Examples 5 and 8). Finally ,
it is also pointed out that a special class of fractional-delay
reconstructing filters was proposed in [13] for solving the
same problem. The advantage of that approach is that the
filters need not be redesigned in case the sampling pattern
is changed, which is an advantage in real-time implementa-
tions. The drawback of the approach in [13] is that a cer-
tain amount of additional oversampling must be used. The
approach in this paper (as well as that in [12]) overcomes
this drawback, but it should be noted that the time-varying
filters must be redesigned if the periodic nonuniform sam-
pling pattern is changed during operation for whatever rea-
son.

Finally, it is noted that parts of the work in this paper have
been presented at a conference [14] and a workshop [15].

1.3. Paper outline

Following this introduction, Sections 2 and 3 consider non-
uniform sampling and reconstruction using time-varying
discrete-time FIR filters for deterministic signals and ran-
dom processes, respectively. Based on the results in Section
3, Section 4 introduces a least-square design technique.
Section 5 studies the special case of periodic nonuniform
sampling. Section 6 discusses the extension from lowpass to
bandpass sampling and reconstruction. Finally, Section 7
concludes the paper.

2. NONUNIFORM SAMPLING AND RECONSTRUCTION
OF DETERMINISTIC SIGNALS

Throughout this paper, it is assumed that the nonuniform
sampling of the CT signal xa(t) is done in such a way that the
so obtained sequence, say, x1(n), is given by

x1(n) = xa
(
tn
)
, (1)

where

tn = nT + εnT (2)

with εnT representing the distance between the “nonuniform
sampling instance” tn and the “uniform sampling instance”
nT . The average sampling frequency is thus still 1/T . It is also
assumed that the sampling instances are known and distinct,
that is, tn �= tm, n �= m, and that tn < tm, n < m. Furthermore,
it is assumed that xa(t) is bandlimited according to

Xa( jω) = 0, 0 < ω0 < |ω|, ω0 < π/T (3)

(see also Figure 2(a)). That is, the Nyquist criterion for sam-
pling with a sampling frequency of 1/T without aliasing is

fulfilled. In addition, it is for practical reasons assumed that
xa(t) is slightly oversampled which means that there is a cer-
tain don’t-care region between ω0 and π/T , where the signal
contains no frequency components. The above assumption
regarding the frequency content of xa(t) is valid for the low-
pass (baseband) case which mainly is considered in this pa-
per. However, in Section 6, it is shown that bandpass signals
can be handled as well after some minor modifications.

2.1. Reconstruction

Given the nonuniform-sampling sequence x1(n), it is here
desired to recover the uniform-sampling sequence x(n), that
is, to obtain

x(n) = xa(nT), n = . . . ,−2,−1, 0, 1, 2, . . . . (4)

When analyzing and designing a reconstruction system, it
is convenient to make use of Poisson’s summation formula
which relates the Fourier transforms of x(n) and xa(t).1 This
formula reads

X
(
e jωT

) = 1
T

∞∑

r=−∞
Xa

(
jω− j

2πr
T

)
, (5)

where X(e jωT) and Xa( jω) denote the Fourier transforms of
x(n) and xa(t), respectively. Since the spectrum of x(n) is pe-
riodic with period 2π (2π-periodic) with respect to ωT , it
suffices to consider X(e jωT) in the interval −π ≤ ωT ≤ π.
When (3) holds, it follows from (5) that

X
(
e jωT

) = 1
T
Xa( jω), −π ≤ ωT ≤ π (6)

(see also Figure 2(b)). Equation (6) implies that xa(t) can be
recovered from x(n). In practice, this is done using a DAC
followed by a CT reconstruction filter. It is also noted that
xa(t) is oversampled unless ω0 = π/T .

With x1(n) as input, the reconstruction system generates
a new sequence, say y(n). It is desired to achieve y(n) =
x(n) because then xa(t) can, due to (6), be recovered using
conventional reconstructionmethods for uniformly sampled
signals. The equality y(n) = x(n) corresponds in the fre-
quency domain to Y(e jωT) = X(e jωT). If these equations
hold, the reconstruction system is said to be a perfect recon-
struction (PR) system. In practice, PR can generally only be
approximated, which implies that the role of any practical
reconstruction system is to make y(n) approximate x(n) as
well as possible in some sense. In this paper, time-varying
discrete-time FIR filters are used for the reconstruction.

1 The results derived in this paper hold for bandlimited signals that can
be represented with the aid of Fourier transforms. The results hold for
real as well as complex signals, but the paper focuses on real signals which
explains why the frequency band stretches from−ω0 to ω0 (in the lowpass
case) and real reconstruction filters are employed. These filters may be
used also for complex signals whose frequency band stretches from, say
ω1 to ω2, ω1 < ω2, by choosing ω0 = max(|ω1|, |ω2|), but they will be
overdesigned as they cover a wider band than necessary. In such cases, it
may therefore be beneficial to use instead complex reconstruction filters,
but this is not considered in this paper.
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Figure 2: Spectra of a bandlimited signal xa(t) and the sequence x(n) = xa(nT) (uniform sampling).

2.2. Reconstruction using time-varying
discrete-time FIR filters

In this paper, the reconstruction is performed using a time-
varying discrete-time FIR filter characterized by the real im-
pulse responses hn(k) (see Footnote 1). It is assumed here
that the order of the FIR filter is 2N and thus even. For the
analysis and design, it is convenient to let the FIR filter be
noncausal and its impulse response is therefore selected to be
nonzero for k = −N ,−N + 1, . . . ,N , which means that each
hn(k) is centred around the sample that is to be recovered. In
a practical implementation, the corresponding causal filter is
obtained by simply introducing a delay of N samples. In the
odd-order case, one has instead k = −N ,−N + 1, . . . ,N − 1,
or k = −N + 1,−N + 2, . . . ,N , but that will not change the
principles dealt with in this paper. Henceforth, only the even-
order case is therefore considered for the sake of simplicity.

Under the above assumptions, y(n) is now formed ac-
cording to

y(n) =
N∑

k=−N
x1(n− k)hn(k). (7)

It is desired to select hn(k) so that y(n) approximates x(n) as
close as possible in some sense. To see how to choose hn(k),
x1(n) is first written in terms of the inverse Fourier transform
of xa(t) by which one obtains, due to (1)–(3),

y(n) = 1
2π

∫ ω0

−ω0

e jωTεnXa( jω)e jωTn dω. (8)

Inserting (8) into (7), and interchanging the summation and
integration, one obtains

y(n) = 1
2π

∫ ω0

−ω0

An( jωT)Xa( jω)e jωTn dω, (9)

where

An( jωT) =
N∑

k=−N
hn(k)e− jωT(k−εn−k). (10)

When (6) holds, (9) can equivalently be written as

y(n) = 1
2π

∫ ω0T

−ω0T
An( jωT)X

(
e jωT

)
e jωTn d(ωT). (11)

Equation (11) represents y(n) with the aid of the functions
An( jωT), which can be viewed either as a time-frequency
function or an infinite set of frequency functions. Further,
x(n) can be expressed in terms of its inverse Fourier trans-
form according to

x(n) = 1
2π

∫ ω0T

−ω0T
X
(
e jωT

)
e jωTn d(ωT). (12)

Comparing (11) with (12), it is seen that perfect reconstruc-
tion is obtained if

An( jωT) = 1, ωT ∈ [− ω0T ,ω0T
]
, (13)

for all n.

2.3. Error bound

Defining the error e(n) as e(n) = y(n) − x(n), one obtains
from (11) and (12) that

e(n) = 1
2π

∫ ω0T

−ω0T

(
An( jωT)− 1

)
X
(
e jωT

)
e jωTn d(ωT).

(14)

Apparently, e(n) = 0 in the PR case since, then,An( jωT) = 1.
In practice, An( jωT) can generally only approximate one in
the frequency range of interest. The goal is then to determine
the coefficients hn(k) so that the error e(n) is minimized ac-
cording to some criterion. A problem is that e(n) does not
only depend on hn(k), but also on X(e jωT) which means that
one generally must have knowledge about the input signal
spectrum in order to determine hn(k) in the best possible
way. If one does not have complete knowledge aboutX(e jωT),
which often is the case in practice, one has to accept a subop-
timum solution instead. To this end, it is often convenient to
make use of the Lp-norm which, for X(e jωT), is given by

∥
∥X
(
e jωT

)∥∥
p = p

√
1
2π

∫ π

−π

∣
∣X
(
e jωT

)∣∣p d(ωT). (15)

Applying now the triangle inequality for integrals on (14),
one obtains

∣
∣e(n)

∣
∣ ≤ 1

2π

∫ π

−π

∣
∣An( jωT)− 1

∣
∣
∣
∣X
(
e jωT

)∣∣d(ωT)

≤ ∥∥An( jωT)− 1
∥
∥∞
∥
∥X
(
e jωT

)∥∥
1.

(16)
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Based on (16), one can draw the conclusion that mini-
mizing ‖An( jωT)− 1‖∞ is appropriate for narrow band sig-
nals. To see this, consider the sinusoidal signal

x(n) = Xm sin(ωTn + φ). (17)

For this signal, only the L1-norm exists and, from the defini-
tion in (15), one gets

∥
∥X
(
e jωT

)∥∥
1 = Xm. (18)

From (16) and (18), it now follows that

∣∣e(n)
∣∣ ≤ ∥∥An( jωT)− 1

∥∥∞Xm. (19)

This means that, for any sinusoidal input, with the angular
frequency ω ∈ [−ω0,ω0] and amplitude Xm, the error e(n)
is bounded by (19). The next section discusses how to design
An( jωT) so as to minimize ‖An( jωT)− 1‖∞.

2.4. Filter design

By utilizing the representation of y(n) in (11), the design of
the reconstructing system reduces to the problem of mini-
mizing the “size” of An( jωT) − 1, according to some crite-
rion. This corresponds to designing an FIR filter with non-
integer delays.2 This issue has been considered earlier in the
literature [16–18], but mainly for frequency-selective filters,
not reconstruction of nonuniformly sampled signals. There
are mainly two features that differ the signal reconstruction
context in this paper from those contexts.

First, there is only one band of interest here, namely,
the passband region ωT ∈ [−ω0T ,ω0T], ω0T < π, which
means that the problems associated with designing frequency
selective filters with noninteger delays [16–18] are circum-
vented. In particular, it is difficult to obtain such frequency
selective filters with arbitrary passband and stopband regions
throughout the whole region ωT ∈ [−π,π]. This difficulty
does not appear here, at least not for reasonable values of
εnT , as An( jωT) are to be allpass (up to ω0T < π), not fre-
quency selective.

Second, a new An( jωT) has to be designed here for
each value of n.3 This means that one should employ de-
sign techniques that are easily implemented. This is especially
the case for real-time applications that cannot house costly
and time-consuming online filter design. This is a prob-
lem when designing An( jωT) for narrow-band signals. As
discussed earlier, it is in this case appropriate to determine
each hn(k) so that each ‖An( jωT) − 1‖∞ is minimized in
the frequency region ωT ∈ [−ω0T ,ω0T], ω0T < π. This
is a convex optimization problem [19], and hn(k) can be
found by using a standard minimax design technique to this

2 The noninteger delays are merely a consequence of the nonuniform sam-
pling and the problem formulation. Thus, they are not actually imple-
mented which naturally would cause problems.

3 In the case of periodic nonuniform sampling, it suffices to design only a
few functions, see Section 5.

end. However, minimax techniques are generally costly and
time-consuming to implement and not suitable for online
design. To achieve feasible online design, one may adopt a
least-square approach where hn(k) can be determined ana-
lytically through matrix inversion. Although a least-square
solution is not the optimum solution to the problem of min-
imizing ‖An( jωT)−1‖∞, it is indeed a good approximation.
One can therefore satisfy requirements on ‖An( jωT)− 1‖∞,
even when least-square design methods are adopted instead
of minimax design techniques. The price to pay is a slightly
increased filter order, but it may be necessary to accept this
in order to avoid complicated online design. Section 4 intro-
duces a least-square approach that can be used for this pur-
pose.

2.5. Special case ofmulti-sine input signals

When the input signal xa(t) has a discrete spectrum con-
taining 2N + 1 complex sinusoidals with angular frequen-
cies ωp, p = −N ,−N + 1, . . . ,N , the “uniform samples”
xa(nT) can be computed exactly from the “nonuniform sam-
ples” xa(nT + εnT). Making use of the representation of
y(n) in (11), it is obvious that this is achieved by satisfying
An( jωT) = 1 for ω = ωp. This results in a system of 2N + 1
linear equations which can be solved uniquely provided that
the corresponding matrix is nonsingular. To be precise, hn(k)
are obtained from

hn = D−1n c, (20)

where

hn =
[
hn(−N) hn(−N + 1) · · · hn(N)

]T
,

c =
[
1 1 · · · 1

]T
,

(21)

and eachDn is a 2N+1×2N+1matrix with the entries dn,pk,
p, k = −N ,−N + 1, . . . ,N , given by

dn,pk = e− jωpT(k−εn−k). (22)

Nonsingularity cannot be guaranteed in general, but indeed
for many cases. One important such case is that of uniformly
spaced frequencies according to

ωpT = 2πp
2N + 1

(23)

which covers real input signals. In this case,Dn can be written
as

Dn = Dn1Dn2, (24)

where each Dn1 is a Vandermonde matrix with entries d(1)n,qk,
q = 0, 1, . . . , 2N , k = −N ,−N + 1, . . . ,N , and each Dn2 is a

diagonal matrix with diagonal elements d(2)n,kk , k = −N ,−N +
1, . . . ,N , given by

d(1)n,qk = e− j(2πq/(2N+1))(k−εn−k),

d(2)n,kk = e− j(2πN/(2N+1))(k−εn−k).
(25)
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As Dn1 is Vandermonde, and |detDn2| = 1, nonsingularity
of Dn is in this case guaranteed if e− j2π(k−εn−k)/2N+1 are dis-
tinct. This is, for example, trivially satisfied when |εn−k| <
0.5.

It is stressed that, when the frequencies are equally spaced
according to (23), and more generally when they satisfy ωp =
−ω−p, the impulse responses hn(k) become real-valued, re-
gardless whether the input signal is real (in which case the
sum of each pair of Bp exp( jωpt) and B−p exp( jω−pt) is a
real-valued sinusoidal) or complex. This is because (10) in
this case equals one for ω = ωp as well as ω = −ωp, which
shows that the conjugate of hn(k) is a solution if hn(k) so
is. But since the solution is unique (provided Dn are non-
singular), it follows that hn(k) are real-valued. When the in-
put signal xa(t) has a discrete spectrum containing 2N + 1
frequency components, perfect reconstruction is thus possi-
ble when using real 2Nth-order time-varying FIR filters. For
more general bandlimited signals, only approximately per-
fect reconstruction is feasible, as discussed earlier in this sec-
tion.

3. NONUNIFORM SAMPLING AND RECONSTRUCTION
OF RANDOMPROCESSES

Consider now the case where xa(t) is a random wide-sense
stationary (WSS) process.4 It is assumed that xa(t) is ban-
dlimited according to

RXaXa( jω) = 0, 0 < ω0 < |ω|, ω0 < π/T , (26)

where RXaXa( jω) denotes the power spectral density function
of xa(t) which is the Fourier transform of the autocorrelation
function rXaXa(τ) = E{xa(t)x∗a (t − τ)}, where E{x} denotes
the expected value of x and∗ denotes conjugate.With x(n) =
xa(nT), one has (compare with (5))

RXX
(
e jωT

) = 1
T

∞∑

r=−∞
RXaXa

(
jω− j

2πr
T

)
, (27)

where RXX(e jωT) denotes the power spectral density function
of x(n) which is the Fourier transform of the autocorrelation
sequence rXX(k) = E{x(n)x∗(n− k)} = rXaXa(kT). In partic-
ular, for the bandlimited case in (26), (27) implies

RXX
(
e jωT

) = 1
T
RXaXa( jω), −π ≤ ωT ≤ π. (28)

For random processes, it is common to use the expected
quadratic error E{|e(n)|2}, where e(n) = y(n) − x(n), as
a measure of the reconstruction error. To derive a useful
expression of this error, it is first noted that E{|e(n)|2} in

4 In the literature, it is common to use capital letters to denote random
processes, like Xa(t) and so forth. However, in order to be able to directly
make use of the expressions derived for the deterministic signals, small
letters are used in this paper, that is, xa(t) and so forth.

expanded form is

E
{∣∣e(n)

∣∣2
}
= E

{∣∣y(n)
∣∣2
}
− E

{
y(n)x∗(n)

}

− E
{
y∗(n)x(n)

}
+ E
{∣
∣x(n)

∣
∣2
}
.

(29)

From (1) and (7), and the fact that the operator E and sum-
mation can be interchanged, it follows that the first term in
(29) becomes

E
{∣
∣y(n)

∣
∣2
}

=
N∑

k=−N

N∑

p=−N
hn(k)hn(p)

× rXaXa

(
pT − kT + εn−kT − εn−pT

)
.
(30)

Since rXaXa(τ) and RXaXa( jω) form a Fourier transform pair,
and RXaXa( jω) is bandlimited, (30) can alternatively be ex-
pressed as

E
{∣∣y(n)

∣∣2
}

=
N∑

k=−N

N∑

p=−N
hn(k)hn(p)

× 1
2π

∫ ω0

−ω0

RXaXa( jω)e
− jωT(p−k+εn−k−εn−p) dω.

(31)

By interchanging the integration and summations, and uti-
lizing (10), one finally ends up with

E
{∣
∣y(n)

∣
∣2
}
= 1

2π

∫ ω0

−ω0

RXaXa( jω)
∣
∣An( jωT)

∣
∣2 dω, (32)

where An( jωT) are again given by (10).
As to the second and third terms in (29), one obtains in a

similar way

E
{
y(n)x∗(n)

} = 1
2π

∫ ω0

−ω0

RXaXa( jω)An( jωT)dω,

E
{
y∗(n)x(n)

} = 1
2π

∫ ω0

−ω0

RXaXa( jω)An(− jωT)dω.

(33)

Due to the fact that RXaXa( jω) is real, because rXaXa(τ) is Her-
mitian symmetric, that is, rXaXa(τ) = r∗XaXa

(−τ), it follows
from (33) that

E
{
y(n)x∗(n)

}
+ E
{
y∗(n)x(n)

}

= 2Re
{
E
{
y(n)x∗(n)

}}

= 1
π

∫ ω0

−ω0

RXaXa( jω) Re
{
An( jωT)

}
dω

(34)
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provided that An( jωT) are Hermitian symmetric, that is,
An( jωT) = A∗n (− jωT). It is seen in (10) that this is always
the case when hn(k) are real.

Finally, for the fourth term in (29), one has E{|x(n)|2} =
E{|xa(nT)|2} = rXaXa(0), which means that one can write

E
{∣
∣x(n)

∣
∣2
}
= 1

2π

∫ ω0

−ω0

RXaXa( jω)dω. (35)

Combining the above results, and utilizing (28) together with
the fact that 1 + |x|2 − 2Re{x} = |x − 1|2, one ends up
with

E
{∣∣e(n)

∣∣2
}
=
∫ ω0T

−ω0T
RXX

(
e jωT

)∣∣An( jωT)− 1
∣∣2 d(ωT).

(36)

Equation (36) indicates that the least-square design tech-
nique that will be introduced in the subsequent section
is appropriate when it is desired to minimize the error
power.

4. LEAST-SQUARE DESIGN

This section introduces a least-square design technique for
An( jωT) that is attractive because hn(k) can then be deter-
mined analytically through matrix inversion. It follows from
(36) that it is appropriate to use the following error power
functions Pn for this purpose:

Pn = 1
2π

∫ ω0T

−ω0T
W2(ωT)

∣
∣An( jωT)− 1

∣
∣2 d(ωT). (37)

The function W2(ωT) is a positive weighting function that
may or may not include the input signal spectrum (see (36)).
Inserting (10) into (37), it follows, after some algebraic ma-
nipulations, that Pn can be written in matrix form

Pn = hTn Snhn + cTnhn + C, (38)

where

hn =
[
hn(−N) hn(−N + 1) · · · hn(N)

]T
,

cn =
[
cn,−N cn,−N+1 · · · cn,N

]T
,

(39)

with cn,k, k = −N ,−N + 1, . . . ,N , being

cn,k = − 1
π

∫ ω0T

−ω0T
W2(ωT) cos

(
ωT
(
k − εn−k

))
d(ωT).

(40)

Further, Sn are 2N+1×2N+1 symmetric (providedW2(ωT)
is symmetric around ωT = 0) and positive definite matrices
with entries sn,kp, k, p = −N ,−N + 1, . . . ,N , given by

sn,kp = 1
2π

∫ ω0T

−ω0T
W2(ωT)e jωT(k−p−εn−k+εn−p) d(ωT). (41)

Finally, the constant C is given by

C = 1
2π

∫ ω0T

−ω0T
W2(ωT)d(ωT). (42)

For each n, the values of hn(k) that minimize the function
Pn are obtained by setting the partial derivatives of Pn with
respect to hn(k) to zero and solving for hn(k). With Pn in
the form of (38), the solution to this problem is immediately
obtained as

hn = −0.5S−1n cn. (43)

In order to compute hn in (43), it is necessary to compute the
integrals in (40) and (41). Depending on the weighting func-
tionW(ωT), the integrals may have to be computed numer-
ically. WhenW(ωT) is a simple function, they may however
be computed analytically. For example, in the simplest case
whereW(ωT) = 1, cn,k and sn,kp become

cn,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2ω0T

π
, k − εn−k = 0,

−2 sin
[
ω0T

(
k − εn−k

)]

π
(
k − εn−k

) , k − εn−k �= 0,
(44)

sn,kp =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω0T

π
, k = p,

sin
[
ω0T

(
k + εn−p − p − εn−k

)]

π
(
k + εn−p − p − εn−k

) , k �= p.

(45)

4.1. Design examples

This subsection illustrates through design examples some
properties of the proposed least-square design technique
and, at the same time, some properties of nonuniform sam-
pling and reconstruction.

Example 1. Figure 3 illustrates how An( jωT) − 1 reduces as
the filter order increases using the least-square design tech-
nique introduced above. The sampling instances are here as
in (2), with εnT = 0.2× (−1)n, whereas ω0T = 0.9π.

Example 2. To further illustrate that the reconstruction im-
proves as the filter order increases, Figure 4 plots the re-
construction error versus filter order for ω0T = 0.9π, and
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Figure 3: Magnitude (20 log10 |An−1| for even n) for the proposed
least-square filters of order 2N (Example 1).
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Figure 4: Reconstruction error versus filter order (Example 2).

with εnT being randomly chosen numbers in the interval
(−0.45T , 0.45T).5 For each filter order, the reconstruction
error has been computed by taking the average over a large
number of designs, each one corresponding to a randomly
chosen set of |εnT|.6

Example 3. Figure 5 illustrates (for the same sampling pat-
tern and randomization as that used in Example 2) how
the filter order increases with the bandwidth. It is seen that
the order increases rapidly as the “DT bandwidth” ω0T ap-
proaches the full bandwidth π. This shows that it is advis-
able to use a slight oversampling of, say, 10–20%. Figure 6
shows how the filter order increases with increasing maxi-
mum |εnT|. This illustrates that “the more nonuniform the
sampling pattern is,” the more difficult it is to reconstruct the
signals.

5 In the literature, one sometimes finds the assertion that |εnT| < 0.25T
must be fulfilled to enable reconstruction but this is generally not re-
quired. In particular, when a slight oversampling is adopted, one circum-
vents many of the problems associated with reconstruction of critically
sampled signals. It should be noted, however, that when two adjacent
sampling points approach each other (which may occur if |εnT| are too
large), the corresponding matrix Sn in (38) becomes close to singular
which causes problems as to invertibility. When two sampling points co-
incide, Sn is singular.

6 The reconstruction error is here computed as mean E{Pn} forW(ωT) =
1. With a constant RXX (e jωT ), the signal-to-noise ratio (SNR) is then
SNR = 10 log10(ω0T/π)− 10 log10(mean E{Pn}).
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Figure 5: Filter order versus bandwidth for a reconstruction error
of −100 dB (Example 3).
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Figure 6: Filter order versus maximum sampling instance deviation
|εnT| < eps-max for a reconstruction error of−100 dB (Example 3).

Example 4. Finally, this section compares the proposed least-
square filters with truncated CT Lagrange filters [1, 10]. In
the special case where εnT are constant, such filters are max-
imally flat fractional-delay time-invariant FIR filters [20].
As such, they are very good at low frequencies, but poor
at higher frequencies. The same holds true in the general
case where εnT are not constant. That is, using Lagrange-
based time-varying FIR filters for recovering nonuniformly
sampled bandlimited signals, the reconstruction is good at
low frequencies, but deteriorates rapidly with increasing fre-
quency. This means that the order will be very high in order
to obtain an acceptable error when ω0T is close to π. This
is illustrated in Figure 7 for the same sampling pattern as
in Example 1. It is seen that the reconstruction error is ex-
tremely small at lower frequencies, and that it deteriorates
rapidly above a certain frequency that depends on the filter
order.7 It is also seen that the filter order increases rapidly
as ω0T increases. This means that the Lagrange-based filters
are not really an option in practice for larger ω0T . Using in-
stead the proposed least-square design technique, the recon-
struction error is more evenly distributed over the frequency
range [−ω0T ,ω0T], which means that much larger ω0T can
be handled without any problems, as illustrated earlier in

7 For lower frequencies, the quantity 20 log10 |An−1| decays towards minus
infinity (in dB) when using Lagrange-based reconstruction filters. The
bound of −300 dB, seen in Figure 7, is due to finite-precision effects in
Matlab.
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based reconstruction filters of order 2N (Example 4).

Figure 3. It also means that, for a given error power, the order
of the Lagrange-based filters for larger values of ω0T become
much higher than that of the proposed filters. This is seen in
Figure 8, which illustrates how the filter order increases with
bandwidth for a reconstruction error of −60 dB.

5. PERIODIC NONUNIFORM SAMPLING

When the “nonuniform sampling deviation sequence” εnT
exhibits periodicity according to

εnT = εn+MT (46)

for all n, the sampling is said to be periodic nonuniform sam-
pling with periodM. An example is given in Figure 1(c), with
period M = 2, ε0T = ε2mT , and ε1T = ε2m+1T , for all inte-
gersm.

When εnT satisfies (46), it is obvious that the time-
varying impulse response hn(k) exhibits the same periodicity,
that is,

hn(k) = hn+M(k) (47)

for all n. In this case, one can easily establish that y(n) in
(9), and thus y(n) in Figure 9(a), is identical to the output
y(n) in the maximally decimated FB shown in Figure 9(b)
[21]. That is, the output is obtained as the output of a multi-
rate FB with the analysis filters znHn(z), withHn(z) being the
transfer function of hn(k), and with the trivial synthesis fil-
ters Fn(z) = z−n. Although this FB structure describes how
the reconstruction is actually implemented, it is less suit-
able for the analysis and design because the input is x1(n),
whereas the output y(n) is to approximate x(n) not x1(n),
which would be the case in a conventional FB.

However, it is possible to make use of a regular FB struc-
ture for easing the analysis and design of the reconstructing
system. To see this, it is first observed that the output y(n)
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Lagrange-based filters
Proposed least-square designed filters

Figure 8: Filter order versus bandwidth for a reconstruction error
of −60 dB (Example 4).
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Figure 9: Two equivalent representations of the reconstruction sys-
tem: (a) time-varying filter and (b) multirate filter bank.

from the time-varying filter gn(k) = gn+M(k), with x(n) as
input, is

y(n) =
N∑

k=−N
x(n− k)gn(k). (48)

In accordance with earlier discussions, y(n) in (48), and thus
y(n) in Figure 10(a), is identical to the output y(n) in the
maximally decimated FB shown in Figure 10(b), with Gn(z)
being the transfer function of gn(k). Further, utilizing the in-
verse Fourier transform, it follows that y(n) alternatively be
expressed as

y(n) =
∫ ω0T

−ω0T
Gn
(
e jωT

)
X
(
e jωT

)
e jωTn d(ωT). (49)
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Figure 10: Two equivalent representations used for analysis and de-
sign of the reconstruction system: (a) time-varying filter and (b)
multirate filter bank.

Comparing (49) with (11), it is seen that the outputs in the
two cases are identical provided that Gn(e jωT) satisfy 8

Gn
(
e jωT

) = An( jωT), ωT ∈ [− ω0T ,ω0T
]
. (50)

Hence, when the sampling is periodically nonuniform,
the reconstruction using time-varying filters can be conve-
niently represented by the FB in Figure 10(b), with analysis
filters as given by (50) and (10). The design problem can in
this case be posed as an FB design problem as outlined later in
Section 5.3. It is stressed though that the FB in Figure 10(b) is
used only with the purpose of easing the analysis and design
of the reconstructing system. That is, y(n) is not obtained
by implementing this FB which is obvious because that as-
sumes that we already have available the “uniform samples”
x(n), which are precisely the samples we want to recover
from the “nonuniform samples” x1(n). The output y(n) is
naturally still obtained as in (7), and thus as the output in
Figure 9.

5.1. Relation to the FB representation in [7]

An FB formulation of this problem has been derived ear-
lier in [7], but there are differences between the formula-
tion in that paper and the one in this paper. In [7], it is
observed that the nonuniformly sampled signal can be ex-
pressed with the aid of a regular decimated analysis filter
bank, with analysis filters that are ideal fractional-delay fil-
ters determined by the sampling instances and thus fixed,
whereas the reconstruction is done via properly designing a

8 It should be noted here that Gn(e jωT ) are the periodic extensions of
An( jωT) sinceGn(e jωT ) are 2π-periodic (i.e., periodic functions with pe-
riod 2π with respect to ωT) as they are frequency responses of DT filters
whereas An( jωT) are not (see (10)).

synthesis filter bank, whose filters (Fn(z) in Figure 11) ideally
are multilevel filters. In this paper, the FB formulation con-
tains instead fixed and trivial synthesis filters (pure delays),
whereas the analysis filters are to be designed. Another differ-
ence is that the analysis filters are here unconventional in the
sense that they make use of noninteger delays (see (10) and
Footnote 2). A third difference lies in the implementation.
Using time-varying FIR filters, and thus the FB structure in
this paper (see Figure 9), each output sample is computed
using a segment (of length 2N + 1 for 2Nth-order filters) of
consecutive samples in the input sequence x1(n), which are
weighted with the impulse response values hn(k). Using in-
stead the FB in [7] (Figure 11), the input sequence is divided
into M subsequences according to x1p(n) = x1(Mn + p) for
p = 0, 1, . . . ,M − 1. These subsequences are then upsampled
and fed into the synthesis filters Fn(z).

The two different FB representations are, however, closely
related and it is easy to start with one of them and derive
the other. One can therefore make use of either one when
designing and implementing the reconstruction system. The
advantage of using the FB formulation in this paper is that
the design thereby is simplified. This is done by directly mak-
ing use of the design procedure derived for the general case,
where the sampling is not periodically nonuniform. In the
design procedures proposed in [11, 12] for the general FB
formulation in [7], the ideal and fixed fractional-delay anal-
ysis filters are approximated (to enable the design), which is
a drawback in the sense that the filter orders of the recon-
structing synthesis filters thereby become higher than nec-
essary. Making use of the FB formulation in this paper, to-
gether with the proposed design technique, the filter orders
can be reduced substantially as will be demonstrated later in
Section 5.3.

Given Hn(z), the synthesis filters Fn(z) are readily ob-
tained by utilizing polyphase decomposition [21] of the fil-
ters znHn(z) by which one can write

⎡

⎢
⎢
⎢
⎢
⎣

H0(z)
zH1(z)

...
zM−1HM−1(z)

⎤

⎥
⎥
⎥
⎥
⎦
= R

(
zM
)

⎡

⎢
⎢
⎢
⎢
⎣

1
z
...

zM−1

⎤

⎥
⎥
⎥
⎥
⎦
, (51)

where

R(z) =

⎡

⎢
⎢
⎢
⎢
⎣

P00(z) P01(z) · · · P0,M−1(z)
P10(z) P11(z) · · · P1,M−1(z)

...
...

. . .
...

PM−1,0(z) PM−1,1(z) · · · PM−1,M−1(z)

⎤

⎥
⎥
⎥
⎥
⎦

(52)

with Pnm(z) denoting the mth polyphase component of
znHn(z). The matrix R is the polyphase component matrix
for the analysis filter bank. From an input-output point of
view, this matrix may equally well be interpreted as the syn-
thesis filter polyphase matrix. Therefore, the synthesis filters
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Figure 11: Equivalent filter bank structure to that in Figure 9 when
Fn(z),n = 0, 1, . . . ,M − 1, satisfy (53).

are obtained as

⎡

⎢
⎢
⎢
⎢
⎣

F0(z)
F1(z)
...

FM−1(z)

⎤

⎥
⎥
⎥
⎥
⎦
= RT

(
zM
)

⎡

⎢
⎢
⎢
⎢
⎣

1
z−1
...

z−(M−1)

⎤

⎥
⎥
⎥
⎥
⎦
. (53)

5.2. Bunched nonuniform sampling

A special case of periodic nonuniform sampling is what is
referred to as bunched nonuniform sampling (exemplified
in Figure 12), where the samples can be grouped into “uni-
form bunches” ofM samples taken with the higher sampling
rate 1/T1 within each bunch of duration (M − 1)T1 [12]. If
the time duration between each pair of bunches of samples
is chosen appropriately, the nonuniform-sampling sequence
x1(n) can alternatively be obtained (or viewed as if ob-
tained) through unconventional decimation of the oversam-
pled uniform-sampling sequence x2(n) = xa(nT1), where
T1 = T/(1 + P/M) and P denotes the number of “missing
samples” in x2(n) between each pair of adjacent bunches of
samples contained in x1(n). Provided that x2(n) is bandlim-
ited according to ω0T1 < [1/(1+P/M)]π, which corresponds
to ω0T < π, x2(n) can be recovered from x1(n) through the
use of multirate M-channel FBs with a downsampling fac-
tor of P +M, trivial analysis filters (pure delays), and appro-
priately chosen synthesis filters [22, 23]. However, in cases
where it is desired to recover x(n), x2(n) must then be deci-
mated by the rational factorM/P which introduces the need
for an additional filter. Using instead the time-varying fil-
ter approach in this paper, this problem is circumvented as
x(n) is obtained directly from x1(n). Furthermore, the time-
varying filter approach has the additional advantage that it
can handle the more general case, where the time duration
between the bunches of samples is arbitrary, that is, when
x1(n) no longer can be obtained from x2(n) through simple
downsampling. This case cannot be handled by the FB ap-
proaches in [22, 23]. The methods in [22, 23] also have some
drawbacks that are overcome by using the time-varying filter
approach. The technique in [22] cannot completely control

x 1
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Figure 12: Illustration of bunched nonuniform sampling and re-
construction.

the aliasing components, whereas the approach in [23] re-
quires a certain amount of additional oversampling.

Using the reconstruction technique considered in this pa-
per, bunched nonuniform sampling is handled by selecting
εnT = εn+MT appropriately. An example will be provided
later in Section 5.4.

5.3. Filter design

In the general case of nonuniform sampling, it is required
to redesign An( jωT) for each value of n, as discussed in
Section 2.4. In a real-time application, there is thus a need
to incorporate a processor that performs online design. In
that case, it is crucial to make use of a closed form design
technique, as other online optimization techniques are costly
and time-consuming, albeit possible in principle. For this
purpose, the least-square design technique introduced ear-
lier in Section 4 is appropriate. This technique may be suit-
able also for the special case of periodically nonuniformly
sampled signals even though it here suffices to design only
M (M being the periodicity) different filters as An( jωT) =
An+M( jωT). One reason is that the application at hand may
be appropriately designed by minimizing the error power
(like in Section 3). Another reason is that it may be the case
that εnT may vary slightly with time even if they within dif-
ferent segments of samples may be considered fixed. In this
case, it is again necessary to perform online design, although
not for every output sample. One may then conveniently
make use of least-square techniques to obtain slightly overde-
signed filters, as discussed earlier in Section 2.4.

On the other hand, in cases where one knows that εnT
is periodic and fixed, and will not change, there is more
freedom in choosing design methods and objective func-
tions, as it then suffices to design M filters beforehand. One
such case occurs in reconstruction from bunched samples
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(see Example 5 in the next subsection). If the application
at hand “requires” minimax design rather than least-square
design, offline minimax design can be used to obtain the
minimum-order filters for a given tolerable approximation
error. For example, in communication applications, it is of-
ten important to suppress spurious components in which
case the maximum of undesired frequency components must
be kept below an acceptable level. In this case, the goal is to
determine theM impulse responses hn(k), n = 0, 1, . . . ,M −
1, so that the distortion function V0(e jωT) and aliasing func-
tions Vm(e jωT), m = 1, 2, . . . ,M − 1, approximate one and
zero, respectively, as close as desired in the minimax (Cheby-
shev) sense. From previous discussions in this section, and
well-known input-output relations in maximally decimated
FBs [21], it follows that the distortion and aliasing functions
are given here by

V0
(
e jωT

) = 1
M

M−1∑

n=0
Gn
(
e jωT

)
, (54)

Vm
(
e jωT

) = 1
M

M−1∑

n=0
e− j2πmn/MGn(e j(ωT−2πm/M)), (55)

where Gn(e jωT) are the periodic extensions of An( jωT) in
(10). The output Fourier transform can now be written as

Y
(
e jωT

) = V0
(
e jωT

)
X
(
e jωT

)

+
M−1∑

m=1
Vm
(
e jωT

)
X
(
e j(ωT−2πm/M)).

(56)

Perfect reconstruction (PR) is obtained when V0(e jωT) =
1 and Vm(e jωT) = 0, m = 1, 2, . . . ,M − 1, in which case
Y(e jωT) = X(e jωT) and thus y(n) = x(n). Whereas PR can
be obtained in general practical FBs containing both free
analysis and synthesis filters [21], only near-PR FBs can be
achieved in our case. The reason is that the synthesis fil-
ters are fixed and trivial. Below, it is shown how to design
the FB in the minimax sense. Minimax design: in ordinary
near-PR FBs, it is customary to minimize the stopband en-
ergy of the channel filters subject to the constraints that the
distortion and aliasing functions approximate one and zero,
respectively, with the tolerances δ0 and δ1 according to

∣
∣V0

(
e jωT

)− 1
∣
∣ ≤ δ0, ωT ∈ Ω0, (57)

∣∣Vm
(
e jωT

)− 1
∣∣ ≤ δ1, ωT ∈ Ωm, (58)

form = 1, 2, . . . ,M−1 [21] and the frequency bands of inter-
est, Ω0 and Ωm (see below). Here, there are no channel filter
requirements as the FB formulation is merely a convenient
way of describing the reconstruction. This means that the
design problem reduces to that of satisfying (57) which are
minimax constraints. Furthermore, since xa(t) is assumed to
be slightly oversampled, the region ωT ∈ [−π,π] incorpo-
rates don’t-care bands where there are no requirements on
V0(e jωT) andVm(e jωT). Consequently, the reconstruction fil-
ters can be obtained by solving the following minimax opti-
mization problem.

Given the periodM and the subfilter’s order 2N , find the
unknown coefficients hn(k), k = −N ,−N + 1, . . . ,N , n =
0, 1, . . . ,M − 1, and δ, to minimize δ subject to

∣
∣V0

(
e jωT

)− 1
∣
∣ ≤ δ, ωT ∈ Ω0, (59)

∣
∣Vm

(
e jωT

)− 1
∣
∣ ≤ δ

(
δ1/δ0

)
, ωT ∈ Ωm (60)

form = 1, 2, . . . ,M − 1, where

Ω0 =
[− ω0T ,ω0T

]
, (61)

Ωm =
[
− ω0T +

2πm
M

, ω0T +
2πm
M

]
. (62)

Clearly, V0(e jωT) and Vm(e jωT) satisfy (57) and (58), respec-
tively, if δ after the optimization satisfies δ ≤ δ0.

In regular FBs, (60) would comprise nonlinear con-
straints because V0(z) and Vm(z) then contain terms like
Gn(z)Fn(z), with Gn(z) and Fn(z) containing free parame-
ters. This is not the case here as V0(z) and Vm(z) in (54) and
(55) only contain simple terms Gn(z) and shifted versions
thereof. This is due to the fact that Fn(z) = z−n are fixed to
pure delays, and it implies that the above stated optimization
problem is a convex problem which has a unique optimum
solution. This solution can be obtained using standard tech-
niques to this end. For example, by discretizing the problem,
and making use of the real rotation theorem [24], the opti-
mum solution can be found by solving a finite-dimensional
linear programming problem [19].

Although the problem is convex, which guarantees that
the obtained solution is the global optimumprovided the op-
timization routine converges, it is often advantageous to start
with a good initial solution. In this way, the speed as well as
convergence may be improved. The solution provided by the
least-square design technique in Section 4 is a good starting
point for this purpose as least-square designs are rather close
to minimax designs. This will be demonstrated in the exam-
ple section below.

Finally, it is also mentioned that one naturally may con-
sider constrained least-square optimization as an alternative
to least-square and minimax optimization. This is a mix-
ture of least-square and minimax optimization which may
be more appropriate in some applications. By formulating
the problem as a quadratic programming problem, a unique
optimum solution can again be guaranteed.

5.4. Design examples

This subsection illustrates through design examples some
features of the least-square and minimax design methods for
the periodic nonuniform sampling case.

Example 5. A bunched-sample example taken from [12] is
considered. In this example, the samples are taken at twice
the average sampling rate 1/T , with bunches of five samples.
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Figure 13: Magnitude of A3( jωT)− 1 and A4( jωT)− 1 in Example 5.

With the notation used above in Section 5.2, this means that
M = 5, P = 5, and T1 = T/2. In other words, the sam-
ples can be (viewed as if they were) obtained from a two-
time oversampled signal through unconventional decima-
tion. Five consecutive samples are extracted, the following
five samples are discarded, and so on. With the notation in
(2), this sampling pattern corresponds to the following val-
ues of εnT = εn+5T : ε0T = 0, ε1T = −0.5T , ε2T = −T ,
ε3T = −1.5T , ε4T = −2T .

It is noted here that the first, third, and fifth samples in
each bunch of samples are actually the first, second, and third
sample in the desired sequence. This means that hn(k) for
n = 0, 1, 2, correspond to “negative delays” of −n; that is,
hn(k) = δ(k + n), where δ(n) denotes the unit impulse se-
quence. Designing for ω0T = 0.9π, the remaining two filters,
hn(k), n = 3, 4, using the least-square approach in Section 4,
and a filter order of 70, an SNR (see Footnote 5) of about
104 dB is reached.9 In [12], filter orders of 80 are employed
to reach an SNR of about 100 dB. Thus, using the proposed
design technique, the filter order can be reduced.

Figure 13 plots the magnitudes of A3( jωT) − 1 and
A4( jωT)− 1. Figure 14 plots the magnitudes of V0(e jωT)− 1
and Vm(e jωT), m = 1, 2, 3, 4. Figure 15 plots the magnitude
responses of the corresponding synthesis filters Fn(e jωT), n =
0, 1, 2, 3, 4, that are related to Hn(e jωT) through (51)–(53). It
is interesting to note that Fn(z) are multilevel filters as con-
cluded in [7]. However, in this paper, the multilevel filters are
not designed explicitly as Hn(z) are obtained in the design
process. The multilevel filters are then obtained from Hn(z)
through (51)–(53).

Example 6. In Figure 14, it is noted that V0(e jωT) and
Vm(e jωT) exhibit “least-square behavior,” which is due to
the fact that Gn(z) in Example 5 above were obtained using
the least-square approach in Section 4. The largest errors are
found at the signal band (passband) edges which are typical
for least-square design techniques [8]. If it is desired to sup-
press the largest errors and instead obtain a minimax solu-
tion, one can use the least-square solution as a starting point
for optimization in the minimax sense, as discussed above in

9 This has been verified through simulation with colored noise as input sig-
nal (constant power spectrum in the frequency region [−ω0T ,ω0T]).

Section 5.3. With δ0 = δ1 in (57) and (58), the resulting mag-
nitude responses are as shown in Figure 16. It is seen that the
errors now exhibit “minimax behavior,” and it turns out that
the maximum of the errors has been decreased by some 6 dB
in this example.

Example 7. The example in [13] is considered which deals
with time-skew errors in time-interleaved ADCs. In this ex-
ample, the CT input signal is a sum of four sinusoidals
with angular frequencies 0.125π/T , 0.25π/T , 0.375π/T , and
0.5π/T , respectively. Furthermore, the number of channels is
M = 5, and the sampling instance errors εnT , n = 0, 1, 2, 3, 4,
in (2), are assumed to be 0,−0.04T , 0.02T ,−0.01T , and
0.03T , respectively. The obtained nonuniform-sampling se-
quence x1(n) has a spectrum according to Figure 17. Ap-
parently, several undesired frequency components with large
amplitudes have been introduced due to the nonuniform
sampling. In [13], the distortion was reduced by using a bank
of M fractional-delay FIR filters of order eight which sup-
press the undesired components to some 80 dB. Using in-
stead the proposed approach with eighth-order filters de-
signed for the same bandwidth, namely, ω0T = 0.6π, about
the same performance is obtained as seen in Figure 18,
which plots the spectrum of the reconstructed sequence
y(n).10

Example 8. A drawback of the method in [13] is that an
additional amount of oversampling must be used. In the
example above, the upper limit is ω0T = 0.6π. Using in-
stead the general time-varying filters considered here, this
problem is overcome. As demonstrated earlier in Section 4,
one can let ω0T be rather close to π and still handle this
in practice. For example, with ω0T = 0.9π, and 44th-order
filters, an SNR of more than 100 dB is achieved. Apply-
ing these filters to a nonuniformly sampled multi-sine sig-
nal with angular frequencies 0.125π/T , 0.25π/T , 0.375π/T ,
0.5π/T , 0.625π/T , 0.75π/T , and 0.875π/T , and with the

10 As discussed in Section 2.5, one can achieve perfect reconstruction when
the input is a multi-sine signal, provided that the frequencies are known.
However, the reconstruction filters are here designed to handle general
bandlimited signals. This is what one usually has to do in practice anyway
as it may be difficult to know exactly the frequencies. A typical example of
this is found in communication systems where unknown frequency offsets
are present [25].
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Figure 14: Magnitude of V0(e jωT) − 1 (top) and Vm(e jωT), m =
1, 2, 3, 4, in Example 5.

same sampling pattern as in Example 7, the result of which
is the sequence x1(n) with spectrum according to Figure 19,
the spectrum of the reconstructed sequence y(n) becomes
as shown in Figure 20. It should be pointed out, how-
ever, that the approach in [13] has the advantage that the
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Figure 15: Magnitude of Fn(e jωT), n = 0, 1, 2, 3, 4, in Example 5.

fractional-delay filters can be implemented in such a way (us-
ing Farrow-based structures [26, 27]) that online design can
be avoided when the sampling instance errors are changed.
Using the general time-varying filters, online design is in-
evitable which increases the implementation cost. On the
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Figure 16: Magnitude of V0(e jωT) − 1 (top) and Vm(e jωT), m =
1, 2, 3, 4, in Example 6.

other hand, the general filters can handle wider bandwidths
so which one of the two methods to use for reconstructing
periodically nonuniformly sampled signals largely depends
on the application at hand.
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Figure 17: Spectrum of the sequence x1(n) in Example 7.
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Figure 18: Spectrum of the reconstructed sequence y(n) in
Example 7.
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Figure 19: Spectrum of the sequence x1(n) in Example 8.
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Figure 20: Spectrum of the reconstructed sequence y(n) in
Example 8.

Finally, it is noted that the same example is considered
in [12], where the filters Fn(z) are of order 149. Hence, us-
ing the proposed design approach, the complexity can be re-
duced.
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6. EXTENSION TO BANDPASS SIGNALS

This paper has so far been concerned with lowpass sig-
nals bandlimited according to (3) (see also Figure 2). It is,
however, possible to extend the results to bandpass signals
after appropriate modifications. The extensions are rather
straightforward so this section will merely give the necessary
modifications.

Consider the case where the signal xa(t) is a bandpass
signal bandlimited to the frequency region |ω| ∈ [ω0,ω1],
where ω0 ≥ 0, ω1 < π/T , and ω0 < ω1. In principle, the
reconstruction is conducted in the same way as for the low-
pass case. The only difference is that An( jωT) in (10) now
should approximate one in the frequency region |ωT| ∈
[ω0T ,ω1T]. Using the least-square design technique intro-
duced in Section 4, this amounts to replacing (44) and (45)
with

cn,k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2
(
ω1T − ω0T

)

π
, k − εn−k = 0,

−2 sin
[
ω1T

(
k − εn−k

)]

π
(
k − εn−k

)

+
2 sin

[
ω0T

(
k − εn−k

)]

π
(
k − εn−k

) , k − εn−k �= 0,

(63)

sn,kp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1T − ω0T

π
, k = p,

sin
[
ω1T

(
k + εn−p − p − εn−k

)]

π
(
k + εn−p − p − εn−k

)

− sin
[
ω0T

(
k + εn−p − p − εn−k

)]

π
(
k + εn−p − p − εn−k

) , k �= p,

(64)

respectively. Likewise, when using minimax design as out-
lined in Section 5, it amounts to replacing (61) and (62) with
the appropriate frequency regions.

More generally, xa(t) is a bandpass signal bandlimited to
the frequency region |ω| ∈ [ω0,ω1], where ω0 ≥ 2πp/T ,
ω1 < π/T + 2πp/T , and ω0 < ω1, with p being a positive
integer. This case is handled in the same way as above. Hence,
as to the least-square design, (63) and (64) still apply. The
only difference is that ω0 and ω1 take on different values.

6.1. Design examples

Although the reconstruction in principle is done in the same
way as for the lowpass case, we have observed experimentally
that the filter order required to achieve a certain SNR for a
fixed bandwidth is generally higher in the bandpass case than
in the lowpass case. This is exemplified in the examples be-
low.

Example 9. Figure 21 plots the magnitudes of An( jωT) − 1
for the same sampling pattern and filter orders as used earlier
in Example 1. Comparing Figure 21 with Figure 3, it is seen
that the reconstruction error is larger in the bandpass case.
The band edges are here ω0T = 0.05π and ω1T = 0.95π.
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Figure 21:Magnitude (20 log10 |An−1| for even n) for the proposed
least-square filters of order 2N for bandpass signals (Example 9).
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Figure 22: Filter order versus upper band edge for a bandwidth of
0.8π and reconstruction error of −60 dB (Example 10).

Example 10. Figure 22 plots the filter order as a function of
the upper band edge ω1T for a fixed bandwidth of ω1T −
ω0T = 0.8π. (The same sampling pattern and randomization
as those employed in Examples 6 and 7 were used.) It is seen
that the filter order increases with the upper band edge ω1T .
Thus, from a complexity point of view, the lowpass case is
advantageous.

7. CONCLUDING REMARKS

The main theme of this paper has been to show how a slight
oversampling can be properly utilized in the design of time-
varying discrete-time FIR filters for reconstructing nonuni-
formly sampled signals. As has been demonstrated through
several design examples, one can in this way obtain as small
as desired reconstruction error by simply increasing the filter
order. This has been exemplified both for the general case and
for periodically nonuniformly sampled signals. Furthermore,
both least-square and minimax design have been discussed.

As the underlying assumption is bandlimitation, prob-
lems may arise though as signals are usually not strictly
bandlimited in practice. In particular, when the sampling
is “far from uniform”, like bunched sampling, the magni-
tude of the filter coefficients hn(k) tends to be rather large.
This means, in particular, that if noise is present in the
frequency region |ωT| ∈ (ω0T ,π] (in the lowpass case),
due to inevitable data quantization and so forth, the noise
contained in the reconstructed sequence y(n) may become
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rather large.11 This is, however, due to the fact that “the more
nonuniform” the sampling is, the more ill-conditioned the
reconstruction problem is [1]. It is thus not a problem asso-
ciated with the reconstruction method studied in this paper.
Sampling patterns with small deviations from the uniform
grid, like those occurring in time-interleaved ADCs, are not
associated with such problems. In such cases, all filter coeffi-
cients hn(k) are small inmagnitude, except for themiddle tap
that is close to one.12 The noise in the reconstructed sequence
y(n) will then be more or less the same as in the uniform-
sampling sequence x(n).

Another practical problem is the quantization of the fil-
ter coefficients hn(k). This problem can, however, always be
solved by allocating more bits to hn(k). Coefficient quanti-
zation is thus not a limiting factor as to the quality of the
reconstruction. Furthermore, as FIR filters are employed, the
coefficient sensitivity of the reconstruction filters is similar to
that of regular FIR filters which are known to have a relatively
low sensitivity.
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