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Abstract

Background: Curcumin is a yellow-pigment phenolic compound used as a food spice and has a broad spectrum
of antioxidant, anti-carcinogenic, anti-mutagenic and anti-inflammatory properties.

Methods: Radio-protective efficacy of curcumin; diferuloylmethane (C21H20O6) was evaluated using molecular and
biochemical assays in male mice after exposure to 3 Gy γ-rays. Curcumin was given at a dose of 400 μmol/ kg body
weight via gastric tubes for 5 following days either pre-, post- or both pre- and post-exposure.

Results: The incidence of aberrant cells and aberration types (mostly chromatids, breaks and fragments) was
reduced with curcumin dosage as compared to irradiated group. Thiobarbituric acid reactive substances (TBARS),
hydroperoxide (HP), xanthine oxidase (XO) and apoptotic markers (DNA- fragmentation and caspase-3 activation)
were increased significantly, whereas levels of glutathione (GSH) and the enzymatic antioxidants [Superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] were significantly depleted in γ-irradiated mice.
Curcumin treatments of mice groups including the 5 days pre-irradiation treated group (protected), the 5 days
post-irradiation treated group (treated), and the curcumin treated group 5 days pre- and post-irradiation
(protracted), have attenuated the liver toxic effects of γ-rays as manifested by reducing the levels of TBARS, HP, XO
and DNA fragmentation. Curcumin has also rescued the depletion of GSH and the enzymatic-antioxidant status.

Conclusions: Curcumin has significant radio-protective and radio-recovery activities in γ-irradiated mice. It has
antioxidant potential against γ-rays-induced cytogenetic, molecular and biochemical lesions in mice.
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Background
Ionizing radiation is known to induce oxidative stress
through generation of reactive oxygen species (ROS)
causing direct lesions in the DNA and biological mole-
cules ultimately resulting in molecular and biochemical
alterations [1]. In vitro, curcumin has a therapeutic po-
tential for improving the antitumor effects of radiother-
apy [2] and in vivo, curcumin can modify cell survival
and DNA repair efficacy [3].
Curcumin, a major bioactive compound present in tur-

meric is a yellow pigment phenolic compound obtained
from the roots of Curcuma longa used as spice. It has a
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broad spectrum of antioxidant, anti-carcinogenic, anti-
mutagenic and anti-inflammatory properties [2,4].
The anticancer potential of curcumin is attributed to its

ability to treat various illnesses and suppress proliferation
of a wide variety of tumour cells and down-regulate tran-
scription factors [5]. Curcumin pre-treatment accelerated
healing of irradiated wound and could be a substantial
therapeutic strategy in the management of irradiated
wounds [6].
Recently, Mosieniak et al. [7] found that curcumin-

induced double-strand breaks promoting genetic instabil-
ity by activating other cell signalling pathways and as a
result, tumour cells fail to undergo cell cycle arrest, enter
mitosis and die through mitotic catastrophe. In contrast,
curcumin mitigates the genotoxic effects of the two well-
known water contaminants arsenic and fluoride and
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ameliorated primary DNA damage in human peripheral
blood lymphocytes [8]. Pretreatment with curcumin
(737 mg/kg) protected against carbon tetra chloride
(CCl4) toxicity of hepatic tissues. The attenuated hepa-
toprotection afforded by curcumin may be attributed to
its low bioavailability in vivo (reduced absorption in the
intestine and elevated intestinal metabolism). This postu-
lation is supported by the findings that intra peritoneal
injections of curcumin (368 mg/kg) induced GSH-
antioxidant response and hepato protection to similar ex-
tents in vivo. The curcumin prooxidant can induce the
GSH-antioxidant response and confer cytoprotection
in vitro [9]. Human clinical trials indicated no dose-limiting
toxicity for curcumin when administered at doses up to
10 g/day [10]. The current work describes the possible con-
trol measures against molecular and biochemical lesions in
liver of whole body γ-irradiation in male mice and discusses
the mechanism of action of curcumin.

Methods
Experimental animals
Male mice, 10–12 weeks, weighting (20 ± 2 g) were
obtained from the Holding Company for Biological
Products and Vaccines, Helwan, Egypt. Mice were kept
under good ventilation and illumination conditions.
Mice were allowed free access to a standard require-
ment diet and water ad libitum. The animals’ treatment
protocol was approved by the ethical and scientific pub-
lishing committee of the National Centre for Radiation
Research and Technology (NCRRT), Cairo, Egypt, fol-
lowing the guidelines of NIH.

Radiation process
137Cs γ-irradiator (Gamma cell-40) was provided by
the NCRRT, Cairo, Egypt, manufactured by the Atomic
Energy of Canada. The dose rate was ~ 0.42 Gy/ min.
Mice were placed in ventilated plastic cages and exposed
to 3Gy γ-rays in groups of 6 mice simultaneously.

Curcumin treatment
Curcumin was purchased from Sigma-Aldrich, USA. It
was intra gastric given to mice on empty stomach, 3 h
before feeding. The dose was 400 μmol/kg body wt/day
based on protocol described by Thresiamma et al. [11].
The appropriate dose of curcumin per mouse was
suspended in 0.5 ml of distilled water and given to the 3
mice groups as follows: 5 days pre-irradiation (protected
group); 5 days post-irradiation (treated group); and both
5 days pre- and 5 days post-irradiation (protracted
group) according to Okunieff et al. [12].

Experimental design
Mice were divided into 6 groups treated as follows: Con-
trol group (n = 6): 0.5 ml of distilled water per mouse for
5 days. Curcumin group (n = 6): 0.5 ml of distilled water
containing the appropriate dose of curcumin per mouse
for 5 days. Irradiated group (n = 9): 0.5 ml of distilled
water per mouse for 5 days prior to 3Gy γ-irradiation
exposure. Protected group (n = 9): 0.5 ml of distilled
water containing the appropriate dose of curcumin per
mouse for 5 days prior to 3Gy γ-irradiation exposure.
Treated group (n = 9): 0.5 ml of distilled water containing
the appropriate dose of curcumin per mouse for 5 days
post 3Gy γ-irradiation exposure. Protracted group (n = 9):
0.5 ml of distilled water containing the appropriate dose of
curcumin per mouse both 5 days pre- and 5 days post
3Gy γ-irradiation exposure. Only six animals were
sacrificed after 24 h from the last treatment or γ-rays
exposure and liver tissue samples were excised. A high
number of animals was used in the four γ-irradiated
groups (n = 9), because of the elevated mortality rate
that may occur in these groups. In the present experi-
ment, only one mouse died in the γ-irradiated group.

Cytogenetic technique
Colchicine (Sigma-Aldrich) was injected to mice via
peritoneal cavity (0.3 ml/mouse of 0.025% colchicine in
sterile deionized water) and animals were sacrificed by
cervical dislocation 2 h later. Both femurs were dissected
out and cleaned from the adhering tissue. Briefly, the
bone marrow from femurs was aspirated and washed in
saline, treated by hypotonic 0.56% KCl solution then,
fixed in 3:1 methanol:glacial acetic acid. The metaphase
plates were prepared by the routine air-drying method
[13], dried and stained with 4% Giemsa. Chromosomal
aberrations were scored under a light microscope. Chro-
matid and chromosome breaks, fragments, rings, dicen-
trics and polyploids were scored separately according to
Bender et al. [14].

Biochemical assays
Liver samples were quickly excised, washed with saline,
blotted with a piece of filter paper and homogenized in
appropriate buffer using a Branson sonifier (250, VWR
Scientific, Danbury, Conn., USA). The homogenates
were centrifuged at 800 × g for 5 min at 4°C to separate
the nuclear debris. The supernatant so obtained was
centrifuged at 10,500 × g for 20 min at 4°C to get the
post-mitochondrial supernatant which was used to
assay SOD activity.
In liver homogenates, the protein content was deter-

mined according to the method of Lowry et al. [15],
using bovine serum albumin as standard. The activity of
xanthine oxidase (XO) was assayed according to the
method of Prajda and Weber [16]. The supernatant was
pre-incubated for 40 min at 37°C and then added to the
reaction mixture which contained in final concentra-
tions: xanthine (0.17 μM); phosphate buffer (33 μM,



0

50

100

150

200

250

300

Control Curcumin Irradiated Protected Treated Protracted

A
be

rr
an

t 
C

el
ls

/5
00

 m
et

ap
ha

se
s

a,b

a, b, c

a, b, c, d

a, b, c, e

Figure 1 Effect of curcumin on frequency of chromosomal aberrations of different mice groups. All values are expressed as mean ± S.E.,
where (n = 6).a Significant difference in comparing with control group. b Significant difference in comparing with curcumin group. c Significant
difference in comparing with irradiated (3 Gy) group. d Significant difference in comparing with protected group. e Significant difference in
comparing with treated group.
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Figure 2 Effect of curcumin on the percentage of aberrant cells
as compared to normal cells in different mice groups. All values
are expressed as percentage of aberrant cells to normal cells, where
(n = 6).
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pH 7.5); and a suitable amount of enzyme (supernatant).
After centrifugation, xanthine oxidase activity was mea-
sured by the increase in absorbance at 293 nm. Total
GSH was determined according to the methods of
Ellman [17], which is based on the reduction of Ellman’s
reagent [5,5-dithiobis-(2-nitrobenzoic acid)] by SH groups
to form 1 mole of 2-nitro-5-mercaptobenzoic acid per
mole of SH. The nitro-mercaptobenzoic acid has an in-
tense yellow colour and can be determined spectrophoto-
metrically at 412 nm. In details, protein precipitation was
attained by mixing equal volumes of 10% aqueous hom-
ogenate and 7.5% sulfosalicylic acid followed by centrifu-
gation at 600 × g for 15 min at 4°C. To 0.5 ml of the
resulting supernatant, 2 ml of phosphate buffer (0.3 M,
pH 7.7) and 0.25 ml of Ellman’s reagent (19.8 mg DTNB
in 100 ml of 1% Na citrate) were added in a microcuvette
and the absorbance was measured at 412 nm. SOD assay
was based on the spectrophotometric assessment of the in-
hibition of nitro blue tetrazolium (NBT)-nicotinamide ad-
enine dinucleotide (NADH) and phenazine methosulphate
(PMS) mediated formazan formation by applying the tech-
nique of Kakkar et al. [18]. Absorbance was measured at
560 nm. One unit of SOD activity is defined, as the enzyme
concentration required to inhibit chromogen production
by 50% in one min/mg protein under the assay condition.
Estimation of lipid peroxidation (LP) indices as evi-

denced by the formation of TBARS and HP were mea-
sured in liver tissue by the method of Nichans and
Samuelson [19] and Jiang et al. [20], respectively. In brief,
0.1 ml of tissue homogenate in Tris–HCl buffer, pH 7.5
was treated with 2 ml of (1:1:1 ratio) TBA-TCA-HCl
reagent (Thiobarbituric acid 0.37%, 15% TCA, and 0.25 N
HCl) and placed in water bath for 15 min, cooled and
centrifuged at 1000 × g for 10 min. The absorbance of
clear supernatant was measured against a reference blank
at 535 nm. The results were expressed as LP μmol/mg
protein. For hydroperoxide (HP) determination, 0.1 ml of
homogenate was treated with 0.9 ml of Fox reagent
(88 mg butylated hydeoxytoluene (BHT), 7.6 mg xylenol
orange, and 9.8 mg ammonium ion sulphate were added
to 90 ml of methanol and 10 ml 250 μM sulphuric acid)
and incubated at 37°C for 30 min. The developed color
was read at 560 nm.
CAT was assayed colorimetrically at 620 nm and

expressed as Unite (μmol of H2O2 consumed/min) per
mg protein as described by Sinha [21]. The reaction
mixture (1.5 ml) contained 1.0 ml of 0.01 M phosphate
buffer pH 7.0, 0.1 ml of tissue homogenate and 0.4 ml of



Table 1 Effect of curcumin on frequency of differential types of chromosomal aberrations of different mice groups

Animal groups Types of aberrations/500 metaphase

Chromatid breaks Chromosome breaks Fragments Dicentrics + Rings Polyploids

Control 1.2 ± 0.3 0 2.0 ± 0.3 0 0

Curcumin 1.0 ± 0.5 0 2.1 ± 0.5 0 0

Irradiated 13.1 ± 0.2 a,b 7.2 ± 0.2 a,b 230 ± 8.7 a,b 9.1 ± 0.2 a,b 6.6 ± 0.5 a,b

Protected 6.7 ± 0.5 a,b,c 4.4 ± 0.6 a,b,c 177.2 ± 7.9 a,b,c 5.8 ± 0.4 a,b,c 4.4 ± 0.6 a,b,c

Treated 9.1 ± 0.2 a,b,c,d 5.8 ± 0.4 a,b,c,d 191.3 ± 9.7 a,b,c 7.2 ± 0,2 a,b,c,d 4.8 ± 0.6 a,b,c

Protracted 5.0 ± 0.5 a,b,c,d,e 4.3 ± 0.4 a,b,c,e 158.2 ± 5.5 a,b,c,d,e 4.9 ± 0.9 a,b,c,d,e 4.3 ± 0.3 a,b,e

All values are expressed as mean ± S.E., where (n = 6).
a significant difference in comparing with control group.
b significant difference in comparing with curcumin group.
c significant difference in comparing with irradiated (3 Gy) group.
d significant difference in comparing with protected group.
e significant difference in comparing with treated group.
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2 M H2O2. The reaction was stopped by adding 2.0 ml
of dichromate-acetic reagent (5% potassium dichromate
and glacial acid mixed in 1:3 ratio). Glutathione peroxid-
ase (GPx) activity was assayed by method described by
Ellman [17]. The assay mixture contained 0.2 ml of
0.4 M phosphate buffer, pH 7.0, 0.1 ml of 10 μM sodium
azide, 0.2 ml of tissue homogenate (homogenized in
0.4 M phosphate buffer, pH 7.0), 0.2 ml glutathione,
0.1 ml of 0.2 mM H2O2. The reaction mixture was incu-
bated at 37°C for 10 min. The reaction was stopped by
adding 0.4 ml of 10% TCA, and centrifuged. Supernatant
was measured for glutathione content by using Ellman’s
reagent.

DNA fragmentation
DNA was extracted and prepared according to the method
described by Abou-Elella et al. [22]. In brief, liver tissues
(100 mg) were treated with 100 mM Tris–HCl, 5 mM
EDTA, 150 mM sodium chloride and 0.5% sarkosyl,
pH 8.0, at 40°C for 10 min. Samples were incubated with
ribonuclease (50 μg/ml) for 2 h at 37°C and proteinase K
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Figure 3 Effect of curcumin on pro-oxidant enzyme; xanthine oxidase
expressed as mean ± S.E., where (n = 6). a Significant difference in comparin
curcumin group. c Significant difference in comparing with irradiated (3 Gy
e Significant difference in comparing with treated group.
(100 μg/ml) at 48°C for 45 min. DNA was obtained by phe-
nol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich)
extraction and precipitated with 0.3 M sodium chloride
and cold isopropanol (1:1) at -20°C for 12 h. Cellular DNA
was recovered by centrifugation of the sample at 20,800 × g
at 4°C for 10 min. Thereafter, the precipitate was washed
with 70% ethanol, dried and re-suspended in Tris buffer
containing EDTA (10 mM Tris, 1 mM EDTA) at pH 8.0.
Samples (100 μg DNA) were analyzed on a 1.5% agarose
gel with ethidium bromide (0.5 μg/ml).

Western blot
Immunoblot analysis was performed according to the
method of Towbin et al. [23] with slight modifications
using a NovaBlot semi-dry blotter (LKB, Bromma, Sweden).
Briefly, 20 μg of the liver protein extracts from all groups
were allowed to run on 12% SDS-PAGE after boiling with
reducing SDS-PAGE loading buffer. Gels were either
stained with Coomassie Brilliant Blue stain (R-250) to de-
termine the molecular weight of the corresponding bands
as manifested by the low molecular weight marker (GE
Protected Treated Protracted

a, b, c

a, b, c, d

a, b, c, d, e

(XO) in liver tissue of different mice groups. All values are
g with control group. b Significant difference in comparing with
) group. d Significant difference in comparing with protected group.
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Figure 4 Effect of curcumin on level of TBARS in liver tissue of different mice groups. All values are expressed as mean ± S.E., where (n = 6).
a Significant difference in comparing with control group. b Significant difference in comparing with curcumin group. c Significant difference in
comparing with irradiated (3 Gy) group. d Significant difference in comparing with protected group. e Significant difference in comparing with
treated group.
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healthcare, United Kingdom) or soaked in transfer buffer
(16 mM Tris–HCl, 120 mM glycine and 20% methanol)
prior to transfer to Immobilon-P transfer membrane
(PolyVinylDimethylFluoride membrane, Millipore, Bedford,
MA, USA). After transfer, membranes were incubated with
blocking buffer (3% BSA in TBS, pH 7.5) for 1 h, washed
three times with washing buffer (10 mM TBS containing
0.05% Tween 20) then incubated with gentle agitation
overnight at room temperature with the polyclonal anti-
caspase-3 (Santa Cruz, USA) in serum buffer (0.5% BSA in
TBS containing 0.05% Tween 20, pH 7.5) at a dilution of
1:2000. Then, the antigen–antibody reaction was detected
by incubating the membranes with anti-rabbit IgG peroxid-
ase conjugate (Sigma–Aldrich, Saint Louis, MO, USA) at a
dilution of 1:3000 in serum buffer for 1 h with gentle agita-
tion at room temperature. The protein bands were visual-
ized by incubating the membranes for 15–30 min in freshly
prepared 4-chloro 1-naphthol (4C–1 N) developing solu-
tion (30 mg 4C-1 N) (MP Biomedicals, Inc., Fountain Pkwy,
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Figure 5 Effect of curcumin on level of hydroperoxide (HP) in liver tis
where (n = 6). a Significant difference in comparing with control group. b S
difference in comparing with irradiated (3 Gy) group. d Significant differenc
comparing with treated group.
OH, USA) in 10 mM TBS containing 20% methanol and
0.06% H2O2. After color development, the membranes were
washed twice with distilled water for about 30 min to stop
the reaction, air-dried, and then photographed.

Statistical analysis
Data were expressed as mean ± S.E of 6 mice. Statistical
significance between 2 groups of parametric data was eval-
uated by one-way ANOVA method followed by Tukey’s
post-test using the SPSS statistical package (SPSS 14.0 for
Windows; SPSS, Inc, Chicago, IL). P < 0.05 was considered
significant.

Results
At time of sacrificing, only one mouse was died from
irradiated group. Curcumin treated group produced a
slight increase in the percentage of aberrant cells (0.5%),
but it was not significantly different from the control
group. γ-rays produced a significant increase in the
d Protected Treated Protracted
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sue of different mice groups. All values are expressed as mean ± S.E.,
ignificant difference in comparing with curcumin group. c Significant
e in comparing with protected group. e Significant difference in
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Figure 6 Effect of curcumin on level of GSH in liver tissue of different mice groups. All values are expressed as mean ± S.E., where (n = 6).
a Significant difference in comparing with control group. b Significant difference in comparing with curcumin group. c Significant difference in
comparing with irradiated (3 Gy) group. d Significant difference in comparing with protected group. e Significant difference in comparing with
treated group.
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percentage of aberrant metaphases and different types
of aberrations compared to the control group. Aberrant
cells percentage increased up to 45% at irradiated group
(Figures 1 and 2).
The most common aberrations were breaks, frag-

ments, rings and dicentrics (Table 1). Also, polyploid
cells increased significantly above the control levels.
Protected and treated groups with curcumin showed sig-
nificant decreases, in the percentage of aberrant meta-
phases (24% and 32%), compared with irradiated group
(45%) (Figure 2). In addition, curcumin treatment both
5 days pre- and 5 days post-γ-irradiation (protracted
group) produced an additional significant decrease in
percentage of aberrant cells, simply 21% (Figure 2), com-
pared with irradiated group, since the repair was more
effective than other groups when curcumin used as
protracted treatment.
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Figure 7 Effect of curcumin on SOD activity in liver tissue of different
a Significant difference in comparing with control group. b Significant diffe
comparing with irradiated (3 Gy) group. d Significant difference in compari
treated group.
All protected, treated and protracted mice groups had
significant increases in chromosomal aberration fre-
quency, compared with control group, because the
repairing efficacy of the curcumin models of treatments
did not reverse the induced aberrations to the control
level (Figures 1 and 2).
Qualitatively, the three curcumin models of treatments

significantly reduced the frequency of the major aberra-
tions like breaks and fragments. The protracted protocol
of treatment was more effective and significantly lowered
all types of aberrations as well as polyploids (Table 1).
Xanthine oxidase (XO) activity was increased signifi-

cantly in irradiated group, which was decreased signi-
ficantly with curcumin-treatment either pre-, post- or
both pre- and post-γ-irradiation. However, protracted
treatment decreased XO activity more significantly com-
pared to both protected and treated groups (Figure 3).
d Protected Treated Protracted
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Figure 8 Effect of curcumin on CAT activity in liver tissue of different mice groups. All values are expressed as mean ± S.E., where (n = 6).
a Significant difference in comparing with control group. b Significant difference in comparing with curcumin group. c Significant difference in
comparing with irradiated (3 Gy) group. d Significant difference in comparing with protected group. e Significant difference in comparing with
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The levels of TBARS and HP (Figures 4 and 5) were
increased significantly in irradiated group, which were
decreased significantly on treatment with curcumin
either pre-, post- or both pre- and post-γ-irradiation.
The decrease was more significant in protracted group
compared to both protected and treated groups.
The levels of non-enzymatic antioxidant; GSH (Figure 6)

and enzymatic antioxidants; SOD, CATand GPx (Figures 7,
8 and 9) were significantly depleted in irradiated group,
which were increased significantly on treatment with
curcumin either pre-, post- or both pre- and post-γ-
irradiation. The protracted treatment was found to be
more effective compared to both protected and treated
groups.
The administration of curcumin pre-γ-exposure re-

duced apoptosis as measured by DNA-fragmentation
(Figure 10, Lane 5). In current experiments, the DNA
fragmentation in the mouse liver cells was also recovered
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Figure 9 Effect of curcumin on GPx activity in liver tissue of different
a Significant difference in comparing with control group. b Significant diffe
comparing with irradiated (3 Gy) group. d Significant difference in compari
treated group.
by the administration of curcumin to treated and pro-
tracted groups (Figure 10, Lane 6 and 7). Caspase-3 cleav-
age was not affected in all groups except the gamma
irradiated group (Figure 11, Lane 2).

Discussion
A dose-dependent spectrum of radiation-induced chromo-
some aberrations such as dicentrics, translocation and cen-
tric ring was recorded for effective radiation dose [24].
Radiation causes a large spectrum of DNA lesions and
the ability to activate repairer pathway is essential to
maintain genomic stability and restore normal function
[25]. Curcumin could be used as a radio protective agent
due to its ability to reduce oxidative stress and inhibit
transcription of genes related to oxidative stress and in-
flammatory responses [26]. Curcumin, as a non-genotoxic
agent reduced the DNA damage, retarded ROS generation
and LP and raised the level of antioxidant activity [27].
Protected Treated Protracted

a, b, c
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mice groups. All values are expressed as mean ± S.E., where (n = 6).
rence in comparing with curcumin group. c Significant difference in
ng with protected group. e Significant difference in comparing with



Figure 10 Effect of curcumin on DNA fragmentation in
mouse liver cells. Lane 1 represents: DNA molecular weight
marker, lane 2: control group, lane 3: curcumin group, lane 4:
irradiated group, lane 5: protected group, lane 6: treated group
and lane 7: protracted group.
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Figure 11 Caspase-3 expression by western blot. Lane 1: control
group, lane 2: irradiated group, lane 3: curcumin group, lane 4:
protected group, lane 5: treated group and lane 6: protracted group.
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In the present study, curcumin at testing dose and
duration, alone did not significantly induced aberra-
tions, confirming its non-mutagenicity. Augmentation
in chromosomal aberrations was reported in the bone
marrow of irradiated mice [28], which is proved by the
present data. Chromosomal aberration frequency in-
creased significantly in irradiated group, which were de-
creased significantly on treatment with curcumin either
pre-, post- or both pre- and post-γ-irradiation. However,
protracted treatment decreased their frequency more
significantly compared to both protected and treated
groups. These results indicates that the antioxidant
curcumin possess both protection and repair properties
against chromosome damage produced by radiation.
Thresiamma et al. [11] found that curcumin signifi-
cantly reduces the number of bone marrow cells with
chromosomal aberrations and chromosomal fragments
as effectively as alpha-tocopherol. Moreover, curcumin
possess therapeutic properties to scavenge free radicals
and to inhibit clastogenesis in human cells. Further-
more, Alaikov et al. [29] indicated that curcumin has
pleiotropic effects on signal transduction by inhibiting
transcription. Curcumin modifies signal transduction
pathways, inflammatory cytokines and enzymes and gene
products linked with cell survival [30].
Data revealed that, pro-oxidant enzyme, lipid peroxidative

indices and the non-enzymatic- and the enzymatic-
antioxidants levels do not differ from control levels in
mice group treated with curcumin alone.
Curcumin is known to protect bio membranes against

per-oxidative damage. Peroxidation of lipids is known to
be a free radical-mediated chain reaction leading to the
damage of the cell membrane [31]. Moreover, curcumin
belongs to the family of polyphenolic compounds which
modulate the activities of the pro-inflammatory enzymes
via regulation of the antioxidant response elements [4].
Furthermore, it has protective effects against hepatic
ischemia/reperfusion injury. Its mechanism might be re-
lated to the over expression of heat shock protein and
antioxidant enzymes [32]. Additionally in the present
study, whole body γ-exposure of mice to 3 Gy has in-
duced significant increases in XO activity. Most of the
toxic effects of ionizing radiation to normal tissue are
due to the generation of ROS which triggers formation
of several reactive intermediates [33]. To overcome such
events, living cells are equipped with integrated endogen-
ous enzymatic and antioxidant systems such as SOD,
CAT, GPx and GSH [34]. Free radicals generated by irradi-
ation also react with poly unsaturated fatty acid (PUSFAs)
generating HP, which in turn can induce changes in the
lipid bilayer thereby altering the membrane permeability
and inducing LP [27].
Zhang et al. [35] concluded that ROS generated by

γ-radiation induced membrane LP and cellular DNA-
damage. In the present study, curcumin reduced the
LP content of the liver tissue sufficiently. This may
ascribe to the induction of antioxidant enzyme activ-
ities by curcumin, which consequently mitigate the cell
membrane LP damage. In the present study, the levels
of LP and HP, the end-products of LP are significantly
increased in liver tissue of irradiated group. These re-
sults are in agreement with a recent study of Sinha
et al. [36]. Also, curcumin treatment significantly de-
creased LP and HP levels in various tissues which were
accordance with Wang et al. [37]. The authors suggest
that the anti-lipoperoxidative effect of curcumin may be
explained by its direct free radical scavenger property.
Superoxide dismutase and catalase enzymes are present

in many animal cells [38]. SOD is an oxygen radical scav-
enger that converts superoxide anion radicals to HP and
protects living cells against damage. CAT is an oxidore-
ductase that catalyses the conversion of HP to water and
oxygen, also can protect living cells from damage induced
by ischemia/reperfusion through scavenging ROS. A re-
cent study had shown that dietary curcumin could in-
crease antioxidant enzyme expression and activity in
tissue, inhibit ROS, protect cell function from oxidative
stresses and improves survival in mice [39]. The results of
the present study showed that treatment with curcumin
could increase SOD, CAT and GPx-activities and decrease
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TBARS and HP concentrations, suggesting that curcumin
treatment also increases antioxidative bioactive molecule
expression in liver after irradiation injury and attenuates
ROS damage in liver.
Apoptosis is a fundamental process essential for both

development and maintenance of tissue homeostasis.
Cells undergoing apoptosis exhibit specific changes in-
cluding chromatin condensation, DNA fragmentation,
caspases activity and nuclear breakdown [40]. Curcumin
reduces active caspase-3 and DNA-fragmentation which
were induced by γ-radiation by attenuating relating sig-
nalling pathways [35].
The identification of caspase-3 activity modifications

during the cell death induced by γ-rays in liver cells can
help in the insight of the causal molecular mechanisms
responsible for the induction of apoptosis and necrosis
cell death pathways [41]. We showed that the adminis-
tration of curcumin also reduced the effects of γ-rays on
DNA fragmentation, while the caspase-3 cleavage was
not statistically affected in all groups, except the irradi-
ated group. In contrast, Abouelella et al. [42] found that
intake of Echinacea purpurea was not effective to reduce
the apoptotic mechanisms induced by gamma-rays in
mouse liver. In fact, curcumin was able to slightly enhance
DNA fragmentation in all groups. Nevertheless, more
studies are needed in order to confirm these findings.

Conclusions
These observations show that curcumin exerts its pro-
tective effect by decreasing the LP and improving anti-
oxidant status. These results may provide the molecular
basis for the application of curcumin in clinical radiation
therapy.
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